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Abstract

There are many approaches for estimating an integrated variance and covariance in the
presence of market microstructure noise. It is important to know a dependence of noise to
construct the integrated variance and covariance estimators. We study a time dependence of
bivariate noise processes in this paper. We propose a test statistic for the dependence of the
noises and an autocovariance estimator of the noises and derive its asymptotic distribution.
The asymptotic distribution of the autocovariance estimator provides us to another test statistic
which is for significance of the autocovariances and for detection whether the noise exists or
not. We obtain good performances of the test statistics and autocovariance estimator of the
noises in a finite sample through Monte Carlo simulation. In empirical illustration, we confirm
that the proposed statistics and estimators capture various dependence patterns of the market

microstructure noises.
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1 Introduction

Estimating covariance matrix of two diffusion processes are important for option pricing, the mea-
surement of value-at-risk, and portfolio evaluation. High frequency financial prices have been used
for estimation of integrated variance and covariance. However, we must be careful to the high fre-
guency prices being contaminated with some noise. This noise, known as market microstructure
noise, has many sources, including the presence of bid-ask spread and the discreteness of the
prices. The realized volatility and covariance are not necessarily the best approach to estimate
integrated variance and covariance in the presence of noise. For the literature on the integrated
variance estimation with noise, Zhou (1996) proposes the kernel-based estimator. Zhang, Myk-
land and At-Sahalia (2005) propose two scales realized volatility which is the linear combination

of realized volatilities at two frequencies. Zhang (2006) extend their estimator to multiple scales.
Bandi and Russell (2006) show the optimal frequency based on the minimization of mean squared
error. Although these studies are conducted under i.i.d. noise assumption, the market microstruc-
ture noise possibly has a time dependence. Under the dependent noise assunip8ahaha,
Mykland and Zhang (2006) modify the two scales and multiple scales realized volatilities. Hansen
and Lunde (2005, 2006) and Barndorff-Nielsen, Hansen, Lunde and Shephard (2006) develop
the kernel-based estimator. For the integrated covariance estimation with the dependent noise,
Voev and Lunde (2007) show that Hayashi and Yoshida’s (2005) cumulative covariance estimator
Is biased in the presence of cross-correlated noises and propose modified cumulative covariance
estimators based on kernel and subsampling methods.

However, we need to know a characteristic of the noises to guarantee the adequacy of these
estimators described above because the unbiasedness, consistency and efficiency of them depend
on some assumptions for the noises. Whether the market microstructure noise is a time dependent
or not and the amount of its dependence could be one of interesting objects on high frequency
financial analysis. In this paper, we propose a test statistic to detect the dependence of bivariate
market microstructure noise processes and an autocovariance estimator of the noises. Voev and

Lunde (2007) propose a test statistic for the cross-sectional dependence of the noises in order



to determine kernel bandwidth for their estimator. The main difference from Voev and Lunde’s
(2007) t-statistic is an evaluation of the variance of the cross-covariance estimator of the noises.
Althogh Voev and Lunde (2007) show the unbiasedness of the kernel-based cumulative covariance
estimator under the dependent noises, their t-statistic uses an approximated variance of the cross-
covariance estimator under the i.i.d. noises and its approximation requires to estimate an integrated
variance and a variance of the noise in advance. As denoted in their paper, it is natural that their
assumption leads to somewhat larger t-statistic than it should be. On the other hand, we show that
the test statistic can be constructed without such i.i.d. noise approximation by using subsampling
method and provide an autocovariance estimator of the bivariate noise processes and its asymptotic
distribution. Furthermore, we propose a test for significance of the autocovariance, including

a test for variance of the noise. We confirm good performances of the proposed test statistic
and autocovariance estimator in finite sample through Monte Carlo simulations. For an empirical
illustration, we apply these statistics to high frequency asset prices in Osaka Securities Exchange
and find that the market microstructure noises in some assets are significantly correlated.

The paper itself proceeds as follows. In section 2 we describe problem settings and background
on high frequency financial analysis. We propose the test statistic for cross-sectional dependence
of the noises in section 3. In section 4 we provide the autocovariance estimator of the bivariate
noise processes, its asymptotic distribution and the test statistic for its significance. Section 5
includes a simulation experiment and an empirical illustration. In section 6 we conclude the paper

with appendix that provide proofs about several lemmas and theorems.

2 Problem settings and background

Consider the logarithmic price processes of two asqe®(t)} and{P;(t)} which follow the

one-dimensional & process with no drift on a probability spade, 7, P),

dPl*(t) = O'l(t)dvvl(t)a =12, te [OvT]> (1)

d(Wy, Wa)e = p*(t)dt,  p*(t) € (=1, 1),



wherell/; andWW, are standard Brownian motions. The initial value of the pRt&)) is a constant.
oi(t) > 0 of P*(t) is a bounded measurable function. The integrated variance and covariation of

P} and P; within time horizon[0, T is given by

T T
IVir = / of(u)du, ICp = / o1(u)oa(u)p*(u)du, 1=1,2. 2)
0 0

We make some notation to represent intraday returns and irregularly nonsynchronous trading sys-
tem. r,; = Pi(t;) — Pi(t,-1) is thei-th observed intraday return of an asset 1 and :=
Ps(s;) — Po(s;—1) is thej-th one of an asset 2. Lét ands; be the end times of theth and
j-thintervals of the asset 1 and 2. The different notations for the transaction times in two assets are
due to the nonsynchronous trading.

Before showing the test statistic for the dependence and autocovariance estimator of noises, we
first review Hayashi and Yoshida’s (2005) cumulative covariance (CC) estimator for the nonsyn-
chronously observed process. Figure 1 illustrates a ca§g,of, ;] N (s;_1, s;] # 0}. Then the

CC estimator is given by

CcC = Z7’1,2‘7”2,]'1{(ti_1,ti]m(sj-_1,Sj]ﬂ)}~ )
irj

The product of-; ; andr, ; contributes to the estimation of the integrated covariance only if inter-
vals(t;_1,t;) and(s;_1, s;| are overlapping. The indicator function in (3) enables the CC estimator
to use a raw data without any data interpolations. When the observed refyrasdr, ; are
returns from true price process, = Py (t;) — Py(t;-1) andrs ; = Py (s;) — Py (sj-1), the CC
estimator is unbiased. Its consistency and asymptotic normality are proved in Hayashi and Yoshida
(2005, 2006).

However, the integrated volatility and covariance estimators with finer sampling do not con-
verge to the true values in many empirical studies because the transaction prices in high frequency
data usually is contaminated with market microstructure noise. It is related to imperfections in the

trading system established in the market microstructure literature. A simple way to model high



frequency transaction data is to use hidden semi-martingale processes, as named by Mykland and
Zhang (2005). In this framework the logarithmic priEgis observed with market microstructure

noises,
Pi(t;) = Pr(t) +n(ti), Pa(sy) = Py(s;) +(s;), (4)

whereP/(t) is the true logarithmic price described in (1) which appears in the market with no trad-
ing imperfections, frictions, or informational effectgt;) andd(s;) are the market microstructure
noises in asset 1 and 2, respectively. We assume the properties of the market microstructure noises

as follows.

Assumption 1. The properties of the market microstructure noise.

Let a vector of market microstructure noise of asset 1 and4(be= (n(t) i(t))’.
(1a) {u(t)} is a sequence of random variables with zero means.

(1b) The bivariate noise processes are covariance stationary with autocovariance function which

has finite dependence in the sense that

v = Buiwi—o)=| " O Zo foratt 05 m.

