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Abstract

There are many approaches for estimating an integrated variance and covariance in the

presence of market microstructure noise. It is important to know a dependence of noise to

construct the integrated variance and covariance estimators. We study a time dependence of

bivariate noise processes in this paper. We propose a test statistic for the dependence of the

noises and an autocovariance estimator of the noises and derive its asymptotic distribution.

The asymptotic distribution of the autocovariance estimator provides us to another test statistic

which is for significance of the autocovariances and for detection whether the noise exists or

not. We obtain good performances of the test statistics and autocovariance estimator of the

noises in a finite sample through Monte Carlo simulation. In empirical illustration, we confirm

that the proposed statistics and estimators capture various dependence patterns of the market

microstructure noises.
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1 Introduction

Estimating covariance matrix of two diffusion processes are important for option pricing, the mea-

surement of value-at-risk, and portfolio evaluation. High frequency financial prices have been used

for estimation of integrated variance and covariance. However, we must be careful to the high fre-

quency prices being contaminated with some noise. This noise, known as market microstructure

noise, has many sources, including the presence of bid-ask spread and the discreteness of the

prices. The realized volatility and covariance are not necessarily the best approach to estimate

integrated variance and covariance in the presence of noise. For the literature on the integrated

variance estimation with noise, Zhou (1996) proposes the kernel-based estimator. Zhang, Myk-

land and Äıt-Sahalia (2005) propose two scales realized volatility which is the linear combination

of realized volatilities at two frequencies. Zhang (2006) extend their estimator to multiple scales.

Bandi and Russell (2006) show the optimal frequency based on the minimization of mean squared

error. Although these studies are conducted under i.i.d. noise assumption, the market microstruc-

ture noise possibly has a time dependence. Under the dependent noise assumption, Aı̈t-Sahalia,

Mykland and Zhang (2006) modify the two scales and multiple scales realized volatilities. Hansen

and Lunde (2005, 2006) and Barndorff-Nielsen, Hansen, Lunde and Shephard (2006) develop

the kernel-based estimator. For the integrated covariance estimation with the dependent noise,

Voev and Lunde (2007) show that Hayashi and Yoshida’s (2005) cumulative covariance estimator

is biased in the presence of cross-correlated noises and propose modified cumulative covariance

estimators based on kernel and subsampling methods.

However, we need to know a characteristic of the noises to guarantee the adequacy of these

estimators described above because the unbiasedness, consistency and efficiency of them depend

on some assumptions for the noises. Whether the market microstructure noise is a time dependent

or not and the amount of its dependence could be one of interesting objects on high frequency

financial analysis. In this paper, we propose a test statistic to detect the dependence of bivariate

market microstructure noise processes and an autocovariance estimator of the noises. Voev and

Lunde (2007) propose a test statistic for the cross-sectional dependence of the noises in order
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to determine kernel bandwidth for their estimator. The main difference from Voev and Lunde’s

(2007) t-statistic is an evaluation of the variance of the cross-covariance estimator of the noises.

Althogh Voev and Lunde (2007) show the unbiasedness of the kernel-based cumulative covariance

estimator under the dependent noises, their t-statistic uses an approximated variance of the cross-

covariance estimator under the i.i.d. noises and its approximation requires to estimate an integrated

variance and a variance of the noise in advance. As denoted in their paper, it is natural that their

assumption leads to somewhat larger t-statistic than it should be. On the other hand, we show that

the test statistic can be constructed without such i.i.d. noise approximation by using subsampling

method and provide an autocovariance estimator of the bivariate noise processes and its asymptotic

distribution. Furthermore, we propose a test for significance of the autocovariance, including

a test for variance of the noise. We confirm good performances of the proposed test statistic

and autocovariance estimator in finite sample through Monte Carlo simulations. For an empirical

illustration, we apply these statistics to high frequency asset prices in Osaka Securities Exchange

and find that the market microstructure noises in some assets are significantly correlated.

The paper itself proceeds as follows. In section 2 we describe problem settings and background

on high frequency financial analysis. We propose the test statistic for cross-sectional dependence

of the noises in section 3. In section 4 we provide the autocovariance estimator of the bivariate

noise processes, its asymptotic distribution and the test statistic for its significance. Section 5

includes a simulation experiment and an empirical illustration. In section 6 we conclude the paper

with appendix that provide proofs about several lemmas and theorems.

2 Problem settings and background

Consider the logarithmic price processes of two assets,{P ∗
1 (t)} and{P ∗

2 (t)} which follow the

one-dimensional It̂o process with no drift on a probability space(Ω,F ,P),

dP ∗
l (t) = σl(t)dWl(t), l = 1, 2, t ∈ [0, T ], (1)

d⟨W1,W2⟩t = ρ∗(t)dt, ρ∗(t) ∈ (−1, 1),
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whereW1 andW2 are standard Brownian motions. The initial value of the priceP ∗
l (0) is a constant.

σl(t) > 0 of P ∗
l (t) is a bounded measurable function. The integrated variance and covariation of

P ∗
1 andP ∗

2 within time horizon[0, T ] is given by

IVl,T =

∫ T

0

σ2
l (u)du, ICT =

∫ T

0

σ1(u)σ2(u)ρ∗(u)du, l = 1, 2. (2)

We make some notation to represent intraday returns and irregularly nonsynchronous trading sys-

tem. r1,i := P1(ti) − P1(ti−1) is the i-th observed intraday return of an asset 1 andr2,j :=

P2(sj) − P2(sj−1) is the j-th one of an asset 2. Letti andsj be the end times of thei-th and

j-th intervals of the asset 1 and 2. The different notations for the transaction times in two assets are

due to the nonsynchronous trading.

Before showing the test statistic for the dependence and autocovariance estimator of noises, we

first review Hayashi and Yoshida’s (2005) cumulative covariance (CC) estimator for the nonsyn-

chronously observed process. Figure 1 illustrates a case of{(ti−1, ti] ∩ (sj−1, sj] ̸= ∅}. Then the

CC estimator is given by

CC =
∑
i,j

r1,ir2,j1{(ti−1,ti]∩(sj−1,sj ] ̸=∅}. (3)

The product ofr1,i andr2,j contributes to the estimation of the integrated covariance only if inter-

vals(ti−1, ti] and(sj−1, sj] are overlapping. The indicator function in (3) enables the CC estimator

to use a raw data without any data interpolations. When the observed returnsr1,i and r2,j are

returns from true price processr∗1,i = P ∗
1 (ti) − P ∗

1 (ti−1) andr∗2,j = P ∗
2 (sj) − P ∗

2 (sj−1), the CC

estimator is unbiased. Its consistency and asymptotic normality are proved in Hayashi and Yoshida

(2005, 2006).

However, the integrated volatility and covariance estimators with finer sampling do not con-

verge to the true values in many empirical studies because the transaction prices in high frequency

data usually is contaminated with market microstructure noise. It is related to imperfections in the

trading system established in the market microstructure literature. A simple way to model high
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frequency transaction data is to use hidden semi-martingale processes, as named by Mykland and

Zhang (2005). In this framework the logarithmic pricePl is observed with market microstructure

noises,

P1(ti) = P ∗
1 (ti) + η(ti), P2(sj) = P ∗

2 (sj) + δ(sj), (4)

whereP ∗
l (t) is the true logarithmic price described in (1) which appears in the market with no trad-

ing imperfections, frictions, or informational effects.η(ti) andδ(sj) are the market microstructure

noises in asset 1 and 2, respectively. We assume the properties of the market microstructure noises

as follows.

Assumption 1. The properties of the market microstructure noise.

Let a vector of market microstructure noise of asset 1 and 2 beu(t) = (η(t) δ(t))′.

(1a) {u(t)} is a sequence of random variables with zero means.

(1b) The bivariate noise processes are covariance stationary with autocovariance function which

has finite dependence in the sense that

Γ(ℓ) = E[u(t)u′(t − ℓ)] =

 γη(ℓ) γηδ(ℓ)

γδη(ℓ) γδ(ℓ)

 = 0, for all | ℓ |> m.

m is a finite positive number.Γ(ℓ) is a decreasing function of| ℓ |.

(1c) There exists some positive numberβ > 1 satisfiesE
∣∣u(t)u′(s)

∣∣4β
< ∞ for all t, s.

(1d) The noise process is independent with true price process.P ∗
l u(t), l = 1, 2.

