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1 Introduction

In this paper, we treat the general equilibrium existence problem on overlapping gen-

erations (OLG) economies with possibly satiated agents and fiat money. The setting is

important to incorporate monetary equilibrium allocations that are possible only after

non-negative wealth transfers are introduced.

Because of the existence of satiated agents, the equilibrium concept that we are con-

cerned with can be identified with a dividend equilibrium or an equilibrium with slack (see

Aumann and Drèze 1986 or Mas-Colell 1992). Equilibrium existence theorems on divi-

dend equilibria for such finite economies are treated in Mas-Colell (1992), Kajii (1996),

Allouch and Florenzano (2013) and so forth. For the OLG framework, however, further

considerations and arrangements for conditions are necessary.

To investigate the existence of equilibrium with slack or money, the approaches by Mas-

Colell (1992) and Kajii (1996) were confined to finite time horizon cases. Their approaches

also take the minimum wealth condition as given or as trivial under a certain initial

endowment interiority condition. For the OLG framework, however, we must reconsider

several conditions like strictly positive initial endowments and several limit arguments for

equilibrium states including negative prices. In this paper, we use the condition of social

non-satiatedness (SNS) of preferences and extend the method in Balasko and Shell (1980)

and Balasko et al. (1980) to assure the existence of an equilibrium for the OLG economy.

In section 2, rigorous definitions for the economies treated in this paper will be given.

The main theorem of the existence of equilibrium is given in Section 3, where several

discussions and remarks are also provided. The proof of the theorem is given in Section 4.

2 Economies

Let N be the set of all positive integers and R be the set of real numbers. For finite

set A, denote by ♯A the number of elements of A. We denote by RA, the ♯A dimensional

Euclidean space R♯A and by RA
+ and RA

++, the non-negative and strictly positive orthants

of RA, respectively. If A is a subset of B, RA is canonically identified with the subset of

RB .

An overlapping-generations economy, or more simply, an economy, E, is comprised of

the following list:

(E.1) {It}∞t=1: a countable family of mutually disjoint non-empty finite subsets of

N such that
∪∞

t=1 It = I = N . It is the index set of agents in generation t for each

t ∈ N .

(E.2) {Kt}∞t=1: a countable family of non-empty finite integer intervals, Kt =

{k(t), k(t)+1, · · · , k(t)+ℓ(t)} such that
∪∞

t=1 Kt = K = N , k(t) < k(t+1)≦ k(t)+ℓ(t)

for all t ∈ N . Kt is the index set of commodities available to generation t for each

t ∈ N . We suppose that ℓ = maxt∈N ℓ(t) exists.

(E.3) {Yt}∞t=1: a sequence of technologies. Yt is a compact convex subset of RK(t)

having 0 as its element, where K(t) denotes the set
∪t

s=1 Ks. We suppose that for

each t, there exists t̄ such that for all s≧ t̄, Ys ∩ RK(t) = {0}. Denote by Y (t) the
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summation
∑t

s=1 Ys. We suppose that technology Yt is owned only by agents in

I(t+ ℓ) for a positive integer ℓ, where I(t) denotes the set
∪t

s=1 Is.

(E.4) {(≿i, ωi)}i∈I : countably many agents, where ≿i is continuous and convex in

the sense of Debreu (1959) on the commodity space of each generation, RKt
+ , for

each i ∈ It and t ∈ N . The initial endowment of i, ωi, is an element of RKt
+ \ {0} for

each i ∈ It and t ∈ N .

(E.5) {{mt
i}i∈I}∞t=1: m

t
i(yt, p) is a non-negative continuous profit distribution func-

tion for agent i with respect to technology Yt, where we suppose that yt ∈ Yt, p ∈ RN ,

and
∑

i∈I(t+ℓ) m
t
i(yt, p) = p · yt.1 We assume that for each i ∈ It, m

s
i (ys, p) = 0 for

all s > t+ ℓ.

We note that in (E.4), no monotonicity conditions are assumed, so that preferences are

allowed to be satiated.

In the following, it would be convenient to identify the commodity space for each gen-

eration RKt
+ with a subset of RK = RN , which is the set of all functions from K = N to

R, by considering x ∈ RKt
+ a function that takes value 0 on N \Kt. Then we can define

the total commodity space for economy ⊕∞
t=1R

Kt
+ as the set of all finite sums of points

in commodity spaces of generations. Clearly, ⊕∞
t=1R

Kt
+ can be identified with a subset of

direct sum R∞, the set of all finite real sequences, which is a subspace of the set of all real

sequences, R∞ ≈ RN under the pointwise convergence topology.

