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Abstract

Employing an overlapping-generations model of R&D-based growth with endogenous fertil-

ity, mortality, and education choice, we examine how demographic changes and human capital

accumulation influence R&D activity. We show that multiple steady states can exist in this

economy. One steady state has a high level of human capital and the other has a low level.

In the steady state with high (low) level of human capital, there is a high (low) level of R&D

activity, a low (high) fertility rate, and a high (low) old-age survival rate. In addition, we show

that the government can steer an economy away from a poverty trap trajectory by investing in

public health. We also show that an improvement in the government’s public health policy has

an inverted U-shaped effect on the growth rate at the steady state.
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Figure 1: R&D expenditure and enrollment rate of tertiary education. Source: World Bank. Cross-
country data for 2015. Simple ordinary least squares estimation shows that there is statistically
significant positive correlation between the enrollment ratio and the level of R&D expenditure per
unit of GDP.

1 Introduction

In most developed countries, people receive higher levels of education than do people in developing

countries. Moreover, most developed countries face low fertility rates and population aging. On the

contrary, developing countries face high fertility rates and high mortality rates. In addition, most

developed countries more actively undertake R&D and realize more rapid technological change than

developing countries. Figure 1 shows the relationship between the enrollment ratio and the level of

R&D expenditure per unit of GDP. According to Figure 1, we find positive correlation between the

enrollment rate and R&D activity. Figure 2 shows the relationship between the fertility rate and the

level of R&D expenditure per unit of GDP. We find negative correlation between the fertility rate

and R&D activity. Meanwhile, Figure 3 shows the relationship between the old-age dependency ratio

and the level of R&D expenditure per unit of GDP. As Figure 3 shows, there is positive correlation

between the old-age survival rate and R&D activity. This remarkable empirical evidence suggests

that there are mutual relationships among demographic changes, education, and R&D activity.

Therefore, this study examines how demographic changes and human capital accumulation influence

R&D activity. We show that education and the human capital accumulation play an important role

in economic development in an R&D-based growth model. We clarify the historical conditions that
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Figure 2: R&D expenditure and fertility rate. Source: World Bank. Cross-country data for 2015.
Simple ordinary least squares estimation indicates that there is statistically significant negative
correlation between the fertility rate and the level of R&D expenditure per unit of GDP.
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Figure 3: R&D expenditure and old-age dependency ratio. Source: World Bank. Cross-country
data for 2015. Simple ordinary least squares estimation shows that there is statistically significant
positive correlation between the old-age dependency ratio and the level of R&D expenditure per
unit of GDP.
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determine whether a country becomes a developed country or a developing country.

We construct a simple overlapping-generations model of R&D-based growth with endogenous

fertility, mortality, and education choice. Each individual lives for three periods. In the first

period of their lives, individuals do not make any decisions. In the second period, individuals raise

children and invest in their education, supply efficient units of labor, pay income tax, consume

differentiated goods, and save any remaining income. In the final period, individuals retire and

consume differentiated goods. Old individuals live through old age with an endogenous survival rate,

which is determined by the government’s public health policy. In this model, there is a production

sector and an R&D sector. In the production sector, a single firm produces a differentiated good

by using effective labor. Similarly, in the R&D sector, R&D firms use the effective labor to invent

new differentiated goods. The equilibrium dynamics of this economy are characterized by the level

of human capital. We show that multiple steady states can exist in this economy. One of them

has a high level of human capital and the other has a low level. In the steady state with the high

(low) level of human capital, there is a high (low) level of R&D activity, a low (high) fertility rate,

and a high (low) old-age survival rate. In addition, we examine how government policy affects this

economy. We show that the government can steer an economy away from a poverty trap trajectory

by investing in public health. We also show that an improvement in the government’s public health

policy has an inverted U-shaped effect on the growth rate at the steady state. We examine how the

improved public health policy affects welfare and show that the government may face a trade-off

between improving the welfare levels of the current generation and those of future generations.

This study is related to research on demographic change, human capital accumulation, and

R&D-based growth. In particular, this study is related to research in the unified growth literature,

such as Galor and Weil (2000), Galor and Moav (2002), and Galor (2011). They explain the transi-

tion from the Malthusian regime to the sustained growth regime by considering the interrelationship

of demographic change, human capital accumulation, and technological change. These studies argue

that demographic change, human capital accumulation, and technological change play an important

role in shifting from the Malthusian regime to the sustained growth regime. In addition, they argue

that the difference between developed and developing countries is their timing in taking off from

the Malthusian regime. Specifically, developing countries do not stay in the Malthusian regime

and automatically move to the sustained growth regime. However, many developing countries face
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sustained challenges of low economic growth, high fertility rate, and high mortality rate. Therefore,

developing countries may be caught in a poverty trap, thereby hindering the transition from the

Malthusian regime to the sustained growth regime. Hence, many studies allow the existence of mul-

tiple steady states with the poverty trap, including Blackburn and Cipriani (2002), Moav (2005),

Kimura and Yasui (2007), Chen (2010), and Chakraborty and Chakraborty (2018), taking endoge-

nous fertility and education choice into account. They argue that individuals’ education decisions

play an important role in economic development. However, they do not consider R&D activities.

In contrast to this research, we consider the relationship between demographic change, education,

and R&D activity simultaneously. This study is also related to Chakraborty (2004), Hashimoto and

Tabata (2005), and Agénor (2015). whose works endogenize the old-age survival rate by focusing

on public health policy and exploring the dynamic relationship between mortality and economic

growth. However, they do not consider fertility, education, and R&D simultaneously. In contrast

to this research, we consider these factors and can explain the facts shown in Figures 2 and 3.