To avoid complication of the subscript for (1b) we rewriteγηδ(ℓ) andγδη(ℓ) asγ(ℓ) andγ(−ℓ)

becauseγηδ(ℓ) = E[η(t)δ(t − ℓ)] andγδη(ℓ) = E[η(t − ℓ)δ(t)] = E[η(t)δ(t + ℓ)]. We define

the autocorrelation coefficients and the cross-correlation coefficient of two noises asρη(ℓ), ρδ(ℓ)

andρ(ℓ). For (1d), even ifP ∗
l andu(t) are correlated, the dependence of the noises generally
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dominates the dependence between the true price and noise as the number of high frequency ob-

servations increases. Furthermore, Hansen and Lunde (2006) suggest that the independence as-

sumption between the true price and noise does not cause the damage statistically for analysis of

asset prices in more trading intensities. We denote conditional expectation and variance given in-

tervalsI i := (ti−1, ti] andJ j := (sj−1, sj] for all i, j as EIJ[ · ] and VIJ[ · ]. Then the conditional

expectation of the CC estimator is

EIJ

[ ∑
i,j

r1,ir2,j1{Ii∩Jj ]̸=∅}

]
= EIJ

[ ∑
i,j

r∗1,ir
∗
2,j1{Ii∩Jj ̸=∅}

]
+ EIJ

[ ∑
i,j

eη,ieδ,j1{Ii∩Jj ̸=∅}

]
,

whereeη,i := η(ti)−η(ti−1) andeδ,j := δ(sj)−δ(sj−1). The first term converges to
∫ T

0
σ1(u)σ2(u)

ρ∗(u)du as shown in Hayashi and Yoshida (2005). The second term representing the bias of the

CC estimator is further decomposed as

EIJ

[∑
i,j

eη,ieδ,j1{Ii∩Jj ̸=∅}

]
=

∑
i,j

(
γ(ti − sj) − γ(ti − sj−1) − γ(ti−1 − sj) + γ(ti−1 − sj−1)

)
1{Ii∩Jj ̸=∅}.

It is obvious that the CC estimator is biased when the market microstructure noises are cross-

correlated. Voev and Lunde (2007) propose the bias-corrected CC estimator based on kernels.

They show that it is unbiased when cross-sectional dependence of the noises is correctly speci-

fied. For their estimator, we need to identify the cross-sectional dependence of the noises by using

t-statistic proposed in Voev and Lunde (2007). In their t-statistic, they use an approximated vari-

ance of cross-covariance estimator which is derived under the i.i.d. and no cross-correlated noises

assumptions. Therefore, the variance of cross-covariance estimator is undervalued and it leads

to larger t-statistic than it should be. Further their t-statistic includes unknown parameters such

that the integrated variance and the variance of the noises we have to estimate. To get rid of the

difficulties, we propose alternative test statistic for the cross-sectional dependence of the noises us-

ing subsampling method in section 3 and we provide the autocovariance estimator of the bivariate

noise processes, its asymptotic distribution and a test statistic for its significance in section 4.
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3 The test statistic for cross-sectional dependence of noises

In this section, we propose a test statistic for cross-sectional dependence of noises. Although we

cannot identify the covariation of the true price processes which have martingale property and the

covariance of the market microstructure noises in the pair of the overlapping intervals, we have

EIJ

[ ∑
i,j

r1,ir2,j1{Ii∩Jj ]̸=∅}

]
= EIJ

[∑
i,j

eη,ieδ,j1{Ii∩Jj ̸=∅}

]
, (5)

because of the covariation of the true price processes being zero in the pair of the nonoverlapping

intervals{I i ∩ J j = ∅}. We use the product of returns on the nonoverlapping intervals to identify

the covariance of the noises if it exists, as well with Voev and Lunde (2007).

3.1 Details of the test statistic

From Assumption (1b), the cross-covariance of two noises disappears when the noises are sep-

arated enough. We propose a test statistic to detect the distance where the cross-covariances of

the noises become zero in this subsection. For the nonoverlapping intervals{I i ∩ J j = ∅} and

ti−1−sj > 0, the distance between the intervals is defined asℓ = ti−1−sj. In case ofsj−1−ti > 0,

the difference of the nonoverlapping intervals is denoted byℓ = −(sj−1 − ti). The top panel (a)

and the lower panel (b) in Figure 2 illustrate the former and the latter cases, respectively. The

nonoverlapping adjacent intervals such thatti−1 − sj = 0 or sj−1 − ti = 0 are used in the case of

ℓ = 0. In what follows we consider the case ofℓ > 0 because we can construct the test statistic

for the other cases by replacing the definition ofℓ. We define the product of returns on thei-th and

j-th intervals using the indicator function which takes one if{I i ∩ J j = ∅} andℓ = ti−1 − sj > 0

as follows,

Zℓ,ij = r1,ir2,j1{{Ii∩Jj=∅} ∩ {ti−1−sj=ℓ}}, for all i, j. (6)

We take the conditional expectation ofZℓ,ij for any i, j such as the indicator function being one.

For anyi, j satisfying{I i ∩ J j = ∅} andti−1 − sj = ℓ, which is a nonoverlapping interval with
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distanceℓ,

EIJ

[
Zℓ,ij

]
= EIJ

[
η(ti)δ(sj)

]
− EIJ

[
η(ti)δ(sj−1)

]
− EIJ

[
η(ti−1)δ(sj)

]
+ EIJ

[
η(ti−1)δ(sj−1)

]
= γ(ℓ + ∆ti) − γ(ℓ + ∆ti + ∆sj) − γ(ℓ) + γ(ℓ + ∆sj) (7)

For all ℓ taking more than a large enoughL such thatγ(L) = 0, we obtainγ(ℓ) = 0 and

EIJ

[
Zℓ,ij

]
= 0 from (1b) in Assumption 1. Now supposes∗ := mins{s | γ(L − s) ̸= 0, s ≥ 0}.

This impliesγ(L) = γ(L − 1) = γ(L − 2) = · · · = γ(L − s∗ + 1) = 0 andγ(L − s∗) ̸= 0, and

EIJ

[
ZL,ij

]
= EIJ

[
ZL−1,ij

]
= EIJ

[
ZL−2,ij

]
= · · · = EIJ

[
ZL−s∗+1,ij

]
= 0 and EIJ

[
ZL−s∗,ij

]
̸= 0. It is

obvious that the source of EIJ

[
ZL−s∗,ij

]
̸= 0 is γ(L−s∗) ̸= 0. Changing the point of view, we set a

large enoughL such that EIJ
[
ZL,ij

]
= 0 and find the distanceℓ∗ such thatℓ∗ = maxℓ{EIJ

[
Zℓ,ij

]
̸=

0, ℓ ≤ L}. Then we conclude thatγ(ℓ∗ + 1) = 0 andγ(ℓ∗) ̸= 0 and that the threshold value

of the dependence becomes the distanceℓ∗. It is noted that whether EIJ
[
Zℓ,ij

]
= 0 or not is not

necessarily implies whetherγ(ℓ) = 0 or not. This is because the sum of all cross-covariances in

(7) incidentally takes zero even in case ofγ(ℓ) ̸= 0. To avoid such situation we apply the method

of determination forℓ∗ described above. The test statistic is constructed by using a sample mean of

Zℓ,ij which satisfies nonoverlapping intervals with the distanceℓ to determine the threshold value.

For the construction of the test statistic, we define a sequence{Zℓ,k}Nℓ
k=1 as follows. First we

selectZℓ,ij which satisfies{I i∩J j = ∅} andℓ = ti−1−sj. {Zℓ,k}Nℓ
k=1 is a sequence which arranges

the selectedZℓ,ij in ascending order of indexi. Nℓ is the total number of the products of returns on

the nonoverlapping intervals with the distanceℓ. We define thek-th pair of the selected intervals

asAk andBk. ThenZℓ,k is defined as a product of returns on nonoverlapping intervalsAk andBk.

Figure 3 illustrates each pair of intervals(Ak, Bk), (Ak+1, Bk+1) and(Ak+2, Bk+2) for k = 1. We

defineZ̄ℓ,Nℓ
:= 1

Nℓ

∑Nℓ

k=1 Zℓ,k as a sample mean ofZℓ,k and make the following assumption for

Zℓ,k.

Assumption 2. VIJ

[
n−1/2

∑k′+n
k=k′+1 Zℓ,k

]
→ σ2

ℓ,f , uniformly in anyk′, asn → ∞. This means:

For any sequence{nNℓ
} that tends to infinity withNℓ, supk′

∣∣VIJ

[
n
−1/2
Nℓ

∑k′+nNℓ

k=k′+1 Zℓ,k

]
−σ2

ℓ,f

∣∣ → 0

asNℓ → ∞.

7



This assumption states that the conditional variance of a standardized sample mean of{Zℓ,k′+1,

. . . , Zℓ,k′+n} is close to some limiting value as a sample sizen goes to infinity. Letfℓ,Nℓ
:=(

Z̄ℓ,Nℓ
−EIJ

[
Z̄ℓ,Nℓ

])
N

1/2
ℓ be the theoretical standardization forZ̄ℓ,Nℓ

. Then the asymptotic variance

of fℓ,Nℓ
is given by limNℓ→∞ EIJ

[(
fℓ,Nℓ

)2
]

= σ2
ℓ,f . It is noted that{Zℓ,k}Nℓ

k=1 is a sequence of

dependent and heterogeneously distributed random scalars because the variance depends on the

length of the irregularly observed interval and{Zℓ,k} is serially correlated. We obtain the following

lemma for the asymptotic normality.

Lemma 1. Suppose Assumptions 1 and 2 hold. AsNℓ goes to infinity, we have

fℓ,Nℓ

σℓ,f

a→ N(0, 1). (8)

The proof is given in Appendix. Next we consider the estimation ofσ2
ℓ,f . We construct a consistent

estimator ofσ2
ℓ,f by applying a subsampling method which is first proposed by Carlstein (1986).