Yon(€)  75(£)
m is a finite positive numbel(¢) is a decreasing function of’ |.
(1c) There exists some positive numiger 1 satisfie§3|u(t)u’(s)\46 < oo forallt,s.

(1d) The noise process is independent with true price procBss. u(t), [ = 1, 2.

Y

To avoid complication of the subscript for (1b) we rewritg (¢) and~s,(¢) as~y(¢) and~(—/)
becausey,s(¢) = E[n(t)o(t — ¢)] and~s, () = En(t — 0)d(t)] = E[n(t)é(t + £)]. We define
the autocorrelation coefficients and the cross-correlation coefficient of two noige&/asps(¢)

andp(¢). For (1d), even ifP" andu(t) are correlated, the dependence of the noises generally



dominates the dependence between the true price and noise as the number of high frequency ob-
servations increases. Furthermore, Hansen and Lunde (2006) suggest that the independence as-
sumption between the true price and noise does not cause the damage statistically for analysis of
asset prices in more trading intensities. We denote conditional expectation and variance given in-
tervalsl’ := (t;_1,t;] and J? := (s;_y,s;] for all ¢,j as B[ - ] and Vjy[ - ]. Then the conditional

expectation of the CC estimator is

=) [ Z 7“1,i7’2,j1{jmjj];é®}] =Ej [ Z 7"1{7147“;]-1{[1'0];'#@}] + Ej5 [ Z €n7i€57j1{1imjj¢@}:| ,
i,j i, 0,
wheree,, ; := n(t;)—n(t;—1) andes ; :== 0(s;) —d(s;_1). The first term converges gfaT o1(u)oz(u)
p*(u)du as shown in Hayashi and Yoshida (2005). The second term representing the bias of the

CC estimator is further decomposed as

=) [ Z €n,i€5,j 1{Iv?mJj;é®}]

irj
= 3 (ot = s3) =t = 550) =y {tima = 5) + 7t = 50) ) Loy
irj
It is obvious that the CC estimator is biased when the market microstructure noises are cross-
correlated. Voev and Lunde (2007) propose the bias-corrected CC estimator based on kernels.
They show that it is unbiased when cross-sectional dependence of the noises is correctly speci-
fied. For their estimator, we need to identify the cross-sectional dependence of the noises by using
t-statistic proposed in Voev and Lunde (2007). In their t-statistic, they use an approximated vari-
ance of cross-covariance estimator which is derived under the i.i.d. and no cross-correlated noises
assumptions. Therefore, the variance of cross-covariance estimator is undervalued and it leads
to larger t-statistic than it should be. Further their t-statistic includes unknown parameters such
that the integrated variance and the variance of the noises we have to estimate. To get rid of the
difficulties, we propose alternative test statistic for the cross-sectional dependence of the noises us-
ing subsampling method in section 3 and we provide the autocovariance estimator of the bivariate

noise processes, its asymptotic distribution and a test statistic for its significance in section 4.



3 The test statistic for cross-sectional dependence of noises

In this section, we propose a test statistic for cross-sectional dependence of noises. Although we
cannot identify the covariation of the true price processes which have martingale property and the

covariance of the market microstructure noises in the pair of the overlapping intervals, we have

Ei; [ Z 7’1,2‘7’2,j1{11‘mﬂ}¢(z)}} =Ey [ Z en,ieé,jl{limﬂ;éw} ) (5)

irj ij
because of the covariation of the true price processes being zero in the pair of the nonoverlapping

intervals{I‘ N J/ = (}. We use the product of returns on the nonoverlapping intervals to identify

the covariance of the noises if it exists, as well with Voev and Lunde (2007).

3.1 Details of the test statistic

From Assumption (1b), the cross-covariance of two noises disappears when the noises are sep-
arated enough. We propose a test statistic to detect the distance where the cross-covariances of
the noises become zero in this subsection. For the nonoverlapping intéfvals/’ = ¢} and

ti_1—s; > 0, the distance between the intervals is definefi-ag,_; —s;. In case of;_; —t;, > 0,

the difference of the nonoverlapping intervals is denoted by —(s;_; — t;). The top panel (a)

and the lower panel (b) in Figure 2 illustrate the former and the latter cases, respectively. The
nonoverlapping adjacent intervals such that — s; = 0 ors;_; — t; = 0 are used in the case of

¢ = 0. In what follows we consider the case ©f> 0 because we can construct the test statistic

for the other cases by replacing the definitiorf 0¥Ve define the product of returns on théh and

j-th intervals using the indicator function which takes onglifn J7 = 0} andl¢ = ¢;,_; — s; > 0

as follows,

Zoij = r1ir2 i l{{rinsi=oy n {t,_,—s;=¢}}, forallz, j. (6)

We take the conditional expectation &f;; for any, j such as the indicator function being one.

For anyi, j satisfying{/* N J7 = 0} andt,_; — s; = ¢, which is a nonoverlapping interval with

6



distance/,

Eu[Zei] = Eu[n(t)d(s;)] — Eu[n(ti)d(s;—1)] — Eu[n(ti-1)d(s;)] + Eu[n(ti-1)d(sj-1)]

= Yl +At) =yl + At; + As;) —y(0) + (L + Asy) (7)

For all ¢ taking more than a large enoudhsuch thaty(L) = 0, we obtainy(¢/) = 0 and
Eis[Zei;] = 0 from (1b) in Assumption 1. Now suppose := min,{s | y(L — s) # 0,s > 0}.
This impliesy(L) =y(L —1) =y(L—-2) =--- =v(L —s* + 1) = 0andy(L — s*) # 0, and
=) [ZL,ij} = By [ZL—l,ij] = Ey [ZL—Q,ij} =--- =By [ZL—S*—&-l,ij} = 0 and gy [ZL—S*,ij} # 0. Itis
obvious that the source ofﬁZL_S*W} # 0is~(L—s*) # 0. Changing the point of view, we set a
large enougtL such that 5[Z;,;;] = 0 and find the distanc& such that* = max,{E[Z,;;] #
0,¢ < L}. Then we conclude thaf(¢* + 1) = 0 and~(¢*) # 0 and that the threshold value
of the dependence becomes the distaficdt is noted that WhetherﬂZg,ij] = 0 or not is not
necessarily implies whether(¢) = 0 or not. This is because the sum of all cross-covariances in
(7) incidentally takes zero even in caseydf) +# 0. To avoid such situation we apply the method
of determination for* described above. The test statistic is constructed by using a sample mean of
Z;.;; Which satisfies nonoverlapping intervals with the distaftzedetermine the threshold value.
For the construction of the test statistic, we define a sequefice}, ", as follows. First we
selectZ, ;; which satisfie{ I'N.J7 = B} andl = t,_; —s;. {Zs 11", is @ sequence which arranges
the selected, ;; in ascending order of index IV, is the total number of the products of returns on
the nonoverlapping intervals with the distariceNe define the:-th pair of the selected intervals
asA; andBy. ThenZ, is defined as a product of returns on nonoverlapping inter¥asnd B,.
Figure 3 illustrates each pair of intervdld,, By), (Ax+1, Brr1) and(Agio, Brio) for k = 1. We
defineZ, v, := Niz foil Z; ) as a sample mean df,;, and make the following assumption for

Zg7k.

Assumption 2. Vi [n 2S00 Z,] — o7 4, uniformly in anyk’, asn — oo. This means:

For any sequencén.y, } that tends to infinity withVy, sup,, | Viy [y, zﬁ'jﬁﬁg Zug| —ots| — 0

asN, — oo.