Furthermore, this research is related to Chu et al. (2013), Strulik et al. (2013), and Hashimoto and

Tabata (2016), who investigate the relationship between demographic change, education, and R&D

activity simultaneously. However, Chu et al. (2013) and Strulik et al. (2013) do not consider mor-

tality. Hashimoto and Tabata (2016) consider mortality but regard it as exogenous; moreover, they

do not refer to a multiplicity of steady states. In contrast to this research, we consider endogenous

mortality and show the existence of multiple steady states. Lastly, this study is related to Futagami

and Konishi (2017), who explore the dynamic relationship between endogenous fertility, mortality,

and R&D. In addition to their research, we study how education and human capital accumulation

affect the economy.

This rest of this paper is organized as follows. Section 2 shows the basic structure of the model,

Section 3 analyzes equilibrium and dynamics. Section 4 analyses government policy. Finally, the

conclusion is described in Section 5.
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2 The model

2.1 Individuals

Time is discrete and denoted by t = 0, 1, 2, · · · . Each individual lives for three periods (childhood,

adulthood, and old age). In the first period (childhood), individuals do not make any decisions, and

they are raised by their parents. In the second period (adulthood), individuals raise their children

and invest in their education, supply efficient units of labor, pay income tax, consume differentiated

goods, and save any remaining income. In the final period (old age), individuals retire and consume

differentiated goods. An individual dies at the beginning of his or her old age with probability

1− λt ∈ [0, 1] and lives through old age with probability λt ∈ [0, 1]. Members of the cohort born in

period t − 1 become active workers in period t. Thus, we call this cohort generation t and use Nt

to represent the number of adults who are alive in period t. Let nt denote the number of children

for each adult. Therefore, the relationship between the sizes of the adult populations during any

two consecutive periods can be expressed as Nt+1 = ntNt. Individuals derive their utility from the

number of children nt, their children’s level of human capital ht+1, their own consumption during

adulthood C1,t, and their own consumption during old age C2,t+1. The lifetime utility of individuals

in generation t is expressed as

ut = η log nt + logC1,t + βλt(γ log ht+1 + logC2,t+1), (1)

where the positive parameters η and γ denote the weights of the number of their children and

the children’s level of human capital, respectively. β ∈ (0, 1] denotes the discount factor. Following

Mariani et al. (2010), we assume that intergenerational altruism is eventually magnified by a higher

λt, because the success of children has a greater effect on those parents who will live long enough

to witness it. We specify the subutility function Ck,t for k ∈ {1, 2} as

Ck,t ≡
[∫ At

0
ck,t(i)

αdi

] 1
α

, (2)

where ck,t(i) represents the consumption of differentiated good i ∈ [0, At]. At denotes the variety of

differentiated goods or the level of technological knowledge in this economy, which grows through
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R&D. In individuals’ second period of life (adulthood), they are endowed with one unit of time,

which is devoted to working lt in the labor market, raising nt identical children, and educating each

child et. We assume that a fixed amount of time z is required to bear and raise a child. Individuals

divide their disposable income (1− τ)wthtlt between consumption and saving st for their old age1.

Following Yaari (1965), we assume that insurance companies are risk neutral and that the private

annuities market is competitive. Insurance companies promise individuals a payment (Rt/λt)st, in

exchange for which the estate st accrues to the companies, where λt is the average probability of

surviving and Rt+1 represents the gross interest rate. In the absence of a bequest motive, individuals

are willing to invest their assets in such insurance. Here, wt and τ ∈ [0, 1) are the wage rate for

efficient units of labor and the income tax rate, respectively. Thus, the budget and time constraints

for individuals in generation t are expressed as follows:

E1,t = (1− τ)wthtlt − st, (3)

E2,t+1 =
Rt+1

λt
st, (4)

E1,t =

∫ At

0
pt(i)c1,t(i)di, (5)

E2,t+1 =

∫ At+1

0
pt+1(i)c2,t+1(i)di, (6)

lt + znt + etnt = 1, (7)

where E1,t, E2,t+1, and p(i) denote the expenditure of an individual in adulthood, the expenditure

of an individual in old age, and the price of good i, respectively2.

We assume that the human capital production function is given by the following expression:

ht+1 = ϕ(etht)
σe h̄σht , ϕ > 0, σe, σh ∈ (0.1]. (8)

ϕ, σe, and σh are parameters. ht reflects externalities from the human capital stock of parents and

h̄t reflects externalities from the human capital stock of the society. In equilibrium, h̄t = ht holds,

1In this model, we do not take account of the goods cost of child rearing. If we were to consider this, the dynamics
of per capita human capital ht and the variety of differentiated goods At would depend on each other and the model
would be quite complicated. Therefore, we do not take account of the goods cost of child rearing to simplify the
analysis. However, this simplification is quite common in the literature, for example, Galor and Moav (2002).

2In our specifications, we ignore the utility cost of labor effort. However, our results still hold even if we take
account of the utility cost of labor effort and the substitution among leisure and time spent doing other things.
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because all individuals are homogeneous in this economy. Individuals maximize their utility given

these externalities3.

