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Abstract

This paper derives a preemptive equilibrium in strategic investment in alternative

projects. The problem is formulated in a real options model with a multidimensional

state variable that represents project-specific uncertainty. The proposed method enables

us to evaluate the value of potential alternatives. The results not only extend previous

studies with a one-dimensional state variable but also reveal new findings. Preemptive

investment takes place earlier and the project value becomes lower if the numbers of both

firms and projects increase by the same amount. Interestingly, a strong correlation among

profits from projects, unlike in a monopoly, plays a positive role in moderating preemptive

competition.
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1 Introduction

The global financial crisis that began in 2007 has increased uncertainty about future

market demand in industries throughout the world. It is becoming increasingly important

for firm project management to take into account uncertainty and flexibility in the future.

The real options approach, in which option pricing theory is applied to capital budgeting

decisions, better enables us to find an optimal investment strategy and project valuation

involving such uncertainty and flexibility than the Net Present Value (NPV) method could

(see [4]).

Although the early literature on real options investigated monopolists’ investment

decisions, recent studies have investigated the problem of several firms competing in the

same market from a game theoretic approach. Many studies, such as [6, 9, 16], analyze

the preemptive equilibrium in a duopoly investment game.1 Their main result, that

competition among firms accelerates investment in a project, has been supported by

empirical papers such as [14].

Most studies of strategic real options assume one-dimensional Geometric Brownian

Motion (GBM) to be the stochastic process (called the state variable) representing the

future cash flow from a project. This is because explicit results are more appealing due to

the difficulty of model calibration in many real options models. Although such simplifi-

cation could be justified for a problem concerning a single investment project, a problem

involving several projects should be modelled by a multidimensional state variable instead

of a one-dimensional state variable. In fact, several papers have investigated a monopo-

list’s investment decision involving several projects in a model with a bidimensional state

variable. For example, [5] investigated land development timing with an alternative land

use choice and [11] investigated timing in switching methods of nuclear waste disposal.2

To the best of my knowledge, however, there are no papers that investigate preemp-

tive investment involving several projects with a multidimensional state variable.3 The

contribution of the paper is to first clarify the preemptive equilibrium in an investment

game by several firms with alternative projects, using a multidimensional state variable.

This paper shows several properties of the investment region and the option value in a

1In [7, 10] derived the equilibrium strategies in a Cournot–Nash framework instead of the preemption game.

The competitive equilibrium where the output price moves between upper and lower barriers has also been

investigated in [4, 17]. On the other hand, [8, 13, 15] investigated the agency problem in a single firm by the

method of mechanism design.
2These studies apply the results of financial options for multiple assets (see Chapter 6 in [3]) to capital

budgeting. Although in several papers a problem with a bidimensional state variable is reduced to a one-

dimensional case by homogeneity, such cases are very restrictive.
3One paper, [1], conducted a case study on the preemptive competition in the textile industry with three

types of uncertainty, but the preemptive game is essentially modelled on the one-dimensional state variable. So,

theoretically, their paper is no different from the previous papers [6, 9, 16].
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model where firms optimize both investment time and project choice among remaining

projects that have not been chosen by the leading competitors.

The use of this model is also motivated by the following practical issue. When we

evaluate the value of a project by the real options method, we are often puzzled by the

question of which value in monopolistic and strategic models is reliable. Indeed, the

difference is likely to be quite large because the theoretical models with a one-dimensional

state variable calculate the extreme values. This paper provides us with a useful criterion

toward solving such a problem. That is, we should evaluate the value of considering a

potential alternative in a strategic model with a multidimensional state variable. I find

that the strategic option values with a symmetric alternative are 40% ∼ 60% of monopoly

with two alternative projects, or equivalently, 70% ∼ 80% of monopoly with a single

project.

Furthermore, I show that preemptive investment takes place earlier and the option

value becomes lower if the numbers of both firms and projects increase by the same

amount. It is intuitively explained that in the preemptive equilibrium all the firms are

dragged into a scenario with the worst project. Taking into account the fact that the

number of competitors is likely to increase with the number of alternatives, the result

seems consistent with empirical studies on strategic real options such as [14].

Another new finding is that preemptive competition is moderated by the correlation

among profits from projects. This contrasts with the monopoly situation where strong

correlation among cash flows decreases the value of project choice. Thus, the sensitiv-

ity of the correlation with project value in an oligopoly depends on a trade-off between

moderation of the preemptive competition (positive effect) and a decrease in the value of

project choice (negative effect). In particular, when there are as many projects as firms,

the competition deprives firms of the value of project choice and hence a strong correlation

increases the option value.