This assumption states that the conditional variance of a standardized sample rfeap of,

. Zow+nt IS close to some limiting value as a sample sizgoes to infinity. Letf, y, :=
(Z&NZ—EU [ZMD N'/? pe the theoretical standardization fory,. Then the asymptotic variance
of fin, is given bylimy, . E.J[(fw[)z} = 07,. Itis noted that{Z,,},", is a sequence of
dependent and heterogeneously distributed random scalars because the variance depends on the
length of the irregularly observed interval afd, ;. } is serially correlated. We obtain the following

lemma for the asymptotic normality.

Lemma 1. Suppose Assumptions 1 and 2 hold.Mgoes to infinity, we have

] ®
Oy, f

The proof is given in Appendix. Next we consider the estimatiozml?gf We construct a consistent
estimator ofal?,f by applying a subsampling method which is first proposed by Carlstein (1986).
Although Carlstein (1986) considers a variance estimation for a general statistic without specifying
the dependence in a stationary sequence, Fukuchi (1999) and Politis, Romano and Wolf (1999)
extend their results to heteroskedastic observations.

We define the subseries 6%, .}, as follows.
{Z?%f} = (Zoprtps1s Zonnr2s -+ Zognanyn, ), 0 < h < Kp—1, Ky = [Ny/M,],

where[ - | denotes the integer part of a real numhef; is a number of element in subseries
{Z;3} and K is a total number of subseries. We assume fifat— oo and M,/N, — 0 as

N, — oo. The variance estimator is given by

M Ko—1 Ko—1

~ Z

b= > (2 Z Z) ©)
h=0

whereZ,}" is a sample mean of subserigg)'})’ }. We have the following lemma for the variance
IRey4 sdVig

estimators; ;.



Lemma 2. Suppose Assumptions 1 and 2 hold. Lktbe s.t. M, — oo and M,/N, — 0. Then

we have

The proof is described in Appendix.

Our purpose in this section is to construct a test statistic to detect the distance where cross-
covariance of the noises becomes zero. The test statistic is derived from the results of Lemmas 1
and 2. Let the null hypothesis be;E, ] = 0 for all k, for given/. The alternative hypothesis
consists of all possible deviations from the null. Then we have the following theorem for the test

statistic.

Theorem 1. Suppose Assumptions 1 and 2 hold.Mgoes to infinity, we have

T(l) := —VNZZ“W % N(0,1) (11)
O'@J

under the null hypothesis.(¢) diverges under the alternative.

The asymptotic normality of the test statistic follows directly from Lemmas 1 and 2.
The large numbers af/, and K, are available for the variance estimation in (9) because the
high frequency transaction data yields a large numbéy,ofHowever, it is difficult to determine
the optimal numbers a¥#/, and K, which minimizes mean squared error@ff since we do not
know the covariance structure of the noises. The increadé, df.e. the decrease df,) in fixed
N, reduces a bias but increases a variano?el?gf It is known that the optimal asymptotic rate of
M, is proportional thj/3 for the subsampling variance estimation, that is, the asymptotic formula
isM, = cNﬁl/?’ wherec depends on underlying process. We investigate an influence by numbers of
M, and K, selected undek/, = ch/?’ with somec through Monte Carlo simulations in section 5.
Next we summarize a procedure to identify the distance where the cross-covariance of noises
becomes zero. First we test the null hypothesi$Zk ] = 0 for all £ with a large valueL

using the test statistic (11). The null hypothesig &, ;] = 0 would not be rejected because



the cross-covariance between sufficiently separated noises is zero from (1b) of Assumption 1. If
E;[ZL k] = 0is not rejected as expected, secondly we will test whetheZ E , ;] is zero or not.

If Eis[Z1-1.] = 0 is not reject, we proceed to judge the statistical significance §0r E - ]. We
continue to test sequentially until the null being rejected. Finally we regard the distance where the
null is rejected the first time &8 = max{|7(¢)| > c.v.} wherec.v. is a critical value of the test

statistic (11).

4 Consistent covariance estimators of noises

4.1 Cross-covariance estimator of noises

We consider an estimation of cross-covarian@ in this subsection. Itis obvious that the sample
mean ofZ, ;, does not give an unbiased estimatoty(f) for any/ being less than a threshold value.

For construction of unbiased estimator, we have only to remedy the nonoverlapping intervals so as
to all cross-covariances in (7) except’) become zero by using the threshold value determined
through the test statistic (11). Suppose the bivariate noise processes have finite cross-sectional

dependence in the sense thét) = 0 for ¢ > m™ > 0 and for—¢ > m~ > 0. When/ is positive,

()

we define?§+) as the first transaction time of asset 1 which follansubject tor; "’ — s; > m™ and

g(f)l as the last transaction time of asset 2 which is followed by subject tot;_; — §(.+)

j i >mt

As ¢ is negative, we definég.’) as the first transaction time of asset 2 which followyssubject
to Eg_) —t; > m~ and z_fgj as the last transaction times of asset 1 which is followed;by
subject tos;_; — ;5:3 > m~. The returns on the interva($i,1,%§+)] and (Qj,ti] are denoted
by ng;) =P (ZE”) Pi(ti_1) andﬁ;) .= Py(t;) — P,(t{7]). Forthe asset 2, the returns on
the intervals(s;_1, 5. '] and(s\"), s;] are denoted by} := Py(5\") — Pa(s;_1) andrl) =

Py(sj) — P (§( 1), respectively. ThenZe which modifiesZ, ;; in (6) is defined as

th) Té J)l{tz 1—s;=l} if £>0
@ _ ) ) |
Zyg =y T s ey ) TS 1 iy if £=0 (12)
Eg;) Féjj)l{sjflfti=f€} if <0

10



The top panel (a), the middle panel (b) and the lower panel (c) in Figure 4 illustrate each pair
of intervals with/ > 0, ¢ = 0 and/ < 0, respectively. For alf > 0, cross-covariances where

the distances between the noises are further thantake zero. The nonoverlapping intervals
described in (b) and (c) are given by the same idea as (a). The conditional expectﬂﬁ}% isf

E [Zf;)] = —v(¢). We seleciZéfj) for all 7, j such as the indicator function taking one and define

a sequence which arranges the seleﬁgfgi in ascending order of inde’xas{Zﬁ) Ne . Then the

modified cross-covariance estimator is given by
1 o5
WO =~ D Zix- (13)
£ k=1
We obtain the followings theorem for the modified cross-covariance estirhgtpr
Theorem 2. Suppose Assumptions 1 and 2 hold. Then we have
N2 (3(0) = 7(0)) 5 N(0,w7), (14)

wherew? = limy, ... Epy [{Njﬂ(ﬁ(f) - 7(5))}2} .

The proof is described in Appendix. The asymptotic distributiofy(@§ established in Theorem 2

provides us the test statistic for the null hypothegi®) = 0 and the alternative(¢) # 0.

Corollary 1. The test for cross-covariance of market microstructure noises.

Let a subsampling estimator of be®?. As N, goes to infinity, we have

o) = YN oy (15)
Wy

under the null hypothesis*(¢) diverges under the alternative.

It is noted that the bias of CC estimator (3) is virtually zero when the test statistic (15) does not
reject the nully(¢) = 0 for all £. Even if the CC estimator is unbiased, the noise has a strong impact
on its variance. Therefore, we should use the Voev and Lunde’s (2007) subsampling cumulative

covariance estimator without kernel method.

