
 
 
 

Discussion Papers In Economics 
And Business 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Graduate School of Economics and 
Osaka School of International Public Policy (OSIPP) 

Osaka University, Toyonaka, Osaka 560-0043, JAPAN

 

Learning, Inflation Cycles, and Depression 
 
 
 

Ryo Horii and Yoshiyasu Ono 
 

 

Discussion Paper 06-14 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
May 2006 

 

この研究は「大学院経済学研究科・経済学部記念事業」 

基金より援助を受けた、記して感謝する。 

 
Graduate School of Economics and 

Osaka School of International Public Policy (OSIPP) 
Osaka University, Toyonaka, Osaka 560-0043, JAPAN 

 

Learning, Inflation Cycles, and Depression 
 
 
 

Ryo Horii and Yoshiyasu Ono 
 

 

Discussion Paper 06-14 



Learning, Inflation Cycles, and Depression∗

Ryo Horii† and Yoshiyasu Ono‡

Version: May 12, 2006

Abstract

This paper constructs a model that describes inflation cycles and prolonged

depression as generated by the learning behavior of households who face a ran-

dom liquidity shock in which money is needed. Households update the subjec-

tive probability of the shock based on the observation and change their liquidity

preference accordingly. In this setting, we first derive a stationary cycles under

perfect price adjustment, which is characterized by periods of gradual inflation

and sudden sporadic falls of the price level. When the nominal stickiness is

introduced, the liquidity shock is followed by a period of depression in which

unemployment exists and deflation occurs gradually. Depression is deep and

prolonged when the economy has experienced a long period of boom before

encountering a liquidity shock.
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1 Introduction

This paper constructs a model that describes the cyclical movement of price level

inflation and the possibility of prolonged depression as generated by the learning

behavior of households. The representative household experiences a utility loss when

a liquidity shock occurs, and the loss is smaller if she has a larger amount of money.

The liquidity shock is randomly generated by a Poisson process, and the Poisson

parameter, or the probability of the shock, changes unobservably following a Markov

process (i.e., the shock occurs according to a certain Markov modulated Poisson

process). The household updates the subjective probability of the shock based on

the observation of the actual occurrences of the shock.1

In this setting, we first derive a stationary cycles under perfect price adjustment,

which is characterized by the periods of gradual inflation and sudden sporadic defla-

tions. The price level must jumps down when the liquidity shock occurs because the

information delivered by the news of the liquidity shock is large enough to change

the household’s belief discretely. Such downward jumps are, however, unlikely to

occur in the actual economies where various nominal frictions prevent the price level

and/or the nominal wage to fall too rapidly; e.g., labor unions, moral issues, etc.

Thus, we extend the benchmark model to incorporate the nominal stickiness that

1An example of such events is a bank run; even though people usually do business using checks,

once a bank run occurs their transactions cannot be settled without money. This example suggests

that the desire to hold money depends on the expectation about the possibility of such events in the

future. When people observe a bank run, they guess that the underlying circumstance for banks

is bad and therefore another bank may fail in near future. Thus, in this event they increase the

demand for money to cope with another similar event. Given that the supply of nominal money

cannot be changed instantly, the strong liquidity preference pushes up the value of money in terms

of goods and therefore deflation occurs. Conversely, if banks operates successfully for a long time,

people guess that the circumstance is stable and that it is unlikely for a bank run to occur in near

future. Then, the money demand decreases, causing inflation.
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puts an upper bound on the rate of deflation.

In the modified setting where price and thus the real money supply cannot jump,

the representative household cannot increase the real money holding instantly when

the subjective shock probability jumps up. The expected marginal utility of money

holding stays high and the household decrease the amount of consumption to equalize

the marginal rate of substitution between money and goods to the cost of holding

money. This means that the liquidity shock causes a depression rather than a discrete

fall in the price level. The drop in output is followed by a gradual recovery, in which

price falls gradually. Once the price level falls to a certain threshold, the equilibrium

in the goods and money markets is regained and then gradual inflation occurs.

The important finding is that the magnitude of depression is larger when the

economy experiences a long period without the liquidity shock before encountering

one because in that case price must fall significantly to regain the equilibrium in the

money market. On the other hand, a economy with recurrent shocks harms little

from an addition shock (e.g., a bank run) because the price level is already near

the lowest level. The inflation rate immediately before the crush is not necessarily

higher in the former case than the latter; specifically, the inflation rate converges to

the rate of money growth (which should be the long-run average) when the economy

luckily proceeds without a crush for a very long time. Thus, our result implies that

an economy performing well for a long time is vulnerable to get into the long period

of depression even when its contemporary inflation rate is low.

There exist a number of earlier studies that analyzed the macroeconomic behavior

when an underlying state is only partially observable and information are revealed

gradually (e.g., Andolfatto and Gomme 2003; Chalkley and Lee 1998; Horii and

Ono 2005; Potter 2000; Sill and Wrase 1999 ). Those studies typically construct

models in a way that the current belief regarding the underlying state determines

macroeconomic variables at each date. This is also the case in our model when

price adjustments are complete: i.e., the current belief on the risk of financial crises
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uniquely determines the current price level so that the demand and the supply of the

real money balance equalize.

However, when nominal stickiness is introduced, the price level cannot completely

follow the path that corresponds to the realized evolution of the belief. As a result,

the current price level is determined not only by the current belief on the underlying

state of the economy, but also by the history of beliefs that people held in the

past. Accordingly, whether an economy experiences inflation and full employment,

or deflation and unemployment, is not solely determined by how frequently financial

shocks have occurred recently, but also by how the economy (i.e., the price level) has

adapted to such occurrences.

The organization of the paper is as follows. In section 2, we describe the process of

the liquidity shock and the evolution of the belief that is updated based on Bayes’ law.