Given an economy, E = ({It}∞t=1, {Kt}∞t=1, {Yt}∞t=1, {(≿i, ωi)}i∈I , {{mt
i}i∈I}∞t=1), the

price space for E, P, is defined as the set of all p in RN . A sequence, (xi ∈ RKt
+ )i∈I ,

is called an allocation for E. Allocation (xi ∈ RKt
+ )i∈I is said to be feasible if there exists

a sequence {yt ∈ Yt}∞t=1 such that∑
t∈N

∑
i∈It

xi =
∑
t∈N

yt +
∑
t∈N

∑
i∈It

ωi, (1)

where the summability in RK = RN of both sides of the equality is assured by (E.2)

and (E.3). In equation (1), the no free disposability is assumed since we do not use any

monotonicity condition for each agent. Under the attainability condition (1) and the

condition on Ys and RK(t) in (E.3), we can obtain for each i ∈ It a compact convex set

Xi ⊂ RKt
+ such that every feasible allocation for i is a relative interior point of Xi, so that

for individual maximization problem there is no loss of generality (under the convexity of

preferences) to restrict i’s consumption set to Xi instead of RKt
+ .2

The list of price vector p∗ ∈ P, non-negative slack variables (M∗
i ∈ R+)i∈I , and an

allocation (x∗
i ∈ RKt

+ )i∈I feasible under (y∗t ∈ Yt)t∈N , is called a dividend equilibrium state

for E, if for each t ∈ N , p∗ ·y∗t ≧ p∗ ·yt for all yt ∈ Yt, and for each i ∈ It, x
∗
i is a ≿i-greatest

1 In this paper, we use the inner product notation even for two infinite dimensional vectors in RN ≈ R∞

as long as one of which can be identified with a finite vector (through the identification like RKt ⊂ R∞ ⊂
R∞ explained in the next following paragraphs), and the summability for the coordinate products is
clearly warranted. For the continuity of ms

i , we take the topology of RN ≈ R∞ as the product (pointwise
convergence) topology.

2 In this paper, for the sake of simplicity, we assume that each Yt, t = 1, 2, . . ., is compact. It follows
that we can take such compact Xi for each i naturally from the feasibility condition (1). For more general
cases, however, we have to ensure the compactness of attainable set by using conditions on asymptotic
cones like Debreu (1959). The compactness of Yt and Xi should be derived from such conditions.
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element in the set

{xi ∈ Xi ⊂ RKt
+ | p∗ · xi ≦ p∗ · ωi +

t+ℓ∑
s=1

ms
i (y

∗
s , p

∗) +M∗
i }. (2)

Since the non-negative wealth transfer is possible to be identified with the money supply in

perfect-foresight economies, a dividend equilibrium allocation can also be called a monetary

Wlaras allocation for E.

In order to assure the existence of equilibrium for OLG economies, a certain kind of

resource relatedness condition is necessary. For this purpose, instead of the monotonicity

of preferences, we assume the following condition.

(SNS: Socially Non-Satiated preference configuration)

For all generation t, for each commodity k, s ∈ Kt and feasible allocation

x = (xi)i∈I , there exists at least one agent i ∈ It having a positive endowment

of commodity s and non-empty open interval (0, ϵ) ⊂ R+ satisfying one of

the following two conditions: (1) for every δ ∈ (0, ϵ), xi + (0, · · · , 0, δ, 0, · · ·) is
strictly preferred to xi, or (2) for every δ ∈ (0, ϵ), xi + (0, · · · , 0,−δ, 0, · · ·) is

strictly preferred to xi, where the non-zero entry of the additional vector, δ or

−δ, is the k-th coordinate.

The condition for a finite satiation economy with non-negative price settings was intro-

duced in Murakami and Urai (2017) and Murakami and Urai (2019) as one of the simplest

method to assure the resource relatedness for the entire economy. Condition SNS is au-

tomatically satisfied when for each generation t, there is at least one agent i ∈ It whose

preference is strictly monotonic and ωi ∈ RKt
++. On the other hand, the condition does not

satisfied if there exists a commodity k such that under a certain feasible allocation (xi)i∈I ,

all agents possible to consume commodity k are satiated with k. We also note that SNS

means that for all t ∈ N ,
∑

i∈It
ωi ∈ RKt

++.

3 Existence of Dividend Equilibrium

For each T ∈ N , denote by E(T ) a finite truncated economy that consists of all agents

in I(T ) =
∪T

s=1 Is. The proof of the existence theorem is essentially equivalent to the

usual diagonal argument (see, Balasko-Call-Shell 1980, etc.), which derives the equilibrium

of the total economy E as a limit of a sequence of equilibria for truncated economies.

There are some difficulties, however, associated with the necessity to include preference

saturation and the possibility of negative prices, together with the resource relatedness

(SNS) condition specific in this paper. In particular, we use the Mas-Colell (1992) theorem

to prove the existence of an equilibrium in economy E(T ), but problems specific to OLG

models (especially, in guaranteeing minimum wealth conditions for agents whose initial

endowments cannot be strictly positive) prevent the theorem from a direct application

(see, for example, equation (5) in section 4.2). We have the following theorem.

Theorem 1 . Under (E.1)-(E.5) and SNS conditions, an overlapping generations economy

E has a dividend equilibrium.
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Proof : See Section 4. ■

Discussion 1 (Basic Income Policy)

Nowadays, government intervention for the purpose of redistribution to a certain entity

has become more and more difficult and is not working practically. For example, resis-

tances from corporations and rich people would be strong, and from the public-finance

perspective, tax distortions are not desirable. This study focuses on government basic

income-like spending policies as a possible new redistribution. Above all, this has a lump

sum tax aspect and does not cause distortion (i.e., non-negative transfers could be ac-

cepted with lower resistances by all economic agents). By using the above theorem, we

can say that there is an equilibrium and that the weak Pareto optimality in the sense of

Balasko and Shell (1980) is always assured (the allocation cannot be improved by any fi-

nite agents). Of course, we have many Pareto optimal examples in OLG economy that are

possible only after positive money supply (negative budgetary deficit of the government)

is introduces. Under certain criteria, the equilibrium with BI is better. (This is where we

need to extend the model to say that our new redistribution policy is properly supported

by microeconomics and we need to expand the model.)