We next consider the individual’s utility maximization. By maximizing the subutility function

(2) subject to the budget constraint (5), we obtain the demand for differentiated good i as follows:

ck,t(i) =
pt(i)

−ϵ

P 1−ϵ
t

Ek,t, (9)

where ϵ ≡ 1
1−α and Pt is the price index defined by Pt ≡

[∫ At

0 pt(j)
1−ϵdj

] 1
1−ϵ

. This demand function

implies that indirect utility becomes a linear function of expenditure as follows:

Ck,t =
Ek,t
Pt

. (10)

Let us denote the total demand for good i as xt(i). xt(i) is given by

xt(i) = c1,t(i)Nt + c2,t(i)λt−1Nt−1,

=
pt(i)

−ϵ

P 1−ϵ
t

(E1,tNt + E2,tλt−1Nt−1). (11)

By maximizing (1) subject to (3), (4), (7), (8), and (10), we obtain the following solution:

nt =
η − βγσeλt

(1 + η + βλt)z
, (12)

et =
βγσezλt
η − βγσeλt

, (13)

st =
β(1− τ)wthtλt
1 + η + βλt

, (14)

lt =
1 + βλt

1 + η + βλt
. (15)

According to (12) and (13), the fertility rate decreases with the old-age survival rate λt (i.e.,
∂nt
∂λt

),

whereas investment in education for each child increases with λt (i.e., ∂et
∂λt

). An increase in the

old-age survival rate stimulates demand for consumption relative to demand for both quantity and

quality of children, because this increase induces individuals to anticipate the need to consume

3Yakita (2010) and Hashimoto and Tabata (2016) discuss these assumptions of human capital production function
in detail.
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goods over a longer period of time. In response to this change, individuals shift their time from

child rearing to work. Therefore, the fertility rate decreases and working time and savings increase

with the old-age survival rate. On the other hand, an increase in the old-age survival rate has three

effects on investment in education for each child. First, it motivates parents to shift their time

from education to work (i.e., the first positive effect). Second, if the old-age survival rate increases,

parents invest more in education for each child because of the inter-generational externality of

education (i.e., the second positive effect). Third, the decrease in the fertility rate that results

from the rise in the old-age survival rate decreases the opportunity costs that parents incur from

providing their children with an education, which motivates parents to invest more in education for

each child (i.e., the negative effect). In equilibrium, the first positive effect and the negative effect

offset one another. Consequently, investment in education for each child increases with the old-age

survival rate because of the second positive effect.

We make the following assumption, which is a sufficient condition for ensuring nt > 0.

Assumption 1

η > γ

This assumption implies that having a family must be more important than investing in the edu-

cation of children4.

2.2 Production

There are differentiated goods indicated by i ∈ [0, At]. A single firm produces each good. Each

firm supplies a differentiated good monopolistically and sets its price. The monopoly is protected

through perfect patent protection. Each monopolistic firm produces one unit of good by using one

unit of effective labor. The producer of good i maximizes the following profit:

πt(i) = pt(i)xt(i)− wtxt(i), (16)

4This assumption ensures the existence of a consistent solution; see Strulik (2004).

9



subject to the total demand function for good i (11). From the profit maximization condition, the

price of good i is

pt(i) =
1

α
wt ≡ pt. (17)

Hence, all goods have the same price. Thus, the firm-specific index i in the differentiated goods

sector can be dropped. By substituting (17) into the demand function (11), we obtain the output

level of the differentiated good:

xt =
p−ϵt∫ At

0 p1−ϵt dj
(E1,tNt + E2,tλt−1Nt−1) =

E1,tNt + E2,tλt−1Nt−1

Atpt
. (18)

The total expenditure is treated as a numeraire (E1,tNt + E2,tλt−1Nt−1 = 1). Therefore, we can

rewrite (18) by using (17) as follows:

xt =
1

Atpt
=

α

wtAt
. (19)

The profit of each differentiated good firm is given by

πt =

(
1

α
− 1

)
wtxt. (20)

2.3 R&D

R&D firms use the effective labor to invent new differentiated goods. After invention, the firms sell

a blueprint of a new good to an entrepreneur. Development of At+1 − At new blueprints requires

lR,t units of effective labor input. Let us define ∆At as ∆At ≡ At+1 − At. Thus, given research

productivity of ψt, output is expressed as follows:

∆At = ψtAtlR,t, (21)

At implies the spillover from general knowledge accumulated by past innovation. To remove the

strong scale effect, we follow Laincz and Peretto (2006) and Chu et al. (2013). We assume that ψt

is decreasing in the scale of the economy htNt. We specify productivity as ψt ≡
ψlν−1

R,t

(htNt)ν
where ψ > 0
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and the parameter ν ∈ (0, 1) inversely measures the negative duplication externality discussed

in Jones (1995) and Jones and Williams (2000). In accordance with Jones (1995), the research

productivity is given for each firm. gt ≡ ∆At
At

is the growth rate of product variety. Given lR,t, the

growth rate of product variety features decreasing returns to scale in lR,t. The R&D firms’ profits

πRt are given by

πRt = vt∆At − wtlR,t,

=

(
vt −

wt
ψtAt

)
∆At, (22)

where vt is the price of a blueprint of a newly invented good. Because an entrepreneur pays the

price of the blueprint of the new good to the R&D firm, this price corresponds to the price of equity

that is sold to the household. Free entry into R&D races leads to the following zero-profit condition:

vt ≤
wt
ψtAt

with equality if ∆At > 0. (23)

As shown in Appendix A, R&D is always undertaken and (23) holds with equality. The value of vt

equals the present value of future profits as follows:

vt =
∞∑

T=t+1

πT

ΠTν=t+1Rν
.

After some manipulations, we obtain the following no-arbitrage condition.

Rt+1 =
vt+1 + πt+1

vt
. (24)

Each individual saves at the gross rate of interest Rt+1 determined by (24).

2.4 Government

The government collects income tax from individuals and invests it in the public health service Gt.