Finally, let me mention several applications of the model in this paper. As mentioned

above, the model is suitable for strategic investment involving several alternatives. An

example is a war among firms opening new stores. A follower must open a store in a

different place or of a different type from that of the leader. In the situation where big

firms fight for market share in emerging countries, an alternative to preemptive entry into

the market in India might be preemption into the market in the Republic of South Africa.

The model also applies to M&A struggles. For instance, in the pharmaceutical indus-

try large corporations strategically acquire venture businesses that develop new drugs.

Because many M&As take place by private negotiation rather than through a public bid-

ding process, it is necessary for a firm to preempt the competitors. In the pharmaceutical

industry numerous potential targets generate a low correlation in gains in takeovers, and

then severe preemptive competition occurs.
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The paper is organized as follows. Section 2 introduces the setup and the preliminary

results in three cases; a monopoly with a single project, a duopoly with a single project,

and a monopoly with two alternative projects. Section 3 describes the new results. In

particular I present the details in a duopoly with two projects, though the results can be

extended to an oligopoly of n firms with m projects in Section 3.3. The results of the

investment region and the project value contrasts a duopoly or oligopoly with a monopoly.

Section 4 concludes the paper.

2 Preliminaries

Consider a risk-neutral4 firm that has an option to invest in a project. Consider two

kinds of projects denoted by i = 1, 2. When a firm conducts project i at time t with sunk

cost Ii(> 0), it receives a temporary profit Xi(t).5 Assume that the profit Xi(t) follows a

continuous diffusion process:

dXi(t) = µi(Xi(t), t)dt + σi(Xi(t), t)dBi(t), (1)

where (B1(t), B2(t)) is a two-dimensional Brownian Motion (BM) with correlation coeffi-

cient ρ. Mathematically, the model is built on the filtered probability space (Ω,F , P ;Ft)

generated by (B1(t), B2(t)) as usual. The set Ft means the available information set to

time t, and a firm optimizes its investment strategy under this information. Let r(> 0)

and T (> 0) denote the constant risk-free rate and maturity of the option throughout the

paper. We may take T = ∞ when we consider a perpetual option, as in many real options

models.

2.1 Monopoly with a single project

As a benchmark, we consider a firm that has a monopolistic option to invest in a single

project, i. It is well known that the option value at time t(≤ T ) with the state variable

Xi(t) = xi is equal to the value function of the following optimal stopping problem:

V 1
i (xi, t) = sup

τ∈Tt

Exi
t [e−r(τ−t)(Xi(τ) − Ii)1{τ≤T}], (2)

where Tt denotes the set of all stopping times τ satisfying τ ≥ t and Exi
t [·] is the expecta-

tion conditional on Xi(t) = xi.6 Throughout the paper, the superscript and the subscript

on V 1
i represent the number of firms and available project(s), respectively; that is, V 1

i in

(2) means the value function in a monopoly with a single project i.

Many diffusions satisfy the following properties.
4Generally we can assume risk-adjusted profit dynamics (1) rather than the risk-neutrality assumption.
5The profit can be interpreted as the discounted cash flow during the lifetime of the project.
6We do not consider 1{τ≤∞} but 1{τ<∞} in the case of T = ∞ throughout the paper.
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Assumption (i) The value function V 1
i (·, t) is a (finite) continuous increasing function.

Assumption (ii) There exists a finite investment trigger x1
i (t) such that the optimal

stopping time τ1
i (t) of problem (2) is written as the threshold strategy:

τ1
i (t) = inf{s ≥ t | Xi(s) ∈ S1

i (s) = [x1
i (s),∞)}. (3)

We restrict our attention to a continuous diffusion X(t) satisfying the assumptions above.

In addition, as in the related papers, we assume nonnegativeness of X(t) as follows.

Assumption (iii) Xi(t) is nonnegative. If Xi(s) = 0 for any s, Xi(t) = 0 for all t ≥ s.

The assumptions are not restrictive. In fact, we can take a wide range of diffusions

including a GBM, i.e., (1) with µi(Xi(t), t) = µiXi(t), σi(Xi(t), t) = σiXi(t) where µi(< r)

and σi(> 0) are constant, and a mean-reverting process (1) with µi(Xi(t), t) = η(X̄ −
Xi(t)), σi(Xi(t), t) = σiXi(t) where η, X̄ and σi are positive constants.