Discussion 2 (Capital Accumulation)

We also note that by considering the OLG framework together with the existence of sa-

tiated agents, we can easily introduce bequests and capital accumulations into the model.

Indeed, if the existence of satiated agents and their consumptions are followed by appro-

priate non-negative wealth transfers to others, the situation cannot be distinguished from

the existence of bequests as long as the determination problem of the heirs are exogenously

given. It is also possible to understand that such bequests are bought by the government

(so satiated agents are convinced in that their bequests are saved as government-bank

deposits), lended to the next-generation technology, transformed to commodities in the

future (including capital goods), and the capital accumulation (by using the fiat money

or the fiscal deficits) takes place. For such circumstances, it is easy to construct Pareto

optimal monetary equilibrium examples under which fiscal deficits (government bonds) do

not necessarily be redeemed. (To obtain such Pareto optimal allocations, the fiscal deficits

for eternal time periods are necessary.)

Discussion 3 (Survival Problem)

The framework of preference saturation and government dividends provides an inter-

esting open question regarding the so-called general equilibrium with survival problem.

Here, the survival problem is a general equilibrium existence problem in which, under

some price conditions, the survival conditions of some of the consumers in the economy

are not satisfied (i.e., the budget constraint set is empty under some price). Suppose that

a group of people in the economy are able to saturate everyone under their initial holdings
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and technology, and that the surplus of output under this saturated situation is sufficient

to survive all the rest of the people in the economy. Can the government’s dividend pol-

icy then guarantee the existence of dividend equilibrium in the economy with a survival

problem? We also note that

Discussion 4 (General Dynamic Game)

The first thing that characterizes our model from the viewpoint of infinite-horizon dy-

namic games is that it can handle problem setups and equilibrium paths in which the

objective function and value function are not necessarily finite. Needless to say, this

means that solution paths that cannot be captured by dynamic programming based on

the Bellman equation are also subject to analysis. Second, while the above is well known in

economic models with overlapping generations for consumption, in this paper it is treated

in a general way (without the use of discount factors) by including production. Although

individual production activities are directly depicted as closed within a finite period, they

overlap generationally, so that the model introduces technology that spans an infinite

number of periods as a whole. Thus, our model can serve as a basis for asking more

general questions from a microeconomic standpoint toward capital accumulation, multi-

sector growth issues, and in some cases, firm formation and industrial structure. Third,

the government is introduced as the money-issuing entity, but its role is approximately

minimal in an economic context, including the fact that the value of money may be zero

(its value is determined by equilibrium). However, as a quid pro quo for introducing this

special player, it is possible to deal with the survival problem as discussed in Discussion 3.

This means that the setting can include situations where the players’ choice set is empty,

depending on how the equilibrium is (such as choices under prices), and allows for a more

diverse treatment of hard-to-handle issues related to the game structure itself (such as

bankruptcy and default).

4 Proof

4.1 Setting Truncated Economy till generation T

Let E(T ) = ({It}Tt=1, {Kt}Tt=1, {Yt}Tt=1, {{(≿i, ωi)}i∈I(T ), {mt
i}}i∈I(T )}Tt=1) be an econ-

omy truncated at a generation T . Let h be an index for a good, and let ph be a price

for the good h. We denote by H(T ) the total number of goods till generation T , i.e.,

H(T ) = ♯K(T ) = k(T ) + ℓ(T ). Price vectors for E(T ) will be denoted like p(T ) or p∗(T ),

and we define sets of prices, P(T ), P∗(T ) and P∞(T ) as follows:

• p(T ) = (p1, p2, · · · , ph, · · · , pH(T )),

• p∗(T ) = (p∗1, p
∗
2, · · · , p∗h, · · · , p∗H(T )),

• P(T ) = {p(T ) ∈ RH(T )|||p(T )|| ≤ 1},

• P∗(T ) = {p∗(T ) ∈ RH(T )\{0}|||p∗(T )|| ≤ 1},

• P∞(T ) = {(p∗1, p∗2, · · · , p∗H(T ), pH(T )+1, · · ·) ∈ P∗(T )×R×R×R · · · | ||p∗(T )|| ≤ 1}.
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Here, each production set is assumed to be compact.3 So, naturally, each consumption

set, Xi, in the economy can also be assumed to be compact. This is because the production

plan is finite, and, therefore, consumers can consume at most finite amounts in total.

