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Abstract

Although multivariate stochastic volatility (MSV) models usually produce more accurate
forecasts compared to multivariate GARCH models, their estimation techniques such as Monte
Carlo likelihood or Bayesian Markov Chain Monte Carlo are computationally demanding and
thus suffer from the so-called “curse of dimensionality”: using such methods, the applications
are typically restricted to low-dimensional vectors. In this paper, we propose a fast estimation
approach for MSV models based on a penalised ordinary least squares framework. Specifying
the MSV model as a multivariate state-space model, we propose a two-step penalised procedure
for estimating the latter using a broad range of potentially non-convex penalty functions. In
the first step, we approximate an EGARCH type dynamic using a penalised AR process with
a sufficiently large number of lags, providing a sparse estimator. Conditionally on this first
step estimator, we estimate the state vector based on a AR type dynamic. This two-step
procedure relies on OLS based loss functions and thus easily accommodates high-dimensional
vectors. We provide the large sample properties of the two-step estimator together with the so-
called support recovery of the first step estimator. The empirical performances of our method
are illustrated through in-sample simulations and out-of-sample variance-covariance matrix
forecasts, where we consider as competitors commonly used MGARCH models.
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1 Introduction

Over these past decades, various covariance models have been being developed for describing

dynamic structures for multivariate economic and financial time series. Within the Multivariate

GARCH (MGARCH) family, the dynamic conditional correlation (DCC) model of Engle (2002)

and Tse and Tsui (2002), the BEKK model of Baba et al. (1985) and Engle and Kroner (1995),

and their variants are commonly used: see the survey of Bauwens, Laurent, and Rombouts (2006)

for instance. In the multivariate stochastic volatility (MSV) family, the MSV model of Harvey,

Ruiz, and Shephard (1994) was extended, among others, by the factor model of Chib, Nardari,

and Shephard (2006) and the dynamic correlation model of Asai and McAleer (2009): see, e.g.,

Ghysels, Harvey, and Renault (1996), Asai, McAleer, and Yu (2006), and Chib, Omori, and Asai

(2009) for various univariate and multivariate stochastic volatility models. Based on a thorough

empirical analysis, Chib, Nardari, and Shephard (2006) highlighted that the MSV models usually

outperform MGARCH based models, such as, e.g, the DCC and the BEKK models in terms of

out-of-sample forecasts.

For estimating MSV models, Harvey, Ruiz, and Shephard (1994) derived a state space form

based on the vector of the log of squared returns. Using the corresponding state space form, they

performed a Kalman based filtering technique to evaluate the quasi log likelihood function. In

the recent literature, a commonly used method is the Bayesian MCMC one, as described, e.g., in

Chib, Omori, and Asai (2009) and Kastner, Frühwirth-Schnatter, and Lopes (2017), among others.

An alternative estimation approach is the Monte Carlo Likelihood (MCL) method suggested by

Durbin and Koopman (1997, 2001) and applied by Asai, Caprion, and McAleer (2015) and Asai

and McAleer (2009). Due to the severe cost in terms of computations, empirical applications

in the literature are typically limited to low-dimensional random vectors when the MCMC and
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MCL approaches are carried out. MGARCH specifications also suffer from the so-called “curse

of dimensionality” since the complexity is in general of order O(p2), where p corresponds to the

problem dimension as the specification of a general multivariate dynamic model often induces an

explosion of the number of free parameters, inducing practical problems of inference and possibly

overfitting. Moreover, tricky conditions are required on the model parameters to satisfy the

positive-definiteness of the variance-covariance process.

Another key hurdle of the aforementioned methods is the high non-linearity of the models,

which requires the use of likelihood based estimation approaches. Therefore, strongly reduced

versions of such multivariate models are most often considered as soon as p is larger than four

or five, typically. Another approach is given by factor modelling, which aims at reducing the

model complexity. Among others, Fan et al. (2008) emphasised the relevance of factor models for

high-dimensional precision matrix estimation. However, this approach requires the identification

of the corresponding factors. An “expert” approach is based on some priors regarding the leading

underlying factors. Otherwise, latent unobserved factors induce particular estimation issues and

their number is questionable.

The objective of this paper consists in modelling high-dimensional variance-covariance matrices

within the multivariate stochastic volatility framework in a flexible manner and breaking the

curse of dimensionality without relying on standard MCMC or MCL based procedures. To do

so, we introduce a vector autoregressive and moving-average (VARMA) representation for the

MSV model of Harvey, Ruiz, and Shephard (1994) and apply an OLS-based two-step estimation

approach extending the idea of Hannan and Rissanen (1982) and Hannan and Kavalieris (1984).

Applying their approach to the MSV model requires an OLS estimation of a large dimensional

VAR model with a sufficiently large number of lags in the first step. Nonetheless, for the purpose
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of parsimony and to avoid overfitting, we have to enforce the nullity of possibly numerous model

coefficients. The OLS objective function is particularly adapted for regularisation/penalisation

procedures and fast closed form algorithms can be applied. Our study shares a similar spirit

with Poignard and Fermanian (2019), who provided a framework for high-dimensional variance-

covariance within the MGARCH family: they derived some parameterizations to directly generate

positive-definite covariance matrices based on Multivariate ARCH processes, which enables a linear

representation with respect to the parameters and thus the use of a penalised OLS criterion at the

estimation step. But our work differs from theirs in two main respects: our analysis lies within

the multivariate stochastic volatility family; we consider a general penalisation framework, which

includes a broad range of different penalty functions.

The main contributions of our method are as follows: using a parsimonious OLS frame-

work, we can directly generate positive-definite variance-covariance matrices without relying on

MCMC/MCL like methods and manage high-dimensional matrix processes; the large sample

properties of the two-step estimator are provided together with the conditions for satisfying the

so-called oracle property for the first step estimator in the sense of Fan and Li (2001), which

ensures the correct identification of the underlying set of nonzero coefficients. In the first step, we

consider a general penalised M-estimation framework, which encompasses potentially non-convex

penalty functions.

The remainder of the paper is organised as follows. In Section 2, we describe the framework

and the new forecasting procedure based on a regularised OLS estimation framework. Section 3

contains the large sample properties of the regularised two-step OLS estimator. Section 4 reports

simulation based experiment results for in-sample estimates of covariance matrix together with

out-of-sample forecasting results based on a real financial portfolio. Finally, Section 5 concludes
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the paper. All proofs and intermediary results are in the Appendix.

Notations. Throughout this paper, we denote the cardinality of a set E by card(E). For a

vector v ∈ Rd, the `p norm is ‖v‖p =
(∑p

k=1 |vk|
p
)1/p

for p > 0, and ‖v‖∞ = max
i
|vi|. Let the

subset A ⊆ {1, · · · , d}, then vA ∈ Rcard(A) is the vector v restricted to A. Mm×n(R) denotes

the space of m × n matrices with coefficients in R. For a matrix A, ‖A‖s is the spectral norm.

We write A′ (resp. v′) to denote the transpose of the matrix A (resp. the vector v). We write

vec(A) to denote the vectorization operator that stacks the columns of A on top of one another

into a vector. We denote by vech(A) the p(p + 1)/2 vector that stacks the columns of the lower

triangular part of the square and symmetric matrix A. The Ip matrix is the p-dimensional identity

matrix. For a function f : Rd → R, we denote by ∇f the gradient or subgradient of f and ∇2f

the Hessian of f . We denote by (∇2f)AA the Hessian of f restricted to the block A. We write Ac

to denote the complement of the set A.

2 Penalised OLS framework for MSV

2.1 Framework

We consider a p-dimensional vectorial stochastic process (yt)t=1,··· ,T and we denote by θ the

vector of its model parameters. We then consider a Multivariate Stochastic Volatility (MSV)

decomposition given as

yt = Dtεt, εt ∼ iid(0,Γ), (1)

ht+1 = µ+ Φ(ht − µ) + ηt, ηt ∼ NRp(0,Ση), (2)

where Γ is a p×p correlation matrix, εt = (ε1t, . . . , εpt)
′ is a p×1 random vector, which is indepen-

dently and identically distributed (i.i.d.), centered with variance-covariance Γ, ht = (h1t, . . . , hpt)
′

is a p × 1 vector of log-volatility, Dt = diag {exp(h1t/2), . . . , exp(hpt/2)} is a diagonal matrix of
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volatility, µ = (µ1, . . . , µp)
′ is a p × 1 vector, Φ is a p × p matrix, and Ση is a p × p covariance

matrix of ηt. The MSV model (1) and (2) reduces to the MSV model of Harvey, Ruiz, and Shepard

(1994), should we assume Φ diagonal and εit following the t distribution.

Then we define xt = (log(y2
1t), . . . , log(y2

pt))
′. As discussed in Harvey, Ruiz, and Shepard

(1994), the MSV model can be formulated as a state space model, specified as

xt = c+ αt + ζt, (3)

αt+1 = Φαt + ηt, (4)

where c = (c1, . . . , cp)
′, ζt = (ζ1t, . . . , ζpt)

′, and αt = ht − µ with ci = µi + E[log(ε2
it)] and

ζit = log(ε2
it) − E[log(ε2

it)]. Assuming a t distribution for εit, Harvey, Ruiz, and Shepard (1994)

specified the covariance matrix of ζt as Σζ . Note that E[ζt] = 0 by definition. Based on the state

space form, these authors then suggested a quasi maximum likelihood estimation of the MSV

model using the Kalman filter. Alternative methods were proposed such as the Bayesian MCMC

technique of Chib, Nardari, and Shephard (2006) or the Monte Carlo Likelihood (MCL) method of

Durbin and Koopman (1997, 2001). A significant drawback of these methods is the computational

cost and thus the curse of dimensionality: most of the applications are restricted to small vector

sizes and/or reduced forms are fostered.

In this paper, we aim at tackling this issue for MSV models using a penalised OLS estimation

method. Although the MSV model (1) and (2) might be a basic model, the following advan-

tages with respect to MGARCH models can be highlighted: (i) relatively stable estimates and

forecasts for variance-covariance matrices; (ii) simpler restrictions for stationarity conditions; (iii)

no intricate matrix parameterization and/or parameter restrictions to generate positive-definite

matrices.
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2.2 Our proposed approach

In this section, we specify our proposed sparse OLS based MSV model - named as “penalised

OLS-MSV” - and discuss how the latter can manage high-dimensional stochastic vectors. Our

approach can be summarized as follows: derive a VARMA representation of xt, and consider

a regression-based estimator of (c,Φ), following the ideas of Hannan and Rissanen (1982) and

Hannan and Kavalieris (1984); conditionally on the VARMA estimators, use an ad-hoc estimator

for Σζ such that the corresponding estimator is positive-definite; finally, obtain the estimator of

Γ.