Section 3 presents a benchmark model in which the price level is perfectly adjusted

and shows the pattern of inflation cycles. The nominal stickiness is introduced in

Section 4 to investigate the pattern of the crush and recovery. Section 5 concludes

the paper. The proofs of all Lemmata are collated in Appendix.

2 Liquidity Shock and Bayesian Learning

We use a continuous-time model in which a representative household faces an ag-

gregate liquidity shock that follows an exogenous Poisson process. Liquidity holding

generates utility when the shock actually occurs, but does not while the shock does

not occur. Since when the shock occurs cannot exactly be anticipated, even during

the period without it the household holds liquidity so as to prepare for it.

There are two underlying states with different probabilities of the shock, called

states H and L. In state i ∈ {H,L} the shock occurs with probability θi per unit
time, where θH > θL > 0. The household cannot directly observe the current state

but knows that the state evolves according to a Markov process: state H changes to
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state L with Poisson probability pH per unit time whereas state L changes to state

H with probability pL.

By observing whether the shock occurs or not she continuously revises her subjec-

tive shock probability in a Bayesian manner. Let θt denote the true shock probability

at time t, which is unknown to her. Using information available up to time t, she

forms a belief that θt = θH with probability ft(θ
H) and θt = θL with probability

ft(θ
L). Obviously,

ft(θ
L) + ft(θ

H) = 1 for any t. (1)

In order to find how she updates ft(θ
i) from t to t+∆t,2 we first obtain the sub-

jective probability that the shock does not occur between t and t+∆t for given ft(θ
i).

It is denoted by Ft
£
S(t,t+∆t] = φ

¤
, where Ft[·] is a probability operator based on in-

formation available at t, S(a,b] is the set of dates on which the shock actually occurs

during (a, b], and φ the empty set. Since the underlying state is either H or L at time

t+∆t, this probability is divided into two components, Ft
£
S(t,t+∆t] = φ ∩ θt+∆t = θH

¤
and Ft

£
S(t,t+∆t] = φ ∩ θt+∆t = θL

¤
.

Each of the two components is further divided into two probabilities. The former

is the sum of the probability that ‘the state is H at time t and neither the state change

nor the shock occurs during the interval’ and the probability that ‘the present state

is L and the state changes to H during the interval.’ It is3

Ft
£
S(t,t+∆t] = φ ∩ θt+∆t = θH

¤
=
¡
1− (θH + pH)∆t¢ ft(θH) + pL∆tft(θL). (2)

Similarly, the latter is

Ft
£
S(t,t+∆t] = φ ∩ θt+∆t = θL

¤
=
¡
1− (θL + pL)∆t¢ ft(θL) + pH∆tft(θH). (3)

2Time interval ∆t is taken to be so short that the probability that the liquidity shock and a

state change coexist in the interval is negligible.

3Throughout the paper we ignore the second-order term of ∆t and higher because ∆t→ 0.
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Summing up (2) and (3) yields

Ft
£
S(t,t+∆t] = φ

¤
= 1− θet∆t, (4)

where θet represents the expected (or subjective) probability of the shock per unit

time at time t:

θet ≡ θHft(θ
H) + θLft(θ

L). (5)

Let us consider how the representative household updates her belief if she eventu-

ally finds that the shock did not occur during (t, t+∆t]. In this case the information

that S(t,t+∆t] = φ is added to her knowledge. Thus, using Bayes’ law we find updated

subjective probability ft+∆t(θ
i) to be

ft+∆t(θ
i) ≡ Ft+∆t

£
θt+∆t = θi

¤
= Ft

£
θt+∆t = θi|S(t,t+∆t] = φ

¤
=
Ft
£
S(t,t+∆t] = φ ∩ θt+∆t = θi

¤
Ft
£
S(t,t+∆t] = φ

¤ .

Since the numerator is given by (2) or (3) and the denominator by (4), ft+∆t(θ
H)

equals4

ft+∆t(θ
H) =

¡
1− (θH + pH)∆t¢ ft(θH) + pL∆tft(θL)

1− θet∆t
.

From this equation we derive the time derivative of ft(θ
H):

dft(θ
H)

dt
= lim

∆t→0
ft+∆t(θ

H)− ft(θH)
∆t

= (θet − θH − pH)ft(θH) + pLft(θL).
(6)

We next consider the case where the shock occurs during (t, t+∆t]. Since

Ft
£
S(t,t+∆t] 6= φ ∩ θt+∆t = θi

¤
= θift(θ

i)∆t for i ∈ {L,H}, (7)

the probability that the shock occurs is

Ft
£
S(t,t+∆t] 6= φ

¤
=
¡
θHft(θ

H) + θLft(θ
L)
¢
∆t = θet∆t, (8)

4ft+∆t(θ
L) is analogously obtained. From (1) it equals 1− ft+∆t(θH).
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which is consistent with (4). From Bayes’ law dividing (7) by (8) gives the updated

subjective probability that θt+∆t = θi under the condition that the shock occurs

during (t, t+∆t]. It is

ft(θ
i) = lim

t0→t−0
θift0(θ

i)

θet0
≡ θift−0(θi)

θet−0
, (9)

where subscript t− 0 represents the state just before t.
Finally, we obtain the dynamics of subjective probability θet . From (1) and (5),

ft(θ
H) =

θet − θL

θH − θL
, ft(θ

L) =
θH − θet
θH − θL

. (10)

Substituting (6) and (10) into the time derivative of (5) yields the time derivative of

θet in the case where the shock does not occur at time t:

θ̇et = (θ
e
t − θL − pL)(θet − θH − pH)− pLpH ≡ g(θet ) for t /∈ S(0,∞), (11)

which satisfies

g(θ) Q 0⇐⇒ θ R θ∗ for any θ ∈ £θL, θH¤ , where
θ∗ ≡ θL + θH + pL + pH −p(θH + pH − θL − pL)2 + 4pLpH

2
∈ (θL, θH). (12)

Similarly, by substituting (9) and (10) into (5) we obtain the value of θet as a function

of θet−0 in the case where the shock does occur at time t.