We assume that the public health service is produced by effective labor lG,t and, for simplicity, that
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the production function of the public health service is linear, as follows:

Gt = δlG,t (25)

where δ > 0 is a constant parameter5. The old-age survival rate λt is improved by the per capita

public health service bt ≡ Gt
Nt

. The old-age survival rate λt is given by

λt = f(bt), (26)

which satisfies f ′(bt) ≥ 0, f ′′(bt) < 0, f(0) ≥ 0, and limbt→∞ f(bt) = µ ≤ 1. Public health

expenditure is financed by the government’s balanced budget. Therefore, the government’s budget

constraint is

wtlG,t = τwthtltNt. (27)

3 Equilibrium

3.1 Market equilibrium

We first describe the equilibrium condition of the asset market. Individuals’ savings must be directed

to purchase either newly issued stocks for R&D or existing stocks of operating firms owned by the

preceding generation. Therefore, the asset market equilibrium condition is

stNt = wtlR,t + vtAt. (28)

The left-hand side of (28) is the saving volume of the adult individuals. The first term on the

right-hand side is the total investment in newly issued stocks, which is equal to the total cost of

R&D activities. The second term is the purchase of existing stocks. Note that the second term

5We consider that nurses and doctors provide the public health service. Effective labor lG,t includes their human

capital and we can express their raw labor as
lG,t

ht
; see (29). Therefore, we consider the skills of nurses and doctors

in this simple liner functional specification. In addition, the public health service is produced without goods. If we
take account of goods input in the production of public health service in addition to the labor input, then λt depends
on both ht and At and the dynamics become quite complicated. This simplification allows us to undertake a simple
analysis. Futagami and Konishi (2017) analyze the situation in which the old-age survival rate depends on the variety
of goods in R&D-based growth model without human capital.
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implicitly assumes that ex-dividend stocks are traded between adult and old generations in each

period. In other words, the old generation always receives all dividends before selling the stocks.

We next describe the labor market equilibrium condition. Effective labor is used for production

of differentiated goods, R&D, and public health services. The labor market-clearing condition is

htltNt = lR,t +Atxt + lG,t, (29)

where lR,t, Atxt, and lG,t denote the quantities of effective labor engaging in R&D, production

activities, and improving public health, respectively.

From (15), (25), and (27), we obtain

bt =
(1 + βλt)δτht
1 + η + βλt

≡ b(λt;ht, τ). (30)

Note that b(0;ht, τ) = τδht
1+η ≥ 0, limλt→∞ b(λt;ht, τ) = δτht ≤ ∞, ∂b(λt;ht,τ)

∂λt
≥ 0, ∂2b(λt;ht,τ)

∂λ2t
≤ 0.

Let us define f−1(λt) as the inverse function of (26). This inverse function satisfies the following

characteristics: ∂f−1(λt)
∂λt

≥ 0, ∂2f−1(λt)
∂λ2t

> 0, and f−1(0) ≤ 0. λt and bt are determined by the

following equation:

f−1(λt) = b(λt;ht, τ). (31)

We define λ∗t and b∗t as the solution of (31) with respect to λt and b∗t ≡ b(λ∗t , ht, τ), respectively.

In addition, we can regard λ∗t as a function of ht and τ , and denote λ∗t = λ(ht; τ). Figure 4 shows

the relationship between f−1(λt) and b(λt, ht, τ). Figure 4 shows the determination of (λ∗t , b
∗
t ).

As shown in Figure 4, (λ∗t , b
∗
t ) is uniquely determined. From (30), we find that ∂b(λt;ht,τ)

∂ht
≥ 0.

Therefore, if ht increases, the line of b(λt;ht, τ) shifts upward in Figure 5. We find that
∂λ∗t
∂ht

> 0

from Figure 5 and obtain the following Proposition 1.

Proposition 1 An increase of per capita capital ht increases the old-age survival rate λ∗t .

If per capita human capital ht increases, the income of individuals increases. This income increase

raises the government’s income, because the government imposes income tax. Therefore, the gov-

ernment can invest more in public health and the old-age survival rate rises. We obtain the following

13



𝜆"

𝑏" 𝑓%&(𝜆")

𝑏(𝜆"; ℎ", 𝜏)

0 𝜇𝜆"∗

𝑏"∗
𝛿𝜏ℎ"

Figure 4: Determination of (λ∗t , G
∗
t )

𝜆"

𝑏" 𝑓%&(𝜆")

𝑏(𝜆"; ℎ", 𝜏)

0 𝜇𝜆"∗ 𝜆"∗′

𝑏"∗

𝑏"∗′

ℎ"↑or 𝜏↑𝛿𝜏ℎ"

Figure 5: The effect of Ht and τ on (λ∗t , G
∗
t )

14



proposition.

Proposition 2 An increase of per capita human capital ht decreases the fertility rate nt.

Proof. From (12) and
∂λ∗t
∂ht

> 0, we find ∂nt
∂ht

< 0.

From Proposition 1, if per capita human capital ht increases, the old-age survival rate λ∗t rises.

If the old survival rate λ∗t rises, individuals put more weight on old-age consumption. Therefore,

individuals increase their efficient units of labor to save more. With increased efficient units of

labor, individuals have to decrease the number of children owing to time constraints. Therefore, if

per capita human capital ht increases, the fertility rate nt decreases.

From (14), (21), (23), and (28), the growth rate of product variety gt is determined by the

following equation:

gt + 1 =
βψ

1
ν (1− τ)λt

1 + η + βλt
g
− 1−ν

ν
t . (32)

This defines the relationship between gt and λt. We obtain the following proposition.

Proposition 3 An increase of per capita human capital ht increases the growth rate of product

variety gt.

Proof. see Appendix B.

If per capita human capital ht increases, the old-age survival rate increases. This increases sav-

ings and thus, investment in R&D increases. Consequently, the growth rate of product variety gt

increases.