11



4.2 Autocovariance estimator of noise

We propose the cross-covariance estimator of the noises and derive the test statistic for significance
of cross-covariance in the previous subsection. The framework is applicable for estimation of an
autocovariance of univariate noise process. We will briefly describe a consistent autocovariance
estimator of the noise in this subsection. The autocovariance estimator of the noise also requires
the distance where the autocovariance becomes virtually zero as the cross-covariance estimator of
the noises does. Then we start with the construction of the test statistic to identify its distance. we
define the product of returns on tixh and;-th intervals for asset 1 using the indicator function

which takes one if =t,_; —¢; > 0 as follows,
Zieis = 111514, —t=e >0y, foralli, j. (16)

Let {leak}}]j:l’f be a sequence which arrangés, ;; satisfying/ = t,_; —t¢; > 0 in ascending
order of indexi. N, is a total number of a sequené&, ,,}. The null hypothesis is EZ; ¢ ]
= 0 for all k, for given? and the alternative hypothesis consists of all possible deviations from the

null. The test statistic for this hypothesis is given by

/Ny Z
(0) = 1,6 1,€,N1,57 (17)

T -
g1e.f

n

whereZ, v, , is asample mean ¢, ;. }. 61, ; is a subsampling estimatoref , ; = limy, ,
EU[(fu,Nuﬂ ,wherefi o v, , = (Z1on, —Eu[Zien,,]) N5 . Under the null we have, (¢)
N(0,1) asNy, goes to infinity. We define the threshold value of the finite dependence of noise for
asset 1 asn,; in the sense that the autocovariance functigft) for all £ > m, is zero. The test
statistic (17) enables to identify the threshold valuge

To derive the autocovariance estimator of noise, we consﬂﬁjﬁ% for all 7, j using identified

threshold valuen, as follows,
23y =0T ey = (P = PIU)) (PET) = PO )Ly timr 20y, (18)

12



Wherefg.”

is the first transaction time which follows subject totg*) —t; > my andzgj is

the last transaction time which is followed by ; subject tot;_; — tgj > my. Then we have
EU[Zi ,Z)U] = ,(¢) for all £. We select?; 2) such as the indicator function taking one and define
a sequence which arranges the seleéiéﬁ in ascending order of mdezxas{Z1 Ok kle The

autocovariance estimator of the noise and its asymptotic distribution are given by

Ny

- Nu Z Zlelw 1122 %(6) - %(5)) = N(vag,z)’ (19)

wherew? , = limy, , .0 E; [{Nﬁf(%(é) — 7,7(6))}2] . Once the asymptotic normality 6f,(¢) is
established, a test statistic to detect whether the autocovariance of the noise is zero or not is defined

as follows.
Corollary 2. The test for autocovariance of market microstructure noise.
e Case off = 0, that is, test for the variance of the noise.
Let the null hypothesis and the alternative (b% = 0 and 02 > 0, and a subsampling
estimator otv? , bew? . AsNy o goes to infinity, the one-sided test statistic for the variance
of the noise is

) = (VN0 ON e 20)

n d)n,(]
under the null hypothesis; (0) diverges under the alternative.

e Case of! > 0.
Let the null hypothesis and the alternativeyg/) = 0 and~, (¢) # 0, and a subsampling
estimator of? , be; ,. As Ny, goes to infinity, the test statistic for the significance of the
autocovariance of the noise is
VN1 (l) 4
() = VNGl N(0,1) (21)
w

n =
n,¢

under the null hypothesis; (¢) diverges under the alternative.

13



5 Monte Carlo simulation and Empirical illustration

5.1 Finite sample properties of autocovariance estimator of noises

We examine the bias and root mean squared error (RMSE) of the autocovariance estimator (13)
and (19) of bivariate noise processes using threshold values identified by the test statistic (11) and
(17) through Monte Carlo simulation. We use data generation process introduced in Voev and

Lunde (2007). The true price procesgegsand P; follows the stochastic differential models,

AP (t) = oilt) [, /1= X2dW (1) + \dw P (t)], (22)
do?(t) = w0, — o2(t))dt + wo? () dW, P (t), 1=1,2,

Wherer(') is a standard Brownian motion aagt) follows the GARCH diffusion procesészA)
and W are correlated, that is{(W", W), = p*(¢)dt. To generate stochastic correlation
p*(t), itis represented by the anti-Fisher transformation,

exp(2z(t)) — 1

PO = o) 1
dz(t) = k3(03 — x(t))dt + wsz(t)dW (t),

wherex(t) follows the GARCH diffusion process. We tak®;, \y) = (0.5,0.5), (K1, ko, k3) =
(0.3,0.2,0.1), (01, 6,,05) = (0.1,0.1,0.1) and (w1, ws, w3) = (0.2,0.3,0.1). The integrated vari-

ance and covariance &% and P; within the time horizorj0, 7 is given by

Vi = /OT o2(u)du, [Cr — /OT o1 (w)oa(w)y /(1 = )1 =)o (w)du, 1=1,2.

The subsequent simulation settings are the followings.

1. We set trading time per day as 6.5 hours like NYSE and NASDAQ, and the minimum time

interval as one second.

2. We generate the noise process which follows a bivariate AR(1) process. To set a variance
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of the noise we use a noise-to-signal ratio defined as the variance of the noise divided by
integrated variance. Hansen and Lunde (2006) report the noise-to-signal ratios take a range
from 0.0002 to 0.006 using transaction data for thirty equities in NYSE and NASDAQ. Then
we set the variance of noise such that noise-to-signal ratios of asset 1 and 2 averagely take
0.005, 0.002, respectively. The average observed time intervals of asset 1 and 2 are chosen

as 10 and 5 seconds from Poisson observation arrivals.

3. We identify the distance where the covariance of the noises becomes virtually zero through
the test statistic (11) and (17), and estimate the autocovariance estimator of the bivariate

noise processes (13) and (19).

On the cross-covariance of the noises, we evaluate performances of the following cross-covariance

estimators.

e a cross-covariance estimator constructed by uging that is,¥(¢) := —NL[ ffil Zy k-

e the cross-covariance estimatpf’) in (13). To determinel/, (number of element in sub-
series) andy, (total number of subseries) on the variance estimation in the test statistic (11),
we use the asymptotic formuldl, = ch/ ®. We denote the cross-covariance estimator as

4(0)1q. We setc = 4,2, 1 and0.5 to investigate an influence by, and K.

e the cross-covariance estimator (13) through Voev and Lunde’s (2007) t-statigticy, . We

use their t-statistic to identify the distance where cross-covariance becomes virtually zero.

Table 1 summarizes the sample bias and RMSE of the cross-covariance esti(@tore)
and¥(¢)yr, where the number of repetition is one thousand. The second and third columns repre-
sent true cross-covariane€/) and correlation coefficieni(¢) with each value of. 4(¢) is more
biased ag approaches to zero as expected. The biasé$/f_,; and4(¢)y, are virtually zero
and¥(¢)p; has the smaller RMSE thay{¢)y, for all /. The smaller RMSE of/(¢)[;; comes from
the shorter intervals for construction§f¢);; relative to that fory(¢)y .