θet = θL + θH − θLθH

θet−0
≡ h(θet−0) for t ∈ S(0,∞), (13)

which satisfies

h(θH) = θH , and θe < h(θe) < θH for all θe ∈ (θL, θH).

Equations (11) and (13) describe the dynamics of θet with and without the shock

respectively. It continuously declines as long as the shock does not occur, but dis-

cretely jumps upward when it occurs.5 Intuitively, in the absence of the shock people

5From (11) and (13), we find that θet is trapped within interval
¡
θ∗, θH

¤
in the long run. Since

we are interested in the long-term behavior of the economy, it is assumed throughout this paper

that θet is always within
¡
θ∗, θH

¤
. Under this assumption, θet always declines while the shock does

not occur.
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gradually become more and more optimistic and confident that the economy is in

state L. Thus, their subjective probability of the shock gradually declines and con-

verges to θ∗.6 Due to the U-shape of function g(θet ), the speed of adjusting their

belief is slower when θet is near either θ
∗ or θH than when it is in the middle.

Conversely, when the shock is observed, people discretely change their expectation

about the present state. Since h(θe) > θe, the more often people observe the shock,

the more strongly people believe that they are in state H, and hence θet becomes

closer to θH . In this way θet fluctuates between θ
∗ and θH .

3 Inflation Cycles under Perfect Price Adjustment

The economy is inhabited by a continuum of infinitely lived homogeneous households

with measure one. Each household is endowed a unit labor at each point time and

supplies labor inelastically to the labor market. A representative firm produces goods

from labor. The output is y`t, where y > 0 is a constant and `t is labor input. Since

total labor supply is one, the aggregate output would be y each time as long as full

employment obtains. The monetary authority issues a constant amount of nominal

money stock, the size of which is normalized to one.7 Goods are perishable and thus

cannot be stored. The households will not borrow or lend among themselves because

the are identical. The firm has no value because of its linear production technology

and perfect competition. Therefore, money is the only asset in this economy.

At each date, the representative household gains utility u(ct) from consumption,

6θet never becomes lower than θ
∗(> θL) since people take into account the possibility that state

L might have changed to state H even though the shock does not occur.

7This assumption is made only for the simplicity of the description of the model and notations.

The results to follow are essentially the same even when the nominal money growth rate is positive

and constant. In that case the price level would not be stationary, and therefore we need to

normalize the price level by by dividing by the nominal money supply.
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where instantaneous felicity function u(·) is twice differentiable, u0(·) > 0, and satis-
fies the Inada conditions. In addition, she experiences utility loss v(mt) < 0 according

to her real money holding mt at the dates at which the liquidity shock occurs. We

assume v0(m) > 0, which means that the size of utility loss is small when her real

money holding is large. Function v(·) also satisfies v00(m) < 0, limm→0mv0(m) > 0,
and limm→∞ v0(m) = 0. Her expected utility EUt is therefore given by

EUt = Et

Z ∞
t

u(cτ )e
−ρ(τ−t)dτ +

X
τ∈S(t,∞)

v(mτ )e
−ρ(τ−t)

 , (14)

where ρ is her subjective discount rate and S(t,∞) is the set of future dates at which

the shock occurs.

Let pt denote the price of consumption good, and Wt the nominal wage at t. The

household maximize (14) under the budget constraint

Ṁt = Wt − ptct. (15)

Since there is no friction in the market, full employment always obtains and thus

Wt = pty for all t. Thus, in the real terms, (15) becomes

ṁt = y − πtmt − ct when pt changes continuously, (16)

mt = mt−0/Πt when pt jumps, (17)

where πt ≡ ṗt/pt and Πt ≡ pt/pt−0.
There is no steady state in equilibrium at which the price level stays constant

for all t because the expectation about the probability of the liquidity shock changes

forever according to (11) and (13) and the decisions of household depend on θet . We

instead search for a stationary equilibrium dynamics in which pt evolves as a function

of θet . Specifically, we search for a function p(·) that satisfies8

pt = p(θ
e
t ) for all t. (18)

8This approach is similar to Lucas (1978).
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Then, the inflation rate can also be written as a function of θet ,

πt =
p0(θet )
p(θet )

g(θet ) ≡ π(θet ), Πt =
p(h(θet ))

p(θet )
≡ Π(θet ). (19)

We are interested in a monetary equilibrium path in which money has a positive

value. Suppose that pt0 = ∞ for some date t0, which means that money has no

value at t0. Then, it follows that pt = ∞ for all t ≥ t0 since otherwise an arbitrage
opportunity arises: consumers can obtain an arbitrary amount of money at date

t0 at no cost and then sell money (i.e., purchase goods) at a date in which pt is

finite to increase their expected utility. Since θet evolves within (θ
∗, θH) recurrently,

(18) implies that if p(θ∞) = ∞ for some θ∞ ∈ (θ∗, θH) then p(θe) = ∞ for all

θe ∈ (θ∗, θH). That is, if there is such θ∞, then pt =∞ for all t and therefore money

is never demanded. Since the nonmonetary equilibrium dynamics is obvious and is

of no interest here, we assume that9

Assumption 1 p(θe) ∈ (0,∞) for all θe ∈ (θ∗, θH).