More precisely, the procedure is as follows. Since xt is the sum of a VAR(1) process and an

i.i.d. noise by (3), the discussion of Granger and Morris (1976) suggests that xt has a VARMA(1,1)

representation. By equations (3) and (4), we obtain

xt = (I − Φ)c+ Φxt−1 + (ζt + ηt−1)− Φζt−1,

which has an alternative representation as

xt = (I − Φ)c+ Φxt−1 + ut + Ξut−1,

E[ut] = 0, Var(ut) = Σu, E[utu
′
s] = 0 for t 6= s,

(5)

where Ξ and Σu are obtained by matching moments of wt = (ζt+ηt−1)−Φζt−1 and w∗t = ut+Ξut−1.

By considering E[wtw
′
t] = E[w∗tw

∗′
t ] and E[wtw

′
t−1] = E[w∗tw

∗′
t−1], the relationship between (Ξ,Σu)

and other parameters is given as follows:

Ση + Σζ + ΦΣζΦ
′ = Σu + ΞΣuΞ′, (6)

−ΦΣζ = ΞΣu. (7)

Given the values of Φ, Ξ, and Σu we may obtain Ση and Σζ by solving equations (6) and (7).
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Under suitable stationarity conditions, xt has an AR(∞) representation:

xt =

∞∑
i=1

Ψixt−i + ut. (8)

Based on a penalised OLS estimation, we can obtain a estimator of ût in the first step. Indeed, we

empirically need to specify m sufficiently large as a surrogate of∞ in the summation in (8). Thus,

for the sake of parsimony and to avoid the overfitting issue, we propose to enforce the nullity of

possibly numerous model coefficients in the Φi’s.

In the second step, we calculate the OLS estimator of (ĉ∗, Φ̂, Ξ̂) by regressing xt on a constant,

xt−1, and ût−1.

For the third step, we start from the decomposition of the unconditional variance-covariance

matrix of xt, which is given by

Σx = Σα + Σζ , (9)

where Σx = E[(xt − c)(xt − c)′], Σζ = E[ζtζ
′
t], and Σα = E[αtα

′
t] with

vec(Σα) = [Ip2 − (Φ⊗ Φ)]−1vec(Ση).

Denote the sample covariance matrix of xt and ût as Sx and Sû, respectively. An estimator of Σζ

is given as

Sζ = −1

2

[
Φ̂−1Ξ̂Sû + SûΞ̂′Φ̂′−1

]
,

by equation (7). As there is no guarantee for Sζ and Sx − Sζ to be positive definite, we consider

ado hoc estimators for Σζ and Σα based on decomposition (9).

In the fourth step, we estimate Γ by a correlation matrix of yt.

We summarize our procedure as follows:
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Step 1. Define Ψ1:m = [Ψ1 · · ·Ψm] ∈Mp×pm(R). Approximate (5) by

xt =

m∑
i=1

Ψixt−i + ut, (10)

and consider the regularised OLS estimator

Ψ̂1:m = arg min
Ψ1:m

[
1

2T

T∑
t=1

||xt −
m∑
i=1

Ψixt−i||22 + p(
λT
T
, vec(Ψ1:m))

]
, (11)

where p(λTT , ·) : Rd → R is a penalty function applied to each component of Ψ1:m, where λT

is the regularisation parameter, which depends on the sample size, and enforce a particular

type of sparse structure in the solution Ψ̂1:m. The parameter dimension in the first step is

denoted as d, which in Step 1 is d = mp2. In this paper, as it will be detailed in Section 3,

we consider the SCAD due to Fan and Li (2001), the MCP due to Zhang (2010), the Lasso

of Tibshirani (1996) and the Bridge of Fu (1998).

Step 2. Define ût = xt −
∑m

i=1 Ψ̂ixt−i. Conditionally on Ψ̂1:m, we consider the regression

xt = c∗ + Φxt−1 + Ξût−1 + vt,

where the parameters are (c∗,Φ,Ξ). Thus, the second step objective function is

(ĉ∗, Φ̂, Ξ̂)|Ψ̂1:m = arg min
(c∗,Φ,Ξ)

[
1

2T

T∑
t=1

||xt −
(
c∗ + Φxt−1 + Ξût−1

)
||22

]
,

such that we can obtain the estimator of c by ĉ = (I − Φ̂)−1ĉ∗. In this step, the second step

parameter dimension is p(1 + 2p).

Step 3. Consider the estimator of Σζ and Σα as follows:

Σ̂ζ = rSx, Σ̂α = (1− r)Sx, (12)

where r is a constant which satisfies 0 < r < 1. This ad hoc method aims at treating

the positive definiteness of the estimators and dealing with the high-dimensionality issue
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of Σ̂ζ . While we consider a naive decomposition based on equation (9) for the former, we

set r = (π2/2)(p−1
∑p

i=1 Sx,ii)
−1 in (12). Here, π2/2 is the value of E[ζ2

it] when εit follows

the standard normal distribution. Based on this specification, the average of the diagonal

elements of Σ̂ζ becomes π2/2. Using such approach, we are able to accurately estimate

Σζ and Σα and importantly the computational cost is negligible, compared to alternative

estimators (e.g. GMM type method) that would require a numerical optimisation.

Step 4. Estimate Γ by a correlation matrix of yt.

When the tuning parameter λT shrinks to zero, Steps 1 and 2 reduce to the standard OLS

estimation for low-dimensional VARMA models, considered by Hannan and Rissanen (1982) and

Hannan and Kavalieris (1984). Step 1 actually corresponds to a multivariate version of the AR(∞)

representation of a log-GARCH model, which is a special case of the exponential GARCH model of

Nelson (1991). Thus, for significantly large m chosen ex-ante, (10) would be a relevant approxima-

tion of a log-GARCH type process. Our approach avoids the use of computationally demanding

methods such as MCMC and MCL. Although Harvey, Ruiz, and Shephard (1994) applied the

Kalman filter, its computational cost is non-negligible for larger p, since the cost increases with

the speed of O(Tp2) for storing covariance matrices of p × 1 state vector for all t = 1, . . . , T .

For the estimators in Step 3, we may improve them by considering moment-matching methods

using equations (6), (7), and (9) with restrictions on the positive-definiteness of the estimators

of Σζ and Σα. However, we use the above fast method described in Step 3 without the need of

a numerical optimization procedure. Finally, the fourth step can easily be adapted to a sparse

correlation matrix setting, especially when the size p/T is not negligible.

We now introduce our setting for generating the volatility process. For a low-dimensional case,

we can calculate the minimum mean square linear estimator (MMSLE) of αt based on the full
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sample x = (x′1, . . . , x
′
T )′ (Tp×1) by the state space smoothing algorithm. In the high-dimensional

case, we consider the multivariate version of the approach of Harvey (1998) with the vector form

of (3), as follows:

x = c† +α+ ζ

where c† = (ιT ⊗ c) (Tp× 1), α = (α′1, . . . , α
′
T )′ (Tp× 1), and ζ = (ζ ′1, . . . , ζ

′
T )′ (Tp× 1). By the

model structure, the covariance matrix of x is given by

Vx = Vα + Vζ ,

where

Vα =



Σα ΣαΦ′ Σα(Φ′)2 · · · Σα(Φ′)T−2 Σα(Φ′)T−1

ΦΣα Σα ΣαΦ′ · · · Σα(Φ′)T−3 Σα(Φ′)T−2

Φ2Σα ΦΣα Σα · · · Σα(Φ′)T−4 Σα(Φ′)T−3

...
...

...
. . .

...
...

ΦT−2Σα ΦT−3Σα ΦT−4Σα · · · Σα ΣαΦ′

ΦT−1Σα ΦT−2Σα ΦT−3Σα · · · ΦΣα Σα


,

and Vζ = (IT ⊗ Σζ). Then the MMSLE is

α̃ = VαV
−1
x (x− c†) + c†. (13)

As in Harvey (1998), we consider an estimator of the covariance matrix, Ht = DtΓDt, such that

the sample variance of the standardized variable of yit equals to one. We consider the estimator

as

H̃t = D̃tΓ̂D̃t, (14)

where

D̃t = diag
{
d̃1t, . . . , d̃pt

}
, d̃it = d̄i exp (x̃it/2) , d̄i =

√√√√T−1

T∑
t=1

y2
it exp (−x̃it),

for i = 1, . . . , p. The standardized variables are defined as z̃it = yit/d̃it, which implies by definition

T−1
∑T

t=1 z̃
2
it = 1. We call our proposed parameterisation “penalised OLS-MSV”.
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2.3 Volatility forecasting

We now provide the forecasts for variance-covariance based on our proposed method. The MMSLE

for the lth-step-ahead forecast of αT is given by:

α̂T+l = RlV
−1
x (x− c†) + c, (15)

where

Rl =
[
ΦT+l−1Σα ΦT+l−2Σα · · · ΦlΣα

]
.

The lth-step-ahead forecast of the covariance matrix is given by:

Ĥt = D̂tΓ̂D̂t, (16)

where

D̂T+l = diag
{
d̂1,T+l, . . . , d̂p,T+l

}
, d̂i,T+l = d̄i exp (x̂i,T+l/2) ,

for i = 1, . . . , p.

3 Asymptotic properties

3.1 First step: penalised estimator Ψ̂1:m

In this section, we focus on the large sample properties of the first step penalised estimator Ψ̂1:m.

We consider a loss function GT from RpT × Θ1 to R. The value GT (y; θ), with θ = vec(Ψ1:m) ∈

Θ1 ⊂ Rd and d = mp2, evaluates the quality of the “fit” for the realizations of yt for every

t = 1, · · · , T and under Pθ. GT (y; θ) is the empirical loss associated to a continuous function

` : RpT ×Θ1 → R, idest

GT (y; θ) :=
1

T

T∑
t=1

1

2
‖xt −

m∑
i=1

Ψixt−i‖22 =
1

T

T∑
t=1

1

2
‖xt −Ψ1:mZm,t−1‖22 :=

1

T

T∑
t=1

`(ys, s ≤ t; θ),

12



where xt corresponds to the vector of continuous transforms of log(y2
it), Ψ1:m = (Ψ1, · · · ,Ψm) ∈

Mp×pm(R) and Zm,t−1 = (x′t−1, · · · , x′t−m)′ ∈ Rpm. Then, the problem of interest is

θ̂ = arg min
θ∈Θ1

{GT (y; θ) +

d∑
i=1

p(
λT
T
, |θi|)}, (17)

where p(λTT , .) : Θ1 → R is a regulariser/penalty, λT is the regularisation parameter, which

depends on the sample size, and enforce a particular type of sparse structure in the solution.

The function θ → E[`(ys, s ≤ t; θ)] is supposed to be uniquely minimized at θ = θ0 so that

E[∇θGT (y; θ0)] = 0.