In the next simulation experiment, we investigate the influenc/pénd K, selected at fixed

N, underM, = cN,}/?’ on the variance estimation in the test statistic (11). Although we should

15



determine the value afin accordance with the dependence of the noises, we do not know about
the dependence in advance. Even in our simulation settings, it is not easy to select the optimal
value ofc. In general, when the noise processes have more dependence, the valwil bie
large. We conduct simulations under several values siiich thatc = 4,2,1 and0.5. In this
simulation settings, we obtain averagely 450 and 900 realization§ @ith ¢ > 0 and/ = 0,
respectively. Then the average numbers\ffand K, with somec is (¢, M, K;) =(4,30,15),
(2,15,30), (1,8,45) and(0.5,4,110) in case of > 0. Table 2 represents RMSE ratiosyf’) 4,
A(0) 2, 4(0)0.5) andy (€)1, to 4(€) ). Figure 5 plots the RMSE ratios in Table /)y, uniformly
takes RMSE about 1.3 times as larger as the cross-covariance estimators withaaftoeisesults
show that the cross-covariance estimator is robust for selectian of

Table 3 summarizes the bias and RMSE of the autocovariance estimator (19) of univariate noise
through the test statistic (17) in asset 2. Figure 6 plots the bias and RMSE raiggé)af, ¥s5(¢) 2
and9s(€)p.5) t0 45(¢)py. Although we will see some bias adakes a smaller value, these biases
are enough close to zero and RMSE is the almost same value torlals noted that RMSE of
~s(¢) for £ = 1, 2 takes somewhat larger values than thats4f) for the other’ as in Table 3. This
is caused by smaller numbersd§ , for ¢ = 1, 2. In this experiment)V, ; and N, », are about /6,
1/2 of N, , for the other! because the average observed time interval of asset 2 is set as 5 seconds.

So far, we have assumed that the true price follo@gtbcess with no drift as in (1). Now we
consider the case with non-zero drift. The product of the noises dominates that of the drift term
as the length of interval shrinks to zero. However, it is not clear about whether an influence of the
drift is negligible or not since the estimators and test statistics proposed in this paper are based on
the expanded intervals as in (12) and (18).

In this simulation, we add the drift term to the true price process,

APF(t) = udt+ o) [, /1= 2X2dW () + \dw P (t)], =12, (23)

wherey, is a constant an@u,, u»2) is set as(0.05,0.05), (0.1,0.1) and (0.5,0.5). We estimate

4(€)n and4;5(£);; under the above settings. Table 4 represents the biases and RMSE ratios of
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these estimates ®(¢);;) and4;(¢);;) which are estimated using the data generation process with
zero drift as in (22). The biases of the estimators are quite small and RMSE ratios take around one
even in case ofu, u2) = (0.5,0.5) which represents a rapid trend acceleration. We find that the
autocovariance estimator of the noises are not much effected by the presence of the non-zero drift

term.

5.2 Empirical illustration

We have established the test statistics and the autocovariance estimator of noises in section 3 and 4.
In this subsection we apply these statistics to high-frequency transaction prices of three stocks in
Osaka Securities Exchange; OMRON Corporation (OC), Murata Manufacturing Co., Ltd. (MM)
and Nintendo Co., Ltd. (NI). We investigate whether the noise exists or not, estimate autocovari-
ances of the noises and judge their significance if the noise exists.

First we test whether the noise exists or not using the test statistic (20) which requires the vari-
ance estimator (19). To identifyt,, we start with testing whethenfez, ; | = 0or Ey[Zy x| # 0
for all £ with a large valuel, through the test statistic (17). In this empirical illustration, we set
L = 60. When the total number 47, ;. } for each? is not large enough for empirical analysis, we
use multiple days to obtain a large sample size. In cade ddys high-frequency data, we define
nﬁd) as the total number ofZ, ;. } in d-th day whered = {1,--- ,D}. We setD = 83 for the
illustration and the sample period is from March 1, 2007 until June 29, 2007 for 83 trading days.
On the first day we obtaifiZ; 0.1, - - - , 21760771(%)} and{Z, g0 115" Zl,ao,ngg>+ngz>} is sampled
on the second day. The total numberdf; ¢« } in the sample period 8/, g9 = 25’:1 né‘é) If the
null Ey[Z1 60x] = 0 is not rejected, we will test whether;EZ; 59 ;| is zero or not. We continue
to test sequentially until the null being rejected. Finally we regard the distance where the null is
rejected the first time as;. Then we estimate the variance of noig€0) by (19) and test the null
hypothesis;% = 0 using (20). If the test statistic (20) rejects the null, we estimate the autocovari-
ance of the noise, (¢) by the estimator (19) and check its significance through the test statistic
(21).

Table 5 (a) shows the test statistic (20) for the variance of noise at 5% significance level where
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the critical value is 3.84. We confirm that market microstructure noise in each asset exists because
the variance of noise is significantly larger than zero. The variances of the noise in OC, MM
and NI are estimated as369 x 10°%, 1.296 x 107 and2.209 x 10~". Table 5 (b) shows the

test statistic (21) for the significance of the autocovariance where the critical value is 1.96 at 5%
significance level. The dependence of the noise differs for each asset, that is, the noise in OC is
uncorrelated and the dependences in MM and NI disappear over 17 and 8 seconds. Figure 6 plots
three autocorrelation functiorig(¢) = 4,(¢)/4,(0). We find that the microstructure noise in each
asset except OC is negatively autocorrelated.

Next we estimate a cross-covariance of the noises for two assets. We use the test statistic (11)
and the cross-covariance estimator (13) and judge the significance of the cross-covariance through
the test statistic (15), similarly as the univariate noise case. The results are reported in Table 6.
In OC-MM and MM-NI, the cross-covariances are significantly different from zero within<
¢ < 15and-3 < ¢ < 7 at 5% significance level. Figure 7 plots three cross-correlation functions
p(0) = 4(£)/+/%,(0)45(0). The negative and asymmetric cross-correlations are found in OC-MM
and MM-NI. These empirical illustration shows that the market microstructure noise for each asset
avarious dependence patterns. In this way, the proposed test statistics and autocovariance estimator

of bivariate noise processes gives us an insightful analysis of market microstructure noise.

6 Concluding Remarks

Numerous studies have proposed integrated variance and covariance estimators in the presence
of market microstructure noise because realized variance, realized covariance and cumulative co-
variance estimators deteriorate with the noise. It is important to know a dependence of noise to
construct a proper integrated variance and covariance estimator suited for the noise properties. In
this paper we propose a test statistic to detect a distance where the autocovariance of bivariate
noise processes becomes virtually zero for a consistent autocovariance estimator of the noises.
Furthermore we show the asymptotic distribution of the autocovariance estimator and propose an

another test statistic for its significance. We find that the test statistic and autocovariance estimator
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have good performance through Monte Carlo simulations. The empirical illustration confirms that
the proposed statistics enable to capture various dependence patterns of the noises in several as-
sets. The statistical analysis for the market microstructure noise will give us some evidence about
the influences of the market regularity and trading mechanism to the asset pricing in the financial

market. The proposed method will shed light on the market microstructure.

Appendix

The proof of Lemma 1

Let the start times and end times of intervals and B, be A, By and A, By, that is, A, =

( Ay, Ay Jand B, = ( By, Br |. We consider the dependence betwegn and Z, ., for

any h such that% — A, > 0. It is obvious thatZ, . has finite dependence from (1b) and
(1d) in Assumption 1. Although there are some central limit theorem for finite dependence such
that Hoeffding and Robbins (1948) and Serfling (1968), we apply the results given by Theorem
3.1 in Politis, Romano and Wolf (1997) because our studies are applicable to the more general
dependence cases such as the mixing sequence. Assumption 2 implies the conditional variance of
a standardized sample mean{&f, x';1, ..., Zo x4} fOr any &’ approaches to the limiting value

Ul?,f' The condition for the strong mixing coefficient in Theorem 3.1 of Politis, Romano and Wolf
(1997) is satisfied from (1b) in Assumption 1. Therefore, it suffices to show the following condition

for the application of their central limit theorem.
(C1) Ey|Zix]?? < oo, for somes > 1.