In the following proof, we first restrict our argument to the truncated economy E(T ).4

4.2 Budget constraint modification

To show the existence of an equilibrium for E(T ), we have to modify the budget con-

straint in equation (2). Let us introduce a modified budget set for individual i ∈ It ⊂ I(T )

for price p(T ) ∈ P(T ), as follows:

• If ||p(T )|| ̸= 0, the modified budget set is described as

{xi ∈ Xi ⊂ RKt
+ | p(T ) · xi ≦ p(T ) · ωi +

T∑
s=1

ms
i (ys, p(T )) +

1− ||p(T )||
||p(T )||

}. (3)

• Otherwise, it is

{xi ∈ Xi ⊂ RKt
+ | p(T ) · xi ≦ p(T ) · ωi +

T∑
s=1

ms
i (ys, p(T )) + A}, (4)

where A is taken to be a large constant such that it covers the whole consumption set Xi

for all i ∈ I(T ). Since Xi is compact and I(T ) is finite, an easy calculation shows that we

can take A as a real number greater than the diameter of set Xi for all i ∈ I(T ).5

Adjustment term 1−||p(T )||
||p(T )|| is a device to ensure the minimum wealth condition (Mas-

Colell 1992, condition V) at every price whose norm is less than 1 (including the point,

||p(T )|| = 0). For prices such that ||p(T )|| = 1, however, we need a further elaboration

since by the OLG framework, it is not appropriate to assume that an initial endowment

for i is strongly positive.6 So in order to ensure the minimum wealth condition for all

i ∈ I(T ), some income redistribution is necessary. Since every ωi is semi-positive, the

minimum wealth condition is always satisfied as long as p(T ) is strictly positive. The

minimum wealth condition is also satisfied for all agent as long as p(T ) has at least one

negative coordinate. Therefore, the problem occurs only for points near to price p(T ) such

that ∥p(T )∥ = 1 and p(T ) has at least one coordinate equal to 0, the relative boundary of

{p(T ) ∈ P(T )| ∥p(T )∥ = 1} ∩R
K(T )
+ in the surface of P(T ).

Here, we can utilize condition (SNS). As we shall see in subsection 4.6, for economy

E(T ), there is a positive lower bound bl and upper bound bu such that |pk|/|ps| ∈ [bl, bu]

for all k, s ∈ K(T ) as long as p(T ) = (p1, p2, . . . , pH(T )) ∈ P(T ) such that ∥p(T )∥ = 1 is an

equilibrium price for E(T ). This necessary condition for equilibrium prices also provides

a minimum absolute value ϵs > 0 for each coordinate, s ∈ K(T ). Indeed, if |ps| < ϵ, there

3 We do not have to assume that the production set is compact. Assumptions on production sets based
on their asymptotic cones like Debreu (1959) would be sufficient.

4 We first focus on the truncated economy till time T . However, Balasko and Shell (1980) consider an
economy with an infinite horizon setting directly. See, Balasko et al. (1980) for a more detailed treatment.

5 In our setting, we have to consider the cases that ||p(T )|| = 0 because we have to consider negative
prices (the price space, P(T ), is taken to be a ball shape containing {0}).

6 Only assumed in (E.4) is that for each i ∈ It, ωi ∈ RKt
+ \ {0} though we know by (SNS) that∑

i∈It
ωi ∈ RKt

++.
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must exist at least one k ∈ K(T ) \ {s} such that |pk| is greater than (1− ϵ)/(H(T )− 1).7

Then, by taking ϵ > 0 to be sufficiently small, we have |pk|/|ps| > bu, a contradiction.

Define ϵ > 0 as the minimum of {ϵs| s ∈ K(T )}. Denote by B the relative boundary of set

{p(T ) ∈ P(T )| ∥p(T )∥ = 1}∩R
K(T )
+ in the surface of the closed unit ball, P(T ). Let Uϵ be

the open ϵ neighborhood of 0 and denote by U(B) the open ϵ neighborhood, Uϵ + ∂B, of

B. Note that every p(T ) ∈ U(B) ∩ P(T ) cannot be an equilibrium price for E(T ). Since

P(T ) is closed, set P(T ) \ U(B) is closed, so for each p(T ) ∈ U(B), the distance between

p(T ) and P(T )\U(B), d(p(T )) = dist(p(T ),P(T )\U(B)) is strictly positive (and less than

or equal to ϵ). Let ω(T ) ∈ R
K(T )
++ (by SNS condition) be the vector (

∑
i∈I(T ) ωi)/♯I(T ).

Now, based on the modified budget set (3) and (4), we further modify budget set for

i ∈ It ⊂ I(T ) under production {ys}Ts=1, by defining income function mi({ys}Ts=1, p(T ))

as follows:

p(T ) ·
(
ϵ− d(p(T ))

ϵ
ωi +

d(p(T ))

ϵ
ω(T )

)
+

T∑
s=1

ms
i (ys, p(T )) = mi({ys}Ts=1, p(T )), (5)

where mi can be identified with the same notation in Mas-Colell (1992). So, we can

directly apply the way employed in Mas-Colell (1992) for the existence of equilibrium

prices for E(T ). Note that if p(T ) belongs to P(T ) \ U , the left hand side of equation (5)

is equivalent to p(T ) ·ωi+
∑T

s=1 m
s
i (ys, p(T )) in equations (3) and (4). For p(T ) in U , the

summation
∑

i∈I(T ) p(T ) ·
(

ϵ−d(p(T ))
ϵ ωi +

d(p(T ))
ϵ ω(T )

)
is equal to p(T ) ·

∑
i∈I(T ) ωi, so mi

is nothing but a continuous income redistribution that is strictly positive for all agents

(satisfying the minimum wealth condition V of Mas-Colell 1992).