The penalisation is performed through the term
d∑
i=1
p
(
λT
T , |θi|

)
, which is a coordinate-separable

penalty. In this paper, we consider the following set of penalties p(λ, θ), θ ∈ R:

Lasso : λ|θ|,
Bridge : λ|θ|q, q ∈ (0, 1),

MCP : sgn(θ)λ
∫ |θ|

0 (1− z/(λbmcp))+dz,

SCAD :


λ|θ|, for |θ| ≤ λ,
− (θ2−2bscadλ|θ|+λ2)

(2(bscad−1)) , for λ≤|θ|≤bscadλ,

(bscad + 1)λ2/2, for |θ| > bscadλ,

and λ ≥ 0 is the regularisation parameter.

To carry out a sound asymptotic theory, we make the following assumptions.

Assumption 1. card(A) = k0 < d with A = supp(θ) := {i|θ0,i 6= 0}.

Assumption 2. The parameter set Θ1 ⊂ Rd is compact and convex.

Assumption 3. (yt) is a strictly stationary, non-anticipative and ergodic process.

Assumption 4. For any θ ∈ Θ1, there exists a measurable function g(.) such that |`(ys, s ≤

t; θ)| ≤ g(ys, s ≤ t) with E[g(ys, s ≤ t)] <∞.

Assumption 5. H = E[∇2
θθ′`(ys, s ≤ t; θ0)] and M = E[∇θ`(ys, s ≤ t; θ0)∇θ′`(ys, s ≤ t; θ0)] exist

and are positive-definite matrices.
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These assumptions deserve a few comments. First, assumption 1 corresponds to the sparsity

assumption. As it is unknown, we rely on penalised M-estimation to recover this set. Assumption

2 is standard when analysing large sample properties. For the sake of clarity of our arguments,

we assume 3, which refers to the probabilistic property of the process. Note that it can be relaxed

in favor for mixing conditions. Should we consider e.g. strongly mixing time series, where (yt)t

would be a strongly mixing process with mixing coefficient α(.) satisfying α(ς) ≤ κρς with ς > 0

and 0 < ρ < 1, then we would rely on exponential bound adapted to the strongly mixing case

to control each element of the Taylor expansions we propose to analyse. To do so, Theorem 2 of

Merlevède, Peligrad and Rio (2009), could be used under strongly mixing and bounded random

variables. Central limit theorem for strongly mixing processes, such as e.g. Theorem 5.2 of White

(2001), could also be applied for that case. We highlight that relaxing such assumption for mixing

processes would not alter the convergence rates we propose to derive. Assumption 4 corresponds to

a domination condition on the likelihood function, which will be used when proving the consistency

of the penalised estimator. Finally, assumption 5 is a standard regularity condition.

Theorem 1. Under assumptions 1-4, if λT
T → λ0, then for any compact B ⊂ Θ1 such that

θ0 ∈ B,

θ̂
P−→

T→∞
arg min
x∈B

{Gpen
∞ (y;x)} := arg min

x∈B
{G∞(y;x) +

d∑
i=1

p(λ0, |xi|)} = θ∗0,

with G∞(y;x) = E[`(ys, s ≤ t;x)] and for any scalar x

Lasso : p(λ0, |x|) = λ0|x|,
Bridge : p(λ0, |x|) = λ0|x|q,
MCP : p(λ0, |x|) = bmcpλ

2
0/21{|x|>bmcpλ0} − (bmcpλ0 − |x|)2/(2bmcp)1{|x|≤bmcpλ0},

SCAD : p(λ0, |x|) =


λ0|x|, for |x| ≤ λ0,

−(x2 − 2bscadλ0|x|+ λ2
0)/(2(bscad − 1)), for λ0 ≤ |x| ≤ bscadλ0,

(bscad + 1)λ2
0/2, for |x| > bscadλ0,

Hence if λT = o(T ), then θ̂ is a consistent estimator.
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Remark. The penalised estimator does not converge to θ0 when λT = O(T ) due to the bias

originating from the penalisation. Part of the proof consists in proving a uniform convergence of

the penalised criterion. To do so, we rely on Lemma 2.4 of Newey and McFadden (1994) to derive

a uniform law of large numbers of the parameter dependent loss function.

We now propose an asymptotic probabilistic bound for the penalised estimator. First, we

assume the following conditions on the penalty function.

Assumption 6. p(λTT , |.|) is twice continuously differentiable except at the origin. We define

A1,T = max
i∈A
|∇θip(

λT
T
, |θ0,i|)|, A2,T = max

i∈A
|∇2

θiθi
p(
λT
T
, |θ0,i|)|,

so that A2,T → 0.

Remark. The condition on the second derivative implies that the penalty has less influence than

the non-penalised loss function in the regularised problem. Moreover, for the penalties of interest,

the scaling of (λT , T ) determines this rate.

Theorem 2. Under assumption 1-6, the sequence of penalised estimators θ̂ satisfies

‖θ̂ − θ0‖ = Op(T
−1/2 +

√
card(A)A1,T ).

Remark. This result highlights that for a suitable choice of λT , we would obtain a
√
T -consistent

θ̂. This probability bound is similar to the so-called oracle bounds as it depends on the true sparse

support card(A).

We now derive the asymptotic distribution for the rate λT = O(
√
T ) for the Lasso, SCAD and

MCP and λT = O(T q/2) in the Bridge case.
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Theorem 3. Under assumptions 1-6, suppose λT = o(T ), if the regularisation rate of the Lasso,

SCAD and MCP satisfies λT = O(
√
T ) and the Bridge regularisation rate satisfies λT = O(T q/2),

if lim
x→0+

∇xp(λTT , x) = λT
T for the SCAD and MCP, then

√
T (θ̂ − θ0)

d−→
T→∞

arg min
u∈Rd

{F∞(u)},

provided F∞(.) is the random function in Rd where

F∞(u) = u′W +
1

2
u′Hu+ φ(λ0,u, θ0),

where W ∼ NRd(0,M) with M := M(θ0) = E[∇θ`(ys, s ≤ t; θ0)∇θ′`(ys, s ≤ t; θ0)], H = E[∇2
θθ′`(ys, s ≤

t; θ0)] and

Lasso : φ(λ0,u, θ0) = λ0

d∑
k=1

(
uisgn(θ0,i)1θ0,i 6=0 + |ui|1θ0,i=0

)
,

Bridge : φ(λ0,u, θ0) = λ0

d∑
k=1

|ui|q1θ0,i=0

MCP : φ(λ0,u, θ0) = λ0

d∑
k=1

|ui|1θ0,i=0,

SCAD : φ(λ0,u, θ0) = λ0

d∑
k=1

|ui|1θ0,i=0.

Remark. The following comments can be noticed.

(i) To derive such distributions, we rely on specific theoretical results depending on the penalty

function and thus on the (non-)convexity of the latter. These results are reported in Ap-

pendix B.

(ii) Theorem 3 establishes the
√
T -consistency of the penalised estimator. However, for λT =

O(
√
T ) in the Lasso case, the term in 1θ0,i 6=0 implies that the true active set A can not

be recovered with high probability (See Proposition 1 of Zou, 2006). To fix this issue, Zou

(2006) proposed the adaptive Lasso, which consists in penalising the coefficients differently

through the introduction of stochastic weights. These weights are explicit functions of a
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first step estimator, which is
√
T -consistent. As a consequence, these weights alter the

convergence rate of the penalisation parameter λT .

We now turn to the oracle property. It is well-known since Zou (2006) that the Lasso does

not satisfy this property. The only method to fix this issue is to specify adaptive weights in the

penalty function to penalise each coefficient differently. The key advantage of non-convex penalties

(SCAD, MCP, Bridge) is that they actually allow for satisfying this property without the need of

these stochastic weights.

Theorem 4. Suppose λT = o(T ), for θA satisfying ‖θA−θ0,A‖ = Op(T
−1/2), suppose assumptions

1-6, suppose the MCP and SCAD regularisation rates satisfy λT
T 1/2 →∞ and

lim inf
T→∞

lim inf
x→0+

T

λT
∇xp(

λT
T
, x) > 0,

and suppose the Bridge satisfies the regularisation rate λT
T q/2

→ ∞, 0 < q < 1 and λT = O(
√
T ),

then the
√
T -consistent local estimator θ̂ defined in Theorem 2 satisfies

lim
T→∞

P(Â = A) = 1, and

√
T
(
θ̂ − θ0

)
A

d−→
T→∞

NRk0 (0,H−1
AAMAAH

−1
AA).

Remark. Theorem 4 deserves a few comments.

(i) This result establishes the conditions to satisfy the oracle property. Contrary to Theorem

3, where the rate for the SCAD/MCP is λT = O(
√
T ) and for the Bridge is λT = O(T q/2),

we now require λT /
√
T → ∞ for those ones and λT /T

q/2 → ∞ for the latter. Note that

the adaptive Lasso is left aside as we report sparse estimation methods that do not require

a two-step estimation. More details can be found in Zou (2006) on the adaptive Lasso and

its properties.
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(ii) The non-random quantities originating from the expansion of the penalty functions

bT,A =
(
∇θ1p(λTT , |θ0,1|)sgn(θ0,1), · · · ,∇θk0p(λTT , |θ0,k0 |)sgn(θ0,k0)

)′
,

ST,AA = diag(∇2
θiθi
p(λTT , |θ0,i|), i = 1, · · · , k0),

vanish when T is large enough due to the assumed convergence rates of the penalisation

parameter λT for the Bridge, SCAD and MCP. A detailed discussion is provided in the

proof.

3.2 Second step estimator (ĉ∗, Φ̂, Ξ̂)

We now focus on the large sample properties of the second step estimator γ̂ = (ĉ∗, vec(Φ̂)′, vec(Ξ̂))′,

which is of size p(1 + 2p). Conditionally on θ̂, we consider a second step loss function LT from

RpT ×Θ2 to R with Θ2 ⊂ Rp(1+2p) and LT (y; θ̂, γ) is the empirical loss associated to a continuous

function f : RpT ×Θ1 ×Θ2 → R, idest

LT (y; θ̂, γ) =
1

T

T∑
t=1

1

2
‖xt − α− Φxt−1 − Ξût−1‖22 :=

1

T

T∑
t=1

f(ys, s ≤ t; θ̂, γ).

The problem of interest is

γ̂ = arg min
γ∈Θ2

{LT (y; θ̂, γ)}.

To derive the large sample properties of the second step estimator, we make the following assump-

tions.

Assumption 7. The second step parameter set Θ2 is compact.

Assumption 8. For any θ ∈ Θ1 and γ ∈ Θ2, there exists a measurable function k(.) such that

|f(ys, s ≤ t; θ, γ)| ≤ k(ys, s ≤ t) with E[k(ys, s ≤ t)] <∞.

