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dynamic indeterminacy in continuous-time two-sector models of endogenous growth
with social constant returns. The necessary and sufficient condition for local deter-
minacy is that the factor intensity rankings of the two sectors are consistent in the
private/physical and social/value sense. The necessary and sufficient condition for dy-
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1 Introduction

In the past decade, there has been a growing literature studying under what circum-

stances dynamic indeterminacy may occur. When dynamic indeterminacy arises, the

perfect-foresight equilibrium is at least locally indeterminate in the sense that there

are multiple (often a continuum of) converging transition paths. The case of indeter-

minacy has created vast interest due to the observations that many macro variables

are volatile over time and that economic growth rates are dispersed across countries.

It is worth emphasizing that most of the applied papers focusing on calibrated com-

parative dynamics or policy simulations use discrete-time models in which there exists

a unique trajectory satisfying saddle-path stability (local determinacy). In contrast,

the theoretical researches on dynamic indeterminacy has been mostly based on the

continuous-time setting due to its tractability. This is particularly true for the study

of equilibrium indeterminacy in endogenous growth models. In fact, to our knowl-

edge, no one has undertaken a complete examination of the validity of continuous-time

dynamics properties under discrete time in an endogenously growing economy where

indeterminacy may be present.1 This paper provides the first attempt at such an

endeavor.

Within the endogenous growth framework á la Romer (1986) and Lucas (1988),

previous studies conclude that dynamic indeterminacy may occur when the model

economy involves external increasing returns or distortionary taxes. The early litera-

ture, best represented by Benhabib and Perli (1994), Boldrin and Rustichini (1994),

and Xie (1994), focuses on increasing returns as a result of uncompensated positive

spillovers.2 More recent work, instead, considers overall constant-returns production

technologies, which the present paper follows.3 The analysis of the multi-sector dy-

namical system with perpetual growth has been viewed rather complex, because the

1Dynamic properties have been examined in discrete-time exogenous growth models with sector-

specific externalities. The reader is referred to Benhabib, Nishimura and Venditti (2002) and papers

cited therein. In a companion paper, Nishimura and Venditti (2002) revisit the issue with intersectoral

externalities.
2See a survey by Benhabib and Rustichini (1994). It should be noted that dynamic indeterminacy

may also arise in other types of growth models with increasing returns or matching externalities, such

as Benhabib and Farmer (1994), Farmer and Guo (1994) and Laing, Palivos and Wang (1995).
3For considerations of sector-specific externalities with social constant returns, the reader is referred

to Benhabib and Nishimura (1998, 1999), Benhabib, Meng and Nishimura (2000) and Mino (2001).



conventional algorithm transforms the nonstationary system into stationary ones by

constructing ratios of growing quantities and then studying their dynamic properties

in conjunction with factor allocation variables.4 Yet, as pointed out by Bond, Wang

and Yip (1996), the analysis is greatly simplified if the transformation takes place by

separately characterizing the price and the quantity dynamics using both the primal

and the dual. The transformed prices can be in forms of either relative prices (as

in Bond, Wang and Yip, 1996, and Mino, 2001) or nominal prices (as in Benhabib,

Meng and Nishimura, 2000). Under this transformation, price dynamics is determined

by prices alone and thus the dynamical system is recursive. Moreover, the dynamic

properties are found to depend exclusively on the factor intensity rankings of sectoral

productions.

More specifically, under private constant returns without externalities but with dis-

tortionary factor taxes, Bond, Wang and Yip (1996) establish the polarization theorem:

when factor tax distortion is moderate such that the factor intensity rankings in the

physical and value sense are consistent, the price and quantity dynamics are polarized

— when one is stable, another must be unstable, yielding saddle-path stability.5 They

also show that dynamic indeterminacy can arise if the final good sector is human cap-

ital intensive in the physical sense but physical capital intensive in the value sense.

While the former factor intensity ranking ensures stable quantity dynamics, the latter

guarantees stable price adjustments, thus resulting in locally indeterminate transition.

In another class of endogenous growth models, production exhibits social constant re-

turns with positive externalities in the absence of distortionary factor taxation. As

shown by Benhabib, Meng and Nishimura (2000) and Mino (2001), the polarization

theorem for local determinacy holds, whereas dynamic indeterminacy emerges when

the final good sector is human capital intensive in the private sense but physical capital

intensive in the social sense. Notably, a general property can be established in that

the factor intensity ranking in the private sense corresponds to that in the physical

sense whereas the factor intensity ranking in the social sense corresponds to that in the

value sense. Thus, one can easily reconcile the findings regarding local determinacy

and dynamic indeterminacy in Bond, Wang and Yip (1996) and those in Benhabib,

Meng and Nishimura (2000) and Mino (2001).6

4See Benhabib and Perli (1994), among many others.
5While Bond, Wang and Yip (1996) examine both capital and labor income taxes, Mino (1996)

studies the effects of capital taxation.
6Similar propositions can be extended to exogenous growth models (e.g., Benhabib and Nishimura,
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This paper considers a class of endogenous growth models with social constant

returns in the presence of positive externalities. The departure from the literature

summarized above is that time is discrete. Our main contribution is to show that con-

ventional propositions obtained in continuous-time models are no longer valid. First,

the balanced-growth path need not be locally determinate even if the factor intensity

rankings in the private and social sense are consistent. Second and most interestingly,

even under the conventional necessary and sufficient conditions that the final good

sector is human capital intensive in the private sense and physical capital intensive

in the social sense, dynamic indeterminacy need not emerge unless the rates of time

preference and capital depreciation are sufficiently small and the rates of depreciations

of the two capitals are sufficiently close. Finally, even if the conventional necessary and

sufficient conditions fail to hold, dynamic indeterminacy may still arise when the final

good sector is human capital intensive in both private and social sense. These find-

ings are powerful because if one desires to conduct calibrated comparative dynamics

or policy simulations under local determinacy, the parameters must be so chosen that

dynamic indeterminacy or dynamic instability would not occur.7

The remainder of the paper is summarized as follows. In Section 2, we describe

the basic environment of the model economy by specifying the economic agents, their

preferences and capital endowments, the production technologies and the optimizing

behavior. Section 3 defines the concepts of dynamic competitive equilibrium and bal-

anced growth path and establishes the existence and uniqueness of the balanced growth

path. In Section 4, we characterize the local dynamics of the system. Finally, Section

5 concludes the paper and provides possible avenues for future work.