Note that for a GBM with T = ∞, V 1
i (xi, t) is explicitly derived independently from

time t (see [4]). In fact, the option value V 1
i (xi) is expressed as:

V 1
i (xi) =


(

xi

x1
i

)βi

(x1
i − Ii) (0 ≤ xi < x1

i )

xi − Ii (xi ≥ x1
i ).

(4)

Here, x1
i is the constant investment trigger defined by:

x1
i =

βi

βi − 1
Ii, (5)

where βi is the positive characteristic root:

βi =
1
2
− µi

σ2
i

+

√(
µi

σ2
i

− 1
2

)2

+
2r

σ2
i

(> 1).

2.2 Duopoly with a single project

This subsection considers two symmetric firms that struggle to take a single project i.

The following outcome, called “preemptive investment”, is well known. For details, refer

to [6, 9, 16]. Assume that the initial value satisfies Xi(0) ≤ I.

We can solve the game between the firms backward. We begin by supposing that one

of the firms (called the leader) has first invested at time t(≤ T ) with Xi(t) = xi, and

we find the optimal decision of the other (called the follower). Because the follower’s

opportunity to invest is completely lost, the follower’s profit is 0. On the other hand,

the leader’s profit is xi − Ii. In the situation where neither firm has invested, each firm

attempts to preempt the other in order to obtain the leader’s payoff if Xi(t) − Ii > 0.

As a result, in the preemptive equilibrium, both firms attempt to invest at the zero-NPV

time:

τ2
i = inf{t ≥ 0 | Xi(t) − Ii = 0} (6)
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and gain no project value:

V 2
i (xi, t) = 0. (7)

Recall that the superscript 2 and the subscript i represent duopoly with a single project

i.

Strictly speaking, both firms’ investment strategy at (6) proves to be a Nash equilib-

rium in the stopping game formulated under the appropriate assumption.7 The outcome

can be interpreted to mean that the leading firm invests at (6), but the follower cannot

conduct a project. The leader’s profit is also zero because of investing too early. This is

a well-known preemptive equilibrium in the strategic real options literature (refer to [9]).

2.3 Monopoly with two alternative projects

This subsection considers a firm that has a monopolistic option to invest a single project

among projects 1, 2. The model applies to the situation where a firm cannot execute

both projects for a reason such as budget constraint. The problem has been essentially

investigated in [5] and Section 6 in [3]. In contrast, [2] investigated investment with

different scales under a one-dimensional state variable, i.e., the case where ρ = 1, X1(0) 6=
X2(0) and I1 6= I2.

The option value at time t(≤ T ) with Xi(t) = xi is equal to the value function of the

optimal stopping problem as follows:

V 1
1,2(x, t) = sup

τ∈Tt

Ex
t [e−r(τ−t) max

i=1,2
(Xi(τ) − Ii)1{τ≤T}]. (8)

Recall that V 1
1,2 in (8) means the value function in monopoly with projects 1, 2.

The optimal stopping time τ1
1,2 in problem (8) becomes:

τ1
1,2(t) = inf{s ≥ t | X(s) ∈ S1

1,2(s)}, (9)

where the stopping region S1
1,2(s) is defined by:

S1
1,2(s) = {x ∈ R2

+ | V 1
1,2(x, s) = max

i=1,2
(xi − Ii)}. (10)

The stopping region S1
1,2(t) proves to be the union of two disjoint convex sets corresponding

to the immediate investment region of each project when X(t) follows a GBM (refer to

Section 6 in [3] and Figure 3 in Section 3.2).

Let us now focus on two symmetric projects, i.e., µ1 = µ2, σ1 = σ2 and I1 = I2. In

this case, the larger the correlation coefficient ρ, the more likely it is that profits X1(t)

and X2(t) take close values. Then the option value V 1
1,2 decreases and the stopping region

S1
1,2(t) enlarges with the correlation. This can be explained in terms of a decrease of

7This assumption is that if two firms choose the same timing, one of the firms is chosen as the leader with

probability 1/2. Most studies, including [6, 16], are built on this assumption.
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diversification effects. In particular, in the case of the perfect correlation, i.e., ρ = 1,

the option value V 1
1,2 and the investment time τ1

1,2 for x1 = x2, agree with those in a

monopoly with a single project, i.e., V 1
i and τ1

i , respectively. The effect of a correlation

will be compared in detail with that in a duopoly with two projects in Section 3.

The next section is the main contribution of the paper. Although the results can be

extended in the case of n firms with m projects in Section 3.3, I first present the details

of a duopoly with two projects in order to avoid unnecessary confusion.