Assumption 9. For any (vec(Φ)′, vec(Ξ)′, vec(Ψ1:m)′)′ ∈ Θ1 ×Θ2, the pm× pm matrix

Λ =


Φ + Ξ −ΞΨ1 −ΞΨ2 · · · −ΞΨm

Ip 0 0 · · · 0
0 Ip 0 · · · 0
...

. . . · · · · · ·
...

0 · · · · · · Ip 0

 ,
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satisfies ‖Λ‖s < 1.

Assumption 9 is key to control for the first step estimator and allows for establishing

sup
γ∈Θ2

|LT (y; θ̂, γ)− LT (y; θ∗0, γ)| = op(1),

where θ̂ is a sequence in Θ1 that tends to θ∗0 in probability.

Theorem 5. Let β̂ = (θ̂′, γ̂′)′ be a sequence of penalised OLS based and non-penalised OLS based

estimators. Then, under the assumptions of Theorem 1 and assumptions 7-9, β̂
P−→

T→∞
(θ∗
′

0 , γ
′
0)′.

We now turn to the asymptotic distribution of the second step estimator, conditionally on θ̂.

Theorem 6. Under the assumptions of Theorem 4 together with its conditions on the penalisation

rate on λT and the penalty function’s behaviour, under assumptions 7-9, then

√
T

(
(θ̂ − θ0)A
γ̂ − γ0

)
d−→

T→∞
NRdim(0,J−1IJ−1),

with dim = k0 + p(1 + 2p) and the variance-covariance is composed with

J =

(
E[∇2

θθ′`(ys, s ≤ t; θ0)]AA 0
E[∇2

θγ′f(ys, s ≤ t; θ0, γ0)]A• E[∇2
γγ′f(ys, s ≤ t; θ0, γ0)]

)
and

I = E
[( ∇θ`(ys, s ≤ t; θ0)A∇θ′`(ys, s ≤ t; θ0)A ∇θ`(ys, s ≤ t; θ0)A∇γf(ys, s ≤ t; θ0, γ0)
∇γf(ys, s ≤ t; θ0, γ0)∇θ′`(ys, s ≤ t; θ0)A ∇γf(ys, s ≤ t; θ0, γ0)∇γ′f(ys, s ≤ t; θ0, γ0)

)]
.

Remark. Theorem 6 deserves some comments.

(i) The notation E[∇2
θγ′f(ys, s ≤ t; θ0, γ0)]A• means that the expectation is restricted only to

block A when evaluating the partial derivative with respect to θ ∈ Θ1.

(ii) The effect of the two-step estimation can be measured through the asymptotic variance-

covariance matrix. As a by-product, simple calculations provide the asymptotic variances
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V(.) of θ̂ and γ̂: with obvious notations on the block locations in J and I, V(θ̂) = J−1
11 I11J

−1
11 ,

and

V(γ̂) = J−1
22 I22J

−1
22 −ΥI12J

−1
22 − J

−1
22 I21Υ′ + ΥI11Υ′, Υ := J−1

22 J21J
−1
11 .

4 Empirical analysis

4.1 Simulation experiment

In this section, we empirically investigate the ability of the proposed penalisation method to better

capture complex variance-covariance processes. We simulate the p-dimensional stochastic process

(εt) based on two data generating processes: the multivariate ARCH and the BEKK processes.

For the multivariate ARCH with q∗ lags - M-ARCH(q∗) in the rest of the paper - case, we consider
εt = H

1/2
t ηt,

Ht = Ω +
q∗∑
k=1

(Ip ⊗ ε′t−k)Ak(Ip ⊗ εt−k),

where q∗ is the number of lagged matrices being functions of εt−k and the p2×p2 square matrices Ak

satisfy the stationarity conditions of Theorem 2 of Boussama (2006) together with the positivity

condition given by Gouriéroux (1997). We generate the diagonal elements of Ak from a uniform

distribution U([0.01, 0.05]) and the off-diagonal ones from U([−0.01, 0.01]) under the ordering

constraint ∀k ≥ 2,∀i, j, |Ak,ij | ≤ |Ak−1,ij |. As for the matrix Ω, the diagonal and off-diagonal

elements are simulated from U([0.1; 0.2]) and U([−0.01, 0.01]) respectively. As for the BEKK

process, the data generating process is based on{
εt = H

1/2
t ηt,

Ht = Ω +Aεt−1ε
′
t−1A

′ +BHt−1B
′,

where A,B are p×pmatrices, satisfying the stationarity constraint ‖D+
p {
(
A⊗A

)
+
(
B⊗B

)
}Dp‖s <

1, where Dp is the duplication matrix and D+
p the elemination matrix (see subsection 11.3 ”Sta-

tionarity of VEC and BEKK Models” of Francq and Zaköıan (2010) for the stationarity condition
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and remark 11.1 for the definition of the latter matrices). The entries of A and B are generated

from the uniform distribution U([−0.8, 0.8]). The matrix Ω is generated as in the M-ARCH(q∗)

case. Unlike the M-ARCH(q∗) case, the BEKK dynamic includes an autoregressive component

through B, which motivated the use of larger lags when estimating our proposed parameteriza-

tions. In both proposed dynamics, we initialize the observations (εk, · · · , ε1) with centered and

unit variance multivariate Gaussian distribution, where k = q∗ in the M-ARCH model and k = 1

in the BEKK. Then conditionally on the past k observations, we generate Ht and thus εt according

to a centered multivariate Gaussian distribution with variance-covariance Ht.

We consider the problem sizes, p = 15, 50, and T = 2000 observations for each of them. For

the M-ARCH(q∗)-based data generating process, we considered q∗ = 2 when p = 15 and q∗ = 1

when p = 50. Then we propose to compare the true variance-covariance processes - BEKK and

M-ARCH(q∗) - and the estimated ones through our proposed MSV model and the scalar DCC

corresponding to process (25) with scalar matrix parameters together with the constant correlation

model (CCC). The estimation of the DCC model is based on the classic two-step Gaussian QMLE,

where the marginal conditional volatility processes are specified as GARCH(1,1) and a correlation

targeting procedure is applied in the second step, providing an estimated trajectory Ĥdcc
t . The

CCC is estimated thanks to a joint estimation of the GARCH(1,1) parameters and correlation

parameters through a Gaussian QML, which provides an estimated process Ĥccc
t . More details on

the DCC and CCC can be found in Appendix D.

Regarding our proposed variance-covariance dynamic, the penalised OLS-MSV, denoted as

Ĥols,al
t for the adaptive Lasso OLS-MSV, Ĥols,br

t for the Bridge OLS-MSV, Ĥols,scad
t for the SCAD

OLS-MSV, Ĥols,mcp
t for the MCP OLS-MSV, and the non-penalised version of the OLS-MSV

denoted as Ĥols
t . We considered the same technique as in Zou (2006) for the adaptive Lasso,
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where we selected γ = 1.5 as the power entering in the stochastic weights and the first step

estimator is the unpenalised OLS estimator. In the M-ARCH(q∗) case, we set the number of lags

in Step 1 in (10) as m = 10 when p = 15 and set as m = 5 for a dimension p = 50. In the BEKK

case, due to the autoregressive nature of the latter dynamic, we selected m = 30 when p = 15 and

m = 15 when the dimension is p = 50.

We compare the true variance-covariance process and the estimated variance-covariance pro-

cesses through the aforementioned models. To do so, we specify a matrix distance, namely the

Frobenius norm, defined as ||A − B||F :=
√

Trace((A−B)′(A−B)). We compute the previous

norm for each t and for A = Ht and

B ∈ {Ĥdcc
t , Ĥccc

t , Ĥols
t , Ĥols,br

t , Ĥols,al
t , Ĥols,scad

t , Ĥols,mcp
t }.

We take the average of those quantities over T = 2000 periods of time. Since we repeat this

experiment 100 times, this provides an average gap for all those simulations.

By a cross-validation (CV) procedure - see e.g. Hastie and al. (2015, Chap. 2) - , we selected

the regularisation parameter and emphasize that the standard CV developed for i.i.d. data can

not be used in our time series framework. To fix this issue, we used the hv-CV procedure devised

by Racine (2000), which consists in leaving a gap between the test sample and the training sample,

on both sides of the test sample.

Clearly, the relevance of the penalisation procedure reported in Table 1 for the M-ARCH(q∗)

based DGP and Table 2 for the BEKK based DGP increases with the size p, for any penalisation

method. Moreover, DCC/CCC models are always beaten by the penalised specifications, whatever

p, whereas, interestingly, it is not the case when compared with the non-penalised MSV. Our

results emphasize the clear gain when considering penalisation, especially in the case m, p large as
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in the BEKK case: the autoregressive nature of such process fostered the use of a large number

of lags, that is a large m.

4.2 Application to real data

To assess the relevance of the proposed penalised method, we propose a real data experiment.

To do so, we compare the forecasting performances of the covariance matrices Ht for a portfo-

lio of daily financial returns composed of the MSCI stock index for the following 23 countries:

Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hong Kong,

Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden,

Switzerland, the United-Kingdom, the United-States. We focus on direct out-of-sample evaluation

methods, which allow for pairwise comparisons. They test whether some of the variance-covariance

models provide better forecasts in terms of portfolio volatility behavior. Following the method-

ology of Engle and Colacito (2006), we develop a mean-variance portfolio approach to test the

Ht forecasts. Intuitively, if a conditional covariance process is misspecified, then the minimum

variance portfolio should emphasize such a shortcoming, compared to other models. Then, con-

sider an investor who allocates a fixed amount between p stocks, according to a minimum-variance

strategy and independently at each time t. At each date t, he/she solves

min
wt

w′tHtwt, s.t. ι′wt = 1, (18)

where wt is the p × 1 vector of portfolio weights chosen at (the end of) time t − 1, ι is a p × 1

vector of 1 and Ht is the estimated conditional covariance matrix of the asset returns at time t.

They are deduced from some dynamics that have been estimated on the sub-sample December

1998 - November 2015. Once the latter process is estimated in-sample, out-of-sample predictions

are plugged into the program (18) between December 2015 and March 2018. The solution of (18)

is given by the global minimum variance portfolio wt = H−1
t ι/ι′H−1

t ι.
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Engle and Colacito (2006) show that the realized portfolio volatility is the smallest one when

the variance-covariance matrices are correctly specified. As a consequence, if wealth is allocated

using two different dynamic models i and j, whose predicted covariance matrices are (H i
t) and

(Hj
t ), the strategy providing the smallest portfolio variance will be considered as the best one. To

do so, we consider a sequence of minimum variance portfolio weights (wi,t) and (wj,t), depending

on the model. Then, we consider a distance based on the difference of the squared returns of the

two portfolios, defined as uij,t =
{
w′i,tεt

}2
−
{
w′j,tεt

}2
. The portfolio variances are the same if the

predicted covariance matrices are the same. Thus we test the null hypothesis H0 : E [uij,t] = 0

by the Diebold and Mariano (1995) test. It consists of a least squares regression using HAC

standard errors, given by uij,t = α+ εu,t, E[εu,t] = 0, and we test H0 : α = 0. If the mean of uij,t

is significantly positive (resp. negative), then the forecasts given by the covariance matrices of

model j (resp. i) are preferred.