Although Carlstein (1986) considers a variance estimation for a general statistic without specifying

the dependence in a stationary sequence, Fukuchi (1999) and Politis, Romano and Wolf (1999)

extend their results to heteroskedastic observations.

We define the subseries of{Zℓ,k}Nℓ
k=1 as follows.

{ZhMℓ
ℓ,Nℓ

} :=
(
Zℓ,hMℓ+1, Zℓ,hMℓ+2, · · · , Zℓ,(h+1)Mℓ

)
, 0 ≤ h ≤ Kℓ − 1, Kℓ =

[
Nℓ/Mℓ

]
,

where [ · ] denotes the integer part of a real number,Mℓ is a number of element in subseries

{ZhMℓ
ℓ,Mℓ

} andKℓ is a total number of subseries. We assume thatMℓ → ∞ andMℓ/Nℓ → 0 as

Nℓ → ∞. The variance estimator is given by

σ̂2
ℓ,f =

Mℓ

Kℓ

Kℓ−1∑
h=0

(
Z̄hMℓ

ℓ,Mℓ
− 1

Kℓ

Kℓ−1∑
h=0

Z̄hMℓ
ℓ,Mℓ

)2

, (9)

whereZ̄hMℓ
ℓ,Mℓ

is a sample mean of subseries{ZhMℓ
ℓ,Mℓ

}. We have the following lemma for the variance

estimator̂σ2
ℓ,f .
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Lemma 2. Suppose Assumptions 1 and 2 hold. LetMℓ be s.t.Mℓ → ∞ andMℓ/Nℓ → 0. Then

we have

σ̂2
ℓ,f →L2 σ2

ℓ,f as Nℓ → ∞. (10)

The proof is described in Appendix.

Our purpose in this section is to construct a test statistic to detect the distance where cross-

covariance of the noises becomes zero. The test statistic is derived from the results of Lemmas 1

and 2. Let the null hypothesis be EIJ[Zℓ,k] = 0 for all k, for givenℓ. The alternative hypothesis

consists of all possible deviations from the null. Then we have the following theorem for the test

statistic.

Theorem 1. Suppose Assumptions 1 and 2 hold. AsNℓ goes to infinity, we have

τ(ℓ) :=

√
NℓZ̄ℓ,Nℓ

σ̂ℓ,f

a→ N(0, 1) (11)

under the null hypothesis.τ(ℓ) diverges under the alternative.

The asymptotic normality of the test statistic follows directly from Lemmas 1 and 2.

The large numbers ofMℓ andKℓ are available for the variance estimation in (9) because the

high frequency transaction data yields a large number ofNℓ. However, it is difficult to determine

the optimal numbers ofMℓ andKℓ which minimizes mean squared error ofσ̂2
ℓ,f since we do not

know the covariance structure of the noises. The increase ofMℓ (i.e. the decrease ofKℓ) in fixed

Nℓ reduces a bias but increases a variance ofσ̂2
ℓ,f . It is known that the optimal asymptotic rate of

Mℓ is proportional toN1/3
ℓ for the subsampling variance estimation, that is, the asymptotic formula

is Mℓ = cN
1/3
ℓ wherec depends on underlying process. We investigate an influence by numbers of

Mℓ andKℓ selected underMℓ = cN
1/3
ℓ with somec through Monte Carlo simulations in section 5.

Next we summarize a procedure to identify the distance where the cross-covariance of noises

becomes zero. First we test the null hypothesis EIJ[ZL,k] = 0 for all k with a large valueL

using the test statistic (11). The null hypothesis EIJ[ZL,k] = 0 would not be rejected because

9



the cross-covariance between sufficiently separated noises is zero from (1b) of Assumption 1. If

EIJ[ZL,k] = 0 is not rejected as expected, secondly we will test whether EIJ[ZL−1,k] is zero or not.

If EIJ[ZL−1,k] = 0 is not reject, we proceed to judge the statistical significance for EIJ[ZL−2,k]. We

continue to test sequentially until the null being rejected. Finally we regard the distance where the

null is rejected the first time asℓ∗ = maxℓ{|τ(ℓ)| > c.v.} wherec.v. is a critical value of the test

statistic (11).

4 Consistent covariance estimators of noises

4.1 Cross-covariance estimator of noises

We consider an estimation of cross-covarianceγ(ℓ) in this subsection. It is obvious that the sample

mean ofZℓ,k does not give an unbiased estimator ofγ(ℓ) for anyℓ being less than a threshold value.

For construction of unbiased estimator, we have only to remedy the nonoverlapping intervals so as

to all cross-covariances in (7) exceptγ(ℓ) become zero by using the threshold value determined

through the test statistic (11). Suppose the bivariate noise processes have finite cross-sectional

dependence in the sense thatγ(ℓ) = 0 for ℓ > m+ > 0 and for−ℓ > m− > 0. Whenℓ is positive,

we definet(+)
i as the first transaction time of asset 1 which followsti subject tot(+)

i −sj > m+ and

s
(+)
j−1 as the last transaction time of asset 2 which is followed bysj−1 subject toti−1 − s

(+)
j−1 > m+.

As ℓ is negative, we defines(−)
j as the first transaction time of asset 2 which followssj subject

to s
(−)
j − ti > m− and t

(−)
i−1 as the last transaction times of asset 1 which is followed byti−1

subject tosj−1 − t
(−)
i−1 > m−. The returns on the intervals(ti−1, t

(+)
i ] and (t

(−)
i−1, ti] are denoted

by r
(+)
1,i := P1

(
t
(+)
i

)
− P1(ti−1) andr

(−)
1,i := P1(ti) − P1

(
t
(−)
i−1

)
. For the asset 2, the returns on

the intervals(sj−1, s
(−)
j ] and(s

(+)
j−1, sj] are denoted byr(−)

2,j := P2

(
s
(−)
j

)
− P2(sj−1) andr

(+)
2,j :=

P2(sj) − P2

(
s
(+)
j−1

)
, respectively. ThenZ(±)

ℓ,ij which modifiesZℓ,ij in (6) is defined as

Z
(±)
ℓ,ij =


r
(+)
1,i r

(+)
2,j 1{ti−1−sj=ℓ} if ℓ > 0

r
(+)
1,i r

(+)
2,j 1{ti−1−sj=0} + r

(−)
1,i r

(−)
2,j 1{sj−1−ti=0} if ℓ = 0

r
(−)
1,i r

(−)
2,j 1{sj−1−ti=−ℓ} if ℓ < 0

(12)
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The top panel (a), the middle panel (b) and the lower panel (c) in Figure 4 illustrate each pair

of intervals withℓ > 0, ℓ = 0 andℓ < 0, respectively. For allℓ > 0, cross-covariances where

the distances between the noises are further thanm+ take zero. The nonoverlapping intervals

described in (b) and (c) are given by the same idea as (a). The conditional expectation ofZ
(±)
ℓ,ij is

EIJ

[
Z

(±)
ℓ,ij

]
= −γ(ℓ). We selectZ(±)

ℓ,ij for all i, j such as the indicator function taking one and define

a sequence which arranges the selectedZ
(±)
ℓ,ij in ascending order of indexi as{Z(±)

ℓ,k }Nℓ
k=1. Then the

modified cross-covariance estimator is given by

γ̂(ℓ) = − 1

Nℓ

Nℓ∑
k=1

Z
(±)
ℓ,k . (13)

We obtain the followings theorem for the modified cross-covariance estimatorγ̂(ℓ).

Theorem 2. Suppose Assumptions 1 and 2 hold. Then we have

N
1/2
ℓ (γ̂(ℓ) − γ(ℓ))

a→ N(0, ω2
ℓ ), (14)

whereω2
ℓ = limNℓ→∞ EIJ

[{
N

1/2
ℓ (γ̂(ℓ) − γ(ℓ))

}2
]
.

The proof is described in Appendix. The asymptotic distribution ofγ̂(ℓ) established in Theorem 2

provides us the test statistic for the null hypothesisγ(ℓ) = 0 and the alternativeγ(ℓ) ̸= 0.

Corollary 1. The test for cross-covariance of market microstructure noises.

Let a subsampling estimator ofω2
ℓ beω̂2

ℓ . AsNℓ goes to infinity, we have

τ ∗(ℓ) :=

√
Nℓ γ̂(ℓ)

ω̂ℓ

a→ N(0, 1) (15)

under the null hypothesis.τ ∗(ℓ) diverges under the alternative.

It is noted that the bias of CC estimator (3) is virtually zero when the test statistic (15) does not

reject the nullγ(ℓ) = 0 for all ℓ. Even if the CC estimator is unbiased, the noise has a strong impact

on its variance. Therefore, we should use the Voev and Lunde’s (2007) subsampling cumulative

covariance estimator without kernel method.