4.3 Existence of Equilibrium for E(T )

For economy E(T )=({It}Tt=1,{Kt}Tt=1, {Yt}Tt=1, {{(≿i, ωi)}i∈I(T ), {mt
i}i∈I(T )}Tt=1), a

dividend equilibrium till generalization T is defined as a triple, (p∗(T ), {{x∗
i }i∈It}Tt=1,

{y∗t }Tt=1) which satisfies the following conditions: (6) feasibility, (7) profit maximization

and (8) utility maximization.∑
t∈T

∑
i∈It

x∗
i =

∑
t∈T

y∗t +
∑
t∈T

∑
i∈It

ωi, (6)

y∗t ∈ Yt, and p∗t yt ≤ p∗t y
∗
t for all yt ∈ Yt, for all t = 1, . . . , T. (7)

For all i ∈ It and t = 1, . . . , T , x∗
i is a ≿i-greatest element in Xi ⊂ RKt

+ under the budget,

p∗(T ) · xi ≤ p∗(T ) · ωi +

T∑
s=1

ms
i (y

∗
s , p

∗(T )) +
1− ||p∗(T )||
||p∗(T )||

. (8)

The proof is directly from Mas-Colell (1992) by using the modification (equation (5)) of

consumer budgets. The last term 1−||p∗(T )||
||p∗(T )|| , can be identified with an equilibrium mone-

tary (non-negative wealth) transfer to consumer i ∈ I(T ), M∗
i (T ), which is automatically

equally to all consumers in I(T ) in our present setting. As will be discussed in subsection

4.8, the distribution ratio of money for each agent, i ∈ I(T ), can be set freely, by using

parameter Zi ∈ R++ and considering term Zi
1−||p∗(T )||
||p∗(T )|| instead of 1−||p∗(T )||

||p∗(T )|| for budget

constraints in (3) and (8).8

7 If not, the norm of p(T ) cannot be greater than or equal to 1.
8 Since the term has the role to ensure the minimum wealth condition (so that the continuity of budget
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4.4 Eliminate the case ∃h, p∗h = 0 for economy E(T )

If p∗h, h ≤ H(T ) is 0, from SNS condition, ∃ i ∈ It ⊂ I(T ), h ∈ Kt such that i has a

positive initial endowment of s ∈ Kt and ph = 0 can never be a supporting price for i

at every attainable allocation. It follows that till generation T , a competitive equilibrium

(CE) price, p∗(T ) for E(T ) cannot contain a coordinate 0. Especially, CE price space till

generation T , P∗(T ), does not contain 0.

P∗(T ) = {p∗(T ) ∈ RH(T )\{0}|||p∗(T )|| ≤ 1}. (9)

4.5 Bounds using price ratio

We need to derive an upper and lower bound of the competitive price for accommodating

infinite price sequence.9 Let me define xi
+ = x∗

i +(· · · , δk, · · ·) or xi
− = x∗

i +(· · · ,−δk, · · ·),
where δk,∈ R++.

From SNS condition, ∃i ∈ It in every generation t, for his consumption bundle xi ∈
R

H(T )
+ , we can take strictly preferred x+

i or x−
i by taking δk on any good k. Moreover,

continuity of preference ensures that, on open ball B+
rk(xi)

(x+
i ) = {x′

i ∈ R
H(T )
+ | d(x′

i, x
+
i ) <

rk(xi)} or B−
rk(xi)

(x−
i ) = {x′

i ∈ R
H(T )
+ | d(x′

i, x
−
i ) < rk(xi)}. Note that rk(xi) ∈ R++ is

dependent on xi and x+
i or x−

i . When rk(xi) is considerably small, within its open ball,

we can pick up any x
′

i that satisfies x
′

i ≻i x
′′

i . Note that x
′′

i is any arbitrary point within

the open ball Bq(xi) = {x′′

i ∈ RH(T ) | d(x′′

i , x
∗
i ) < q}.

The bounds of CE prices are decided so that the hyperplane through Bq(xi) made by

the CE price vector does not cross B+
rk(xi)

(x+
i ) or B

−
rk(xi)

(x−
i ). That is, for the individual,

at x∗
i ∈ R

H(T )
+ , he can pick up more desired consumption point. This is because from SNS

condition under any δk ∈ R++, xi
+ = x∗

i +(· · · , δk, · · ·) or xi
− = x∗

i +(· · · ,−δk, · · ·) would
be also in his feasible set. It is contradiction to the property that x∗

i is a maximum point.

As follows, we prove formally for any goods pair s and k, the CE price rate is bounded.

NOTE THAT the proof is incomplete and we will check it later.

4.5.1 x∗
is is inner or corner of consumption set

NOTE THAT we need to check this subsection later.

This is the case where x∗
is is inner of consumption set

Under CE price till time T , p∗(T ) = (p∗1, p
∗
2, · · · , p∗T ), for i ∈ I(T ) who falls into individual

with SNS condition, p∗(T ), should be at least on the region where hyperplane h
x∗
i

i , h
x∗
i

i =

{xi ∈ RN
+ | p∗(T )(x∗

i − xi) = 0} satisfies h
x∗
i

i ∩Brk(x∗
i )
(x+

i ) = ϕ or h
x∗
i

i ∩Brk(x∗
i )
(x−

i ) = ϕ.