Let An(Ay) = n(A4y) — n(Ax) and Ad(By) = 6(By) — d(By,) be the differences between the

noises on each interval, andBy,. Z,, is decomposed as

Zew = (RO~ (A (P — Pa(B) = [

N Jl(u)dwl(u)/ oo (u)dWs(u)

By,

+ /A ol(u)dwl(u)Ad(Bk)—i-/ oo(u)dWs(u)An(Ag) + An(Ag) Ad(By). (24)

By,

19



We takeo (), 02(t) < C whereC'is a constant because(t) ando,(t) are bounded. On each

interval A;, and B;,,

20
<o

28 25 283
E.J‘/ al(u)dwl(u)‘ <|c E.J)/ dWl(u)‘ < o0 and EJ‘/ w)dWa(u)
Ay A
SinceA; and By, are nonoverlapping, the high-order absolute moment of the first term in (24)
28 26 25
E.J( [y, o1(w)dWi () [ ag(u)dWQ(u)‘ — E.J( I al(u)dVVl(u)‘ E.J‘ I, UQ(U)dWQ(u)(
Is bounded. From (1c) in Assumption 1 and Minkowski’s inequality,

En AS(B) [ < (11 6(Bs) llas + | 6(By) 125 )™ < ox,

where|| 6(+) ||l25= (EU}(S(-)W)%. From (1d) in Assumption 1 the high-order absolute moment of

the second term in (24) has
28
EL]‘/ 0'1 dWl( )A(;(Bk)‘ = EU‘/ 0'1 dW1 ’ EU‘A(S Bk ‘ < Q.
Ay Ay

20
For the third term of (24), E‘ ka ag(u)dWQ(u)An(Ak)‘ < o0. From (1c) in Assumption 1 the

high-order absolute moment of the fourth term of (24) has

Eu|An(Ay)As(By)|”

= En|n( A )0( By ) — 1( A5 )0( By ) — n( Ax )8( Br, ) +1( A )5( By )|

Finally, we have
Eol Zew ™ < (I Ly, o1 (w)AWi () f, 2 ()dWa(w) g + || [, 00 ()dWa () A6(By) [l
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26
+ || [, o2(u)dWa(u)An(Ak) [l25 + || An(Ak)Ad(Br) |26 ) <oo. (25)
The condition (C1) holds. Then we obtain the asymptotic normalitf @f from the central limit
result in Politis, Romano and Wolf (1997). [

The proof of Lemma 2

To show the consistency of the variance estimator in (9) we applyonvergence of the subsam-
pling estimator given by Lemma 4.6.1 in Politis, Romano and Wolf (1999). Because strong mixing
condition holds from (1b) in Assumption 1, we suffice to show the following conditions (C2) and

(C3) for the application of Lemma 4.6.1.
(C2) ;' S0ty Vo | M 20| — 0 s:t. My — o0 andMy /N, — 0 as N — .
(C3) (fen,)* is uniformly integrable.

Denote \(; [MQ/QZZ%} aso?,. Then we have

Ko—1 Ko—1
1 1
2 2 2 2 _ 2 2
7 D Oin— 0ty < 3= D lotn— il = sw ol — i 0
[t ¢ = 0<h<K;—1

s.t. My, — oo asN, — oo from Assumption 2. Thus (C2) holds.

For (C3), we can show ﬁZMﬁﬁ < oo for somes > 1 from (1c) in Assumption 1 by
the similar argument as the proof of (C1). Let the centefed be Z;,. It is obvious that
EU‘ >onts Zi v

48 _ -1/2 Ny * 46
Therefore, the order oflﬁfwz\ = EU)]\Q we1 Zi1| becomesO(1). Then (C3) holds

ap
= O(N}”) because the sequent;, } is m-dependent with g Z;,

< Q.

because E|f57NZ|46 < oo implies that(f, n,)* is uniformly integrable. Finally these results yield

67— 07 @SNy — o0, O

The proof of Theorem 2

It is to see that the conditional expectatioméf) is

Eai(0)] = — D Eul i3] = 7(0). (26)



For the conditional variance 6f(¢), we have

| N L N, No—

. i +)
Vig[¥(0)] = V.J[— N, ZZlg,k)} = WZV Z Z Cows[ 213, 243, ]
L 2 N; k=1 j—1

1 Ny Ny 1y

< Lo [Vol2i]) 5 3 S (oowi 242, [} - o). e

£ =1 £ k=1 j=1

wherem, is defined asnax,;{Cowvy| ,fk),Zﬁﬂ]% 0,0 < j < N, — k}. Because of the finite
dependence o{fZﬁﬂ e |, 1y is finite. This implies \3[5(¢)] — 0 asN, goes to infinity and the
consistency of (¢) holds. Let the asymptotic varianceqf’) bew? = limy,_.o Ey [{NQ/ 2(A(0)—
7(6))}2] . We find the asymptotic normality 6f(¢) can be proved by the similar argument as the
proof of Lemma 1. The difference point @Zﬁ)}kNil and{Z,,}.*, is the amount of dependence.

A sequence o{Z}jj) Ne has more dependence th@f .}, becauseZﬁ) is constructed by the
product of returns on the nonoverlapping intervals where the length of each interval is longer than
those ofA;, and B;. However,Zf,;) is not correlated wichéjih for the distance of them being

large enough. O
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Figure 2: Pairs of returns on nonoverlapping intervals with/ (&)0 and (b)¢ < 0.
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Table 1: The bias and RMSE of cross-covariance estimatd@jsy(¢);; and(£)y .
TR () 30) (0] WO
bias RMSE bias RMSE bias RMSE
-30 0.0000 0.0000 0.0000 0.0022 0.0000 0.0025 -0.0001 0.0035
-25 0.0001 0.0000 0.0000 0.0022 0.0002 0.0025 0.0002 0.0036
-20 0.0004 0.0100 -0.0001 0.0022 0.0000 0.0028 -0.0002 0.0038
-15 0.0012 0.0400 -0.0003 0.0022 0.0000 0.0029 0.0002 0.0036
-14 0.0015 0.0500 -0.0007 0.0024 0.0001 0.0026 0.0001 0.0037
-13 0.0019 0.0600 -0.0009 0.0024 0.0001 0.0029 -0.0002 0.0037
-12  0.0024 0.0700 -0.0011 0.0025 0.0000 0.0028 0.0002 0.0036
-11 0.0029 0.0900 -0.0014 0.0027 -0.0001 0.0028 0.0000 0.0039
-10 0.0037 0.1200 -0.0017 0.0028 -0.0001 0.0029 0.0001 0.0038
-9 0.0046 0.1400 -0.0020 0.0030 0.0000 0.0029 0.0001 0.0040
-8 0.0057 0.1800 -0.0026 0.0034 -0.0001 0.0028 0.0000 0.0038
-7 0.0072 0.2300 -0.0032 0.0040 0.0001 0.0028 0.0000 0.0039
-6 0.0090 0.2800 -0.0040 0.0045 0.0000 0.0029 0.0001 0.0040
-5 0.0112 0.3500 -0.0051 0.0056 -0.0001 0.0030 0.0004 0.0040
-4 0.0139 0.4400 -0.0063 0.0067 -0.0001 0.0030 0.0001 0.0038
-3 0.0172 0.5400 -0.0079 0.0082 -0.0001 0.0029 0.0001 0.0038
-2 0.0210 0.6600 -0.0098 0.0100 -0.0003 0.0031 0.0001 0.0039
-1 0.0251 0.7900 -0.0122 0.0124 -0.0004 0.0032 -0.0001 0.0040
0 0.0286 0.9000 -0.0138 0.0139 -0.0004 0.0029 0.0000 0.0037
1 0.0222 0.7000 -0.0098 0.0101 -0.0003 0.0030 0.0001 0.0040
2 0.0175 0.5500 -0.0077 0.0081 -0.0001 0.0030 0.0001 0.0038
3 0.0139 0.4400 -0.0062 0.0066 -0.0001 0.0029 0.0002 0.0039
4 0.0111 0.3500 -0.0051 0.0055 -0.0002 0.0030 0.0001 0.0038
5
6
7
8
9