We run the latter test to compare the scalar DCC (DCC), the Orthogonal GARCH (O-G), the

BEKK (BEKK), our OLS-MSV method (MSV) together with its penalised counterpart (denoted

as MSV-AL, MSV-BR, MSV-SCA, MSV-MCP for the adaptive Lasso, Bridge, SCAD, MCP re-

spectively). The definition of the BEKK and O-GARCH processes are reported in Appendix D.

The matrix forecast comparisons are provided in Table 3. The results emphasises that the pro-

posed penalised OLS-MSV method outperforms the MGARCH based competitors. Interestingly,

fostering sparsity yields to much better forecasting performances. Indeed, the non-penalised OLS-

MSV is outperformed by all alternative specifications, whereas the sparsity based specifications

outperform both MGARCH based models and the non-penalised OLS-MSV.
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5 Conclusion

The focus of this paper was devoted to the estimation of high-dimensional MSV models. Our

main contribution consisted in proposing an estimation framework that does not rely on standard

MCMC/MCL methods but instead on a penalised OLS framework for state-space estimation. The

corresponding large sample properties of the two-step estimator are derived for a broad range of

penalty functions. The performances of our proposed method compared to standard MGARCH

models are illustrated through simulated experiments together with an out-of-sample analysis for

prediction accuracy, where our method clearly outperformed the competing MGARCH models.

These results also emphasized the gain of penalisation, which manages the overfitting problem.

Various issues and extensions can be further considered. Our proposed model could be ex-

tended to a dynamic correlation setting and include long memory and/or asymmetry, as discussed

in Asai, McAleer, and Yu (2006) and Chin, Omori, and Asai (2009). Another direction would

consists in modelling directly the variance-covariance matrix Ht without relying on the decompo-

sition DtΓDt. To do so, a log-type dynamic on Ht could be considered and the estimation could

be managed through the development of a state-space based setting.
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A Tables

Table 1: Average distance true/estimated covariance matrices - M-ARCH(q∗) (100 replications)

Ĥdcc
t Ĥccc

t Ĥols
t Ĥols,br

t Ĥols,al
t Ĥols,scad

t Ĥmcp
t

p = 15 9.12 9.89 10.11 8.41 8.63 8.62 8.46

p = 50 13.27 14.25 15.37 12.13 12.44 12.66 12.54

Table 2: Average distance true/estimated covariance matrices - BEKK (100 replications)

Ĥdcc
t Ĥccc

t Ĥols
t Ĥols,br

t Ĥols,al
t Ĥols,scad

t Ĥmcp
t

p = 15 14.76 14.91 18.06 14.24 14.07 14.38 14.12

p = 50 56.93 61.98 98.235 54.21 54.86 54.15 54.08

Table 3: Diebold Mariano Test of Multivariate Variance-Covariance models
DCC O-G BEKK MSV MSV-AL MSV-BR MSV-SCA MSV-MCP

DCC −2.351c −1.046 −3.415c 7.671c 7.587c 7.673c 7.577c

O-G 2.351c 2.014b 1.184 6.339c 6.781c 6.451c 6.103c

BEKK 1.046 −2.014b −2.092b 8.234c 8.175c 8.241c 8.164c

MSV 3.415c −1.184 2.092b 1.895b 1.982b 2.445c 2.241b

MSV-AL −7.671c −6.339c −8.234c −1.895b −0.497 −0.196 −0.484
MSV-BR −7.587c −6.340c −8.175c −1.982b 0.497 0.750a 0.047

MSV-SCA −7.673c −6.364c −8.241c −2.445c 0.196 −0.750 −0.721
MSV-MCP −7.577c −6.341c −8.164c −2.241c 0.484 −0.047 0.721

Table 4: This table reports the out-of-sample t-statistics of the Diebold-Mariano test that checks
the equality between covariance matrix forecasts using the loss function uij,t over the period
December 2015 and March 2018. This loss function is defined as the difference between squared
realized returns of alternative Multivariate Variance-Covariance models. When the null hypothesis
of equal predictive accuracy is rejected, a positive number is evidence in favour of the model in
the column. a, b, c: rejection of the null hypothesis at 10%, 5% and 1% respectively.
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B Technical results

We used the convexity argument to derive the asymptotic distribution in the Lasso case. Cher-

nozhukov and Huong (2004), Chernozhukhov (2005) use this convexity argument to obtain the

asymptotic distribution of quantile regression type estimators. This argument relies on the con-

vexity Lemma, which is a key result to obtain an asymptotic distribution when the objective

function is not differentiable. It only requires the lower-semicontinuity and convexity of the em-

pirical criterion. The convexity Lemma, as in Chernozhukov (2005), proof of Theorem 4.1, can be

stated as follows.

Lemma 1. Convexity Lemma, Chernozhukov (2005)

Suppose

(i) a sequence of convex lower-semicontinuous FT : Rd → R̄ marginally converges to F∞ : Rd → R̄

over a dense subset of Rd;

(ii) F∞ is finite over a nonempty open set E ⊂ Rd;

(iii) F∞ is uniquely minimized at a random vector u∞.

Then

arg min
z∈Rd

FT (z)
d−→ arg min

z∈Rd
F∞(z), that is uT

d−→ u∞.

As for the SCAD and MCP, due to the non-convexity of the penalty function, we used Lemma

3 of Umezu et al. (2018), which generalises Lemma 2 of Hjort and Pollard (1993) to the case of

convex non-penalised loss functions with non-convex penalties. Lemma 2 of Hjort and Pollard

(1993) allows for deriving consistency and asymptotic normality of estimators that are defined by

minimisation of convex criterion functions.

Lemma 2. Umezu, Shimizu, Masuda, Ninomiya (2018)
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Suppose that GT (u) is a strictly convex random function that is approximated by G̃T (u). Let ū

be a subvector of u, and let ζ(u) and η(ū) be continuous functions such that ζT (u) and ηT (ū)

converge to ζ(u) and η(ū) uniformly over u and ū in any compact set, respectively, and assume

that ζ(u) is convex and η(0) = 0. In addition, for

νT (u) = GT (u) + ζT (u) + ηT (ū), and ν̃T (u) = G̃T (u) + ζ(u) + η(ū),

let uT and ũT be the arg min of νT (u) and ν̃T (u), respectively, and assume that ũT is unique and

˜̄uT = 0. Then, for any ε > 0, δ > 0, µ > δ, there exists γ > 0 such that

P(‖uT − ũT ‖ ≥ δ) ≤ P(2∆T (δ) + ε ≥ ΥT (δ)) + P(‖uT − ũT ‖ ≥ µ) + P(‖ūT ‖ ≥ γ),

where

∆T (δ) = sup
u:‖u−ũT ‖≤δ

|νT (u)− ν̃T (u)|, ΥT (δ) = inf
u:‖u−ũT ‖=δ

|ν̃T (u)− ν̃T (ũT )|.

Finally, for the large sample distribution of the Bridge penalised estimator, we relied on The-

orem 2.7 of Kim and Pollard (1990).

Theorem 7. Kim and Pollard (1990)

Let {FT } be a random function into the space of all locally bounded real functions on Rd, and uT

random mapps into Rd such that

(i) FT
d−→ Q for a Borel measure Q concentrated on Cmax(Rd)1;

(ii) uT = Op(1);

(iii) FT (uT ) ≥ sup
u
{FT (u)} − αT for random variables (αT ) of order op(1).

Then uT
d−→ arg max

u
{F(u)} for a F(u) with distribution Q.

1See their page 195 for a definition of this set
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C Proofs

Proof of Theorem 1. In a first step, we prove the uniform convergence of Gpen
T (y; .) to the limit

quantity Gpen
∞ (y; .) on any compact set B ⊂ Θ, idest

sup
x∈B

|Gpen
T (y;x)−Gpen

∞ (y;x)| P−→
T→∞

0. (19)

We define C ⊂ Θ an open convex set and pick x ∈ C. Then, under assumptions 2 and 4, by

Lemma 2.4 of Newey and McFadden (1994), we have

sup
x∈B

|GT (y; θ)− E[`(θ; ys, s ≤ t)]| = 0,

where the convergence of the sample criterion to the population level criterion is ensured by the

ergodic Theorem of Billingsley (1995), which thus justifies assumption 3. Thus, using λT /T → λ0

and since the parameter is taken over a compact set, we obtain

sup
x∈B

|Gpen
T (y;x)−Gpen

∞ (y;x)| P−→
T→∞

0.

Now we would like

arg min {GT (y; .) +

d∑
i=1

p(
λT
T
, |.|)} P−→

T→∞
arg min {G∞(y; .) +

d∑
i=1

p(λ0, |.|)}.

First, GT (y;x) +
d∑
i=1
p(λTT , |θi|) ≥ GT (y;x), and arg min

x∈B
{GT (y;x)} = Op(1) by convexity of

the criterion, it thus follows that arg min
x∈B

{GT (y;x) +
d∑
i=1
p(λTT , |xi|)} = Op(1) with probability

one.

Proof of Theorem 2. Let νT = T−1/2 +
√
card(A)A1,T . We would like to prove that for any ε > 0,

there exists Cε > 0 such that

P(
1

νT
‖θ̂ − θ0‖ > Cε) < ε.
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Following the reasoning of Fan and Li (2001), Theorem 1, and denoting Gpen
T (y; θ) = GT (y; θ) +

d∑
i=1
p(λTT , |θi|), we have

P(
1

νT
‖θ̂ − θ0‖ > Cε) ≤ P(∃u, ‖u‖2 = Cε : Gpen

T (y; θ0 + νTu) ≤ Gpen
T (y; θ0)),

which implies that there is a local minimum in the ball {θ0+νTu, ‖u‖2 ≤ Cε} so that the minimum

θ̂ satisfies ‖θ̂−θ0‖ = Op(νT ). Now by a Taylor expansion of the penalised loss function, we obtain

Gpen
T (y; θ0 + νTu)−Gpen

T (y; θ0) = νTu
′∇θGT (y; θ0) +

ν2T
2 u
′∇2

θθ′GT (y; θ0)u

+
d∑
i=1
{p(λTT , |θ0,i + νTui|)− p(λTT , |θ0,i|)},

since the third derivative vanishes. We want to prove

P(∃u, ‖u‖2 = Cε : u′∇θGT (y; θ0) + νT
2 u
′Hu+ νT

2 RT (θ0)

+ ν−1
T

d∑
i=1
{p(λTT , |θ0,i + νTui|)− p(λTT , |θ0,i|)} ≤ 0) < ε,

(20)

where RT (θ0) = u′{∇2
θθ′GT (y; θ0) − H}u. First, using the matrix derivatives formula of Abadir

and Magnus (2005), we obtain for the score

∇θGT (y; θ0) = 1
T

T∑
t=1
∇θ`(ys, s ≤ t; θ0)

= − 1
T

T∑
t=1

(
Zm,t−1 ⊗ {xt −Ψ0,1:mZm,t−1}

)
.