Note that this creates ”biggest” upper bound. (Here we use property of SNS condition

that when x∗
ik = 0 better set is located at right side for sure. Otherwise just applying SNS

condition does not help restrict the CE price space.

correspondence) for each agent at p(T ) = 0, we cannot set Zi to be equal to 0, as long as we use the
method of Mas-Colell (1992)

9 Only eliminating the case ∃h p∗h = 0 is not enough because we need closeness. Intuitively, eliminating
∃h p∗h = 0 leads the space to be open.
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If x∗
is = 0 in this case the same argument, that is, the hyperplane through x∗

i does not

help because x∗
is = 0 (in this case better set is not ball but hemisphere). Then, we use the

SNS condition saying initial endowment of goods s is strictly positive. So, instead of using

the hyperplane through x∗
i , we use the hyperplane through individual i’s initial endowment.

Always individual i can consume his initial endowment. Therefore, at least under the CE

price the hyperplane through initial endowment hωi
i = {xi ∈ RN

+ | p∗(T )(ωi − xi) = 0}
does not intersect with his better set. (NOTE THAT this is also ”biggest” upper bound.

This means there is term
∑t+l

s ms
i (y

s, p(T ))+ 1−||p(T )||
||p(T )|| . So, possible hyperplane is steeper

also.

Particularly, We mention how to get the bound of arbitrary price ratio. Focusing on

arbitrary two goods, let them goods s and k without loss of generality. Imagine exchange

of the two goods through market. From SNS condition, ∀t ∈ T there is at least one non-

satiated individual. He strictly prefer x+
i or x−

i to x∗
i = (x∗

i1, x
∗
i2, · · · , x∗

ik, x
∗
is · · · , x∗

iT ). Of

course He can move −p∗k/p
∗
s slope, exchanging unites of goods k instead of unites of s

through market. We can regard this price rate as a kind of hyperplane through x∗
i or ωi

(this is corner solution case). If x∗
i is CE allocation, that |p∗k/p∗s| holding CE is restricted

to where the hyperplane passing through x∗
i (or ωi ), h

x∗
i

i (or hωi
i ), must not interact

with B+
rk(x∗

i )
(x+

i ) or B
−
rk(x∗

i )
(x−

i ). Otherwise that individual can achieve strictly preferred

consumption, which is contradict to the condition of CE allocation.

4.5.2 Details

NOTE THAT we need to check this subsection later.

There are three cases (1). x∗
i is located on the inner of his consumption set, (2). x∗

i is

located corner, while x∗
is > 0 and (3). x∗

i is located corner, while x∗
is = 0.

• (1). x∗
i is located on the inner and (2). x∗

i is located corner, while x∗
is > 0

We can use the discussion we mentioned above, open ball argument. So, we omit detailed

explanation. See the above discussion.

• (3). x∗
i is located corner, while x∗

is = 0.

In this case, we need careful attention. As follows, we describe in detail. Suppose x∗
i is

located corner while x∗
is = 0 (case (3)), the possible GE prices are the 4 cases. Moreover,

we have to take into account the better set (left-sided or right-sided). In sum, suppose

p∗(T ) and (x∗
i , y

∗
t ) are CE price and consumption for individual i with SNS condition,

there are 8 possible cases.

• a. p∗k > 0 p∗s > 0 and better set is right-sided

• a’. p∗k > 0 p∗s > 0 and better set is left-sided

• b. p∗k > 0 p∗s < 0 and better set is right-sided

• b’. p∗k > 0 p∗s < 0 and better set is left-sided

9



• c. p∗k < 0 p∗s > 0 and better set is right-sided

• c’. p∗k < 0 p∗s > 0 and better set is left-sided

• d. p∗k < 0 p∗s < 0 and better set is right-sided

• d’. p∗k < 0 p∗s < 0 and better set is left-sided

We check whether we can get upper bound one by one in this subsection. Note that

in every case it is enough to check the normal vector of −pk/ps slope passing through

ωi = (· · · , ωis > 0, · · ·) ∈ RT
+ and (· · · , x∗

ki + ϵ − r, 0, · · ·) ∈ RT
+. This is because, even if

there is additional term
∑t+l

s ms
i (y

s, p(T ))+ 1−||p(T )||
||p(T )|| in his budget constraint, the normal

vector through ωi = (· · · , ωis > 0, · · ·) ∈ RT
+ must be steeper.

That is why in the following we only focus on the normal vector through ωi.

Case a.: From strictly positiveness of ωis, the |p∗k/p∗s| is restricted as the a normal vector

of ωi does not intersect with the better set B+
rk(x∗

i )
(x+

i ). Otherwise, individual i with SNS

condition have incentive to change his GE consumption x∗
i . This is contradiction.

Case a’.: In this case the better set B−
rk(x∗

i )
(x−

i ) is located within his feasible set at

first, because p∗k > 0 p∗s > 0 means feasible set is left side of the normal vector. So, it is

impossible that x∗
i is maximum point at first.