1998, 1999) and open-economy endogenous growth models (e.g., Nishimura and Shimomura, 2002, and

Bond, Trask and Wang 2003).
7It has been known that time frequency may play an important role for the stability of dynamical

systems. For example, in the optimal exogenous growth literature that treats discrete-time dynamic

systems, Mitra (1998) and Baierl, Nishimura and Yano (1998) show that levels of capital depreciation

rates as well as time discount rate affect the stability conditions, while the dynamic properties are

generally independent of these parameters in continuous-time models. Similarly, in her study of

calibrated, discrete-time models of real business cycles with market distortions, Schmitte-Grohé (1997)

reveals that the conditions for indeterminacy of equilibrium involve the magnitude of capital depreciate

rate, which plays no role in the continuous-time counterparts. As summarized above, the present

study also confirms the relevance of time frequency in the context of endogenous growth models with

externalities and social constant returns.
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2 The Basic Model

2.1 Production Technology and Capital Formation

We consider a discrete-time model (indexed by t = 0, 1, 2, ...) of endogenous growth

with two perpetually accumulated reproducible capitals (denoted Xi, i = 1, 2) and two

distinctive sectors (labeled by j = 1, 2). Let the first reproducible capital be consum-

able and the second be non-consumable. For illustrative purposes, we may refer X1

as physical capital and X2 as human capital. Thus, sector 1 produces the final good

for consumption and physical capital investment, whereas sector 2 produces “educa-

tion services” that enhance human capital. The final good and education services are

produced by both physical and human capitals.

Following the setup of the continuous-time framework by Benhabib, Meng and

Nishimura (2000), we consider that both capitals generate sector-specific, positive ex-

ternal effects and that both production technologies exhibit social constant returns.

More specifically, denoting Yjt as the output of sector j in time t and vijt as the frac-

tion of factorXit (measured at the beginning of period t) devoted to sector j production

(
P2

j=1 vij = 1), the production technologies with time-to-build is given by,

Yjt = αj

2Y
i=1

(vijtXit)
βij
¡
vijtXit

¢bij
, (1)

where sector-specific externalities are captured by the society’s average values of sector-

specific factors (labeled with bars), αj > 0 is a scaling factor, 0 < βij < 1 and

β1j+β2j < 1. Thus, b1j and b2j, respectively, measure the degree of positive externalities

from physical and human capital in sector j. The private returns to scale of the

two reproducible factors are measured by
P2

i=1 βij, whereas the social returns are byP2
i=1(βij+bij) ≡

P2
i=1
bβij. By assumption, constant social returns implyP2

i=1
bβij = 1

for j = 1, 2. As to be formally defined later, we have vijtXit = vijtXit in equilibrium.

Let Ct denote period t consumption of the final good and δi > 0 denote the (con-

stant) depreciation rate of capital Xi). The evolution of the two capital stocks can

therefore be expressed as (t = 0, 1, 2, ...):

X1,t+1 = Y1t + (1− δ1)X1t − Ct, (2)

X2,t+1 = Y2t + (1− δ2)X2t, (3)

where the initial stocks of both capitals, X10 and X20, are historically given and posi-

tive.

4



2.2 Producer Optimization and Factor Market Equilibrium

The infinite-horizon problem of firms discounted by the market interest rate under

our competitive equilibrium framework can be reduced to a simple period optimiza-

tion problem. Specifically, each competitive firm in sector j chooses factor allocation

{vijtXit} and output to maximize its period profit given output price Pj and input
prices {W1,W2}:

πjt = PjtYjt −
2X
i=1

WitvijtXit

subject to the production technologies specified as in (1). The first-order conditions

are (i, j = 1, 2 and t = 0, 1, 2, ...):

Pjtβijt
Yjt
vijtXit

=Wit. (4)

The cost minimizing solution of vijtXit is given by aijYjt, where aij ≡ vijtXit
Yjt

can be

referred to as the input coefficients (which is time-invariant under the time-invariant

production technologies specified above). From (4), we have:

aij = βijPjtW
−1
it . (5)

This can be combined with the production technologies (1) under the equilibrium

condition, vijtXit = vijtXit, to yield:

Pjt = α−1j

2Y
h=1

¡
β−1hjWht

¢bβhj . (6)

Utilizing the property of constant social returns
2P
i=1

bβij = 1,we can substitute (6) into
(5) to eliminate output prices:

aij = α−1j

2Y
h=1

Ã
β−1hjWht

β−1ij Wit

!bβhj
. (7)

It is convenient to express in matrix form. Let A ≡ (aij) , Yt ≡ (Y1t, Y2t)
0 and

Xt ≡ (X1t,X2t)0, where the superscript “0” denotes the transpose operation. Then, full

employment of both factor inputs requires
2P
j=1

aijYjt = Xit, or, equivalently,

AYt = Xt. (8)
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Next, define baij ≡ aijbβij/βij, bA ≡ (aij), P ≡ (P1, P2)
0 and W ≡ (W1,W2)

0. Let bB
be a matrix with elements bβij (i, j = 1, 2) and Iw and Ip be diagonal matrices with

diagonal elements (w1, w2) and (p1, p2), respectively. It can be easily seen from (5) that

Pjtbβij = baijWit, or, in matrix form,

Ip bB = ( bA)Iw. (9)

Since
2P
i=1

bβij = 1, we obtain: Pj = 2P
i=1

Wibaij, or, in matrix form,
Pt = ( bA)0Wt, (10)

which can be conveniently referred to as the competitive profit condition. ¿From (6),

we have a pair of Samuelsonian relationships that relate factor prices to output prices

under factor price equalization:

logP1α1 = bβ11 logW1 + bβ21 logW2 −
³bβ11 log β11 + bβ21 log β21´

logP2α2 = bβ12 logW1 + bβ22 logW2 −
³bβ12 log β12 + bβ22 log β22´ .

Define ∆ ≡ β11β22 − β12β21 as the private factor share determinant and b∆ ≡bβ11bβ22 − bβ12bβ21 as the social factor share determinant. While the sign of ∆ indicates

the factor intensity ranking in the private (physical) sense, the sign of b∆ gives such a

ranking in the social (value) sense. Consider that the two sectors have different factor

intensity rankings:

Assumption 1. ∆ 6= 0 and b∆ 6= 0.

Under this assumption, we can invert the Samuelsonian relationships to solve Wi (i =

1, 2) as a function of {P1, P2}:

W1t = w1P
bβ22/b∆
1t P

−bβ21/b∆
2t ; W2t = w2P

−bβ12/b∆
1t P

bβ11/b∆
2 , (11)

where

w1 =
³
α1β

bβ11
11 β

bβ21
21

´bβ22/b∆ ³
α2β

bβ12
12 β

bβ22
22

´−bβ21/b∆
w2 =

³
α1β

bβ11
11 β

bβ21
21

´−bβ12/b∆ ³
α2β

bβ12
12 β

bβ22
22

´bβ11/b∆
.

These expressions yield the standard Stolper-Samuelson property: how factor prices

are related to output prices depends crucially on the factor intensity ranking in the

value sense, i.e., the sign of the social factor share determinant b∆.
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Remark 1. Our assumption of decreasing returns in the private technology with

respect to capital inputs can be consistent with the free entry and zero-excess profit

conditions. Suppose that, in addition to X1j and X2j, each production sector employes

a sector-specific input denoted by X3j (j = 1, 2). We assume that the supply of

X3j is fixed and that it has negative external effects because of congestion. Letting

αj = X
β3j
3j X̄

b3j
3j in (1), we assume that Σ

3
i=1βij = 1, βij > 0 (j = 1, 2) and Σ3i=1bij = 0.