11



4.2 Autocovariance estimator of noise

We propose the cross-covariance estimator of the noises and derive the test statistic for significance

of cross-covariance in the previous subsection. The framework is applicable for estimation of an

autocovariance of univariate noise process. We will briefly describe a consistent autocovariance

estimator of the noise in this subsection. The autocovariance estimator of the noise also requires

the distance where the autocovariance becomes virtually zero as the cross-covariance estimator of

the noises does. Then we start with the construction of the test statistic to identify its distance. we

define the product of returns on thei-th andj-th intervals for asset 1 using the indicator function

which takes one ifℓ = tj−1 − ti ≥ 0 as follows,

Z1,ℓ,ij = r1,ir1,j1{tj−1−ti=ℓ ≥0}, for all i, j. (16)

Let {Z1,ℓ,k}
N1,ℓ

k=1 be a sequence which arrangesZ1,ℓ,ij satisfyingℓ = tj−1 − ti ≥ 0 in ascending

order of indexi. N1,ℓ is a total number of a sequence{Z1,ℓ,k}. The null hypothesis is EIJ[Z1,ℓ,k]

= 0 for all k, for givenℓ and the alternative hypothesis consists of all possible deviations from the

null. The test statistic for this hypothesis is given by

τη(ℓ) :=

√
N1,ℓ Z̄1,ℓ,N1,ℓ

σ̂1,ℓ,f

, (17)

whereZ̄1,ℓ,N1,ℓ
is a sample mean of{Z1,ℓ,k}. σ̂2

1,ℓ,f is a subsampling estimator ofσ2
1,ℓ,f = limN1,ℓ→∞

EIJ

[(
f1,ℓ,N1,ℓ

)2
]
, wheref1,ℓ,N1,ℓ

:=
(
Z̄1,ℓ,N1,ℓ

−EIJ

[
Z̄1,ℓ,N1,ℓ

])
N

1/2
1,ℓ . Under the null we haveτη(ℓ)

a→

N(0, 1) asN1,ℓ goes to infinity. We define the threshold value of the finite dependence of noise for

asset 1 asm1 in the sense that the autocovariance functionγη(ℓ) for all ℓ > m1 is zero. The test

statistic (17) enables to identify the threshold valuem1.

To derive the autocovariance estimator of noise, we constructZ
(±)
1,ℓ,ij for all i, j using identified

threshold valuem1 as follows,

Z
(±)
1,ℓ,ij = r

(−)
1,i r

(+)
1,j 1{tj−1−ti=ℓ ≥0} =

(
P (ti) − P

(
t
(−)
i−1

))(
P

(
t
(+)
j

)
− P (tj−1)

)
1{tj−1−ti=ℓ ≥0}, (18)
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wheret
(+)
j is the first transaction time which followstj subject tot

(+)
j − ti > m1 and t

(−)
i−1 is

the last transaction time which is followed byti−1 subject totj−1 − t
(−)
i−1 > m1. Then we have

EIJ[Z
(±)
1,ℓ,ij] = γη(ℓ) for all ℓ. We selectZ(±)

1,ℓ,ij such as the indicator function taking one and define

a sequence which arranges the selectedZ
(±)
1,ℓ,ij in ascending order of indexi as{Z(±)

1,ℓ,k}
N1,ℓ

k=1 . The

autocovariance estimator of the noise and its asymptotic distribution are given by

γ̂η(ℓ) = − 1

N1,ℓ

N1,ℓ∑
k=1

Z
(±)
1,ℓ,k, N

1/2
1,ℓ

(
γ̂η(ℓ) − γη(ℓ)

) a→ N
(
0, ω2

η,ℓ

)
, (19)

whereω2
η,ℓ = limN1,ℓ→∞ EIJ

[{
N

1/2
1,ℓ (γ̂η(ℓ) − γη(ℓ))

}2
]
. Once the asymptotic normality ofγ̂η(ℓ) is

established, a test statistic to detect whether the autocovariance of the noise is zero or not is defined

as follows.

Corollary 2. The test for autocovariance of market microstructure noise.

• Case ofℓ = 0, that is, test for the variance of the noise.

Let the null hypothesis and the alternative beσ2
η = 0 and σ2

η > 0, and a subsampling

estimator ofω2
η,0 beω̂2

η,0. AsN1,0 goes to infinity, the one-sided test statistic for the variance

of the noise is

τ ∗
η (0) =

(√
N1,0 γ̂η(0)

ω̂η,0

)2 a→ χ(1) (20)

under the null hypothesis.τ ∗
η (0) diverges under the alternative.

• Case ofℓ > 0.

Let the null hypothesis and the alternative beγη(ℓ) = 0 andγη(ℓ) ̸= 0, and a subsampling

estimator ofω2
η,ℓ be ω̂2

η,ℓ. AsN1,ℓ goes to infinity, the test statistic for the significance of the

autocovariance of the noise is

τ ∗
η (ℓ) :=

√
N1,ℓ γ̂η(ℓ)

ω̂η,ℓ

a→ N(0, 1) (21)

under the null hypothesis.τ ∗
η (ℓ) diverges under the alternative.
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5 Monte Carlo simulation and Empirical illustration

5.1 Finite sample properties of autocovariance estimator of noises

We examine the bias and root mean squared error (RMSE) of the autocovariance estimator (13)

and (19) of bivariate noise processes using threshold values identified by the test statistic (11) and

(17) through Monte Carlo simulation. We use data generation process introduced in Voev and

Lunde (2007). The true price processesP ∗
1 andP ∗

2 follows the stochastic differential models,

dP ∗
l (t) = σl(t)

[√
1 − λ2

l dW
(A)
l (t) + λldW

(B)
l (t)

]
, (22)

dσ2
l (t) = κl(θl − σ2

l (t))dt + ωlσ
2
l (t)dW

(B)
l (t), l = 1, 2,

whereW
(·)
l is a standard Brownian motion andσl(t) follows the GARCH diffusion process.W (A)

1

andW
(A)
2 are correlated, that is,d⟨W (A)

1 , W
(A)
2 ⟩t = ρ∗(t)dt. To generate stochastic correlation

ρ∗(t), it is represented by the anti-Fisher transformation,

ρ∗(t) =
exp(2x(t)) − 1

exp(2x(t)) + 1
,

dx(t) = κ3(θ3 − x(t))dt + ω3x(t)dW (t),

wherex(t) follows the GARCH diffusion process. We take(λ1, λ2) = (0.5, 0.5), (κ1, κ2, κ3) =

(0.3, 0.2, 0.1), (θ1, θ2, θ3) = (0.1, 0.1, 0.1) and(ω1, ω2, ω3) = (0.2, 0.3, 0.1). The integrated vari-

ance and covariance ofP ∗
1 andP ∗

2 within the time horizon[0, T ] is given by

IVl,T =

∫ T

0

σ2
l (u)du, ICT =

∫ T

0

σ1(u)σ2(u)
√

(1 − λ2
1)(1 − λ2

2)ρ
∗(u)du, l = 1, 2.

The subsequent simulation settings are the followings.

1. We set trading time per day as 6.5 hours like NYSE and NASDAQ, and the minimum time

interval as one second.

2. We generate the noise process which follows a bivariate AR(1) process. To set a variance
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of the noise we use a noise-to-signal ratio defined as the variance of the noise divided by

integrated variance. Hansen and Lunde (2006) report the noise-to-signal ratios take a range

from 0.0002 to 0.006 using transaction data for thirty equities in NYSE and NASDAQ. Then

we set the variance of noise such that noise-to-signal ratios of asset 1 and 2 averagely take

0.005, 0.002, respectively. The average observed time intervals of asset 1 and 2 are chosen

as 10 and 5 seconds from Poisson observation arrivals.

3. We identify the distance where the covariance of the noises becomes virtually zero through

the test statistic (11) and (17), and estimate the autocovariance estimator of the bivariate

noise processes (13) and (19).

On the cross-covariance of the noises, we evaluate performances of the following cross-covariance

estimators.

• a cross-covariance estimator constructed by usingZℓ,k, that is,γ̃(ℓ) := − 1
Nℓ

∑Nℓ

k=1 Zℓ,k.

• the cross-covariance estimatorγ̂(ℓ) in (13). To determineMℓ (number of element in sub-

series) andKℓ (total number of subseries) on the variance estimation in the test statistic (11),

we use the asymptotic formulaMℓ = cN
1/3
ℓ . We denote the cross-covariance estimator as

γ̂(ℓ)[c]. We setc = 4, 2, 1 and0.5 to investigate an influence byMℓ andKℓ.

• the cross-covariance estimator (13) through Voev and Lunde’s (2007) t-statistic:γ̂(ℓ)V L. We

use their t-statistic to identify the distance where cross-covariance becomes virtually zero.

Table 1 summarizes the sample bias and RMSE of the cross-covariance estimatorsγ̃(ℓ), γ̂(ℓ)[1]

andγ̂(ℓ)V L, where the number of repetition is one thousand. The second and third columns repre-

sent true cross-covarianceγ(ℓ) and correlation coefficientρ(ℓ) with each value ofℓ. γ̃(ℓ) is more

biased asℓ approaches to zero as expected. The biases ofγ̂(ℓ)[c=1] andγ̂(ℓ)V L are virtually zero

andγ̂(ℓ)[1] has the smaller RMSE than̂γ(ℓ)V L for all ℓ. The smaller RMSE of̂γ(ℓ)[1] comes from

the shorter intervals for construction ofγ̂(ℓ)[1] relative to that for̂γ(ℓ)V L.