Let U(θe, m) denote the value function of a household with belief θe and real

money holding m. Then, the bellman equation for the problem of (11), (13), (14),

(16) and (17), combined with (18) and (19), is

U(θe, m) = max
c

h
u(c)∆t+ (θe∆t)v(m00)

+
1

1 + ρ∆t

©
(1− θe∆t)U(θe0,m0) + (θe∆t)U(h(θ),m00)

ªi
,

(20)

where θe0 = θe+ g(θe)∆t, m0 = m+(y−π(θe)m− c)∆t, and m00 = m/Π(θe). Taking

the limit ∆t→ 0 in (20) yields the Hamilton-Jacobi-Bellman (HJB) equation for the

problem:

ρU(θe,m) = max
c

h
u(c) + θe

¡
v(m/Π(θe)) + U(h(θe),m/Π(θe))− U(θe, m)¢

+ g(θe)Uθ(θ
e, m) +

¡
y − π(θe)m− c¢Um(θe,m)i. (21)

9We also rule out the possibility that p(θe) = 0 for some θe ∈ (θ∗, θH) because the value of
consumption good never becomes zero from u0(·) > 0.
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Differentiating the right hand side of (21) with respect to c gives the first order

condition

u0(ec) = Um(θe, m), (22)

where ec denotes the optimal amount of consumption. Since θet and mt evolves ac-

cording to (11) and (16), equation (22) shows that the movement of consumption is

characterized by

d

dt
u0(ect) = g(θet )Umθ + ¡y − π(θe)m− ec¢Umm for t /∈ S(0,∞), (23)

abbreviating the arguments for U(·, ·) functions when they are (θe,m). From the

envelope theorem, (21) can be differentiated with respect to m at c = ec to give
(ρ+ π(θe) + θe)Um =g(θ

e)Uθm +
¡
y − π(θe)m− ec¢Umm

+ θeΠ(θe)−1
¡
v0(m/Π(θe) + Um(h(θe),m/Π(θe))

¢
.

(24)

By substituting (22) and (23) for (24), we can eliminate the value function from it

to obtain the Euler equation,

d

dt
u0(ect) = (ρ+ π(θe) + θe)u0(ect)− θe

v0(mt/Π(θ
e)) + u0(ec00t )

Π(θe)
for t /∈ S(0,∞), (25)

where ec00t represents the optimal amount of consumption when the state changes to
(h(θet ),m/Π(θ

e
t )).

Since all households are symmetric, the goods and money markets clear when

ect = y, mt = p(θ
e
t )
−1 for all t. (26)

Function p(·) is determined so that the household’s demand for goods and money
satisfies (26) given the path of price, (18). Substituting (26) into (25) yields a

condition that must be satisfied for all possible values of θe,

ρ+ π(θe) = θeΠ(θe)−1v0(p(h(θe))−1) + θe
¡
Π(θe)−1 − 1¢ . (27)

The left hand side represents the cost of holding money: the utility loss from post-

poning consumption plus the capital loss caused by inflation. In the other side are
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the expected benefits of holding money: the first term is the expected utility from

holding money, whereas the second term represents the expected capital gain by the

downward jump in the price level (the upward jump in the value of money) when

the liquidity shock occurs. Thus, (27) shows that function p(·) is determined so that
the cost and the benefit of holding money are equalized with each other.

From (19) and (27), we obtain a (delay) differential equation for p(·).

p0(θe) =
p(θe)

g(θe)
γp(θ

e), where

γp(θ
e) ≡ −(ρ+ θe) + θe

p(θe)

p(h(θe))

v0(p(h(θe))−1) + u0(y)
u0(y)

.

(28)

Note that γp(θ
e) gives the growth rate of pt (i.e., the inflation rate) that must hold

in absence of the liquidity shock as a function of θet . Since functions u, v, g, h are

already known, (28) is an autonomous differential equation with respect to function

p(·). The following lemma gives a boundary condition with which function p(·) is
pinned down.

Lemma 1 Under Assumption 1 and transversality condition10

lim
T→∞

Ete
−ρ(T−t)u0(cT )mT = 0 for all t, (29)

function γp(·) must satisfy limθe→θ∗ γp(θe) = 0.

proof: in appendix

Note that pt converges to zero as θ
e
t → θ∗ if γp(θe) is negative at the limit. Then

the real money holding of a household, mt = p
−1
t , increases unboundedly in a way

that the transversality condition is violated. Conversely, the positive limiting value

of γp(θ
e) means that pt becomes arbitrarily large. In this case, the value of money

vanishes in a finite time period, which violates the assumption of the monetary

equilibrium.

10Operator Et represents the expectation based on the information available to agents at date t.

12



(a) The shape of function P (θe)
(b) Evolution of inflation rate

Figure 1: Inflation cycles without nominal frictions

The stationary dynamics of a monetary equilibrium can be calculated from (28)

and the boundary condition given by Lemma 1. Panel (a) of Figure 1 shows the

representative shape of function p(·) against θe, which is downward sloping.11 A

large value of θet means that people anticipates that the liquidity shock occurs with a

high probability. In that situation, their liquidity preference is high. Thus, to clear

the market for money, the value of money must be sufficiently high in relative to the

value of good, which means a low price level.

During the period without the liquidity shock, θet gradually declines and pt in-

creases. Panel (b) of Figure 1 shows the evolution of inflation rate against time

as θet moves from θH to θ∗. Inflation accelerates temporarily when the households

adjusts their belief responding to observing no shock for a certain time length, but

it gradually falls to the rate of nominal money growth, which is zero in this case,

as the economy converges to the most optimistic state. When the liquidity shock

occurs, θet jumps up. Then pt jumps down so that the (θ
e
t , pt) pair is always on the

curve depicted in panel (a). Thus, the dynamics of the economy is characterized by

11In all examples presented in this paper, we specify u(c) = ln c, v(m) = −m−1, y = 1, ρ = .05,
θH = .5, θL = .05, pH = .025 and pL = .0025. We have confirmed that our results are robust to

changes in parameter values.
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gradual inflation with sporadic and discrete falls in the price level.