Notice that since X1 and X2 are assumed to have positive externalities, Σ
3
i=1bij = 0

means that b3j has a negative value. Given these assumptions, both social and private

technologies exhibit constant returns to scale with respect to X1j, X2j and X3j, so

that firms cannot earn excess profits under free entry. Now, suppose further that

b3 = −β3 (< 0) . Then (1) satisfies constant and decreasing returns to scale in X1j and
X2j from the social and private perspectives, respectively.

2.3 Household Optimization

The representative household has a time-additive preference with a subjective discount

factor ρ ∈ (0, 1) and a constant elasticity of intertemporal substitution σ−1 > 0. Her

lifetime utility is thus given by:

U =
∞X
t=0

ρt
C1−σt − 1
1− σ

. σ > 0, σ 6= 1.

Let Πt be the distribution of profits from both sectors to the representative agent. De-

note Wit and Pjt (i, j = 1, 2) as the nominal factor prices and nominal good/education

service prices of the ith capital and jth output at time t where all prices are mea-

sured in utils without accounting for intertemporal variation from time-discounting.

Assuming that both capitals are owned by households (of mass one), the flow budget

constraint facing the presentative household at time t can be written as:

W1,tX1,t +W2,tX2,t + π1t + π2t

= P1tCt + P1t [X1,t+1 − (1− δ1)X1,t] + P2t [X2,t+1 − (1− δ2)X2,t] , (12)

where the lefthand side is the sum of factor incomes and profit redistributions and the

righthand side is the total expenditure (consumption plus gross investments in physical

and human capitals).8

8If we follow the implication pointed out in Remark 1 in Section 2.1, we may denote πj =W3X3ji

(j = 1, 2), where W3 is the price of X3j and it satisfies W3 = Pjβ3jYj/X3j .
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Therefore, the representative household chooses {Ct,X1,t, X2,t} to maximize the
lifetime utility U subject to the budget constraint (12). Since input and output prices

are defined in utils without time-discounting, the Lagrangean function can be specified

as:

L =
∞X
t=0

ρt{C
1−σ
t − 1
1− σ

+W1tX1t +W2tX2t + π1t + π2t

−P1tCt − P1t[X1,t+1 − (1− δ1)X1t]− P2t[X2,t+1 − (1− δ2)X2t]}.

The first-order necessary conditions are (i = 1, 2):

∂L
∂Ct

= ρt
¡
C−σt − P1t

¢
= 0, (13)

∂L
∂Xit

= ρt[Wit + (1− δ1)Pit]− ρt−1Pi,t−1 = 0, (14)

which are sufficient for optimization under the transversality conditions given by (i =

1, 2):

lim
t→∞

ρtPitXi,t+1 = 0.

3 Equilibrium

Within our endogenous-growth framework with sector-specific externalities, a dynamic

competitive equilibrium satisfies the following conditions:

(i) Each consumer maximizes her life-time utility subject to the flow budget con-

straint (4) under a given sequence of perfectly anticipated prices and profits,

{Wi,t, Pi,t,πi,t}∞t=0 (i =1,2). Additionally, the consumer’s optimal plan stisfies the
transversality condition: limt→∞ ρtPitXi,t+1 = 0.

(ii) Each firm maximizes its profits in each moment by taking external effects, vij,tiXi,t

(i, j = 1, 2), as given.

(iii) The goods market clearing conditions, (2) and (3), always hold.

(iv) Both capitals are fully employed: AYt = Xt and Σ2j−1vij = 1 (i, j = 1, 2) for all

t ≥ 0.

(v) The external effects satisfy the consistency conditions so that vij,tiXi,t = vij,tiXi,t (i, j =

1, 2) for all t ≥ 0.

8



Notice that under the budget constraint, the production technology, the capital evolu-

tion equations, the factor demand conditions, and the full employment conditions, one

if the goods market clearing conditions is redundant, i.e., the Walras’ law holds.

Since both capitals are accumulated perpetually, the quantity and price variables

stated above are nonstationary. A balanced growth path (BGP) is a dynamic competi-

tive equilibrium in which quantities and nominal prices {Xit, Yjt, Ct,Wit, Pjt} grow at
some constant rates and factor allocation shares are time-invariant. A BGP is called

nondegenerate if the rates of growth of quantities {Xit, Yjt, Ct} are positive.

3.1 Transformation of the Dynamical System

To characterize the dynamical system, it is important to properly transform the non-

stationary system into a stationary one. Given the property of constant social returns

of the production technologies and the time additive preference with constant elastic-

ity of intertemporal substitution, it is straightforward from (1)-(3), (13) and (6) that,

along a BGP, factor inputs (Xi), outputs (Yj) and consumption (C) will all grow at a

common rate, denoted g, whereas factor prices (Wi) and good/education service prices

(Pj) will decrease at a common rate, (1 + g)
σ. To transform these endogenous variables

into stationary variables, we therefore discount quantities by dividing by (1 + g)t and

upcount prices by multiplying (1 + g)σt:

xt ≡ Xt (1 + g)
−t ; yt ≡ Yt (1 + g)−t ; ct ≡ Ct (1 + g)−t ;

pt ≡ Pt (1 + g)
σt ;wt ≡Wt (1 + g)

σt ,

where all variables in lower case denote the corresponding stationary values after trans-

formation. The transversality conditions require:

ρ (1 + g)1−σ < 1. (15)

Thus, (2), (3) and (13) imply:

(1 + g)xt+1 = yt + (I − Iδ)xt − zt, (16)

while updating (14) by one period yields:

(1 + g)σ pt = ρ (I − Iδ) pt+1 + ρwt+1, (17)

9



where zt ≡ (ct, 0)0 =
³
p
−1/σ
1t , 0

´0
and Iδ is a diagonal matrix with diagonal elements,

δ1 and δ2. Moreover, we can rewrite (8) and (10) in terms of transformed stationary

variables:

Ayt = xt (18)

wt = (Â
0)−1pt. (19)

Finally, substituting (18) and (19) into (16) and (17), we obtain the two fundamen-

tal equations governing the dynamical system in {x1t, x2t, p1t, p2t}:

(1 + g)xt+1 = [(I − Iδ) +A−1]xt − zt (20)

ρ[(I − Iδ) + (Â0)−1]pt+1 = (1 + g)σ pt. (21)

It is important to note that once the balanced growth rate, g, is solved, these two

fundamental equations alone determine the dynamics of normalized capital inputs and

normalized nominal output prices (x, p). Since there is no money illusion, this system

in nominal prices must exhibit one-dimensional linear dependency, containing a unit

root (to be shown later).