In the next simulation experiment, we investigate the influence ofMℓ andKℓ selected at fixed

Nℓ underMℓ = cN
1/3
ℓ on the variance estimation in the test statistic (11). Although we should
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determine the value ofc in accordance with the dependence of the noises, we do not know about

the dependence in advance. Even in our simulation settings, it is not easy to select the optimal

value ofc. In general, when the noise processes have more dependence, the value ofc will be

large. We conduct simulations under several values ofc such thatc = 4, 2, 1 and0.5. In this

simulation settings, we obtain averagely 450 and 900 realizations ofNℓ with ℓ > 0 andℓ = 0,

respectively. Then the average numbers ofMℓ andKℓ with somec is (c,Mℓ, Kℓ) =(4, 30, 15),

(2, 15, 30), (1, 8, 45) and(0.5, 4, 110) in case ofℓ > 0. Table 2 represents RMSE ratios ofγ̂(ℓ)[4],

γ̂(ℓ)[2], γ̂(ℓ)[0.5] andγ̂(ℓ)V L to γ̂(ℓ)[1]. Figure 5 plots the RMSE ratios in Table 2.γ̂(ℓ)V L uniformly

takes RMSE about 1.3 times as larger as the cross-covariance estimators with variousc. The results

show that the cross-covariance estimator is robust for selection ofc.

Table 3 summarizes the bias and RMSE of the autocovariance estimator (19) of univariate noise

through the test statistic (17) in asset 2. Figure 6 plots the bias and RMSE ratios ofγ̂δ(ℓ)[4], γ̂δ(ℓ)[2]

and γ̂δ(ℓ)[0.5] to γ̂δ(ℓ)[1]. Although we will see some bias asc takes a smaller value, these biases

are enough close to zero and RMSE is the almost same value for allc. It is noted that RMSE of

γδ(ℓ) for ℓ = 1, 2 takes somewhat larger values than that ofγδ(ℓ) for the otherℓ as in Table 3. This

is caused by smaller numbers ofN2,ℓ for ℓ = 1, 2. In this experiment,N2,1 andN2,2 are about1/6,

1/2 of N2,ℓ for the otherℓ because the average observed time interval of asset 2 is set as 5 seconds.

So far, we have assumed that the true price follows Itô process with no drift as in (1). Now we

consider the case with non-zero drift. The product of the noises dominates that of the drift term

as the length of interval shrinks to zero. However, it is not clear about whether an influence of the

drift is negligible or not since the estimators and test statistics proposed in this paper are based on

the expanded intervals as in (12) and (18).

In this simulation, we add the drift term to the true price process,

dP ∗
l (t) = µldt + σl(t)

[√
1 − λ2

l dW
(A)
l (t) + λldW

(B)
l (t)

]
, l = 1, 2, (23)

whereµl is a constant and(µ1, µ2) is set as(0.05, 0.05), (0.1, 0.1) and (0.5, 0.5). We estimate

γ̂(ℓ)[1] and γ̂δ(ℓ)[1] under the above settings. Table 4 represents the biases and RMSE ratios of
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these estimates tôγ(ℓ)[1] andγ̂δ(ℓ)[1] which are estimated using the data generation process with

zero drift as in (22). The biases of the estimators are quite small and RMSE ratios take around one

even in case of(µ1, µ2) = (0.5, 0.5) which represents a rapid trend acceleration. We find that the

autocovariance estimator of the noises are not much effected by the presence of the non-zero drift

term.

5.2 Empirical illustration

We have established the test statistics and the autocovariance estimator of noises in section 3 and 4.

In this subsection we apply these statistics to high-frequency transaction prices of three stocks in

Osaka Securities Exchange; OMRON Corporation (OC), Murata Manufacturing Co., Ltd. (MM)

and Nintendo Co., Ltd. (NI). We investigate whether the noise exists or not, estimate autocovari-

ances of the noises and judge their significance if the noise exists.

First we test whether the noise exists or not using the test statistic (20) which requires the vari-

ance estimator (19). To identifym1, we start with testing whether EIJ[Z1,L,k] = 0 or EIJ[Z1,L,k] ̸= 0

for all k with a large valueL through the test statistic (17). In this empirical illustration, we set

L = 60. When the total number of{Z1,ℓ,k} for eachℓ is not large enough for empirical analysis, we

use multiple days to obtain a large sample size. In case ofD days high-frequency data, we define

n
(d)
ℓ as the total number of{Z1,ℓ,k} in d-th day whered = {1, · · · , D}. We setD = 83 for the

illustration and the sample period is from March 1, 2007 until June 29, 2007 for 83 trading days.

On the first day we obtain{Z1,60,1, · · · , Z
1,60,n

(1)
60
} and{Z1,60,n(1)+1, · · · , Z

1,60,n
(1)
60 +n

(2)
60
} is sampled

on the second day. The total number of{Z1,60,k} in the sample period isN1,60 =
∑D

d=1 n
(d)
60 . If the

null EIJ[Z1,60,k] = 0 is not rejected, we will test whether EIJ[Z1,59,k] is zero or not. We continue

to test sequentially until the null being rejected. Finally we regard the distance where the null is

rejected the first time asm1. Then we estimate the variance of noiseγη(0) by (19) and test the null

hypothesisσ2
η = 0 using (20). If the test statistic (20) rejects the null, we estimate the autocovari-

ance of the noiseγη(ℓ) by the estimator (19) and check its significance through the test statistic

(21).

Table 5 (a) shows the test statistic (20) for the variance of noise at 5% significance level where
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the critical value is 3.84. We confirm that market microstructure noise in each asset exists because

the variance of noise is significantly larger than zero. The variances of the noise in OC, MM

and NI are estimated as1.369 × 10−6, 1.296 × 10−7 and2.209 × 10−7. Table 5 (b) shows the

test statistic (21) for the significance of the autocovariance where the critical value is 1.96 at 5%

significance level. The dependence of the noise differs for each asset, that is, the noise in OC is

uncorrelated and the dependences in MM and NI disappear over 17 and 8 seconds. Figure 6 plots

three autocorrelation functionŝρη(ℓ) = γ̂η(ℓ)/γ̂η(0). We find that the microstructure noise in each

asset except OC is negatively autocorrelated.

Next we estimate a cross-covariance of the noises for two assets. We use the test statistic (11)

and the cross-covariance estimator (13) and judge the significance of the cross-covariance through

the test statistic (15), similarly as the univariate noise case. The results are reported in Table 6.

In OC-MM and MM-NI, the cross-covariances are significantly different from zero within−8 ≤

ℓ ≤ 15 and−3 ≤ ℓ ≤ 7 at 5% significance level. Figure 7 plots three cross-correlation functions

ρ̂(ℓ) = γ̂(ℓ)/
√

γ̂η(0)γ̂δ(0). The negative and asymmetric cross-correlations are found in OC-MM

and MM-NI. These empirical illustration shows that the market microstructure noise for each asset

a various dependence patterns. In this way, the proposed test statistics and autocovariance estimator

of bivariate noise processes gives us an insightful analysis of market microstructure noise.

6 Concluding Remarks

Numerous studies have proposed integrated variance and covariance estimators in the presence

of market microstructure noise because realized variance, realized covariance and cumulative co-

variance estimators deteriorate with the noise. It is important to know a dependence of noise to

construct a proper integrated variance and covariance estimator suited for the noise properties. In

this paper we propose a test statistic to detect a distance where the autocovariance of bivariate

noise processes becomes virtually zero for a consistent autocovariance estimator of the noises.

Furthermore we show the asymptotic distribution of the autocovariance estimator and propose an

another test statistic for its significance. We find that the test statistic and autocovariance estimator
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have good performance through Monte Carlo simulations. The empirical illustration confirms that

the proposed statistics enable to capture various dependence patterns of the noises in several as-

sets. The statistical analysis for the market microstructure noise will give us some evidence about

the influences of the market regularity and trading mechanism to the asset pricing in the financial

market. The proposed method will shed light on the market microstructure.

Appendix

The proof of Lemma 1.

Let the start times and end times of intervalsAk andBk be Ak, Bk andAk, Bk, that is,Ak =

( Ak, Ak ] and Bk = ( Bk, Bk ]. We consider the dependence betweenZℓ,k and Zℓ,k+h for

any h such thatBk+h − Ak ≥ 0. It is obvious thatZℓ,k has finite dependence from (1b) and

(1d) in Assumption 1. Although there are some central limit theorem for finite dependence such

that Hoeffding and Robbins (1948) and Serfling (1968), we apply the results given by Theorem

3.1 in Politis, Romano and Wolf (1997) because our studies are applicable to the more general

dependence cases such as the mixing sequence. Assumption 2 implies the conditional variance of

a standardized sample mean of{Zℓ,k′+1, . . . , Zℓ,k′+n} for anyk′ approaches to the limiting value

σ2
ℓ,f . The condition for the strong mixing coefficient in Theorem 3.1 of Politis, Romano and Wolf

(1997) is satisfied from (1b) in Assumption 1. Therefore, it suffices to show the following condition

for the application of their central limit theorem.

(C1) EIJ|Zℓ,k|2β < ∞, for someβ > 1.