At each event of the liquidity shock, price level must jump down in order to clear

the increased liquidity demand induced by the change in people’s belief. However,

we rarely observe such a discrete fall in the price level in the aggregate economy;

although we do sometimes observe a discrete fall in the prices of certain goods, the

aggregated general price level tends to fall only slowly. One explanation for this is

the existence of a (downward) nominal stickiness in the price level caused by labor

unions, menu costs, moral issues, and the all other factors discussed in the literature.

If the price cannot jump downward, our model predicts that the demand for money

exceeds for the supply, and, by Warlas’ law, a demand shortage occurs in the goods

and labor market. The next section investigates this possibility.

4 Depressions with Nominal Stickiness

Consider an economy similar to the one introduced in the previous section, with a

only difference in that the price level cannot fall faster than a certain rate,12

ṗt/pt ≥ −δ, δ ∈ (0,∞). (30)

The discrete fall in the price level derived in the previous section implies that the

instantaneous rate of inflation is minus infinity. Condition (30) rules out this possi-

bility by assuming that δ is finite. The immediate consequence of this restriction is as

follows. Even when the liquidity preference jumps up following the liquidity shock,

the real money supply p−1t cannot increase instantly. The representative household

then feels that money at their hands is more valuable than before, and consequently

reduces the demand for goods. It creates a shortage in the goods market, which

12Condition (30) is equivalent to assuming that Ẇt/Wt ≥ −δ because the competition of firms
ensures pt = yWt for all t. We could also assume a symmetric restriction such as ṗt/pt ∈ [−δ, δ].
This would make the analysis a little complicated without changing the final results.
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cannot be cleared instantly because of the nominal stickiness in pt.

This consideration implies that there are several differences in the pattern of

economic dynamics from the case analyzed in the previous section. Now there is

no one-for-one relationship between the price level and the belief because pt cannot

jump when θet changes discretely. Thus, the state of the economy is described not

only by θet but by the pair of (θ
e
t , pt). Consumption does not necessarily coincide

with the full employment output y. We can imagine two possibilities at each point

in time. First, constraint (30) is not binding and full employment obtains (wt = y).

The second possibility is that (30) is binding, i.e., ṗt/pt = −δ, and unemployment
exists (wt < y).

Which one of these possibilities occurs depends on the state of the economy,

summarized by (θet , pt). It is natural to guess that, for a given level of θ
e
t , there is

a level of pt at which the money market clears and full employment obtains. Let

us denote this critical level by p(θet ). Price level pt cannot be below the threshold

p(θe) since there is no upward stickiness in the price level and thus can be adjusted

instantly if pt < p(θ
e). Similarly to the previous section, if there is some θ∞ ∈ (θ∗, θH)

such that p(θ∞) =∞ then pt =∞ for all t. We rule out this trivial path by assuming

that

Assumption 2 p(θe) ∈ (0,∞) for all θe ∈ (θ∗, θH).

Unemployment occurs when constraint (30) is binding, i.e., when p > p(θe). In

this case, the economy experience deflation at the rate of δ. If (30) is not binding,

full employment obtains and the price level evolves so that equilibrium condition

p = p(θe) is maintained. Let us denote by C(θe, p) aggregate demand for goods at

state (θe, p). Then,

C(θe, p)


= y if p = p(θe),

< y if p > p(θe).
(31)
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The inflation rate for a given state can be summarized as

π(θe, p) =


p0(θe)
p(θe)

g(θe) if p = p(θe),

− δ if p > p(θe).

(32)

The representative household maximize (14) under budget constraint (15). Since

the final good production is competitive and it uses only labor as input, the nominal

income of the representative household coincides with the nominal aggregate demand

for goods, Wt = ptC(θ
e
t , pt) for all t. The budget constraint can thus be written as

ṁt = C(θ
e
t , pt)− π(θet , pt)mt + ct (33)

as long as pt evolves continuously, and (17) if pt jumps. From (30), price level pt

never jumps down, and it jumps up only when θet jumps up to h(θ
e
t ) and pt is smaller

than the new market clearing price level, p(h(θet )). Let us denote the value function

of the household by U(θe, p,m), which now depends on the current value of p because

it affects the aggregate demand and thus her income. The Bellman equation for this

problem is

U(θe, p,m) = max
c

h
u(c)∆t+ (θe∆t)v(m00)

+
1

1 + ρ∆t

©
(1− θe∆t)U(θe0, p0,m0) + (θe∆t)U(h(θe), p00,m00)

ªi
,
(34)

where θe0 = θe+g(θe)∆t, p0 = p+π(θe, p)p∆t, m0 = m+(C(θe, p)−π(θe, p)m+c)∆t,
p00 = max{p(h(θ)), p}, and m00 = (p/p00)m. Taking the limit of ∆t→ 0 in (34) yields

the HJB equation,

ρU =max
c

h
u(c) + θe

¡
v(m00) + U(h(θe), p00,m00)− U¢+ g(θe)Uθ

+ π(θe, p)pUp +
¡
C(θe, p)− π(θe, p)m− c¢Umi, (35)

where the arguments of function U(·, ·, ·) and its partial derivatives are abbreviated
when they are (θe, p,m). The first order condition for (35) is u0(ec) = Um(θe, p,m),
where ec is the optimal amount of consumption. Then, the envelope condition is

(ρ+ π(θe, p) + θe)Um =θ
e(p/p00)

¡
v0(m00) + Um(h(θe), p00,m00)

¢
+ g(θe)Uθm

+ π(θe, p)pUpm +
¡
C(θ, p)− π(θe, p)m− ec¢Umm. (36)
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Note that the RHS of (36) depends on whether p jumps in the event of the liquidity

shock. As long as function p(·) is weakly downward sloping, p ≥ p(θe) ≥ p(h(θe))
and therefore p00 = p and m00 = m. The following analysis focuses on this case and

we leave for Appendix the analysis of the case of p < p(h(θe)).