3.2 Balanced Growth Path

Along a BGP, the transformed variables are stationary and hence, (20) and (21) imply:£
A−1 − (gI + Iδ)

¤
x = z (22)∙

(1 + g)σ I − ρ
³
I − Iδ + bA−1´0¸ p = 0. (23)

Since prices are positive, (23) alone determines g by,

det

∙
(1 + g)σ I − ρ

³
I − Iδ + bA−1´0¸ = 0. (24)

Upon pinning down the balanced growth value of g, x can be determined by inverting

(22), provided that det [I −A (gI + Iδ)] 6= 0 (to be shown later):

x = [I −A (gI + Iδ)]−1Az. (25)

For convenience, define si (g) ≡ (1 + g)σ − ρ (1− δi). We can then write (23) as:

Isp = ρ bA−1p, (26)

10



where Is is a diagonal matrix with diagonal elements si (i = 1, 2).

The remainder of this subsection is devoted to proving the existence and uniqueness

of the BGP by examining normalized prices and quantities as well as the balanced

growth rate, to which we now turn.

3.2.1 Existence and Uniqueness of Normalized Prices and Balanced Growth

Rate

As in the continuous-time model, the balanced growth rate and price variables are

pinned down in the system in a recursive manner prior to the determination of the

quantity variables. For the BGP to be nondegenerate and to satisfy the transversality

condition, it must hold that max {1, ρ (1 + g)} < (1 + g)σ. If σ ≥ 1, this is satisfied
for any g > 0 (because ρ < 1). If 0 < σ < 1, then it is equivalent to the following

conditions:

1 < (1 + g)σ < ρ−σ/(1−σ). (27)

This resembles the Jones-Manuelli conditions (first inequality) and the Brock-Gale

condition (second inequality). Upon solving for the balanced growth rate g∗, this

condition can be rewritten in terms of primitives. We impose the following conditions

on α1 and α2:

Assumption 2. s1(0)

ρβ
bβ11
11 β

bβ21
21

< α1 <
s1(ρ−1/(1−σ)−1)

ρβ
bβ11
11 β

bβ21
21

and s2(0)

ρβ
bβ12
12 β

bβ22
22

< α2 <
s2(ρ−1/(1−σ)−1)

ρβ
bβ12
12 β

bβ22
22

.

Denote 1 ≡ (1, 1)0. Recall from (9) that we have: bA−1 = Iw bB−1I−1p , which can be
substituted into (26) to yield,

Isp = ρIw bB−1I−1p p = ρIw bB−11 = ρIw, (28)

where in deriving the last equality we have used the property, bB1 = 1 and hence,bB−11 = 1. This implies, for i = 1, 2,
si(g)pi = ρwi. (29)

From (11), we can express real factor prices wi/pi as functions of relative prices q ≡
p1/p2 and plug the results into (29) to obtain:

ρw1q
bβ21/b∆ − s1(g) = 0, ρw2q

−bβ12/b∆ − s2(g) = 0 (30)

We begin by showing that under Assumption 1, Assumption 2 is sufficient for the

balanced growth rate g∗ to satisfy (27):

11



Lemma 1. Under Assumptions 1 and 2, if the balanced growth rate g∗ exists, it

satisfies (27) and is unique and strictly positive.

Notice that Lemma 1 implies that the BGP is nondegenerate, along which si > 0 for

i = 1, 2.

Next, we show the existence and uniqueness of the relative price of outputs q∗ on a

BGP:

Lemma 2. Under Assumption 1, the relative price of outputs on a balanced growth

path q∗ is uniquely determined and strictly positive.

Finally, we prove the existence of the uniquely determined balanced growth rate:

Lemma 3. Under Assumptions 1 and 2, the balanced growth rate g∗ exists.

3.2.2 Existence and Uniqueness of Normalized Quantities

To obtain nondegenerate solution of the quantity variables, we establish:

Lemma 4. Under Assumptions 1 and 2, normalized capitals on a balanced growth path

are uniquely determined and strictly positive.

Once the BGP values of {xi, pj, g} are determined by Lemmas 1-4, {yj, c, wi/pi, vij}
along the BGP can be pinned down in a recursive manner by

y = A−1x; c = y1 − (g∗ + δ)x1;wi/pi = si(g
∗)/ρ; vii = βii

yi/xi
wi/pi

; vij = 1− vii. (31)

This and Lemmas 1-4 imply,

Proposition 1. (Existence and Uniqueness of the BGP) Under Assumptions 1 and

2, a balanced growth path exists and is unique along which capital inputs, outputs and

consumption all grow at a common balanced growth rate g∗ ∈ (0, ρ−1/(1−σ)−1) satisfying
Γ(g∗) = 0, the balanced growth value of the relative price of outputs q∗ > 0 is pinned

down by f(q∗) = 0, and the balanced growth values of normalized quantities, factor

allocation shares and real factor prices, {xi, yj, c, vij, wi/pi} are all strictly positive,
determined by (25) and (31).

4 Characterization of Local Dynamics

We now turn to characterizing the local dynamics of the recursive 4 × 4 dynamical
system of {x1t, x2t, p1t, p2t}, governed by the two fundamental equations (20) and (21)

12



around the BGP. It should be recognized that in this system that 4 × 4 dynamical
system describes three dimensional dynamics because of the linear homogeneity of the

system in {x1t, x2t, p1t, p2t}, and one of the characteristic roots at the steady state is
always one as shown below. Thus, the dynamical system is locally determinate if there

exist at least two unstable roots and it is dynamically indeterminate if there exist at

least two stable roots.

4.1 Dynamical System

It is clearly seen from (20) and (21) that the price dynamics is determined by prices

alone. Moreover, as we will establish in the case with partial capital depreciation, the

price dynamics is related to the factor intensity ranking in the value or social sense.

Thus, the associated characteristic roots are denoted by {bλ1, bλ2} (corresponding to the
determinant of the bB matrix). Likewise, since the quantity dynamics is related to the
factor intensity ranking in the physical or private sense, the associated characteristic

roots are denoted by {λ1,λ2} (corresponding to the determinant of the B matrix).
Using (21), we can characterize the price dynamics by,

∂pt+1
∂pt

=
(1 + g∗)σ

ρ

³
I − Iδ + Â0

´−1
. (32)

The eigen roots evaluated at the balanced growth path {bλ1, bλ2} solve (n = 1, 2):
det

(
(1 + g∗)σ

ρ

∙
I − Iδ +

³ bA0´−1¸−1 − bλnI) = 0,
or,

det

∙
(1 + g∗)σ I − ρbλn ³I − Iδ + bA−1´0¸ = 0. (33)

Comparing (33) and (24) with g = g∗, it can be easily shown:

Lemma 5. Under Assumptions 1 and 2, one of the eigen roots governing the local

dynamics of the relative price of outputs is one (i.e., bλ1 = 1).
That bλ1 = 1 is a solution of (33) verifies our assertion above: the system exhibits

one-dimensional linear dependency because prices are in nominal terms.

With respect to the quantity dynamics, we can obtain from (20) the following:

∂xt+1
∂xt

= (1 + g∗)−1
£
A−1 + (I − Iδ)

¤
. (34)

13



The eigen roots evaluated at the balanced growth path {λ1,λ2} solve (n = 1, 2)

det
£
(1 + g∗)−1

¡
A−1 + I − Iδ

¢
− λnI

¤
= 0. (35)

As we will establish in the next subsection, the values of {bλ2,λ1,λ2} and hence the
property of local dynamics depend crucially on the rates of capital depreciation. This

contrasts sharply with the continuous-time endogenous growth models of Bond, Wang

and Yip (1996), Benhabib, Meng and Nishimura (2000), and Mino (2001).