From (30), we find that ∂b(λt;ht,τ)
∂τ ≥ 0. Therefore, if τ increases, the line of b(λt;ht, τ) shifts

upward in Figure 5. We find that
∂λ∗t
∂τ > 0 from Figure 5 and obtain the following Lemma 1.

Lemma 1 An increase of the tax rate τ increases the old-age survival rate λ∗t .

If the government raises the tax rate, the government can collect more tax revenue and invest more

in public health. Therefore, the old-age survival rate λ∗t rises.
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3.2 Dynamics

The dynamics of this economy are characterized by per capita human capital ht. From (8), (13),

and λ∗t = λ(ht; τ), we obtain

ht+1 = ϕ

[
βγσezλ(ht; τ)

η − βγσeλ(ht; τ)

]σe
hσe+σht︸ ︷︷ ︸

≡Φ(ht)

. (33)

Let us define the right-hand side of (33) as Φ(ht). Figure 6 shows the phase diagram of ht when the

economy has multiple steady states6. In this case, the economy has three steady states. The first

one is stable and its per capita human capital is h∗. The second one is the unstable steady state.

We denote the per capita human capital of this steady state as h∗∗. The third one is stable and its

per capita human capital is high. We denote the per capita human capital of this steady state as

h∗∗∗. If we specify f(bt) =
ρ+µbt
θ+bt

, we obtain the following proposition7.

Proposition 4 Suppose σh ∈ (1− 2σe, 1− σe), and ρ is sufficiently low. There exists ϕ such that

6A numerical example reveals that there is a parameter configuration such that Assumption 1 is satisfied and
multiple steady states exist. For example, if we specify f(Gt) =

ρ+µbt
θ+bt

and assume that β = (0.98)25, δ = 1, γ = 0.14,
η = 0.21, θ = 5, µ = 1, ρ = 1, σe = 0.635, σh = 0.165, τ = 0.1, ϕ = 34.02, and z = 0.088, then multiple steady states
exist. The justifications for this parameter setting are described in Section 4. If ϕ is in [30.6, 35.6], multiple steady
states exist.

7The functional form f(bt) =
ρ+µbt
θ+bt

satisfies f ′(bt) ≥ 0, f ′′(bt) < 0, f(0) ≥ 0, and limbt→∞ f(bt) = µ ≤ 1.

16



the economy has multiple steady states. When the economy has three steady states, if the initial per

capita human capital is low (h0 < h∗∗), per capita human capital ht converges to h∗. However, if

the initial per capita human capital is high (h0 > h∗∗), per capita human capital ht converges to

h∗∗∗.

Proof. see Appendix C

If the initial per capita human capital is sufficiently high (i.e., h0 > h∗∗), the old-age survival rate is

high because of Proposition 5. Then, investment in education for each child is also high. Therefore,

per capita human capital converges to steady state h∗∗∗. However, if the initial per capita human

capital is sufficiently low (i.e., h0 < h∗∗), the old-age survival rate is low. Then, the investment in

education for each child is also low. Therefore, per capita human capital converges to steady state

h∗. This complementarity results in the existence of multiple steady states.

From Propositions 1, 2, 3, and, 4, we obtain the following results. In the steady state with a

high level of human capital h∗∗∗, the level of R&D activity is high, the fertility rate is low, and the

old-age survival rate is high. However, in the steady state with a low level of human capital h∗, the

level of R&D activity is low, the fertility rate is high, and the old-age survival rate is low. These

results correspond to the empirical results, as shown in Figures 1, 2, and 3.

4 Government policy

In this section, we consider how government policy affects this economy. We concentrate on the case

in which multiple steady states exist in this economy. The government can set the income tax rate

in this model. Therefore, we focus on how changes of the tax rate affect this economy. First, we

consider the effects on economic growth. Let us denote g∗∗∗ as the growth rate of product variety

of the steady state with a high level of human capital h∗∗∗ and λ∗∗∗ as the old-age survival rate of

the steady state with h∗∗∗. We obtain the following proposition8.

Proposition 5 If the tax rate τ increases, the level of human capital of the unstable steady state

h∗∗ decreases and that of the steady state with a low level of human capital h∗ and a high level of

human capital h∗∗∗ increases.

8Propositions 5 and 6 do not need to specify the functional form of f(bt).
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Figure 7: Effect of change of the tax rate on development

Proof. see Appendix D

Let us consider an economy whose initial per capita human capital h0 satisfies h∗ < h0 < h∗∗.

If the government does not implement any policy, this economy can converge to the steady state

with low per capita human capital h∗. However, if the government sets a sufficiently high tax rate

and implements a health-improving policy, investment in education for each child increases. Then,

human capital accumulation is stimulated and this economy converges to the steady state with high

per capita human capital h∗∗∗. In addition, if the government sets a higher tax rate, the steady-state

level of human capital h∗ and h∗∗∗ increases.

We next obtain the following proposition.

Proposition 6 Suppose ∂2λ∗∗∗

∂τ2
< 0, in which an increase of tax rate τ has an inverted U-shaped

effect on the steady-state growth rate g∗∗∗.

Proof. see Appendix E

As shown in Appendix E, if the tax rate τ increases, the steady state old-age survival rate λ∗∗∗

increases. Therefore, individuals save more and R&D investment increases. Then, the growth

rate increases. However, if the tax rate τ increases, the disposable income decreases. Therefore,

individuals’ saving volume decreases, R&D investment decreases, and the growth rate decreases. In

addition, if ∂
2λ∗∗∗

∂τ2
< 0 holds, the first positive effect on the growth rate decreases when τ increases.
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Figure 8: The inverted U-shaped effect of the tax rate on the steady-state growth rate. We specify
f(Gt) = ρ+µbt

θ+bt
and assume that β = (0.98)25, δ = 1, γ = 0.14, η = 0.21, θ = 5, µ = 1, ρ = 1,

σe = 0.635, σh = 0.165, ϕ = 34.02, and z = 0.088.