Substituting the first order condition, its time derivative, and the conditions for

the representative household, ec = C(θe, p) and m = p−1, into (36) yields the Euler

equation,Ã
ρ−

d
dt
u0(C(θe, p))
u0(C(θe, p))

!
+ π(θe, p) = θe

v0(p−1)
u0(C(θe, p))

+ θe
µ
u0(C(h(θe), p))
u0(C(θe, p))

− 1
¶
(37)

for all t /∈ S(0,∞). Equation (37) has an interpretation similar to (27). The cost of
holding money, given by the LHS, is the sum of time preference and inflation. The

benefit is the sum of the direct utility gain and the expected capital gain measured

in terms of utility when a shock occurs and consumption jumps down.

Functions p(·) and C(·, ·) are determined so that equation (37) holds for all possi-
ble pairs of (θe, p). Let us first consider the case of full employment, where p = p(θe),

C(θe, p) = y and π(θe, p) = p0(θe)g(θe)/p(θe) from (31) and (32). Substituting these

for (37) gives a differential equation that determines the form of function p(·):

p0(θe) =
p(θe)

g(θ)
γp(θ

e), where

γp(θ
e) = −(ρ+ θe) + θe

v0 (p(θe)−1) + u0(C(h(θe), p(θe)))
u0(y)

.

(38)

Function γp(θ
e) in (38) represents the growth rate of pt ≡ p(θet ) as a function of

θet assuming that p ≥ p(θe). The correct expression for γp(θ
e) when p < p(θe) is

given by (43) in Appendix A. The difference between (28) and (38) lies in the fact

that consumption is adjusted in the occurrence of the liquidity shock when nominal

stickiness exists, while adjustment is done fully by the price level when price is

completely flexible. A boundary condition for function p(·) is given by the following
lemma.
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Lemma 2 Under Assumption 2 and transversality condition (29), function γp(·)
must satisfy limθe→θ∗ γp(θe) = 0

proof: in appendix

Suppose that limθe→θ∗ γp(θ
e) < 0, which implies that p(θe) approaches 0 as θe con-

verges to θ∗. This means that the level of p must also converges to 0 since it evolves

according either to ṗ/p = p(θe) < 0 or to ṗ/p = −δ < 0 as θe → 0. Lemma 1 shows

that the transversality condition is violated in this case. In addition, the limiting

value of γp(θ
e) as θe → θ∗ should not be positive since otherwise Assumption 2 is

violated. Thus, function p(·) must satisfy differential equation (38) and boundary
condition limθe→θ∗ γp(θe) = 0.

Next, consider the case of unemployment, where π(θe, p) = −δ. Substituting this
for (37) gives a partial differential equation of function C(·, ·),

g(θe)Cθ(θ
e, p)− pδCp(θe, p) = u0(C(θe, p))

u00(C(θe, p))
γu0(θ

e, p), where

γu0(θ
e, p) = ρ− δ + θe − θe

v0 (p−1) + u0(C(h(θe), p))
u0(C(θe, p))

.

(39)

In (39), γu0(θ
e, p) is the rate of change in marginal utility. Combined with the bound-

ary condition C(θe, p(θe)) = y for all θe, this partial differential equation determines

the shape of function C(·, ·) for all (θe, p) ∈ {(θe, p)|p > p(θe))}.
Since p(·) and C(·, ·) are interrelated as described above, they are determined

simultaneously so that they satisfy the system of partial differential equations, (38)

and (39), along with two boundary conditions specified above. Figure 2 shows a

representative shape of function C(·, ·) in (θe, p) space, where the solid curve on the
edge represents function p(·). Observe that function p(·) is downward sloping in
θe. The reason behind it is the same as the reason for the property of p(·) in the
previous section: when θe is large, people’s liquidity preference is high and thus a

low price level (a high relative price of money to goods) is required to equalize the

money demand to the money supply. The height of curved surface indicates the

value of function C(θe, p) at each state in region p > p(θe). C(θe, p) is equal to y

18



Figure 2: Representative shapes of function C(θe, p) and function p(θe)

on the curve of p = p(θe) and gets smaller as the pair (θe, p) moves to the direction

of north-east. That is, a pair of high θet and high pt implies a combination of high

liquidity preference, a low relative price of money to goods, and a small supply of

real money stock. In that case, the excess demand for money is huge and therefore

the aggregate demand for goods (and thus employment) is small.

The pattern of the dynamics of the economy is described as follows. If the current

price level pt is higher than the market clearing price level p(θ
e
t ), then price gradually

falls and consumption grows according to

ṗt
pt
= −δ, ċt =

u0(ct)
u00(ct)

"
ρ− δ + θe − θet

v0
¡
p−1t
¢
+ u0(c00t )

u0(ct)

#
, (40)

where c00t ≡ C(h(θe), pt). As long as no shock occurs, the pair (θe, pt) follows (40)
until it reaches the market clearing line pt = p(θ

e
t ) in a finite time. From that time

on, consumption stays constant and the price level rises so that the pair traces the
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(a) phase diagram in (θe, p) space (b) phase diagram in (c, p) space

Figure 3: Inflation cycles with nominal stickiness

market clearing line,

ṗt
pt
= −(ρ+ θet ) + θet

v0(p−1t ) + u
0(c00t )

u0(y)
, ct = y. (41)

As θe approaches θ∗, the price level converges to p∗ ≡ p(θ∗), and inflation rate

converges to zero.