4.2 Local Stability

In this section we demonstrate that, as long as capital stocks depreciate partially, i,e,

0 < δ1, δ2 < 1, the necessary and sufficient conditions for local determinacy and for

dynamic indeterminacy obtained in continuous time are neither necessary nor sufficient

in discrete time.

To begin, we examine how the price dynamics are related to the sign of the social

factor share matrix, b∆. For illustrative purposes, we rule out the cases of degenerate
price paths (the first condition) and limit cycles (the second condition), which are

possible for b∆ < 0:9

Assumption 3. (1+g∗)σ 6= ρ[(1−δ1)bβ21+(1−δ2)bβ12]bβ11+bβ22 and (1+g∗)σ 6= ρ
h
(1− δ1) bβ21+(1− δ2) bβ12i.

Consider then following inequalities which are valid only under b∆ < 0 (and hencebβ11 + bβ22 < 1):
Condition P. ρ

h
(1− δ1) bβ21 + (1− δ2) bβ12i < (1 + g∗)σ < ρ[(1−δ1)bβ21+(1−δ2)bβ12]bβ11+bβ22 .

We can then establish the following property concerning the price dynamics.

Lemma 6. Under Assumptions 1-3 with partial capital depreciation (i.e., 0 < δ1, δ2 <

1), the price dynamics possess the following properties:

(i) for b∆ > 0, the price dynamics is stable with 0 < bλ2 < 1 = bλ1;
(ii) for b∆ < 0, the price dynamics is unstable with bλ1 = 1 and bλ2 < −1 if and only if

Condition P holds and stable with
¯̄̄bλ2 ¯̄̄ < 1 = bλ1 if and only if Condition P fails.

9Formally speaking, when the first expression holds for equality, it is a flip bifurcation point; when

the second expression holds for equality, it is a hopf bifurcation point.
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We next turn to examining how the quantity dynamics are related to the sign of

the private factor share matrix, ∆.

Lemma 7. Under Assumptions 1-3 with partial capital depreciation (i.e., 0 < δ1, δ2 <

1), the quantity dynamics possess the following properties:

(i) for ∆ > 0, the quantity dynamics is unstable with |λ1| > 1 and |λ2| > 1;

(ii) for ∆ < 0, there exists 0 < ρmin < 1, 0 < δmax < 1 and 0 < δ < 1 such that for

any ρ ∈ (ρmin, 1), δi ∈ (0, δmax), and |δ1 − δ2| < δ, the quantity dynamics features

a one-dimensional stable manifold with −1 < λ2 < 1 < λ1.

An important message delivered by Lemmas 6 and 7 is that in contrast with

continuous-time endogenous growth models, b∆ > 0 is not necessary for stable price ad-

justments (as shown by Part (ii) of Lemma 6) whereas ∆ < 0 is not sufficient for stable

quantity adjustments (as shown by Part (ii) of Lemma 7). In the next two subsections,

we establish conditions under which local determinacy and dynamic indeterminacy,

respectively, emerge.

4.2.1 Local Determinacy

While consistent factor intensity rankings in the private and social sense need not

lead to local determinacy within our discrete-time endogenous growth framework, we

consider a more special circumstance in which the production of the consumable good

uses consumable (physical) capital more intensively than the production of the pure

(human) capital good in both value (social) and physical (private) sense, that is,

Condition D. ∆ > 0 and b∆ > 0.

Proposition 2. (Local Determinacy under Partial Depreciation) Under Assumptions

1-3 with partial capital depreciation (i.e., 0 < δ1, δ2 < 1), the dynamical system is

locally determinate if Condition S holds.

It should be noted that since the proof applies to any dimensionality of N ≥ 2, this
local determinacy results is also general to any multi-sector endogenous growth models

with socially constant-return sector-specific externalities.

In the continuous-time endogenous growth model, the necessary and sufficient con-

dition for local determinacy is that the factor intensity rankings in the private and
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social sense are consistent, i.e., sign(∆) = sign(b∆). Our Condition S is stronger than
the conventional requirement, though it is not necessary.

We next illustrate why Condition D is not necessary for local determinacy. Should

both ∆ and b∆ be negative, one may still establish:

Proposition 3. (Local Determinacy under Partial Depreciation) Under Assumptions

1-3 with partial capital depreciation (i.e., 0 < δ1, δ2 < 1), there exists 0 < ρmin < 1,

0 < δmax < 1 and 0 < δ < 1 such that for any ρ ∈ (ρmin, 1), δi ∈ (0, δmax), and
|δ1 − δ2| < δ, the dynamical system is locally determinate if Condition P holds and

Condition D fails.

Both Propositions 2 and 3 establish conditions for local determinacy. Under the

conditions stated in Proposition 2, price adjustments are stable but quantity adjust-

ments are unstable; under the conditions stated in Proposition 3, price adjustments are

unstable but quantity adjustments are stable. While Proposition 2 can be generalized

to any dimensionality of N ≥ 2, Proposition 3 cannot be.
Since Proposition 3 depends on not only the factor intensity ranking but the mab-

nitudes of time preference and capital depreciiateion rates. For example, Let {β11, β21,
β12, β22} = {0.5, 0.25, 0.6, 0.1} under which ∆ < 0, and {bβ11, bβ12} = {0.7, 0.75} so
that b∆ < 0. Further, take δ1 = δ2 = 0.1, σ = 1.05, ρ = 0.99 and α1 = α2 = 1. In this

case, the BGP is locally determinate.

Remark 2. It should be noted that if both capitals are fully depreciated in each period

(δ1 = δ2 = 1), then the BGP is locally determinate, regardless of factor intensity

rankings. Specifically, in the case of full depreciation, from (33) and (35) the price and

quantity dynamics respectively determined by the roots of

det
h
ρ−1 (1 + g∗)σ bA0 − bλIi = 0 and det

£
(1 + g∗)−1A−1 − λI

¤
= 0.

We can confirm that both roots of the first equation in the above are in the unite

circle, while those of the second equation are out of the unite cirle. Thus the BGP is

always locally determinate with full depreciation and partial depreciation is necessary

for indeterminacy to arise. To gain intuition, consider an alternative way to transform

the model into a stationary system using relative (rather than nominal prices), follow-

ing the continuous-time analysis by Bond, Wang, and Yip (1996) and Mino (2001).