Hence, an increase of tax rate τ has an inverted U-shaped effect on the steady-state growth rate

g∗∗∗. Figure 8 shows a numerical example of the inverted U-shaped effect of the tax rate on the

steady-state growth rate. Considering ∂λ∗∗∗

∂τ > 0 and Proposition 5, there is an inverted U-shaped

effect between λ∗∗∗ and the steady-state growth rate g∗∗∗. Our simple regression supports this

inverted U-shaped relationship9. More formal empirical evidence in support of this pattern can be

found in An and Jeon (2006). Their regression using panel data from OECD countries over the

period 1960–2000 also reflects an inverted U-shaped relationship between the old-age dependency

ratio and economic growth.

Next, we calibrate the model to examine how the change of tax rate affects welfare. There are

nine structural parameters {α, β, δ, γ, η, σe, σh, ϕ, ψ, ν, z}. We specify f(Gt) =
ρ+µbt
θ+bt

and normalize

9The World Development Indicators (World Bank 2019) are used to calculate the old-age dependency ratio and
the per capita output growth rate. We use data on 157 countries for the period from 1991 to 2016 and estimate simple
regressions, in which the average per capita output growth rate (Growth) as the dependent variable is a function
of the average old-age dependency ratio (Old1) and the value of its square (Old2). The following equation provides
simple estimation results using ordinary least squares:

Growth = −0.896(−1.134) + 0.535(4.032)Old1− 0.017(−3.780)Old2,

where the figures in parentheses are the values of the t-statistics. The equation above suggests that there is an inverted
U-shaped correlation between the old-age dependency ratio and the per capita GDP growth rate. Hashimoto and
Tabata (2016) show a similar result.
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Figure 9: Response to change of tax rate. The dotted lines denote the steady-state value and the
solid lines denote the tax change response. The t-th generation’s total consumption is the sum of
its consumption level for adult age and that for old age.
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δ, µ, and ρ to 1. Following Futagami and Konishi (2017), we set the minimum value of λt to 0.2

(i.e., θ = 5). Considering the range of the values estimated by Norrbin (1993) and Basu (1996),

we set α at 1/1.05. We regard one period in this overlapping-generations economy as 25 years and

set β = (0.98)25. Following Strulik et al. (2013), we set γ = 0.14 and z = 0.088. We choose

η to make the fertility rate 2.1/2 in the steady state with h∗∗∗ (i.e., η = 0.21). Following de la

Croix and Doepke (2003), we set σe = 0.635. Following Cardak (2004), we set σe + σh = 0.8 (i.e.,

σh = 0.165). The average old-age dependency ratio of OECD countries from 1991 to 2016 is 0.2076.

Therefore, we choose ϕ to make the old-age dependency ratio 0.2067 in the steady state with h∗∗∗

(i.e., ϕ = 34.02)10. Following Jones and Williams (2000), we set ν = 0.5. We choose the values

of the R&D productivity parameter ψ to make the annual growth rate of output 2% in the steady

state with h∗∗∗ (i.e., ψ = 2.69). We set the initial population size N0 = 1 and the initial economy

size A0 = 1.

Suppose that the economy is in the steady state with h∗∗∗ at time 0 and the government raises

the tax rate τ = 0.1 to τ = 0.13 at time 1. Figure 9 shows the levels of variables at the initial

steady state and those at the transition pass after the tax change. From Figure 9, we find that if the

government raises the tax rate, the welfare level of individuals of the first generation (i.e., people who

become adults at time 1) increases from the steady-state level. However, after the second generation

(i.e., people who become adults after time 2), the welfare levels decrease from the steady-state levels

of individuals. Therefore, the government faces a trade-off between improving the welfare levels of

the current versus future generations. Let us consider the reason for this conflict. From Lemma

1, the old-age survival rate increases if the government raises the tax rate. This increases the

expected utility of adults of the t-th generation. However, from (12), the fertility rate decreases if

the old-age survival rate increases. If the fertility rate decreases, the utility level of adults of the

t-th generation decreases. Therefore, if this negative effect is sufficiently small, the welfare level of

adults of the t-th generation increases. On the contrary, if the tax rate τ increases, the disposable

income decrease. Therefore, individuals’ savings decreases and R&D investment decreases. If R&D

10The old-age dependency ratio is the ratio of people older than 64 years to the working-age population of those
aged 15–64 years. Noting that one period in this overlapping generations economy as 25 years, we calculate the old-age
dependency ratio of the steady state with h∗∗∗ by following equation:

old age dependency ratio =
75−64

25
λ∗∗∗

25−15
25

(n∗∗∗)2 + n∗∗∗ + 64−50
25

λ∗∗∗ ,

where n∗∗∗ and λ∗∗∗ denote the fertility rate and old-age survival rate of the steady state with h∗∗∗, respectively.
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investment decreases, the growth rate also decreases. Hence, individuals’ total consumption levels

increase more slowly over time owing to the low growth rate. Therefore, the welfare level gradually

becomes lower from the steady-state level after the tax increases. Hence, if the government raises

the tax rate, the welfare level of the current generation increases and the welfare levels of future

generations decrease. The government tends to decide the tax rate by placing more weight on

the current generation (i.e., adult agents) than on other generations, because children do not have

voting rights and some old agents are dead at time t. However, such a decision tends to harm social

welfare, because the welfare levels of future generations are sacrificed for the welfare gain of the

current generation.