Case b.: From strictly positiveness of ωis, the |p∗k/p∗s| is restricted as the a normal vector

of ωi does not intersect with the better set B+
rk(x∗

i )
(x+

i ). Otherwise, individual i with SNS

condition have incentive to change his GE consumption x∗
i . This is contradiction.

Case b’.: In this case the better set B−
rk(x∗

i )
(x−

i ) is located within his feasible set at

first, because p∗k > 0 p∗s < 0 means feasible set is left side of the normal vector. So, it is

impossible that x∗
i is maximum point at first.

Case c.: In this case the better set B+
rk(x∗

i )
(x+

i ) is located within his feasible set at first,

because p∗k < 0 p∗s > 0 means feasible set is right side of the normal vector. So, it is

impossible that x∗
i is maximum point at first.

Case c’: From strictly positiveness of ωis, the |p∗k/p∗s| is restricted as the a normal vector

of ωi does not intersect with the better set B−
rk(x∗

i )
(x−

i ). Otherwise, individual i with SNS

condition have incentive to change his GE consumption x∗
i . This is contradiction.

Case d: In this case the better set B+
rk(x∗

i )
(x+

i ) is located within his feasible set at first,

because p∗k < 0 p∗s < 0 means feasible set is right side of the normal vector. So, it is

impossible that x∗
i is maximum point at first.

Case d’: From strictly positiveness of ωis, the |p∗k/p∗s| is restricted as the a normal vector

of ωi does not intersect with the better set B−
rk(x∗

i )
(x−

i ). Otherwise, individual i with SNS

10



condition have incentive to change his GE consumption x∗
i . This is contradiction.

So, suppose p∗(T ) and (x∗
i , y

∗
t ) are CE price and consumption for individual i with SNS

condition, only possible cases are a, b, c’ or d’. In each case we can derive upper bound,

as we will show in the ”examples of such bounds” section.

4.5.3 Examples of such bounds

NOTE THAT we need to check this subsection later.

(Just to be sure, here we give a few examples of such bounds)

• Case.1 : x∗
is is inner of consumption set and better set is right

Let x∗
i = (· · · , x∗

ik, x
∗
is, · · ·) ∈ RT

+ without loss of generality. When we focusing on goods

k and s, we can always, from SNS condition, take better set B+
rk(x∗

i )
(x+

i ) = {x′

i ∈ RT
+ |

d(x
′

i, x
+
i ) < rk(x∗

i )
} ,here x+

i = x∗
i = (· · · , x∗

ik + ϵ, x∗
is, · · ·). So, at CE the bounds of price

rate p∗k and p∗s is decided in the following way (from elementary geometry)

||(· · · , 0, p∗k, p∗s, 0, · · ·) + x∗
i − x+

i || = ϵ2 − r2 ∧ ||(· · · , 0, p∗k, p∗s, 0, · · ·)|| = r.

So, given x∗
i and ϵ, r,

|p∗k/p∗s| =
r

ϵ
√
1− ϵ

• Case.2 : x∗
is = 0 and better set is right

Let ωi = (· · · , ωis > 0, · · ·). In this situation, the ratio of p∗k and p∗s is decided as follows,

(· · · , 0, p∗k, p∗s, 0, · · ·)·((· · · , x∗
ik + ϵ− r, 0, · · ·)− ωi) = 0.

So, given x∗
i and ϵ, r,

|p∗k/p∗s| =
x∗
ik + ϵ− r − ωik

ωis

Similarly, we can derive CE price rate of other cases like better set is left side.

So we omit the rest.

4.6 Relationship between generation T and T + 1

Let bs,kl (T ) and bs,ku (T ) be lower and upper bounds of the price ratio between goods

s ∈ K(T ) and k ∈ K(T ) within which every CE price ratio till generation T must belong.

Next, for T + 1, if we obtain the same two bounds, bs,kl (T + 1) and bs,ku (T + 1), we can

replace them by bs,kl (T ) and bs,ku (T ), since if “pk/ps is not a CE price ratio (supporting

all agents’ optimal consumption vectors) till generation T ,” then it is clear that “pk/ps is

not a CE price ratio (supporting all agents’ optimal consumption vectors) till generation

T + 1,” so the upper and lower bounds, bs,kl (T ) and bs,ku (T ), also defines the interval that

CE price ratio pk/ps till generation T + 1 must belong.
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Hence, for each two commodities s and k, by considering the first T such that s ∈ K(T )

and k ∈ K(T ), we obtain the lower and upper bounds of the price ratio between goods s

and k, bs,kl = bs,kl (T ) and bs,ku = bs,ku (T ), within which every CE price ratio (pk/ps) must

belong.

Let us summarize the above by using a set-theoretic form.