Let ∆η(Ak) := η(Ak) − η(Ak) and∆δ(Bk) := δ(Bk) − δ(Bk) be the differences between the

noises on each intervalAk andBk. Zℓ,k is decomposed as

Zℓ,k =
(
P1(Ak) − P1(Ak)

)(
P2(Bk) − P2(Bk)

)
=

∫
Ak

σ1(u)dW1(u)

∫
Bk

σ2(u)dW2(u)

+

∫
Ak

σ1(u)dW1(u)∆δ(Bk) +

∫
Bk

σ2(u)dW2(u)∆η(Ak) + ∆η(Ak)∆δ(Bk). (24)
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We takeσ1(t), σ2(t) < C whereC is a constant becauseσ1(t) andσ2(t) are bounded. On each

intervalAk andBk,

EIJ

∣∣∣ ∫
Ak

σ1(u)dW1(u)
∣∣∣2β

<
∣∣C∣∣2β

EIJ

∣∣∣ ∫
Ak

dW1(u)
∣∣∣2β

< ∞ and EIJ

∣∣∣ ∫
Bk

σ2(u)dW2(u)
∣∣∣2β

< ∞.

SinceAk andBk are nonoverlapping, the high-order absolute moment of the first term in (24)

EIJ

∣∣∣ ∫
Ak

σ1(u)dW1(u)
∫

Bk
σ2(u)dW2(u)

∣∣∣2β

= EIJ

∣∣∣ ∫
Ak

σ1(u)dW1(u)
∣∣∣2β

EIJ

∣∣∣ ∫Bk
σ2(u)dW2(u)

∣∣∣2β

is bounded. From (1c) in Assumption 1 and Minkowski’s inequality,

EIJ

∣∣∆δ(Bk)
∣∣2β ≤

(
∥ δ(Bk) ∥2β + ∥ δ(Bk) ∥2β

)2β
< ∞,

where∥ δ(·) ∥2β=
(
EIJ

∣∣δ(·)∣∣2β) 1
2β . From (1d) in Assumption 1 the high-order absolute moment of

the second term in (24) has

EIJ

∣∣∣ ∫
Ak

σ1(u)dW1(u)∆δ(Bk)
∣∣∣2β

= EIJ

∣∣∣ ∫
Ak

σ1(u)dW1(u)
∣∣∣2β

EIJ

∣∣∣∆δ(Bk)
∣∣∣2β

< ∞.

For the third term of (24), EIJ
∣∣∣ ∫Bk

σ2(u)dW2(u)∆η(Ak)
∣∣∣2β

< ∞. From (1c) in Assumption 1 the

high-order absolute moment of the fourth term of (24) has

EIJ

∣∣∆η(Ak)∆δ(Bk)
∣∣2β

= EIJ

∣∣η( Ak )δ( Bk ) − η( Ak )δ( Bk ) − η( Ak )δ( Bk ) + η( Ak )δ( Bk )
∣∣2β

≤
(
∥ η( Ak )δ( Bk ) ∥2β + ∥ η( Ak )δ( Bk ) ∥2β + ∥ η( Ak )δ( Bk ) ∥2β + ∥ η( Ak )δ( Bk ) ∥2β

)2β

< ∞.

Finally, we have

EIJ

∣∣Zℓ,k

∣∣2β ≤
(
∥

∫
Ak

σ1(u)dW1(u)
∫

Bk
σ2(u)dW2(u) ∥2β + ∥

∫
Ak

σ1(u)dW1(u)∆δ(Bk) ∥2β
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+ ∥
∫

Bk
σ2(u)dW2(u)∆η(Ak) ∥2β + ∥ ∆η(Ak)∆δ(Bk) ∥2β

)2β

< ∞. (25)

The condition (C1) holds. Then we obtain the asymptotic normality offℓ,Nℓ
from the central limit

result in Politis, Romano and Wolf (1997).

The proof of Lemma 2.

To show the consistency of the variance estimator in (9) we applyL2-convergence of the subsam-

pling estimator given by Lemma 4.6.1 in Politis, Romano and Wolf (1999). Because strong mixing

condition holds from (1b) in Assumption 1, we suffice to show the following conditions (C2) and

(C3) for the application of Lemma 4.6.1.

(C2) K−1
ℓ

∑Kℓ−1
h=0 V IJ

[
M

1/2
ℓ Z̄hMℓ

ℓ,Mℓ

]
→ σ2

ℓ,f s.t.Mℓ → ∞ andMℓ/Nℓ → 0 asNℓ → ∞.

(C3) (fℓ,Nℓ
)4 is uniformly integrable.

Denote VIJ

[
M

1/2
ℓ Z̄hMℓ

ℓ,Mℓ

]
asσ2

ℓ,h. Then we have

1

Kℓ

Kℓ−1∑
h=0

σ2
ℓ,h − σ2

ℓ,f ≤ 1

Kℓ

Kℓ−1∑
h=0

∣∣σ2
ℓ,h − σ2

ℓ,f

∣∣ = sup
0≤h≤Kℓ−1

∣∣σ2
ℓ,h − σ2

ℓ,f

∣∣ → 0

s.t.Mℓ → ∞ asNℓ → ∞ from Assumption 2. Thus (C2) holds.

For (C3), we can show EIJ
∣∣Zℓ,k

∣∣4β
< ∞ for someβ > 1 from (1c) in Assumption 1 by

the similar argument as the proof of (C1). Let the centeredZℓ,k be Z∗
ℓ,k. It is obvious that

EIJ

∣∣∣ ∑Nℓ

k=1 Z∗
ℓ,k

∣∣∣4β

= O
(
N2β

ℓ

)
because the sequence{Z∗

ℓ,k} is m-dependent with EIJ
∣∣Z∗

ℓ,k

∣∣4β
< ∞.

Therefore, the order of EIJ
∣∣fℓ,Nℓ

∣∣4β
= EIJ

∣∣∣N−1/2
ℓ

∑Nℓ

k=1 Z∗
ℓ,k

∣∣∣4β

becomesO(1). Then (C3) holds

because EIJ
∣∣fℓ,Nℓ

∣∣4β
< ∞ implies that(fℓ,Nℓ

)4 is uniformly integrable. Finally these results yield

σ̂2
ℓ,f

a→ σ2
ℓ,f asNℓ → ∞.

The proof of Theorem 2.

It is to see that the conditional expectation ofγ̂(ℓ) is

EIJ[γ̂(ℓ)] = − 1

Nℓ

Nℓ∑
k=1

EIJ[Z
(±)
ℓ,k ] = γ(ℓ). (26)
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For the conditional variance of̂γ(ℓ), we have

V IJ[γ̂(ℓ)] = VIJ

[
− 1

Nℓ

Nℓ∑
k=1

Z
(±)
ℓ,k

]
=

1

N2
ℓ

Nℓ∑
k=1

VIJ

[
Z

(±)
ℓ,k

]
+

2

N2
ℓ

Nℓ∑
k=1

Nℓ−k∑
j=1

CovIJ

[
Z

(±)
ℓ,k , Z

(±)
ℓ,k+j

]
≤ 1

N2
ℓ

Nℓ∑
k=1

max
k

{
VIJ

[
Z

(±)
ℓ,k

]}
+

2

N2
ℓ

Nℓ∑
k=1

m̃k∑
j=1

max
k

{∣∣∣CovIJ

[
Z

(±)
ℓ,k , Z

(±)
ℓ,k+j

]∣∣∣} = O
( 1

Nℓ

)
, (27)

wherem̃k is defined asmaxj{CovIJ[Z
(±)
ℓ,k , Z

(±)
ℓ,k+j ]̸= 0, 0 < j ≤ Nℓ − k}. Because of the finite

dependence of{Z(±)
ℓ,k+j}

Nℓ
k=1, m̃k is finite. This implies VIJ[γ̂(ℓ)] → 0 asNℓ goes to infinity and the

consistency of̂γ(ℓ) holds. Let the asymptotic variance ofγ̂(ℓ) beω2
ℓ = limNℓ→∞ EIJ

[{
N

1/2
ℓ (γ̂(ℓ)−

γ(ℓ))
}2

]
. We find the asymptotic normality of̂γ(ℓ) can be proved by the similar argument as the

proof of Lemma 1. The difference point of{Z(±)
ℓ,k }Nℓ

k=1 and{Zℓ,k}Nℓ
k=1 is the amount of dependence.