5 Conclusion

We constructed an overlapping-generations model of R&D-based growth with endogenous fertility,

mortality, and education choice. We showed that multiple steady states can exist in this economy.

One of them has a high level of human capital and the other has a low level. In the steady state with

the high (low) level of human capital, there is a high (low) level of R&D activity, a low (high) fertility

rate, and a high (low) old-age survival rate. In addition, we showed that the government can steer

the economy away from a poverty trap trajectory by investing in public health. We also showed

that an improvement in the government’s public health policy has an inverted U-shaped effect on

the growth rate at the steady state. We examined how the improved public health policy affects

welfare and showed that the government faces a trade-off between improving the welfare levels of the

current generation and future generations. In this study, we did not take account of the goods cost

of child rearing and, for simplification, assumed that the public health service is produced without

goods. However, these factors are worth analyzing in this framework. The expansion of the cost of

child rearing and the provision of public health service is a promising direction for future research.
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Figure 10: Determination of gt and the effect of Ht on gt

Appendix

Appendix A: Proof of that R&D is always undertaken

We show that R&D is always undertaken in this model. Suppose that R&D is not undertaken and

∆At = 0. Then, (23) holds with strict inequality as follows:

vt <
wt
ψtAt

. (A1)

From (22), we have

gt =
∆At
At

= ψ

(
lR,t
htNt

)ν
. (A2)

From (A2), if ∆At = 0, lR,t = 0. By using (15), (19), (21), (27), and (29), we obtain the wage rate

wt as follows:

wt =
α[

(1+βλt)(1−τ)
1+η+βλt

−
(
gt
ψ

) 1
ν

]
Ht

, (A3)

where Ht ≡ htNt is aggregate human capital. From (A3), when ∆At = 0 (i.e., gt = 0), wt =

α(1+η+βλ∗t )Ht

(1+β+βλ∗t )(1−τ)
. In addition, when lR,t = 0, ψt approaches infinity. Therefore, the right-hand side

of (A1) converges to 0 when ∆At = 0. Meanwhile, when ∆At = 0 (i.e., lR,t = 0), we obtain the

23



following equation from (28),

vt =
stNt

At
=
β(1− τ)wtλ

∗
tHt

(1 + η + βλ∗t )At
> 0. (A4)

These results contradict (A1). Therefore, ∆At > 0 always holds in this economy.

Appendix B: Proof of Proposition 3

We check the effect of ht on gt. From (32) and λ∗t = λ(ht; τ), we obtain

gt + 1 =
βψ

1
ν (1− τ)λ(ht; τ)

1 + η + βλ(ht; τ)︸ ︷︷ ︸
≡Λ(ht)

g
− 1−ν

ν
t . (A5)

Let us define Λ(ht) as Λ(ht) ≡ βψ
1
ν (1−τ)λ(ht;τ)

1+η+βλ(ht;τ)
. Figure 10 shows the relationship between the left-

hand and right-hand sides of (A5). From Figure 10, we find that (A5) has a unique solution of gt

and we denote this solution as gt. We obtain

∂λ(ht; τ)

∂ht
=
β(1 + η)ψ

1
ν (1− τ)

(1 + η + βλ∗t )
2

∂λ(ht; τ)

∂ht
> 0. (A6)

Therefore, when ht increases, the line of Λ(ht; τ)g
− 1−ν

ν
t shifts upward and gt increases, as shown in

Figure 10.

Appendix C: Proof of Proposition 4

Suppose f(bt) =
ρ+µbt
θ+bt

and from this equation, we obtain

f−1(λt) =
θλt − ρ

µ− λt
. (A7)

Substituting (A7) into (31) and rearranging them, we obtain

ht =
(1 + η + βλ∗t )(θλ

∗
t − ρ)

(1 + βλ∗t )(µ− λ∗t )δτ
(A8)
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Figure 11: Derivation of the phase diagram of ht

If ht is given, λ
∗
t is determined to satisfy (A8). From λ∗t = λ(ht; τ), (33), and (A8), we obtain the

following inequalities

ht+1 ≥ ht,

→ βγσeϕ
1
σe zλ∗t

η − βγσeλ∗t︸ ︷︷ ︸
≡LHS(λ∗t )

≥
[
(1 + η + βλ∗t )(θλ

∗
t − ρ)

(1 + βλ∗t )(µ− λ∗t )δτ

] 1−σe−σh
σe

︸ ︷︷ ︸
≡RHS(λ∗t )

. (A9)

Let us define the left-hand side of (A9) as LHS(λ∗t ) and the right-hand side of (A9) as RHS(λ∗t ).

From (A9), we find that LHS(0) = 0, RHS( θρ) = 0, limλ∗t→
η

βγσe
LHS(λ∗t ) = ∞, and limλ∗t→µRHS(λ

∗
t ) =

∞. Therefore, limλ∗t→µRHS(λ
∗
t ) > limλ∗t→µ LHS(λ

∗
t ), because µ ≤ 1 and η > γ. From (A9), we
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obtain the following:

∂LHS(λ∗t )

∂λ∗t
=

βγησeϕ
1
σe z

(η − βγσeλ∗t )
2
≥ 0, (A10)

∂RHS(λ∗t )

∂λ∗t
=
θ[(1 + βλ∗t )

2µ+ η(µ+ βλ∗2t )]− {1 + (1− µ)η + [2(1 + η) + βλ∗t ]λ
∗
t }ρ

σe(1 + η + βλ∗t )
2

× δ(1− σe − σh)τ(θλ
∗
t − ρ)