Figure 3 shows the pattern of movement of (θe, p) pair. Once a liquidity shock

occurs, the pair (θe, pt) jumps toward east. Since pt cannot jump immediately, the

economy follows (40) until it reaches the market clearing line and then again follows

(41). The liquidity shock may occur even before the economy goes back to the full

employment phase. If the shock occurs many times in a short while, θet changes

considerably while giving little time for the price level to adjust through deflation.

Then, consumption must decrease by large and, moreover, it takes long time for the

economy to regain full employment.

This problem becomes more serious if there had long been no shocks observed: in

that case, the price level have gone up to near the highest level p∗ ≡ p(θ∗) before the
shock occurs and thus the process of adjustment becomes a long way. Conversely,

when an economy is experiencing the liquidity shock regularly, then pt should always

be near the lowest level pH ≡ p(θH) and thus it will take a short time for the price
to adjust even after an avalanche of shocks. This mechanism explains why once a
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(a) actual price level (pt) and market clearing price (pt)

(b) consumption

Figure 4: Simulated time paths of pt, pt ≡ p(θet ), and ct

long-time booming economy experiences large negative shocks it has to go through

a long and deflationary period of depression, while recovery seems not so difficult

when the boom period preceding that was a short one.

5 Conclusion

This paper presents a theory of inflation cycles and prolonged depression based on

households’ learning behavior. The model is constructed in a number of steps. First,

we analyzed the process of Bayesian learning in continuous time by the representative

household who observes a shock that follows a certain Markov modulated Poisson

process. Second, using Hamilton-Jacobi-Bellman equations, we investigated the evo-

lutions of consumption and money holding of the household who behaves rationally

based on his belief about the state of the economy. Third, we derived a stationary

cycle under perfect price adjustments in terms of a delay differential equation (or,
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sometimes called a difference-differential equation), and demonstrated that the price

level would experience sporadic downward jumps in such a setting. Forth, we ex-

tended the model to incorporate nominal stickiness and derived stationary dynamics.

In this case, since the belief and the slow-moving real variables cannot correspond

one-to-one, we obtained a system of partial delay differential equations, by which

we have shown that the economy experience a prolonged depression if and only if it

have enjoyed a long tranquil periods before it experiences successive occurrence of

shocks.

Appendix

A Analysis of the case of p < p(h(θe))

If pt < p(h(θ
e
t )), p

00 = p(h(θeT )) and m
00 = mp/p(h(θet )) in (34), (35) and (36). Substi-

tuting the first order condition, its time derivative, and the equilibrium conditions,

ec = C(θe, p) and m = p−1, into (36) yields the Euler equation,Ã
ρ−

d
dt
u0(C(θe, p))
u0(C(θe, p))

!
+ π(θe, p)

= θe
p

p(h(θe))

v0(p(h(θe))−1)
u0(C(θe, p))

+ θe
µ

p

p(h(θe))

u0(y)
u0(C(θe, p))

− 1
¶ (42)

for all t /∈ S(0,∞). Substituting p = p(θe), C(θe, p) = y and π(θe, p) = p0(θe)g(θe)/p(θe),
from (31) and (32), for (42) gives the growth rate of pt during the period of full em-

ployment:

γp(θ
e) = −(ρ+ θe) + θe

p(θe)

p(h(θe))

v0 (p(h(θe))−1) + u0(y)
u0(y)

. (43)

When unemployment exists (i.e., p ≥ p(θe)), the rate of change in marginal utility is
obtained by substituting π(θe, p) = −δ for (42),

γu0(θ
e, p) = ρ− δ + θe + θe

p

p(h(θe))

v0 (p−1) + u0(y)
u0(C(θe, p))

. (44)
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B Proof of Lemmata

Let θnst,T , c
ns
t,T , p

ns
t,T and m

ns
t,T denote respectively the values of θT , cT , pT and mT

conditional on that no shock occurs between t and T . Then, the probability that no

shock occurs between t and T is given by exp
³
− R T

t
θnst dτ

´
.

The transversality condition (TVC) can be written as limT→∞EtVt,T = 0, where

Vt,T ≡ e−ρ(T−t)u0(cT )mT and Et denotes the expectation taken upon the information

available at t. Since u0(cT )mT ≥ 0 for all T ,

EtVt,T ≥ exp
µ
−
Z T

t

θnst dτ

¶
e−ρ(T−t)u0(cnst,T )mt,T ≡ V nst,T . (45)

Note that while Vt,T is a random variable, V nst,T is a deterministic variable given the

information available at t. From (45), a necessary condition for the TVC is

lim
T→∞

V nst,T ≤ 0. (46)

Differentiating (45) with respect to T and using equilibrium condition mns
t,T = 1/p

ns
t,T

yield
dV nst,T /dT

V nst,T
= −θnst,T − ρ+

du0(cnst,T )/dT

u0(cnst,T )
− dp

ns
t,T/dT

pnst,T
. (47)

Lemma 1

Without nominal stickiness, cnst,T = y for all T and thus du
0(cnst,T )/dT = 0. From (28),

(dpnst,T/dT )/p
ns
t,T = γp(θ

ns
T ). Substituting these into (47) yields

dV nst,T
dT

= −θnst,T
p(θnst,T )

p(h(θnst,T ))

v0(p(h(θnst,T ))
−1) + u0(y)

u0(y)
V nst,T . (48)

Using p(θnst,T ) = p
ns
t,T = 1/m

ns
t,T and the definition of V

ns
t,T in (45), equation (48) reduces

to dV nst,T /dT = − exp(−
R T
t
ρ+θnst,v dv)θ

ns
t,TZ(h(θ

ns
t,T )), where Z(θ) ≡ (v0(p(θ)−1) + u0(y)) /p(θ).