More specifically, using the second good as the numeràire, the relative price dynamics

under full depreciation are then governed by the following intertemporal no-arbitrage
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condition,
qt
qt+1

=
(1− δ1) + w1,t+1/qt+1
(1− δ2) + w2,t+1

=
w1,t+1/qt+1
w2,t+1

,

By the Stolper-Samuelson theorem, the sign of the responses of the righthand side of

the relative price dynamics depends crucially on the factor intensity ranking in the

social sense (positive for b∆ > 0 and negative for b∆ < 0). Yet, changes in the rel-

ative price always induce magnified changes in factor prices and, as a consequence,¯̄̄
dqt
dqt+1

¯̄̄
qt+1=qt=q

> 1, which implies
¯̄̄
dqt+1
dqt

¯̄̄
qt+1=qt=q

< 1 and hence the price dynamics is

always stable. By similar arguments, under full depreciation, the two capitals become

essentially flow variables and the magnification effects from the Rybczynski theorem

imply that the quantity dynamics are always unstable, reconfirming the local determi-

nacy result.

4.2.2 Dynamic Indeterminacy

We next turn to studying the possibility of dynamic (local) indeterminacy. Con-

sider the necessary and sufficient condition for dynamic indeterminacy obtained in

the continuous-time endogenous growth literature:

Condition I. ∆ < 0 and b∆ > 0.

This condition states that the consumable good production uses pure (human) capital

more intensively in the private (physical) sense but uses consumable (physical) capital

intensive in the social (value) sense. We can now establish:

Proposition 4. (Dynamic Indeterminacy under Partial Depreciation) Under Assump-

tion 1-3 and Condition I with partial capital depreciation (i.e., 0 < δ1, δ2 < 1), there

exists 0 < ρmin < 1, 0 < δmax < 1 and 0 < δ < 1 such that for any ρ ∈ (ρmin, 1),
δi ∈ (0, δmax), and |δ1 − δ2| < δ, the dynamical system is locally indeterminate.

Notably, Condition I is neither sufficient nor necessary for dynamic indeterminacy.

On the one hand, Condition I is not sufficient for dynamic indeterminacy, because

the magnitudes of time preference and capital depreciation rates both play essential

roles in addition to the factor intensity rankings. In particular, to generate dynamic

indeterminacy, we need both the time preference and the capital depreciation rates

(ρ−1 − 1 and δi) to be sufficiently small and the depreciation rates of the two capitals

to be sufficiently alike. To be more concrete, consider {β11, β21, β12, β22} = {0.5, 0.25,
0.6, 0.1} and {bβ11, bβ12} = {0.7, 0.65} so that ∆ < 0 and b∆ > 0 and set δ1 = δ2 = 0.1,
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σ = 1.05, ρ = 0.99, α1 = 0.5 and α2 = 1. In this case, the dynamical system is locally

indeterminate (one-dimensional indeterminacy). Yet, by simply raising δ2 to 0.2, the

dynamical system becomes locally determinate.

On the other hand, Condition I is not necessary for dynamic indeterminacy.

Proposition 5. (Dynamic Indeterminacy under Partial Depreciation) Under Assump-

tion 1-3 with partial capital depreciation (i.e., 0 < δ1, δ2 < 1) and with Condition S

failing to hold, there exists 0 < ρmin < 1, 0 < δmax < 1 and 0 < δ < 1 such that

for any ρ ∈ (ρmin, 1), δi ∈ (0, δmax), and |δ1 − δ2| < δ, the dynamical system is locally

indeterminate if Condition P fails.

Again, to illustrate this possibility, consider the numerical example provided in the

previous subsection: by simply reducing α1 from 1 to 0.5, dynamic indeterminacy

arises. Generally speaking, under the discrete-time setup, dynamic indeterminacy is

more likely to occur as a consequence of stable price dynamics (Lemma 6) but less so

as a result of unstable quantity dynamics (Lemma 7). Thus, Condition I turns out to

be neither necessary (as the conditions for stable price adjustments become weaker)

nor sufficient (as the conditions for stable quantity adjustments become stronger) for

dynamic indeterminacy.

One may compare this latter result with that in the discrete-time exogenous growth

framework developed by Benhabib, Nishimura and Venditti (2002). Let us relabel

the consumption good sector in their paper as the consumable good sector and the

investment good sector in their paper as the pure capital good sector. Then, they

establish the conditions for dynamic indeterminacy (in our notation with g∗ = δi = 0):

∆ < β11/ρ and b∆ > −bβ12/2. Although our conditions are very different, both suggest
that even when Condition I is violated, dynamic indeterminacy may still emerge. Yet,

while Condition I is sufficient for dynamic indeterminacy in the exogenous growth

setting, it is not so in our endogenous growth framework. This is due to the increased

possibility of unstable quantity adjustments under the sustained endogenous growth

setup.

5 Concluding Remarks

This paper has reexamined the property of local dynamics in a class of two-sector

endogenous growth models with socially constant-returns production technologies with

positive sector-specific externalities. Within this class of models in continuous time,
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two fundamental propositions have been established: (i) the balanced growth path

is locally determinate if and only if the factor intensity rankings in the private and

social sense are consistent; and, (ii) dynamic indeterminacy emerges if and only if the

consumable good production uses pure (human) capital more intensively in the private

(physical) sense but uses consumable (physical) capital intensive in the social (value)

sense. This paper shows that in discrete time, both propositions fail to hold.

Our main finding is thaqt the dynamic property is no longer determined by the

factor intensity ranking exclusively. Under partial depreciation, local determinacy is

obtained if the consumable good production uses consumable capital more intensively

in both private and social sense. When the consumable good production uses pure

capital more intensively in both private and social sense, the balanced growth path

may be locally determinate or indeterminate, depending on the underlying preference

and production parameters. When the consumable good production uses pure capital

more intensively in the private sense but uses consumable capital intensive in the

social sense, dynamic indeterminacy arises only if the time preference and the capital

depreciation rates are sufficiently small and the depreciation rates of the two capitals

are not too different. Similar conclusions hold if we replace sector-specific externalities

by distortionary factor taxes.

Along these lines, one may revisit the issue raised by Benhabib and Perli (1994)

that whether dynamic indeterminacy can arise in set of plausible parameters with

moderate external effects. For example, if we select {β11, β21, β12, β22} = {0.3, 0.55,
0.25, 0.4}, {bβ11, bβ12} = {0.4, 0.35}, δ1 = δ2 = 0.05, σ = 1.5, ρ = 0.97, α1 = 0.02

and α2 = 1, the resulting real interest rate, balanced growth rate, and share of pure

(human) capital devoted to final goods production are 5%, 1.6% and 74%, respectively,

fitting with the U.S. data (though it should be noted that the selection of parameters is

not unique). In this case, the dynamical system is locally determinate. Moreover, one

may also find sets of parameters under which cycles may occur. Consider: {β11, β21,
β12, β22} = {0.2091, 0.25, 0.6, 0.1}, {bβ11, bβ12} = {0.7, 0.75}, δ1 = δ2 = 0.1, σ = 1.05,

ρ = 0.99, α1 = 0.5 and α2 = 1. In this case, one of the roots governing the quantity

dynamics is zero and limit cycles arise. Of course, sector-specific externalities in the

model economy must be the driving forces of cycles. Yet, under which circumstances

cycles are likely to be present remains unexplored.10 Finally, it may be interesting