A sequence of{Z(±)
ℓ,k }Nℓ

k=1 has more dependence than{Zℓ,k}Nℓ
k=1 becauseZ(±)

ℓ,k is constructed by the

product of returns on the nonoverlapping intervals where the length of each interval is longer than

those ofAk andBk. However,Z(±)
ℓ,k is not correlated withZ(±)

ℓ,k+h for the distance of them being

large enough.
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Figure 7: Autocorrelation functions of the noise in OC, MM and NI.
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Table 1: The bias and RMSE of cross-covariance estimatorsγ̃(ℓ), γ̂(ℓ)[1] andγ̂(ℓ)V L.
ℓ γ(ℓ) ρ(ℓ) γ̃(ℓ) γ̂(ℓ)[1] γ̂(ℓ)V L

bias RMSE bias RMSE bias RMSE
-30 0.0000 0.0000 0.0000 0.0022 0.0000 0.0025 -0.0001 0.0035
-25 0.0001 0.0000 0.0000 0.0022 0.0002 0.0025 0.0002 0.0036
-20 0.0004 0.0100 -0.0001 0.0022 0.0000 0.0028 -0.0002 0.0038
-15 0.0012 0.0400 -0.0003 0.0022 0.0000 0.0029 0.0002 0.0036
-14 0.0015 0.0500 -0.0007 0.0024 0.0001 0.0026 0.0001 0.0037
-13 0.0019 0.0600 -0.0009 0.0024 0.0001 0.0029 -0.0002 0.0037
-12 0.0024 0.0700 -0.0011 0.0025 0.0000 0.0028 0.0002 0.0036
-11 0.0029 0.0900 -0.0014 0.0027 -0.0001 0.0028 0.0000 0.0039
-10 0.0037 0.1200 -0.0017 0.0028 -0.0001 0.0029 0.0001 0.0038
-9 0.0046 0.1400 -0.0020 0.0030 0.0000 0.0029 0.0001 0.0040
-8 0.0057 0.1800 -0.0026 0.0034 -0.0001 0.0028 0.0000 0.0038
-7 0.0072 0.2300 -0.0032 0.0040 0.0001 0.0028 0.0000 0.0039
-6 0.0090 0.2800 -0.0040 0.0045 0.0000 0.0029 0.0001 0.0040
-5 0.0112 0.3500 -0.0051 0.0056 -0.0001 0.0030 0.0004 0.0040
-4 0.0139 0.4400 -0.0063 0.0067 -0.0001 0.0030 0.0001 0.0038
-3 0.0172 0.5400 -0.0079 0.0082 -0.0001 0.0029 0.0001 0.0038
-2 0.0210 0.6600 -0.0098 0.0100 -0.0003 0.0031 0.0001 0.0039
-1 0.0251 0.7900 -0.0122 0.0124 -0.0004 0.0032 -0.0001 0.0040
0 0.0286 0.9000 -0.0138 0.0139 -0.0004 0.0029 0.0000 0.0037
1 0.0222 0.7000 -0.0098 0.0101 -0.0003 0.0030 0.0001 0.0040
2 0.0175 0.5500 -0.0077 0.0081 -0.0001 0.0030 0.0001 0.0038
3 0.0139 0.4400 -0.0062 0.0066 -0.0001 0.0029 0.0002 0.0039
4 0.0111 0.3500 -0.0051 0.0055 -0.0002 0.0030 0.0001 0.0038
5 0.0089 0.2800 -0.0040 0.0046 -0.0001 0.0028 -0.0001 0.0040
6 0.0071 0.2200 -0.0032 0.0040 -0.0001 0.0029 0.0002 0.0038
7 0.0057 0.1800 -0.0024 0.0033 -0.0002 0.0029 -0.0001 0.0037
8 0.0045 0.1400 -0.0020 0.0030 -0.0001 0.0028 -0.0001 0.0039
9 0.0036 0.1100 -0.0017 0.0029 -0.0001 0.0029 0.0001 0.0037
10 0.0029 0.0900 -0.0014 0.0027 0.0000 0.0028 0.0001 0.0040
11 0.0023 0.0700 -0.0010 0.0024 0.0001 0.0028 -0.0004 0.0039
12 0.0018 0.0600 -0.0008 0.0023 -0.0001 0.0028 0.0000 0.0037
13 0.0015 0.0500 -0.0006 0.0023 0.0001 0.0028 0.0001 0.0036
14 0.0012 0.0400 -0.0005 0.0024 0.0001 0.0027 0.0001 0.0039
15 0.0010 0.0300 -0.0004 0.0022 0.0000 0.0028 0.0001 0.0037
20 0.0003 0.0100 0.0001 0.0022 0.0002 0.0027 0.0000 0.0037
25 0.0001 0.0000 -0.0002 0.0022 0.0002 0.0028 -0.0002 0.0038
30 0.0000 0.0000 0.0000 0.0022 0.0002 0.0025 -0.0001 0.0036

Note: The market microstructure noises are generated by a bivariate AR(1) process.γ(ℓ) andρ(ℓ) are true
cross-covariance and cross-correlation.γ̃(ℓ) is the estimator constructed by usingZℓ,k. γ̂(ℓ)[1] is the cross-

covariance estimator (13) usingZ(±)
ℓ,k with c = 1 on the variance estimation in the test statistic (11).γ̂(ℓ)V L

is the estimator through Voev and Lunde’s (2007) t-statistic.
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Table 2: The RMSE ratios of̂γ(ℓ)[4], γ̂(ℓ)[2], γ̂(ℓ)[0.5] andγ̂(ℓ)V L to γ̂(ℓ)[1].

ℓ γ̂(ℓ)[4] γ̂(ℓ)[2] γ̂(ℓ)[0.5] γ̂(ℓ)V L

-30 1.023 1.066 0.976 1.363
-25 1.065 1.023 0.989 1.432
-20 0.990 1.046 0.961 1.326
-15 1.037 1.061 0.965 1.239
-14 1.061 1.037 1.046 1.415
-13 1.006 1.015 1.020 1.287
-12 1.026 1.016 1.015 1.266
-11 0.988 0.997 1.021 1.416
-10 0.999 1.005 1.014 1.288
-9 0.979 0.995 0.993 1.381
-8 1.017 1.001 1.007 1.370
-7 1.005 1.000 1.015 1.365
-6 1.002 0.983 0.992 1.378
-5 0.998 1.010 0.999 1.357
-4 0.993 0.988 1.015 1.253
-3 0.986 0.969 1.001 1.327
-2 0.993 1.001 0.999 1.267
-1 0.955 0.977 1.004 1.248
0 0.941 0.993 1.010 1.256
1 0.999 1.003 1.031 1.337
2 0.979 0.991 0.997 1.280
3 1.001 1.008 1.008 1.332
4 0.961 0.988 0.966 1.258
5 1.043 1.033 1.024 1.448
6 1.015 1.031 1.006 1.319
7 0.974 0.978 0.993 1.276
8 1.018 0.981 1.004 1.402
9 0.995 0.983 0.995 1.259
10 0.990 1.026 1.001 1.404
11 0.995 1.007 0.982 1.386
12 0.996 0.994 0.964 1.345
13 1.015 1.000 0.984 1.300
14 1.000 0.977 0.994 1.416
15 1.032 0.964 0.970 1.294
20 1.035 1.054 0.991 1.374
25 1.008 1.075 0.967 1.378
30 1.049 1.078 0.965 1.403

Note: γ̂(ℓ)[4], γ̂(ℓ)[2], γ̂(ℓ)[1] and γ̂(ℓ)[0.5] are the cross-covariance estimator (13) withc = 4, 2, 1, 0.5 on
the variance estimation in the test statistic (11).γ̂(ℓ)V L is the estimator through Voev and Lunde’s (2007)
t-statistic.
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Table 3: The bias and RMSE of autocovariance estimatorsγ̂δ(ℓ)[4], γ̂δ(ℓ)[2], γ̂δ(ℓ)[1] andγ̂δ(ℓ)[0.5].

ℓ γδ(ℓ) ρδ(ℓ) γ̂δ(ℓ)[4] γ̂δ(ℓ)[2] γ̂δ(ℓ)[1] γ̂δ(ℓ)[0.5]

bias RMSE bias RMSE bias RMSE bias RMSE
0 0.0253 1.00 -0.0001 0.0015 -0.0002 0.0018 -0.0004 0.0019 -0.0004 0.0020
1 0.0209 0.83 0.0001 0.0056 -0.0001 0.0055 -0.0003 0.0054 -0.0004 0.0055
2 0.0170 0.67 -0.0001 0.0035 -0.0003 0.0034 -0.0003 0.0034 -0.0004 0.0034
3 0.0137 0.54 0.0000 0.0027 -0.0001 0.0028 -0.0002 0.0027 -0.0002 0.0027
4 0.0110 0.44 0.0000 0.0024 -0.0001 0.0023 -0.0002 0.0023 -0.0003 0.0023
5 0.0088 0.35 0.0000 0.0021 -0.0001 0.0021 -0.0002 0.0021 -0.0002 0.0021
6 0.0071 0.28 0.0000 0.0022 0.0000 0.0021 -0.0001 0.0021 -0.0001 0.0021
7 0.0057 0.22 -0.0001 0.0022 -0.0001 0.0022 -0.0002 0.0022 -0.0002 0.0022
8 0.0045 0.18 0.0001 0.0022 0.0000 0.0022 -0.0001 0.0021 -0.0001 0.0021
9 0.0036 0.14 0.0000 0.0022 -0.0001 0.0021 -0.0001 0.0022 -0.0001 0.0021
10 0.0029 0.11 0.0000 0.0022 0.0000 0.0022 -0.0001 0.0022 -0.0001 0.0022
11 0.0023 0.09 0.0000 0.0022 0.0000 0.0022 -0.0001 0.0021 -0.0001 0.0022
12 0.0019 0.07 -0.0001 0.0021 0.0000 0.0021 -0.0001 0.0021 0.0000 0.0020
13 0.0015 0.06 0.0000 0.0020 0.0000 0.0019 0.0000 0.0019 -0.0001 0.0019
14 0.0012 0.05 0.0000 0.0019 0.0000 0.0018 -0.0001 0.0018 -0.0001 0.0018
15 0.0010 0.04 -0.0001 0.0019 0.0000 0.0019 -0.0001 0.0019 -0.0001 0.0019
16 0.0008 0.03 -0.0001 0.0018 0.0000 0.0018 -0.0001 0.0017 -0.0001 0.0017
17 0.0006 0.02 -0.0001 0.0017 0.0000 0.0018 -0.0001 0.0018 -0.0001 0.0017
18 0.0005 0.02 0.0000 0.0018 0.0000 0.0018 0.0000 0.0017 0.0000 0.0017
19 0.0004 0.02 -0.0001 0.0018 -0.0001 0.0018 -0.0001 0.0018 -0.0001 0.0018
20 0.0003 0.01 0.0000 0.0017 0.0001 0.0017 -0.0001 0.0017 -0.0001 0.0017
25 0.0001 0.00 0.0000 0.0015 0.0000 0.0015 -0.0001 0.0015 -0.0001 0.0014
30 0.0000 0.00 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014