0.0089 0.2800 -0.0040 0.0046 -0.0001 0.0028 -0.0001 0.0040
0.0071 0.2200 -0.0032 0.0040 -0.0001 0.0029 0.0002 0.0038
0.0057 0.1800 -0.0024 0.0033 -0.0002 0.0029 -0.0001 0.0037
0.0045 0.1400 -0.0020 0.0030 -0.0001 0.0028 -0.0001 0.0039
0.0036 0.1100 -0.0017 0.0029 -0.0001 0.0029 0.0001 0.0037
10 0.0029 0.0900 -0.0014 0.0027 0.0000 0.0028 0.0001 0.0040
11 0.0023 0.0700 -0.0010 0.0024 0.0001 0.0028 -0.0004 0.0039
12 0.0018 0.0600 -0.0008 0.0023 -0.0001 0.0028 0.0000 0.0037
13 0.0015 0.0500 -0.0006 0.0023 0.0001 0.0028 0.0001 0.0036
14 0.0012 0.0400 -0.0005 0.0024 0.0001 0.0027 0.0001 0.0039
15 0.0010 0.0300 -0.0004 0.0022 0.0000 0.0028 0.0001 0.0037
20 0.0003 0.0100 0.0001 0.0022 0.0002 0.0027 0.0000 0.0037
25 0.0001 0.0000 -0.0002 0.0022 0.0002 0.0028 -0.0002 0.0038
30 0.0000 0.0000 0.0000 0.0022 0.0002 0.0025 -0.0001 0.0036

Note: The market microstructure noises are generated by a bivariate AR(1) preggsandp(¢) are true
cross-covariance and cross-correlatig(y) is the estimator constructed by usiagy.. 5(¢)( is the cross-

covariance estimator (13) usiﬂﬁ) with ¢ = 1 on the variance estimation in the test statistic (¥1))y 1
is the estimator through Voev and Lunde’s (2007) t-statistic.
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Table 2: The RMSE ratios 6f(¢) ), ¥(€)2, Y(€) 0.5 @andy(£) v to 4(€) -

L A0 AOp AOps  A(Ove
30 1.023 1.066 0976 1363
25 1065 1.023 0989 1432
20 0990 1.046 0961  1.326
15 1037 1061 0965  1.239
14 1061 1.037 1.046 1415
13 1.006 1.015 1.020  1.287
12 1.026 1016 1015  1.266
11 0988 0997  1.021  1.416
10 0.999  1.005 1.014  1.288
-9 0979 0995 0.993  1.381
-8 1017 1.001  1.007  1.370
-7 1.005 1.000 1.015  1.365
-6 1.002 0983 0.992  1.378
-5 0998 1010 0.999  1.357
-4 0993 0988 1.015  1.253
-3 0986 0969 1.001  1.327
-2 0993 1.001 0.999  1.267
-1 0955 0977 1.004  1.248

0 0941 0993 1010 1.256

1 0999 1.003 1.031  1.337

2 0979 0991 0997  1.280

3 1001 1.008 1.008  1.332

4 0961 0988 0966  1.258
5 1043 1.033 1.024  1.448
6
7
8
9

1.015 1.031 1.006 1.319
0.974 0.978 0.993 1.276
1.018 0.981 1.004 1.402
0.995 0.983 0.995 1.259
10 0.990 1.026 1.001 1.404
11 0.995 1.007 0.982 1.386
12 0.996 0.994 0.964 1.345
13 1.015 1.000 0.984 1.300
14  1.000 0.977 0.994 1.416
15 1.032 0.964 0.970 1.294
20 1.035 1.054 0.991 1.374
25 1.008 1.075 0.967 1.378
30 1.049 1.078 0.965 1.403

Note: 5(£) (4, Y(€)j2, ¥(€)1) and¥(£) (0.5 are the cross-covariance estimator (13) witk 4,2,1,0.5 on
the variance estimation in the test statistic (13)¢)y 1, is the estimator through Voev and Lunde’s (2007)
t-statistic.

33



Table 3: The bias and RMSE of autocovariance estimat@¢, ¥s(¢)2, 5(¢)p andys(£)(0.5)-

14

v5(£)

ps(f)

A5 (€) g

bias

RMSE

A5 () 2y
bias

RMSE

A5 () g

bias

RMSE

Y5(O)j0.5)
bias

RMSE
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10
11
12
13
14
15
16
17
18
19
20
25
30

0.0253
0.0209
0.0170
0.0137
0.0110
0.0088
0.0071
0.0057
0.0045
0.0036
0.0029
0.0023
0.0019
0.0015
0.0012
0.0010
0.0008
0.0006
0.0005
0.0004
0.0003
0.0001
0.0000

1.00
0.83
0.67
0.54
0.44
0.35
0.28
0.22
0.18
0.14
0.11
0.09
0.07
0.06
0.05
0.04
0.03
0.02
0.02
0.02
0.01
0.00
0.00

-0.0001
0.0001
-0.0001
0.0000
0.0000
0.0000
0.0000
-0.0001
0.0001
0.0000
0.0000
0.0000
-0.0001
0.0000
0.0000
-0.0001
-0.0001
-0.0001
0.0000
-0.0001
0.0000
0.0000
0.0000

0.0015
0.0056
0.0035
0.0027
0.0024
0.0021
0.0022
0.0022
0.0022
0.0022
0.0022
0.0022
0.0021
0.0020
0.0019
0.0019
0.0018
0.0017
0.0018
0.0018
0.0017
0.0015
0.0014

-0.0002
-0.0001
-0.0003
-0.0001
-0.0001
-0.0001
0.0000
-0.0001
0.0000
-0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
-0.0001
0.0001
0.0000
0.0000

0.0018
0.0055
0.0034
0.0028
0.0023
0.0021
0.0021
0.0022
0.0022
0.0021
0.0022
0.0022
0.0021
0.0019
0.0018
0.0019
0.0018
0.0018
0.0018
0.0018
0.0017
0.0015
0.0014

-0.0004
-0.0003
-0.0003
-0.0002
-0.0002
-0.0002
-0.0001
-0.0002
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
0.0000
-0.0001
-0.0001
-0.0001
-0.0001
0.0000
-0.0001
-0.0001
-0.0001
0.0000

0.0019
0.0054
0.0034
0.0027
0.0023
0.0021
0.0021
0.0022
0.0021
0.0022
0.0022
0.0021
0.0021
0.0019
0.0018
0.0019
0.0017
0.0018
0.0017
0.0018
0.0017
0.0015
0.0014

-0.0004
-0.0004
-0.0004
-0.0002
-0.0003
-0.0002
-0.0001
-0.0002
-0.0001
-0.0001
-0.0001
-0.0001
0.0000
-0.0001
-0.0001
-0.0001
-0.0001
-0.0001
0.0000
-0.0001
-0.0001
-0.0001
0.0000

0.0020
0.0055
0.0034
0.0027
0.0023
0.0021
0.0021
0.0022
0.0021
0.0021
0.0022
0.0022
0.0020
0.0019
0.0018
0.0019
0.0017
0.0017
0.0017
0.0018
0.0017
0.0014
0.0014