As for the Hessian, we aim at extracting the form tr(L(dΛ)′M(dΛ)) for L (resp. M) any square

m×m matrix (resp. p× p). We thus obtain

∇2
θθ′GT (y; θ0) =

1

T

T∑
t=1

(Zm,t−1Z
′
m,t−1 ⊗ Ip).

Under assumption 3, by the Central Limit Theorem of Billingsley (1961)

u′∇θGT (y; θ0) = Op(n
−1/2u′Mu),

with M = E[∇θ`(y; θ0)∇θ′`(y; θ0)] assumed well defined by assumption 5. By the ergodic Theorem

of Billingsley (1995), we have

∇θθ′GT (y; θ0)
P−→

T→∞
H,
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which implies RT (θ0) = op(1). We now focus on the penalty terms. First, we show that the

penalty functions satisfy assumption 6. The Lasso satisfies

∀i ∈ A,∇θip(
λT
T
, |θ0,i|) =

λT
T

sgn(θ0,i), ∇2
θiθi
p(
λT
T
, |θ0,i|) = 0.

For 0 < q < 1, the Bridge satisfies

∀i ∈ A, ∇θip(λTT , |θ0,i|) = λT
T q|θ0,i|q−1sgn(θ0,i),

∇2
θiθi
p(λTT , |θ0,i|) = λT

T q(q − 1)|θ0,i|q−2sgn(θ0,i),

thus the second order derivative of the Bridge converges to 0 when λT = o(T ). As for the scad,

we have

∀i ∈ A,∇θip(
λT
T
, |θ0,i|) =

λT
T

(
1{|θ0,i|≤

λT
T
} +

(bscad
λT
T − |θ0,i|)+

(bscad − 1)λTT
1{|θ0,i|>

λT
T
}

)
.

As a consequence, the scad penalty is twice continuously differentiable for λT
T < |θ0,i|, which

implies that ∀i ∈ A,∇2
θiθi
p(λTT , |θ0,i|) = o(1). In the MCP case, we have

∀i ∈ A,∇θip(
λT
T
, |θ0,i|) = (

λT
T
− |θ0,i|
bmcp

)sgn(θ0,i)1{|θ0,i|≤bmcp
λT
T
}.

Under λT = o(T ), we straightforwardly obtain ∇2
θiθi
p(λTT , |θ0,i|) = o(1) for non-zero components.

Now for any i ∈ A ⊂ {1, · · · , d}, and since the penalties are coordinate-separable, we have

p(
λT
T
, |θ0,i+νTui|)−p(

λT
T
, |θ0,i|) = νTuisgn(θ0,i)∇θip(

λT
T
, |θ0,i|)+

ν2
T

2
u2
i∇2

θiθi
p(
λT
T
, |θ0,i|)

(
1+o(1)

)
.

Hence, using p(λTT , 0) = 0, we have

|
∑
i∈A1

{p(
λT
T
, |θ0,i + νTui|)− p(

λT
T
, |θ0,i|)}| ≤ νT ‖u‖1A1,T +

ν2
T

2
‖u‖22A2,T

(
1 + o(1)

)
.

Using ‖u‖1 ≤
√
card(A)‖u‖2, and under assumption 6, the third derivative being dominated, we

obtain

|
∑
i∈A
{p(

λT
T
, |θ0,i + νTui|)− p(

λT
T
, |θ0,i|)}| ≤ νT

√
card(A)‖u‖2A1,T +

ν2
T

2
‖u‖22A2,T .
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Then, denoting δT = λmin(H)C2
ε νT , and using νT

2 E[u′∇2
θθ′`(y; θ0)u] ≥ δT , we deduce that (20)

can be bounded as

P(∃u, ‖u‖2 = Cε : u′∇θGT (y; θ0) + νT
2 u
′E[∇2

θθ′`(y; θ0)]u+ νT
2 RT (θ0)

+ν−1
T

d∑
i=1
{p(λTT , |θ0,i + νTui|)− p(λTT , |θ0,i|)} ≤ 0)

≤ P(∃u, ‖u‖2 = Cε : u′|∇θGT (y; θ0)| > δT /6) + P(∃u, ‖u‖2 = Cε|νT2 RT (θ0)| > δT /6)

P(∃u, ‖u‖2 = Cε : |
d∑
i=1
{p(λTT , |θ0,i + νTui|)− p(λTT , |θ0,i|)}| > νT δT /6).

We have for n and Cε sufficiently large enough

P(∃u, ‖u‖2 = Cε : |
d∑
i=1
{p(λTT , |θ0,i + νTui|)− p(λTT , |θ0,i|)}| > νT δT /6)

≤ P(∃u, ‖u‖2 = Cε : νT
√
card(A)‖u‖2A1,T +

ν2T
2 ‖u‖

2
2A2,T > νT δT /6) < ε/3.

Moreover, if νT = n−1/2 +
√
card(A)A1,T , for Cε large enough

P(∃u, ‖u‖2 = Cε : u′|∇θGT (y; θ0)| > δT /6) ≤ C2
εCst
Tδ2

T

≤ Cst
C4
ε

< ε/3,

where Cst > 0 is a generic constant. Finally, using RT (θ0) = op(1), we obtain

P(∃u, ‖u‖2 = Cε : u′|∇θGT (y; θ0)| > δT /6) + P(∃u, ‖u‖2 = Cε|νT2 RT (θ0)| > δT /6)

P(∃u, ‖u‖2 = Cε : |p(λTT , |θ0 + νTu|)− p(λTT , |θ0|)| > νT δT /6)

≤ Cst
C4
ε

+ 2ε/3 ≤ ε,

for T and Cε large enough. We deduce ‖θ̂ − θ0‖ = Op(νT ).

Proof of Theorem 3. Let u ∈ Rd such that θ = θ0 + u/
√
T , and the empirical criterion FT (u) =

T{Gpen
T (y; θ) − Gpen

T (y; θ0)}. Note that FT (u) is minimized at ûT = T 1/2(θ̂ − θ0) because θ̂

minimizes Gpen
T (Z; θ). Thus ûT = arg min

u∈Rd
{FT (u)}.

We first establish the finite distributional convergence of FT (.) to F∞(.). Then we separate the

proof depending on what penalty function we consider. We have the expansion

FT (u) =
√
Tu′∇θGT (y; θ0) +

1

2
u′∇2

θθ′GT (y; θ0)u+ T

d∑
i=1

{p(
λT
T
, |θ0,i + ui/

√
T |)− p(

λT
T
, |θ0,i|)}.
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By assumption 3, by the Central Limit Theorem of Billingsley (1961) and the ergodic Theorem

of Billingsley (1995)

√
T∇θGT (y; θ0)

d−→
T→∞

NRd(0,M), ∇2
θθ′GT (y; θ0)

P−→
T→∞

H.

As for the penalty terms, in the MCP and SCAD cases, we proceed as follows. We have

T

d∑
i=1

{p(
λT
T
, |θ0,i + ui/

√
T |)− p(

λT
T
, |θ0,i|)} = ζT (u) + ηT (u),

where using the coordinate-separability property of the penalties

ζT (u) = T
∑
i∈A
{p(

λT
T
, |θ0,i + ui/

√
T |)− p(

λT
T
, |θ0,i|)}, ηT (u) = T

∑
i∈Ac
{p(

λT
T
,ui/
√
T )}.

Then we have by a Taylor expansion for the indices i ∈ A

ζT (u) =
∑
i∈A

√
T∇θip(

λT
T
, |θ0,i|)uisgn(θ0,i) +∇2

θiθi
p(
λT
T
, |θ0,i|)u2

i /2(1 + o(1)).

Under assumption 6, we have A2,T = o(1). We then need to treat the first order term. For

both SCAD and MCP, since their derivatives respectively vanish outside [−bscad λTT , bscad
λT
T ],

[−bmcp λTT , bmcp
λT
T ] we have

∇θip(λTT , |θ0,i|) = ∇θip(λTT , |θ0,i|)1{|θ0,i|≤bscad λTT }
,

∇θip(λTT , |θ0,i|) = ∇θip(λTT , |θ0,i|)1{|θ0,i|≤bmcp λTT }
,

which implies for any ε > 0 and i ∈ A that

P(
√
T∇θip(λTT , |θ0,i|)1{|θ0,i|≤bscad λTT }

> ε) ≤ P(|θ0,i| ≤ bscad λTT )→ 0,

P(
√
T∇θip(λTT , |θ0,i|)1{|θ0,i|≤bmcp λTT }

> ε) ≤ P(|θ0,i| ≤ bmcp λTT )→ 0.

As a consequence,
√
T∇θip(λTT , |θ0,i|) = op(1). This is a direct consequence of the unbiasedness

property when regularising large coefficients. Thus ζT (u)→ 0 as T →∞. As for i ∈ Ac, we have

ηT (u) =
∑
i∈Ac

√
T
(
∇θip(

λT
T
, |θi|)

)
θi=0
|ui|+

1

2

(
∇2
θiθi

(
λT
T
, |θi|)

)
θi=0

u2
i (1 + o(1)),

36



Based on the assumption that lim
x→0+

∇xp(λTT , x) = λT
T and λT = O(

√
T ), we deduce

ηT (u)→ λ0

∑
i∈Ac
|ui|.

As a consequence, by Lemma 2, where in the latter we take GT (u) = G̃T (u) =
√
T∇θGT (y; θ0)u+

1
2u
′∇2

θθ′GT (y; θ0)u, we obtain arg min
u

{FT }
d−→ arg min

u
{F∞}.

For the Bridge estimator, we have for any index i ∈ A∪Ac and under the rate λT /T
q/2 → λ0,

then

T{p(
λT
T
, |θ0,i + ui/

√
T |)− p(

λT
T
, |θ0,i|)}

= λT

d∑
i=1

{|θ0,i + ui/
√
T |q − |θ0,i|q} → λ0

d∑
k=1

|ui|q1θ0,i=0.