For each s and k,

Rs,k(T + 1) ⊆ Rs,k(T ),

where Rs,k(T ) is defined as

Rs,k(T ) = {|p∗k/p∗s|| p∗k/p∗s is a CE price ratio till generation T}, (10)

and

Rs,k(T + 1) = {|p∗k/p∗s|| p∗k/p∗s is a CE price ratio till generation T + 1}. (11)

As is mentioned in section 4.2, we can use such lower and upper bounds for each

commodity-price ratio to define a compact range for each commodity where general equi-

librium prices (if such exist) necessarily belong. One of the simplest ways is to normalize

the norm of the first coordinate of a price, p∗1, which cannot be 0 as stated in section 4.4,

to be 1. Now, we can define for each commodity k = 1, 2, ..., a compact interval,

[ak, bk] ⊂ R, 0 < ak ≦ bk, k = 1, 2, . . . , (12)

such that the norm (the absolute value) of the k-th coordinate |p∗k| must belong to [ak, bk]

as long as p∗ = (p∗1, p
∗
2, . . .) is a candidate for an equilibrium price. (Of course we can

define a1 and b1 as a1 = b1 = 1.)

4.7 Limits of x∗
i (T ), y

∗
t (T ) and M∗

i (T )

About the limits of competitive prices when T → ∞, from the above discussion and by

Tychonoff’s theorem, we can obtain a compact set for CE prices (normalized their first

coordinates as norm 1) as

P∗ = {p = (p1, p2, . . .) ∈ R∞| |pk| ∈ [ak, bk] for all k = 1, 2, . . .}. (13)

For each T = 1, 2, ..., and T -generation economy E(T ), we have an equilibrium price

p∗(T ) in P∗(T ) identified with a subset of R∞ through P∞(T ) ⊂ R∞. So, we can take a

convergent subsequence of {p∗(T )}∞T=1 in its compact competitive price set P∗ when T →
∞.10 Note that the topology of P∗ =

∏∞
k=1 ([−bk,−ak] ∪ [ak, bk]) assured by Tychonoff’s

theorem for compactness is the product topology that is equivalent to the relativized

topology to P∗ of R∞. In other words, without loss of generality (since the choice of

finite truncation economies is arbitrary), we may identify {p∗(T )}∞T=1 with a pointwise

(coordinatewise) convergent sequence in R∞ to a certain p∗ = (p∗1, p
∗
2, . . .) ∈ P∗.

With the convergent sequence, {p∗(T )}∞T=1, is associated three kinds of sequences of

T -period equilibrium states, {x∗
i (T )}∞T=1 for each i ∈ I, {y∗t (T )}∞T=1 for each t = 1, 2, . . .,

10 The argument here might be better to use the ordinary coordinatewise convergence together with the
diagonal method instead of using Tychonoff’s theorem. See Murakami and Urai (2017) for a detailed price
convergence argument in OLG economy under SNS condition.
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and {M∗
i (T )}∞T=1 for each i ∈ I. Since the convergence of p∗(T ) to p∗ is coordinatewise,

and since for each t = 1, 2, . . ., y∗t (T ) is a solution of the ordinary profit maximization

problem in RK(t), we may conclude that (by using the Berge’s maximum theorem and

taking a subsequence if necessary) that y∗t (T ) converges to a point y∗t such that y∗t is a

profit maximization point in the compact Yt under p
∗. Of course, the convergence of y∗t (T )

to y∗t together with p∗(T ) to p∗ means the convergence of mt
i(y

∗
t (T ), p

∗(T )) to the amount

mt
i(y

∗
t , p

∗) for each i and t since every mt
i is continuous. It is also clear (since every Xi

is compact) that we may suppose that (by taking subsequences repeatedly) {x∗
i (T )}∞T=1

converges to x∗
i ∈ Xi for each i ∈ I. As limits satisfying condition (6), it is also clear that

the feasibility condition (1) is satisfied. Therefore, all we have to check is to assure each

consumer’s utility maximization under (2), although it should be noted that the value M∗
i

for each i is still not fixed. Here, note that for each i ∈ It, sequence {M∗
i (T )}∞T=1 (after

following the normalization of prices, p∗(T ), T = 1, 2, ...), has an obvious upper bound,

At

∑H(t)
k=1 |bk|, where At is the budget modification constant in E(t), since for equilibrium

prices of E(t) normalized to the Euclidean norm of 1, the norm of another normalization

based on the first coordinate cannot exceed the sum,
∑H(t)

k=1 |bk| (the value of maximum

variational norm). It follows that, again by taking subsequences repeatedly (if necessary),

we can assume for all i, sequence {M∗
i (T )}∞T=1 converges to M∗

i ∈ R+. Now it would be a

routine task for every i to check that x∗
i is a utility maximization point under (2) since the

argument is nothing but to check (again by using Berge’s maximum theorem) the upper

semicontinuity of Marshallian demand correspondence.

4.8 Extension to the case where 1−||p(T )||
||p(T )|| is different from person

to person

Since we use the method in Mas-Collel (1982), we have to take M∗
i (T ) as M∗

i (T ) =
1−||p(T )||
||p(T )|| , i.e., the monetary transfer is the same for everyone in the economy till generation

T . We can extend this situation to where each person’s dividend is different.

Let Zi ∈ R++ be a dividend operator, which allows difference between the amounts of

dividend an individual gets. With Zi, we modify the budget constraint as follows,

p(T )xi ≤ p(T )ωi +

T∑
s=1

ms
i (ys, p(T )) + Zi

1− ||p(T )||
||p(T )||

. (14)

As long as Zi ∈ R++, the minimum wealth condition still holds. So, the the rest of

argument will not change. Hence, we can prove there is CE in the same way as before.
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