1−2σe−σh
σe

[
1 + η + βλ∗t

(1 + βλ∗t )(µ− λ∗t )δτ

] 1−σh
σe

. (A11)

First, let us consider the case in which ρ = 0 as the benchmark. When ρ = 0, we obtain the

following equation from (A11)

∂RHS(λ∗t )

∂λ∗t

∣∣∣∣
ρ=0

=
[µ(1 + βλ∗t )

2 + η(µ+ βλ∗2t )]δ(1− σe − σh)τ

θσe(1 + η + βλ∗t )
2

× (λ∗t )
1−2σe−σh

σe

[
(1 + η + βλ∗t )θ

(1 + βλ∗t )(µ− λ∗t )δτ

] 1−σh
σe

. (A11’)

From (A10), limλt→0
∂LHS(λ∗t )

∂λ∗t
= βγσeϕ

1
σe

η <∞. Suppose that σh ∈ (1− 2σe, 1− σe). Then, we find

that
∂RHS(λ∗t )

∂λ∗t

∣∣∣
ρ=0

> 0, limλ∗t→0
∂RHS(λ∗t )

∂λ∗t

∣∣∣
ρ=0

= ∞ and limλ∗t→µ
∂RHS(λ∗t )

∂λ∗t

∣∣∣
ρ=0

= ∞ from (A11’).

If ϕ increases,
∂LHS(λ∗t )

∂λ∗t
increases. Therefore, there exists ϕ such that LHS(λ∗t ) and RHS(λ∗t )|ρ=0

have their intersections at λ∗t = 0, λ∗∗, λ∗∗∗, as drawn in Panel A of Figure 11. If LHS(λ∗t ) and

RHS(λ∗t )|ρ=0 have three intersections, there exist three steady states with respect to ht, as shown

in Panel C of Figure 11. Next, let us consider the case in which ρ > 0. From (A9), we find that

RHS(λ∗t ) shifts left, as shown in Panel A of Figure 12, if ρ increases. From (A11), we find that

∂RHS(λ∗t )
∂λ∗t

> 0 if ρ is not so high. We also find that limλ∗t→
ρ
θ

∂RHS(λ∗t )
∂λ∗t

= ∞ and limλ∗t→µ
∂RHS(λ∗t )

∂λ∗t
=

∞ from (A11). From Figure 12, if ρ > 0 and ρ is not so high, LHS(λ∗t ) and RHS(λ∗t ) have

three intersections and those values are positive (λ∗∗∗ > λ∗∗ > λ∗ > 0). Then, if ρ is not so

high, three steady states exist with respect to ht and the values of these steady states are positive

(h∗∗∗ > h∗∗ > h∗ > 0), as shown in Panel C of Figure 12.

In addition, if ht+1 ≥ ht holds, LHS(λ
∗
t ) ≥ RHS(λ∗t ) holds from (A8). Therefore, we obtain

Panel C of Figure 12, which is equivalent to Figure 6.
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Appendix D: Proof of Proposition 5

From Lemma 1, λ∗t is a function of τ such that λ∗t = λ(ht; τ) and
∂λ(ht;τ)
∂τ > 0. From (33), we obtain

∂Φ(ht)

∂τ
= ϕ

{
βγσez

∂λ(ht;τ)
∂τ

[η − βγσeλ(ht; τ)]2

}σe

hσe+σht > 0. (A12)

From (A12), we find that the line of Φ(ht) shifts upward in Figure 7 if τ increases. Then, h∗∗

decreases and h∗ and h∗∗∗ increase when τ increases.

Appendix E: Proof of Proposition 6

From Lemma 1, λ∗t is a function of τ such that λ∗t = λ(ht; τ) and
∂λ(ht;τ)
∂τ > 0. If τ increases, the line

of Φ(ht) shifts upward in Figure 7 and h∗∗∗ increases. From Proposition 1, ∂λ(ht;τ)∂ht
> 0. Therefore,
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∂λ∗∗∗

∂τ > 0 holds. Totally differentiating (32) with respect to gt and τ , we obtain

dg∗∗∗

dτ
=

βψ
1
ν νg∗∗∗

[
(1 + η)(1− τ)∂λ

∗∗∗

∂τ − (1 + η + βλ∗∗∗)λ∗∗∗
]

(1 + η + βλ∗∗∗)
[
(1 + η + βλ∗∗∗]ν(g∗∗∗)

1
ν + βψ

1
ν (1− ν)(1− τ)λ∗∗∗

] . (A13)

Let us define Γ(τ) as Γ(τ) ≡ (1 + η)(1− τ)∂λ
∗∗∗

∂τ and Υ(τ) as Υ(τ) ≡ (1 + η+ βλ∗∗∗)λ∗∗∗. If Γ(τ) is

larger than Υ(τ), dg
∗∗∗

dτ > 0 holds. Suppose ∂2λ∗∗∗

∂τ2
< 0, we can obtain

∂Γ(τ)

∂τ
= −(1 + η)

[
∂λ∗∗∗

∂τ
− (1− τ)

∂2λ∗∗∗

∂τ2

]
< 0, (A14)

∂Υ(τ)

∂τ
= (1 + η + 2βλ∗∗∗)

∂λ∗∗∗

∂τ
> 0. (A15)

From (A14) and (A15), we find the relationship between Γ(τ) and Υ(τ) in Figure 13. From Figure

13, there is a unique intersection between Γ(τ) and Υ(τ) and we denote the value of this intersection

as τ∗. From (A13), if τ < τ∗(τ > τ∗), dg
∗∗∗

dτ > 0
(
dg∗∗∗

dτ < 0
)
.
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