Now we need to prove that arg min
u

{FT }
d−→ arg min

u
{F∞} for any u and n sufficiently large. To

do so, we use Theorem 7 of Kim and Pollard (1990) (see Appendix B) and show arg min
u

{FT } =

Op(1). We first have the expansion

FT (u) = GT (y; θ0 + u/
√
T )−GT (y; θ0) + λT

d∑
i=1
{|θ0,i + ui/

√
T |q − |θ0,i|q}

≥ GT (y; θ0 + u/
√
T )−GT (y; θ0)− λT

d∑
i=1
|ui/
√
T |q

≥ GT (y; θ0 + u/
√
T )−GT (y; θ0)−

(
λ0 + ε

) d∑
i=1
|ui/
√
T |q := F̃T (u),

where, following the proof of Theorem 3 of Knight and Fu (2000), ε is such that λ/T q/2 ≤ λ0 + ε.

Then, expanding GT (y; θ0 + u/
√
T )−GT (y; θ0) in F̃T (u), we have

F̃T (u) =
√
Tu′∇θGT (θ) +

1

2
u′∇2

θθ′GT (θ)u−
(
λ0 + ε

) d∑
i=1

|ui/
√
T |q.

The second term, which is quadratic in u, dominates the term with |ui|q. Hence arg min
u

{F̃T } =

Op(1), which in turns implies arg min
u

{FT } = Op(1). We then obtain for the Bridge

√
T (θ̂ − θ0) = arg min

u
{FT }

d−→ arg min
u

{F∞}.
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Finally, for the Lasso estimator, we have

T{p(
λT
T
, |θ0,i + ui/

√
T |)− p(

λT
T
, |θ0,i|)}

= λT

d∑
k=1

{|θ0,i + ui/
√
T | − |θ0,i|} → λ0

d∑
k=1

(
uisgn(θ0,i)1θ0,i 6=0 + |ui|1θ0,i=0

)
.

We thus proved that FT (u)
d−→ F∞(u), for a fixed u. Let us observe that

u∗T = arg min
u

{FT (u)},

and FT (.) admits as a minimizer u∗T =
√
T (θ̂−θ0). As FT is convex and F∞ is continuous, convex

and has a unique minimum, then by the convexity Lemma 1, we obtain

√
T (θ̂ − θ0) = arg min

u
{FT }

d−→ arg min
u

{F∞}.

Proof of Theorem 4. Let us define θ = (θ′A, θ
′
Ac)
′. To prove the support recovery consistency, we

show with probability tending to one when T →∞, under ‖θA − θ0,A‖ = Op(T
−1/2) and suitable

regularisation rates depending on the penalty, that

Gpen
T (y; θA,0Ac) = min

‖θAc‖≤CT−1/2
{Gpen

T (y; θA, θAc)}. (21)

To prove (21), for any
√
T -consistent θA, we show that over the set {i ∈ Ac, θi : |θi| ≤ T−1/2C}

for C > 0

∇θiG
pen
T (y; θ) > 0 when 0 < θi < T−1/2C,

∇θiG
pen
T (y; θ) < 0 when −T−1/2C < θi < 0,

(22)

with probability converging to 1. For any index i ∈ Ac, by a Taylor expansion around the true

parameter, we have

∇θiG
pen
T (y; θ) = ∇θiGT (y; θ) +∇θip(

λT
T
, |θi|)sgn(θi)

= ∇θiGT (y; θ0) +∇2
θiθi

GT (y; θ0)
(
θi − θ0,i

)
+∇θip(

λT
T
, |θi|)sgn(θi).
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By the Central Limit Theorem of Billingsley (1961) and the ergodic Theorem of Billingsley (1995),

we have

√
T∇θiGT (y; θ0) = Op(1), ∇2

θθ′GT (y; θ0)
P−→

T→∞
E[∇2

θθ′`(ys, s ≤ t; θ0)].

We thus obtain for the SCAD and MCP penalties

∇θiGT (y; θ) = Op(T
−1/2) +∇θip(λTT , |θi|)sgn(θi)

= λT
T {

T
λT
∇θip(λTT , |θi|)sgn(θi) +Op(

√
T

λT
)}.

As a consequence, under the condition lim
T→∞

lim inf
x→0+

T
λT
∇xp(λTT , x) > 0 and if the regularisation

parameter satisfies λT
T 1/2 → ∞, we deduce that the sign of the gradient entirely depends on the

sign of θ̂. This this proves (22).

For the Bridge penalty, following the same reasoning as in the SCAD and MCP, the non-

penalised terms are of order Op(T
−1/2). As for the penalty, we have

∇θip(
λT
T
, |θi|) =

λT
T
q|θi|q−1sgn(θi) =

λT
T (q+1)/2

q|T 1/2θi|q−1sgn(θi).

As a consequence, we obtain

∇θiGT (y; θ0) = λT
T (q+1)/2 {q|T 1/2θi|q−1sgn(θi) +Op(

T q/2

λT
)}.

Thus, under the assumption that λT /T
q/2 →∞, this this proves (22).

We now turn to the asymptotic distribution. We prove that θ̂Ac degenerates at 0Ac with

probability approaching one. Now by a Taylor expansion around θ0,i, for i ∈ A, we have

∇θiGT (y; θ̂) +∇θip(
λT
T
, |θ̂i|)sgn(θ̂i)

= ∇θiGT (y; θ0) +
∑
j∈A
∇2
θiθj

GT (y; θ0)(θ̂j − θ0,j) +∇θip(
λT
T
, |θ0,i|)sgn(θ0,i)

+ ∇2
θiθi
p(
λT
T
, |θ0,i|)(θ̂i − θ0,i)(1 + o(1)).
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Then inverting this relationship and multiplying by
√
T , we obtain in vector form with respect to

the elements in A

(
∇2
AAGT (y; θ0) + ST,AA

)√
T{(θ̂ − θ0)A +

(
∇2
AAGT (y; θ0) + ST,AA

)−1
bT,A} = −

√
T∇AGT (y; θ0),

which implies

√
T (θ̂ − θ0)A = −

(
∇2
AAGT (y; θ0) + ST,AA

)−1√
T∇AGT (y; θ0)−

√
TbT,A,

where

bT,A =
(
∇θ1p(λTT , |θ0,1|)sgn(θ0,1), · · · ,∇θk0p(λTT , |θ0,k0 |)sgn(θ0,k0)

)′
,

ST,AA = diag(∇2
θiθi
p(λTT , |θ0,i|), i = 1, · · · , k0).

Now, since λT /T → 0, this implies that A1,T → 0 for the SCAD and MCP. As for the Bridge, the

√
T -consistency requires λT = O(

√
T ) by Theorem 2 and the oracle property requires λTT

−q/2 →

∞. As in the SCAD and MCP cases, A1,T → 0. Thus in all cases, bT,A and ST,AA vanish for T

large enough. We thus deduce that by the central limit theorem for U-statistics and the Slutsky

theorem

√
T
(
θ̂ − θ0

)
A

d−→
T→∞

NRk0 (0,H−1
AAMAAH

−1
AA),

with

M = E[∇θ`(ys, s ≤ t; θ0)∇θ′`(ys, s ≤ t; θ0)], H = E[∇2
θθ′`(ys, s ≤ t; θ0)].

Proof of Theorem 5. Under the Theorem’s assumption, θ̂
P−→

T→∞
θ∗0. Now let us prove

∀ε > 0, lim
T→∞

P(‖γ̂ − γ0‖ > ε) = 0.

First, note that we work under the assumption that β0 = (θ∗
′

0 , γ
′
0) is a well-separated point.

Second, let us first establish that for every β̄ ∈ Θ0\2 with ‖γ̄ − γ0‖ > 0, where Θ0\2 = {β : β =
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(θ∗0, γ) ∈ Θ1 × Θ2} = {θ∗0} × Θ2, and every π > 0, there exists an open ball V(β̄, π) around β̄ in

the space Θ0\2 such that

Eβ0 [ inf
β∈V(β̄,π)

f(ys, s ≤ t;β)] ≥ Eβ0 [f(ys, s ≤ t; β̄)]− π. (23)

To prove this statement, for a given β̄ = (θ̄, γ̄) ∈ Θ0\1, where Θ0\1 = {β : β = (θ, γ0) ∈ Θ}, and

γ̄ 6= γ0, consider a sequence of open balls with radius 1/k, k ∈ N defined by Vk(β0) = {β ∈ Θ0\1 :

‖β − β0‖ ≤ 1/k}. Since the sequence of random variables
(

inf
β∈Vk(β0)

f(ys, s ≤ t;β)
)
k

is increasing,

then by the Beppo-Levi Theorem

lim
k→∞

Eβ0 [ inf
β∈Vk(β0)

f(ys, s ≤ t;β)] = Eβ0 [f(ys, s ≤ t;β0)],

which thus proves (23). Now, under the Theorem’s assumption, θ̂
P−→

T→∞
θ∗0. We thus need to prove

∀ε > 0, lim
T→∞

P(‖γ̂ − γ0‖ > ε) = 0. Invoking (23), for any given π > 0 and β̄ ∈ Θ0\2, β̄ 6= β0, with

‖γ̄ − γ0‖ ≥ ε/2, we can find an open ball U(β̄) ⊂ Θ0\2 such that

Eβ0 [ inf
β∈U(β̄)

f(ys, s ≤ t;β)] ≥ Eβ0 [f(ys, s ≤ t; β̄)]− π.

Since the function γ 7→ Eβ0 [f(ys, s ≤ t; θ∗0, γ)]−Eβ0 [f(ys, s ≤ t; θ∗0, γ0)] defined on Θ0\2, is strictly

positive because β0 is a well separated point and continuous on the compact subset C0(ε) = {β ∈

Θ0\2 : ‖γ − γ0‖ ≥ ε/2}, it reaches its minimum 2µ > 0. Hence, for any given β̄ ∈ C0(ε), we have

π := π(β̄) = Eβ0 [f(ys, s ≤ t; β̄)]− Eβ0 [f(ys, s ≤ t;β0θ
∗
0, γ0)]− µ > 0.

Moreover, define U(β0) = {β ∈ Θ0\2 : ‖β − β0‖ < ε}. Then

Θ0\2 ⊂ U(β0) ∪
⋃

β∈C0(ε)

U(β).

Since Θ0\2 can be covered by a finite set of open ball by sequential compactness, there is a finite

set of points β1, · · · , βT in C0(ε) such that

Θ0\2 ⊂ U(β0) ∪
n⋃
i=1

U(βi).
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We thus deduce

P(‖γ̂ − γ0‖ > ε) ≤ P((θ∗0, γ̂) ∈
n⋃
i=1

U(βi)) ≤
n∑
i=1

P((θ∗0, γ̂) ∈ U(βi)).