10As shown in Section 4.3, limit cycles are possible only for b∆ < 0. In the numerical example above,
we have ∆ < 0 and b∆ < 0. It is possible to find cases exhibiting limit cycles with ∆ > 0. Thus, the
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to characterize the property of local dynamics using a more general class of socially

constant-return production technologies:

Yjt = αjΨj

¡
v1jtX1t, v2jtX2t

¢
Gj (v1jtX1t, v2jtX2t) ,

where both Ψj and Gj are strictly increasing, strictly concave and twice continuously

differentiable and ΨjGj exhibits constant-returns-to-scale. These are but three of many

possible avenues for future research.

consistency/inconsistency of the factor intensity rankings is not necessary for limit cycles to emerge.
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Appendix

Proof of Lemma 1: Define,

Γ (g) ≡ (s1(g))
bβ12
(s2(g))

bβ21 − (ρw1)
bβ12
(ρw2)

bβ21

From (30), if a balanced growth rate g∗ exists, it must satisfy Γ (g∗) = 0. Utilizing the

definitions of si and wi (i = 1, 2) and
2P
i=1

bβij = 1, we can see that,
Γ (g) = [(1 + g)σ − ρ (1− δ1)]

bβ12 [(1 + g)σ − ρ (1− δ2)]
bβ21−³ρα1βbβ1111 β

bβ21
21

´bβ12 ³
ρα2β

bβ12
12 β

bβ22
22

´bβ21
,

where Γ (g) is increasing in g and, by Assumption 2, Γ (0) < 0 and Γ
¡
ρ−1/(1−σ) − 1

¢
>

0. Thus a solution g∗ satisfying Γ (g∗) = 0 exists and is unique with 0 < g∗ <
ρ−1/(1−σ) − 1. ¥
Proof of Lemma 2: Defining the difference of the left hand sides of (30) as f (q), we
can use the definition of si to get:

f (q) ≡ ρ
h
w1q

bβ21/b∆ − w2q−bβ12/b∆ + (δ1 − δ2)
i
.

If b∆ > 0, f is an increasing function with limq−→0 f (q) = −∞ and limq−→∞ f (q) =∞;
if b∆ < 0, f is a decreasing function with limq−→0 f (q) =∞ and limq−→∞ f (q) = −∞.
Hence, f (q) = 0 has a unique solution q∗ > 0. ¥
Proof of Lemma 3: From f(q∗) = 0 in the proof of Lemma 2,

w1q
bβ21/b∆ + δ1 = w2q

−bβ12/b∆ + δ2.

By combining this with (30), g∗ is determined. ¥
Proof of Lemma 4: The key is to prove that the matrix I −A (g∗I + Iδ) is invertible
and [I −A (g∗I + Iδ)]−1 in (25) is a positive matrix. From (24), we have,

[(1 + g∗)σ − ρ (1 + g∗)] bAp = ρ
h
I − bA (g∗I + Iδ)i p > 0. (36)

Let bμ be the Frobenius root of bA (g∗I + Iδ). Then (36) implies 0 < bμ < 1. Since

0 < A < bA, the Frobenius root μ of A (g∗I + Iδ) satisfies 0 < μ < bμ < 1. Thus,
[I −A (g∗I + Iδ)]−1 exists and is a positive matrix. Hence, x is uniquely determined
by (25) and x > 0. ¥
Proof of Lemma 6: First, we consider the eigen roots of (33) governing the price

dynamics. Recalling from Lemma 5 that bλ1 = 1, the other root bλ2 is given by,
bλ2 = det

"
ρ−1 (1 + g∗)σ

µ
I − Iδ +

³ bA0´−1¶−1#

= ρ−2 (1 + g∗)2σ
¯̄̄̄
I − Iδ +

³ bA0´−1 ¯̄̄̄−1
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or, applying (9),

bλ2 = ρ−2 (1 + g∗)2σ
¯̄̄̄
I − Iδ + Iw

³ bB0´−1 I−1p ¯̄̄̄−1
= ρ−2 (1 + g∗)2σ det

⎡⎣ 1− δ1 + bβ22 b∆−1w1p−11 −bβ21 b∆−1w1p−12
−bβ12 b∆−1w2p−11 1− δ2 + bβ11 b∆−1w2p−12

⎤⎦−1 .
Utilizing (29),

2P
i=1

bβij = 1, and the definition of si, one can then obtain:
bλ2 =

(1 + g∗)2σ

ρ2

"Ã
1− δ1 +

bβ22s1
ρb∆

!Ã
1− δ2 +

bβ11s2
ρb∆

!
−
bβ21s1
ρb∆ bβ12s2

ρb∆
#−1

= (1 + g∗)2σ b∆n(1− δ1) (1− δ2) ρ
2 b∆+ s1s2 + ρ

hbβ22 (1− δ2) s1 + bβ11 (1− δ1) s2
io−1

= (1 + g∗)σ b∆n(1 + g∗)σ − ρ
h
(1− δ1) bβ21 + (1− δ2) bβ12io−1 .

Moreover, we have:

1bλ2 − 1 =
1

(1 + g∗)σ b∆
n
(1 + g∗)σ

h
1−

³bβ11bβ22 − bβ12bβ21´i− ρ
h
(1− δ1) bβ21 + (1− δ2) bβ12io

=
1

(1 + g∗)σ b∆
n
(1 + g∗)σ

³bβ12 + bβ21´− ρ
h
(1− δ1) bβ21 + (1− δ2) bβ12io

=
1

(1 + g∗)σ b∆
³bβ21s1 + bβ12s2´ ,

and,

1bλ2 + 1 =
1

(1 + g∗)σ b∆
n
(1 + g∗)σ

h
1 +

³bβ11bβ22 − bβ12bβ21´i− ρ
h
(1− δ1) bβ21 + (1− δ2) bβ12io

=
1

(1 + g∗)σ b∆
n
(1 + g∗)σ

³bβ11 + bβ22´− ρ
h
(1− δ1) bβ21 + (1− δ2) bβ12io .

Hence, sign( 1bλ2 − 1) = sign(b∆), but sign( 1bλ2 + 1) depends both on sign(b∆) and the
magnitude of g∗, ρ and δi.
For b∆ > 0, bβ12 + bβ12 < 1. Thus, by Lemma 1,bλ2 ∝ (1 + g∗)σ − ρ

³
(1− δ1) bβ21 + (1− δ2) bβ12´

> (1 + g∗)σ − ρmax {(1− δ1) , (1− δ2)}
³bβ21 + bβ12´

> (1 + g∗)σ − ρmax {(1− δ1) , (1− δ2)}
= min{s1, s2} > 0.
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Also, in this case, bλ2 < 1 and we establish: 0 < bλ2 < 1 = bλ1 under b∆ > 0.

For b∆ < 0 and hence bβ11 + bβ22 < 1, we have to examine three possible cases.
First, consider the case where Condition P holds. In this case, one can easily see

that bλ2 < −1 and hence the price dynamics is unstable. Next, consider (1 + g∗)σ <
ρ
h
(1− δ1) bβ21 + (1− δ2) bβ12i under which Condition P fails and 0 < bλ2 < 1. This

implies that price adjustments are stable and monotonically converge to the BGP.