Note: The market microstructure noises are generated by a bivariate AR(1) process.γ̂δ(ℓ)[4], γ̂δ(ℓ)[2],
γ̂δ(ℓ)[1] andγ̂δ(ℓ)[0.5] are the estimator (19) withc = 4, 2, 1, 0.5 in asset 2.
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Table 4: The results of autocovariance estimators. Case of true price process with non-zero drift.
(a) The bias and RMSE ratio of̂γ(ℓ)[1] with drift parameter(µ1, µ2) to γ̂(ℓ)[1] without drift

(µ1, µ2)
ℓ no drift (0.05, 0.05) (0.1, 0.1) (0.5, 0.5)

bias×100 bias×100 RMSE ratio bias×100 RMSE ratio bias×100 RMSE ratio
-30 0.0010 0.0010 1.0001 0.0010 1.0001 0.0012 1.0006
-25 0.0209 0.0210 0.9999 0.0210 0.9999 0.0216 0.9993
-20 -0.0017 -0.0017 1.0000 -0.0018 1.0001 -0.0022 1.0004
-15 0.0001 0.0001 0.9999 0.0001 0.9997 0.0004 0.9988
-10 -0.0115 -0.0115 1.0000 -0.0116 1.0001 -0.0116 1.0004
-5 -0.0059 -0.0059 0.9999 -0.0060 0.9998 -0.0065 0.9988
-4 -0.0069 -0.0069 1.0001 -0.0069 1.0002 -0.0073 1.0012
-3 -0.0120 -0.0120 0.9999 -0.0120 0.9999 -0.0125 0.9995
-2 -0.0335 -0.0335 1.0001 -0.0335 1.0002 -0.0337 1.0011
-1 -0.0353 -0.0353 1.0000 -0.0353 0.9999 -0.0354 0.9998
0 -0.0396 -0.0397 1.0000 -0.0397 1.0000 -0.0397 1.0002
1 -0.0297 -0.0297 1.0000 -0.0298 0.9999 -0.0304 0.9997
2 -0.0095 -0.0095 0.9999 -0.0095 0.9998 -0.0099 0.9990
3 -0.0076 -0.0076 1.0000 -0.0076 1.0001 -0.0080 1.0004
4 -0.0219 -0.0219 1.0000 -0.0219 0.9999 -0.0219 0.9996
5 -0.0053 -0.0053 1.0000 -0.0054 0.9999 -0.0058 0.9996
10 0.0025 0.0025 1.0000 0.0025 1.0000 0.0029 0.9999
15 0.0009 0.0009 1.0000 0.0009 0.9999 0.0009 0.9997
20 0.0236 0.0236 1.0001 0.0236 1.0003 0.0239 1.0014
25 0.0228 0.0228 1.0000 0.0229 1.0000 0.0233 0.9999
30 0.0178 0.0178 1.0000 0.0179 0.9999 0.0184 0.9996

(b) The bias and RMSE ratio of̂γδ(ℓ)[1] with drift parameter(µ1, µ2) to γ̂δ(ℓ)[1] without drift.

(µ1, µ2)
ℓ no drift (0.05, 0.05) (0.1, 0.1) (0.5, 0.5)

bias×100 bias×100 RMSE ratio bias×100 RMSE ratio bias×100 RMSE ratio
0 -0.0361 -0.0361 1.0000 -0.0361 1.0000 -0.0365 0.9998
1 -0.0256 -0.0256 1.0000 -0.0257 1.0001 -0.0262 1.0004
2 -0.0315 -0.0315 1.0000 -0.0315 1.0000 -0.0318 1.0000
3 -0.0176 -0.0177 0.9998 -0.0177 0.9997 -0.0183 0.9984
4 -0.0227 -0.0227 1.0000 -0.0227 1.0000 -0.0230 1.0004
5 -0.0155 -0.0155 0.9999 -0.0155 0.9998 -0.0158 0.9989
10 -0.0083 -0.0083 0.9999 -0.0083 0.9997 -0.0085 0.9989
15 -0.0076 -0.0076 1.0000 -0.0076 1.0001 -0.0080 1.0005
20 -0.0083 -0.0083 1.0000 -0.0083 0.9999 -0.0085 0.9997
25 -0.0073 -0.0073 1.0001 -0.0074 1.0001 -0.0078 1.0007
30 -0.0038 -0.0038 1.0001 -0.0038 1.0002 -0.0039 1.0011

Note: In the simulation we use the stochastic differential model with non-zero drift in (23). We set(µ1, µ2)
as(0.05, 0.05), (0.1, 0.1) and(0.5, 0.5).
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Table 5: Autocovariance of univariate noise process.

(a) The variance estimates and the test statistics for the variance.

OC MM NI
estimates 1.369× 106 1.296× 107 2.209× 107

test statistics 1411.64∗ 185.70∗ 3412.69∗

(b) The test statistics for the autocovariance.

ℓ OC MM NI
1 -0.91 -3.98∗ -4.34∗

2 -0.95 -2.05∗ -4.91∗

3 -0.24 -3.04∗ -3.82∗

4 -0.44 -2.26∗ -3.81∗

5 -1.07 -3.72∗ -4.61∗

6 -1.04 -2.18∗ -3.03∗

7 -0.73 -2.19∗ -1.97∗

8 0.64 -2.12∗ -2.50∗

9 -0.95 -1.59 -0.18
10 -1.18 -2.16∗ -1.06
11 -0.49 -3.19∗ -0.91
12 0.17 -2.37∗ 0.03
13 -0.98 -1.66 0.96
14 -0.46 -2.40∗ 0.03
15 1.32 -2.67∗ 0.95
16 0.40 -2.57∗ -0.27
17 -1.71 -2.63∗ -1.07
18 -1.01 -0.97 -0.58
19 -0.71 -0.62 0.64
20 -0.66 -0.38 -0.62
30 0.66 -0.77 1.28
40 0.41 -0.54 -0.52
50 -0.43 -0.42 0.53
60 1.69 1.59 0.92

Note: In the top table (a), the test statistic for the variance of noise is given by (20). The critical value at 5%
significance level is 3.84. The bottom table (b) shows the test statistic (21) for the autocovariance of noise
with ℓ > 0. The critical value of the test statistic (21) is 1.96 at 5% significance level. Superscript∗ denotes
significance at the 5% levels.
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Table 6: Test statistics for a cross-covariance of bivariate noise processes.

ℓ OC-MM OC-NI MM-NI
-60 0.30 0.51 0.67
-50 -0.64 1.15 0.91
-40 0.51 0.05 -1.01
-30 1.85 0.03 -1.29
-20 -1.74 -0.11 -0.95
-15 -0.98 -0.68 1.30
-10 -0.89 -1.35 -0.66
-9 -1.31 0.02 -0.96
-8 -3.29∗ -0.36 0.72
-7 -3.37∗ -0.34 0.56
-6 -3.23∗ -0.99 -1.49
-5 -2.87∗ -1.56 0.18
-4 -3.33∗ -0.42 0.37
-3 -2.17∗ 0.31 -2.48∗

-2 -2.17∗ 0.01 -2.24∗

-1 -2.27∗ -0.83 -1.27
0 -2.07∗ 0.20 -3.41∗

1 -2.43∗ -0.63 -4.66∗

2 -2.14∗ -0.86 -4.02∗

3 -2.40∗ -0.15 -2.25∗

4 -1.81 -1.66 -3.94∗

5 -1.10 -0.71 -4.35∗

6 -1.05 0.06 -2.33∗

7 -1.34 -0.77 -2.48∗

8 -2.83∗ -1.27 -1.51
9 -1.51 -0.21 -1.03
10 -1.40 -0.66 -0.82
15 -1.99∗ 1.25 0.40
20 -1.61 1.25 -1.85
30 -0.53 -0.17 0.74
40 0.54 1.79 -0.31
50 0.39 -0.86 -0.73
60 0.69 -1.84 -0.79

Note: The test statistic for the cross-covariance of the bivariate noise processes is given by (15). The critical
value of the test statistics (15) is 1.96 at 5% significance level. Superscript∗ denote significance at the 5%
levels.
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