Integrating this differential equation with respect to T from t to ∞ and using the

fact that V nst,t = u
0(y)mt give

lim
T→∞

V nst,T = u
0(y)mt −

Z ∞
t

exp

µ
−
Z T

t

ρ+ θnst,v dv

¶
θnst,TZ(h(θ

ns
t,T )) dT. (49)
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Fix a small constant a > 0 and define a closed interval A ≡ [h(θ∗), h(θ∗ + a)] ∈
(θ∗, θH). Note that Assumption 1 implies that Z(θ) ∈ (0,∞) for all θ ∈ (θ∗, θH).
In addition, it is continuous in this interval because (28) implies that p(·) is dif-
ferentiable. Thus, there exist finite constants Zmin ≡ minθ∈A Z(θ) ∈ (0, 1) and

Zmax ≡ maxθ∈A Z(θ) ∈ (0, 1). Whenever θet ∈ (θ∗, θ∗ + a), θnst,T ∈ (θ∗, θ∗ + a) for all
T ≥ t. and therefore there is upper and lower bounds for the second term in the

RHS of (49), given byµ
θ∗Zmin

ρ+ θ∗ + a
,
(θ∗ + a)Zmax

ρ+ θ∗

¶
≡ (Imin, Imax) ⊂ (0,∞). (50)

Now suppose that limθe→θ∗ γp(θe) < 0. Then as θet converges to θ
∗, pt → 0 and

therefore mt → ∞. However, this violates the TVC since conditions (46), (49) and
(50) imply that the TVC requires mt ≤ Imax/u0(y) whenever θet ∈ (θ∗, θ∗ + a).
Suppose conversely that limθe→θ∗ γp(θe) < 0. Then as θet converges to θ

∗, pt →∞
and thereforemt → 0. For sufficiently smallmt, (49) and (50) imply limT→∞ V nst,T < 0.

Since V nst,t = u
0(ct)mt > 0 and V

ns
t,T is continuous in T , there should be a value of T ≥ t

such that V nst,T = 0. From the definition of V
ns
t,T in (45) this implies that m

ns
t,T = 0 and

therefore p(θnst,T ) = p
ns
t,T =∞, violating Assumption 1.

Lemma 2

We first derive a contradiction under assumption limθe→θ∗ γp(θe) < 0. Fix a > 0 and

define A = [h(θ∗), h(θ∗ + a)]. Then, from p(θ) ∈ (0,∞) and its continuity, there
exists pmin ≡ minθ∈A p(θ) ∈ (0,∞). The assumption limθe→θ∗ γp(θe) < 0 implies that

p(θ) → 0 as θ → θ∗. Recall, in addition, that pt falls at the rate of δ whenever

pt > p(θ
∗). Thus, there is a positive probability that (θet , pt) pair satisfies θ

e
t < θ∗+a

and pt ≤ pmin when the liquidity shock does not occur for a sufficiently long while.
Suppose that the current (θet , pt) pair satisfies the above inequalities. Then

pnst,T < p(h(θ
ns
t,T )) for all T ≥ t, which means that the analysis in Appendix A applies.
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Substituting the results obtained in Appendix A into (47) yields

dV nst,T /dT

V nst,T
=


− θnst,T − ρ+ γu0(θ

ns
t,T ) + δ if pnst,T > p(θ

ns
t,T ),

− θnst,T − ρ− γp(θ
ns
t,T ) if pnst,T = p(θ

ns
t,T ).

(51)

Substituting (43) and (44) into (51) and using pnst,T = 1/mns
t,T and the definition of

V nst,T in it, equation (51) reduces to dV
ns
t,T /dT = − exp(−

R T
t
ρ + θnst,v dv)θ

ns
t,TZ(h(θ

ns
t,T )),

where Z(θ) ≡ (v0(p(θ)−1) + u0(y)) /p(θ). Integrating this differential equation with
respect to T from t to ∞ and using the fact that V nst,t = u

0(cnst,T )mt give

lim
T→∞

V nst,T = u
0(cnst,T )mt −

Z ∞
t

exp

µ
−
Z T

t

ρ+ θnst,v dv

¶
θnst,TZ(h(θ

ns
t,T )) dT. (52)

Note that h(θnst,T ) ∈ A for all T ≥ t and that there exists a finite constant

Zmax ≡ maxθ∈A Z(θ). From cnst,T ≤ y, u0(cnst,T ) ≥ u0(y) for all T . Thus (46) and (52)
jointly imply that

mt ≤ (θ
∗ + a)Zmax

(ρ+ θ∗)u0(y)
. (53)

While assumption limθe→θ∗ γp(θe) < 0 implies that an arbitrarily large mt = 1/pt

realizes with a positive probability, the RHS of (53) is constant. Thus (53) and

hence the TVC will be violated with a positive probability.

Next, assume conversely that limθe→θ∗ γp(θe) > 0, which means that p(θe) become

arbitrarily large as θe → θ∗. Then, θnst,T ∈ (θ∗, θ∗ + a) and pnst,T = p(θnst,T ) > pmax ≡
maxθ∈A p(θ) for sufficiently large T . In this case, Analysis in Section 4 applies and

full employment obtains. From mns
t,T = 1/p

ns
t,T and (38),

dmns
t,T

dT
= (ρ+ θnst,T )m

ns
t,T − θnst,T

v0(mns
t,T )m

ns
t,T + u

0(C(h(θnst,T ), 1/m
ns
t,T ))m

ns
t,T

u0(y)
(54)

for sufficiently large T . As T → ∞, p(θnst,T ) → ∞ and therefore mns
t,T → 0. In

this case, (54) implies limT→∞ dmns
t,T/dT < θnsT u

0(y)−1 limm→0 v0(m)m < 0, where the

latter inequality follows from the definition of v(·). These properties jointly imply
that there is a finite T such that mns

t,T = 0 and therefore p(θ
ns
t,T ) = p

ns
t,T =∞, violating

Assumption 2.
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