Note: The market microstructure noises are generated by a bivariate AR(1) progéég., ¥s(¢),

¥5(€) ) andds (£) (0.5 are the estimator (19) with= 4,2,1,0.5 in asset 2.
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Table 4: The results of autocovariance estimators. Case of true price process with non-zero drift.
(a) The bias and RMSE ratio 6{¢)p;; with drift parametef;, i2) to 4(¢);) without drift

(,ulv M?)
¢ no drift (0.05,0.05) (0.1,0.1) (0.5,0.5)

bias<100 bias<100 RMSE ratio biax100 RMSEratio biax100 RMSE ratio
-30 0.0010 0.0010 1.0001 0.0010 1.0001 0.0012 1.0006
-25  0.0209 0.0210 0.9999 0.0210 0.9999 0.0216 0.9993
-20 -0.0017 -0.0017 1.0000 -0.0018 1.0001 -0.0022 1.0004
-15 0.0001 0.0001 0.9999 0.0001 0.9997 0.0004 0.9988
-10 -0.0115 -0.0115 1.0000 -0.0116 1.0001 -0.0116 1.0004
-5 -0.0059 -0.0059 0.9999 -0.0060 0.9998 -0.0065 0.9988
-4 -0.0069 -0.0069 1.0001 -0.0069 1.0002 -0.0073 1.0012
-3 -0.0120 -0.0120 0.9999 -0.0120 0.9999 -0.0125 0.9995
-2 -0.0335 -0.0335 1.0001 -0.0335 1.0002 -0.0337 1.0011
-1  -0.0353 -0.0353 1.0000 -0.0353 0.9999 -0.0354 0.9998
0 -0.0396 -0.0397 1.0000 -0.0397 1.0000 -0.0397 1.0002
1 -0.0297 -0.0297 1.0000 -0.0298 0.9999 -0.0304 0.9997
2 -0.0095 -0.0095 0.9999 -0.0095 0.9998 -0.0099 0.9990
3 -0.0076 -0.0076 1.0000 -0.0076 1.0001 -0.0080 1.0004
4 -0.0219 -0.0219 1.0000 -0.0219 0.9999 -0.0219 0.9996
5 -0.0053 -0.0053 1.0000 -0.0054 0.9999 -0.0058 0.9996
10 0.0025 0.0025 1.0000 0.0025 1.0000 0.0029 0.9999
15 0.0009 0.0009 1.0000 0.0009 0.9999 0.0009 0.9997
20 0.0236 0.0236 1.0001 0.0236 1.0003 0.0239 1.0014
25 0.0228 0.0228 1.0000 0.0229 1.0000 0.0233 0.9999
30 0.0178 0.0178 1.0000 0.0179 0.9999 0.0184 0.9996

(b) The bias and RMSE ratio 6f;(¢)[;) with drift parametex;, 1) to 45(¢)[1) without drift.

(11, p2)
¢ no drift (0.05,0.05) (0.1,0.1) (0.5,0.5)
biasx100 biasx100 RMSEratio biax100 RMSE ratio biax100 RMSE ratio

0 -0.0361 -0.0361 1.0000 -0.0361 1.0000 -0.0365 0.9998
1 -0.0256 -0.0256 1.0000 -0.0257 1.0001 -0.0262 1.0004
2 -0.0315 -0.0315 1.0000 -0.0315 1.0000 -0.0318 1.0000
3 -0.0176 -0.0177 0.9998 -0.0177 0.9997 -0.0183 0.9984
4  -0.0227 -0.0227 1.0000 -0.0227 1.0000 -0.0230 1.0004

5 -0.0155  -0.0155 0.9999 -0.0155 0.9998 -0.0158 0.9989
10 -0.0083  -0.0083 0.9999 -0.0083 0.9997 -0.0085 0.9989
15 -0.0076  -0.0076 1.0000 -0.0076 1.0001 -0.0080 1.0005
20 -0.0083 -0.0083 1.0000 -0.0083 0.9999 -0.0085 0.9997
25 -0.0073 -0.0073 1.0001 -0.0074 1.0001 -0.0078 1.0007
30 -0.0038 -0.0038 1.0001 -0.0038 1.0002 -0.0039 1.0011

Note: In the simulation we use the stochastic differential model with non-zero drift in (23). We:seb)
as(0.05,0.05), (0.1,0.1) and(0.5, 0.5).
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Table 5. Autocovariance of univariate noise process.
(a) The variance estimates and the test statistics for the variance.

OoC MM NI
estimates 1.369 10° 1.296x 10" 2.209x 10’
test statistics 1411.64* 185.70* 3412.69*

(b) The test statistics for the autocovariance.

14 oC MM NI

1 -0.91 -3.98 -4.34
2 -0.95 -2.05 -4.9T
3 -0.24 -3.04 -3.82
4 -0.44 -2.26 -3.8T
5 -1.07 -3.72 -4.61
6 -1.04 -2.18 -3.03
7 -0.73 -2.19 -1.97
8 0.64 -2.12 -2.50
9 -0.95 -1.59 -0.18

10 -1.18 -2.16 -1.06
11  -0.49 -3.19 -0.91
12 0.17 -2.37 0.03
13 -0.98 -1.66 0.96
14 -0.46 -2.40 0.03
15 1.32 -2.67 0.95
16 0.40 -2.57 -0.27
17 -1.71 -2.63 -1.07

18 -1.01 -0.97 -0.58
19 -0.71 -0.62 0.64
20 -0.66 -0.38 -0.62
30 0.66 -0.77 1.28
40 0.41 -0.54 -0.52

50 -0.43 -0.42 0.53
60 1.69 1.59 0.92

Note: In the top table (a), the test statistic for the variance of noise is given by (20). The critical value at 5%
significance level is 3.84. The bottom table (b) shows the test statistic (21) for the autocovariance of noise
with ¢ > 0. The critical value of the test statistic (21) is 1.96 at 5% significance level. Supersdepbtes
significance at the 5% levels.
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Table 6: Test statistics for a cross-covariance of bivariate noise processes.

¢ OC-MM OC-NI MM-NI
-60 0.30 0.51 0.67
-50 -0.64 1.15 0.91
-40 0.51 0.05 -1.01
-30 1.85 0.03 -1.29
-20 -1.74 -0.11 -0.95
-15 -0.98 -0.68 1.30
-10 -0.89 -1.35 -0.66
-9 -1.31 0.02 -0.96
-8 -3.29 -0.36 0.72
-7 -3.37  -0.34 0.56
-6 -3.23 -0.99 -1.49
-5 -2.87 -1.56 0.18
-4 -3.33 -0.42 0.37
-3 -2.17 0.31 -2.48
-2 -2.17 0.01 -2.24
-1 -2.27 -0.83 -1.27
0 -2.07 0.20 -3.41
-243  -0.63 -4.66
-2.14  -0.86 -4.02
-240  -0.15 -2.25
-1.81 -1.66 -3.94
-1.10 -0.71 -4.35
-1.05 0.06 -2.33
-1.34 -0.77 -2.48
-2.83 -1.27 -1.51
-1.51 -0.21 -1.03
10 -1.40 -0.66 -0.82
15 -1.99 1.25 0.40
20 -1.61 1.25 -1.85
30 -0.53 -0.17 0.74
40 0.54 1.79 -0.31
50 0.39 -0.86 -0.73
60 0.69 -1.84 -0.79
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Note: The test statistic for the cross-covariance of the bivariate noise processes is given by (15). The critical
value of the test statistics (15) is 1.96 at 5% significance level. Supersa#stote significance at the 5%
levels.
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