By definition of β̂, for any i = 1, · · · , n,

P((θ∗0, γ̂) ∈ U(βi)) ≤ P( inf
β∈U(βi)

LT (y;β) ≤ LT (y; θ∗0, γ̂))

≤ P( inf
β∈U(βi)

LT (y;β) ≤ LT (y; θ̂, γ̂) + |LT (y; θ∗0, γ̂)− LT (y; θ̂, γ̂)|)

≤ P( inf
β∈U(βi)

LT (y;β) ≤ LT (y; θ̂, γ0) + |LT (y; θ∗0, γ̂)− LT (y; θ̂, γ̂)|)

≤ P(Eβ0 [ inf
β∈U(βi)

f(ys, s ≤ t;β)] ≤ Eβ0 [f(ys, s ≤ t;β0)] + |LT (y;β0)− Eβ0 [f(ys, s ≤ t;β0)]|

+|LT (y; θ∗0, γ̂)− LT (y; θ̂, γ̂)|+ |RT (βi)|),

where RT (βi) = 1
T

T∑
t=1

inf
β∈U(βi)

f(ys, s ≤ t;β)− Eβ0 [ inf
β∈U(βi)

f(ys, s ≤ t;β)]. Using (23), we have

Eβ0 [ inf
β∈U(βi)

f(ys, s ≤ t;β)] ≥ Eβ0 [f(ys, s ≤ t;β0)] + µ.

Thus

P((θ∗0, γ̂) ∈ U(βi))

≤ P(µ ≤ |RT (βi)|+ |LT (y;β0)− Eβ0 [f(ys, s ≤ t;β0)]|+ |LT (y; θ∗0, γ̂)− LT (y; θ̂, γ̂)|)

≤ P(µ/3 ≤ |RT (βi)|) + P(µ/3 ≤ |LT (y;β0)− Eβ0 [f(ys, s ≤ t;β0)]|) + P(µ/3 ≤ |LT (y; θ∗0, γ̂)− LT (y; θ̂, γ̂)|).

Let us focus on P(µ/3 ≤ |RT (βi)|). Although the quantity f(ys, s ≤ t;β) is not necessarily

integrable, the Ergodic Theorem can still be applied to Eβ0 [f(ys, s ≤ t;β)]. Moreover, f(ys, s ≤

t;β) is a measurable function of an ergodic process, by assumption 8, the Ergodic Theorem can

be applied to the process ( inf
β∈U(βi)

f(ys, s ≤ t;β)), that is

lim inf
T→∞

1

T

T∑
t=1

inf
β∈U(βi)

f(ys, s ≤ t;β) = Eβ0 [ inf
β∈U(βi)

f(ys, s ≤ t;β)].
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Thus, for T > T1, we have

P(µ/3 ≤ |RT (βi)|) ≤ ε/3.

By the Ergodic Theorem, for T > T2, then

P(µ/3 ≤ |LT (y;β0)− Eβ0 [f(ys, s ≤ t;β0)]|) ≤ ε/3.

Finally, we need to control for the last probability. To do so, we need to prove

sup
γ∈Θ
|LT (y; θ̂, γ)− LT (y; θ∗0, γ)| = op(1).

To do so, by a Taylor expansion of LT (y; θ̂, γ) around θ∗0, we have

LT (y; θ̂, γ) = LT (y; θ∗0, γ) + (θ̂ − θ∗0)′∇θLT (y; θ̃, γ),

where ‖θ̃ − θ̂‖ ≤ ‖θ̂ − θ∗0‖. Using the consistency of θ̂, it is sufficient to prove that

1

T

T∑
t=1

sup
θ∈Θ:‖θ−θ∗0‖≤α

‖∇θf(ys, s ≤ t; θ, γ)‖ = Op(1),

for a small α > 0. The score (applied here with respect to θ = vec(Ψ1:m)) is given by

∇θf(ys, s ≤ t; θ, γ)

= ∇θ
1

2

(
[xt − c∗ − Φxt−1 − Ξ{xt−1 −Ψ1:mZm,t−2}]′[xt − c∗ − Φxt−1 − Ξ{xt−1 −Ψ1:mZm,t−2}]

)
=

(
{Zm,t−2} ⊗ {Ξ′[xt − c∗ − Φxt−1 − Ξ{xt−1 −Ψ1:mZm,t−2}]}

)
.

As a consequence, there exists some positive constant C > 0 such that, for any α > 0,

sup
θ∈Θ:‖θ−θ∗0‖≤α

‖∇θf(ys, s ≤ t; θ, γ)‖ ≤ C sup
θ∈Θ:‖θ−θ∗0‖≤α

‖Zm,t−2‖‖Ξ‖‖xt−c∗−Φxt−1−Ξ{xt−1−Ψ1:mZm,t−2}‖.

Based on xt = c∗ + Φxt−1 + Ξ{xt−1 −Ψ1:mZm,t−2}+ vt, we obtain

Xt = c∗ + ΛXt−1 + vt,
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where

Xt =


xt
xt−1

xt−2
...

xt−m

 , vt =


vt
0
0
...
0

 , c =


c∗

0
0
...
0

 ,Λ =


Φ + Ξ −ΞΨ1 −ΞΨ2 · · · −ΞΨm

Ip 0 0 · · · 0
0 Ip 0 · · · 0
...

. . . · · · · · ·
...

0 · · · · · · Ip 0

 .

Assumption 9 provides a sufficient condition for stationarity, that is ‖Λ‖s < 1, with ‖.‖s the

spectral radius of Λ. Hence, under ‖Λ‖s < 1,

1

T

T∑
t=1

sup
θ∈Θ:‖θ−θ∗0‖≤α

‖∇θf(ys, s ≤ t; θ, γ)‖ = Op(1).

As a consequence, for T > T3, we deduce

P(µ/3 ≤ |LT (y; θ∗0, γ̂)− LT (y; θ̂, γ̂)|) < ε/3.

We can conclude that for T > T1 ∨ T2 ∨ T3, we have

P((θ∗0, γ̂) ∈ U(βi)) < ε.

This thus proves the desired consistency result.

Proof of Theorem 6. Through a Taylor expansion around β0, we obtain for the γ̂ component

0 = ∇γLT (y; θ̂), γ̂) = ∇γLT (y;β0) +∇θLT (y; β̄)A(θ̂ − θ0)A +∇γLT (y; β̄)(γ̂ − γ0),

where ‖β̄ − β0‖ < ‖β̂ − β0‖. Then inverting this relationship, multiplying by
√
T and using the

asymptotic expansion of the first step estimator, we obtain

√
T (γ̂ − γ0)

= (−∇γLT (y; β̄))−1∇θLT (y; β̄)A
√
T (θ̂ − θ0)A + (−∇γLT (y; β̄))−1

√
T∇γLT (y;β0)

= (−∇γLT (y; β̄))−1∇θLT (y; β̄)A{−bT,A + (−
(
∇2
AAGT (y; θ0) + ST,AA

)
)−1
√
T∇AGT (y; θ0)}

+(−∇γLT (y; β̄))−1
√
T∇γLT (y;β0).
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Hence, by Slutsky’s Theorem and the Central Limit Theorem, we obtain the desired asymptotic

distribution since ST,AA = 0 and bT,A = 0 for T sufficiently large.

D Some competing M-GARCH models

The BEKK model directly generates a variance-covariance process. Developed by Baba, Engle,

Kraft and Kroner, in a preliminary version of Engle and Kroner (1995), the BEKK is specified for

a p-dimensional random vector εt as
εt = H

1/2
t ηt, with Ht := E[εtε

′
t|Ft−1] � 0 so that

Ht = Ω +
q∑

k=1

K∑
j=1

Akjεt−kε
′
t−kA

′
kj +

r∑
i=1

K∑
i=1
BijHt−iB

′
ij ,

where K is an integer, Ω, Akj and Bkj are square p × p matrices and Ω � 0. One advantage

of the BEKK model is there is no positive semi-definite constraint on the Akj and Bkj matrices.

However, it imposes highly artificial constraints on the volatilities and covariances of the com-

ponents. As a consequence, the coefficients of a BEKK representation are difficult to interpret.

In our application, a scalar BEKK was considered, where Akj and Bkj are scalar with K = 1,

q = r = 1, together with a Gaussian QMLE estimation.

Beside BEKK type dynamics, factor models provide rather natural alternatives. The O-

GARCH assumes the decomposition Ht = PΛtP
′, where Λt = diag(λ1,t, · · · , λK,t), with K the

number of factors. Here, we choose K = p factors and each λt is supposed to follow a univariate

GARCH(1,1) process that is estimated by maximum likelihood. The matrix P is nonsingular and

it is estimated by PCA on the empirical variance-covariance matrix of εt: see Alexander (2001),

e.g.

Beside the latter direct specification of the covariance matrices (Ht) dynamics, an alternative

road is to split the task into two parts: individual volatility dynamics on one side, and correlation
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dynamics on the other side. The most commonly used correlation process is the Dynamic Condi-

tional Correlation (DCC) of Engle (2002). In its BEKK form, the general DCC model is specified

as 
εt = H

1/2
t ηt, with Ht := E[εtε

′
t|Ft−1] � 0 so that

Ht = DtRtDt, Rt = Q
?−1/2
t QtQ

?−1/2
t ,

Qt = Ω +
q∑

k=1

MkQt−kM
′
k +

r∑
l=1

Wlut−lu
′
t−lW

′
l ,

(24)

where Dt = diag
(√

h11,t,
√
h22,t, . . . ,

√
hpp,t

)
, ut = (u1,t, . . . , up,t) with ui,t = εi,t/

√
hii,t, Qt =

[qij,t], Q
?
t = diag (q11,t, q22,t, . . . , qpp,t). The model is parameterized by some deterministic matrices

(Mk)k=1,··· ,q, (Wl)l=1,··· ,r and a positive definite p × p matrix Ω. Alternatively, Engle (2002)

considered a VEC-type specification too. Denoting by � the Hadamard matrix product, the

(Qt)-dynamics become

Qt = Ω∗ +

q∑
k=1

Bk �Qt−k +

r∑
l=1

Al � ut−lu′t−l, (25)

where the deterministic matrices (Bk)k=1,··· ,q and (Al)l=1,··· ,r must be positive semi-definite.

Since the number of parameters of the latter models is of order O(p2), the matrices Mk

and Wl (resp. Bk’s and Al) are often assumed to be scalar. This is typically a strong and

questionable constraint, particularly when the dimension p increases or when the variables in (εt)

are heterogeneous. Furthermore, their inference is usually carried out trough the QML method,

based on a Gaussian or Student quasi likelihood function. Under this methodology, applying a

regularisation method, even possible, is numerically arduous and no general asymptotic results

exist in this case (to the best of our knowledge), due to the non-convexity of the QML criterion.

If Rt = R a constant correlation matrix, then (24) becomes the Constant Conditional Corre-

lation (CCC) model.
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