Finally, (1 + g∗)σ >
ρ[(1−δ1)bβ21+(1−δ2)bβ12]bβ11+bβ22 under which Condition P also fails, but now

−1 < bλ2 < 0 and hence price adjustments are stable and oscillate in converging to the
BGP.¥
Proof of Lemma 7: Recall that the quantity dynamics are governed by (35). Define,

F (λ) = det
£
(1 + g∗)−1

¡
A−1 + I − Iδ

¢
− λI

¤
.

First, consider the case of ∆ > 0. We evaluate:

F (1) = (1 + g∗)−2 det
£
A−1 − (g∗I + Iδ)

¤
.

Using the transformed version of (5) along the BGP, aij = βijpjw
−1
it , and (29), we can

derive:

F 0 (1) = − (1 + g∗)−1
£
(a11 + a22) |A|−1 − (2g∗ + δ1 + δ2)

¤
= − (1 + g∗)−1

£¡
β11p

−1
2 w2 + β22p

−1
1 w1

¢
∆−1 − (2g∗ + δ1 + δ2)

¤
= − (1 + g∗)−1 ρ−1

£
(s2β11 + s1β22)∆

−1 − ρ (2g∗ + δ1 + δ2)
¤
.

Yet, from (25), [A−1 − (g∗I + Iδ)]x = z. Since ∆ > 0, [A−1 − (g∗I + Iδ)] has nega-
tive off-diagonal elements and positive diagonal elements, implying that the matrix,
[A−1 − (g∗I + Iδ)], has a dominant diagonal with every principle minor being positive.
This results in F (1) > 0 and F 0 (1) = − (1 + g∗)−1

£
(a11 + a22) |A|−1 − (2g∗ + δ1 + δ2)

¤
<

0. Let d1+d2i be the roots of F (λ) = 0, i.e., F (λ) = (λ− d1 − id2) (λ− d1 + id2) = 0
(where d2 = 0 means the roots are real). Then,

F 0 (1) = 2 (1− d1) < 0.

Thus, the real part of two roots, d1, are greater than 1 and F (λ) = 0 has two roots
{λ1,λ2}, both outside the unit circle, |λ1| > 1 and |λ2| > 1.
Next, consider the case of ∆ < 0. Since det [I −A (g∗I + Iδ)] > 0 and

det [1−A (g∗I + Iδ)] = |A|det
£
A−1 − (g∗I + Iδ)

¤
,

∆ < 0 implies |A| < 0 and hence det [A−1 − (g∗I + Iδ)] < 0 must hold true. This gives,

F (1) = (1 + g∗)−2 det
£
A−1 − (g∗I + Iδ)

¤
< 0.

Also (1 + g∗)−1
£
(a11 + a22) |A|−1 − (2g + δ1 + δ2)

¤
< 0 implies F 0 (1) > 0. Thus, λ1 >

1 and λ2 < 1. To see if λ2 is larger or less than −1, we evaluate F (λ) at λ = −1:

F (−1) = (1 + g∗)−2 det
£
A−1 + I − Iδ + (1 + g∗) I

¤
.
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We rewrite det [A−1 + I − Iδ + (1 + g∗) I] as follows:

(2 + g∗ − δ1) (2 + g
∗ − δ2) +

1

ρ∆

½
[β11 (2 + g

∗ − δ1) s2 + β22 (2 + g
∗ − δ2) s1] +

s1s2
ρ

¾
.

Let assume that δ1 = δ2 = δ. Then s1 = s2 = s and the above expression becomes

(2 + g∗ − δ)2 +
1

ρ∆

∙
(β11 + β22) (2 + g

∗ − δ) s+
s2

ρ

¸
.

F (−1) > 0 for some s > 0 only if the following holds for some s > 0:

G (s) = s2 + ρ (β11 + β22) (2 + g
∗ − δ) s+ ρ2 (2 + g∗ − δ)2∆ < 0.

Note that
G (0) = ρ2 (2 + g∗ − δ)2∆ < 0.

There are two cases to consider. First, if σ > 1, then the following inequality holds as
long as g∗ > 0.

(1 + g∗)σ > ρ (1 + g∗) .

In order for g∗ > 0, s must satisfy

s > 1− ρ (1− δ) .

Hence, if ρ (1− δ) is close to 1, then there exists some s > 1−ρ (1− δ) with G (s) < 0.
Second, if 0 < σ < 1, the transversality condition (1 + g∗)σ > ρ (1 + g∗) is equivalent to
s > ρ (g∗ + δ). If g∗ and δ are both close to 0, then there exists some s > ρ (g∗ + δ) such
that G (s) < 0, where g∗ can be arbitrarily small as ρ is close to 1, from Assumption
2 and the definition Γ (g). By continuity, the same arguments apply for the case with
non-zero but small |δ1 − δ2|, which completes the proof. ¥
Proof of Proposition 2 : Since b∆ > 0, Lemma 6 implies: 0 < bλ2 < 1 = bλ1. More-
over, under ∆ > 0, Lemma 7 implies |λ1| > 1 and |λ2| > 1. The dynamical system
therefore has one root equal to 1, one stable root and two unstable root, implying local
determinacy. ¥
Proof of Proposition 3 : Since b∆ < 0, Lemma 6 implies bλ1 = 1 and bλ2 < −1 when
Condition P holds. Under ∆ < 0, Lemma 7 implies that there exists 0 < ρmin < 1,
0 < δmax < 1 and 0 < δ < 1 such that for any ρ ∈ (ρmin, 1), δi ∈ (0, δmax), and
|δ1 − δ2| < δ, we have: −1 < λ2 < 1 < λ1. Thus, the dynamical system has one root
equal to 1, one stable root and two unstable root, implying local determinacy. ¥
Proof of Proposition 4 : From Lemma 6, the roots of the characteristic equation gov-

erning the price dynamics are bλ1 = 1 and 0 < bλ2 < 1. By Lemma 7, there exists
0 < ρmin < 1, 0 < δmax < 1 and 0 < δ < 1 such that for any ρ ∈ (ρmin, 1), δi ∈ (0, δmax),
and |δ1 − δ2| < δ, we have: −1 < λ2 < 1 < λ1. The dynamical system therefore has
one root equal to 1, two stable root and one unstable root, implying one-dimensional
dynamic indeterminacy. ¥
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Proof of Proposition 5 : From Lemma 6, the roots of the characteristic equation gov-

erning the price dynamics are bλ1 = 1 and
¯̄̄bλ2 ¯̄̄ < 1. Using Lemma 7, there exists

0 < ρmin < 1, 0 < δmax < 1 and 0 < δ < 1 such that for any ρ ∈ (ρmin, 1), δi ∈ (0, δmax),
and |δ1 − δ2| < δ, one obtain: −1 < λ2 < 1 < λ1. The dynamical system therefore has
one root equal to 1, two stable root and one unstable root, implying one-dimensional
dynamic indeterminacy. ¥
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