3 Several firms with several alternative projects

3.1 Duopoly with two alternative projects

This subsection investigates two symmetric firms that compete for one of two projects

1, 2. Assume that the one that first invests (the leader) can choose the better project

while the other (the follower) loses the opportunity to invest in that project. The leader’s

advantage of being able to choose the better project brings about preemptive competition

between the firms. As mentioned in Section 1, the model has a wide range of applications,

such as preemption in the new market and M&A struggles. Relevant to this model,

[12] investigated a duopoly with two projects following a one-dimensional state variable.

Assume Xi(0) ≤ Ii (i = 1, 2).

As in Section 2.2, the problem can be solved in a reverse manner. Suppose that the

leader has first invested in the better project i(t) at time t(≤ T ) with X(t) = x, where

the function i(t)8 is defined by:

i(t) = k if Xk(t) − Ik = max
i=1,2

(Xi(t) − Ii). (11)

Under this assumption, we find the optimal response of the follower. Because for i 6= i(t)

the follower has the monopolistic option to invest in a single project i, the option value

and the optimal investment timing coincide with V 1
i , τ1

i (see (2) and (3)), respectively.

On the other hand, the leader’s payoff is equal to maxi=1,2(Xi(t) − Ii).

Let us return to the situation where neither firm has invested. The region S2F
1,2(t)

where the leader’s profit dominates that of the follower is:

S2F
1,2(t) = {x1 − I1 ≥ V 1

2 (x2, t)} ∪ {x2 − I2 ≥ V 1
1 (x1, t)}.

Each firm attempts to preempt the competitor as long as X(t) ∈ S2F
1,2(t). In addition, one

of the firms reluctantly invests X(t) ∈ S1
1 (t) ∪ S1

2 (t) if it knows that the other invests at

time:

τ2F
1,2 = inf{t ≥ 0 | X(t) ∈ ∂S2F

1,2(t)}, (12)

8We do not have to be concerned about the value of i(t) when X1(t) − I1 = X2(t) − I2.
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where ∂S2F
1,2(t) denotes the boundary of S2F

1,2(t). This is because for X(t) ∈ S1
1 (t) ∪ S1

2 (t)

immediate investment generates a higher profit than the option value to wait until τ2F
1,2

(this will be shown in the proof of Proposition 1). Therefore, the preemptive investment

region S2
1,2(t) becomes:

S2
1,2(t) = {x1 − I1 ≥ V 1

2 (x2, t)} ∪ {x2 − I2 ≥ V 1
1 (x1, t)} ∪ S1

1 (t) ∪ S1
2 (t). (13)

The preemptive investment takes place at:

τ2
1,2 = inf{t ≥ 0 | X(t) ∈ ∂S2

1,2(t)}, (14)

where ∂S2
1,2(t) denotes the boundary of S2

1,2(t) which consists of three parts, i.e.:

∂S2
1,2(t) = {xi ≤ x1

i′(t) − Ii′ + Ii, xi − Ii = V 1
i′ (xi′ , t)}︸ ︷︷ ︸

(a)

∪{xi′ ≤ x1
i′(t), xi′ − Ii′ = V 1

i (xi, t)}︸ ︷︷ ︸
(b)

∪{xi′ = x1
i′(t), (V

1
i )−1(x1

i′(t) − Ii′) ≤ xi ≤ x1
i′(t) − Ii′ + Ii}︸ ︷︷ ︸

(c)

, (15)

for i such that:

x1
i (t) − Ii ≥ x1

i′(t) − Ii′ , (16)

where i′ denotes project i′ 6= i throughout the paper.

Figure 1 illustrates the preemptive investment boundary ∂S2
1,2(t). The first part (a)

is the region where the leader’s investment in project i generates the same value as the

follower’s option value to invest in project i′. In the second part (b), both firms are

indifferent to being the leader with project i′ and the follower with project i. In the last

part (c), both firms prefer to be the follower with project i to being the leader with project

i′ due to X(t) /∈ S2F
1,2(t). However, one of the firms invests first if it knows that the other

does not invest until τ2F
1,2 (t). It must be noted that, unlike the monopolist investment

region, the preemptive investment boundary ∂S2
1,2(t) is independent of the correlation

coefficient ρ.

The option value (of the leader) at time t(≤ min(T, τ2
1,2)) with X(t) = x is written as:

V 2
1,2(x, t) = Ex

t [e−r(τ2
1,2−t) max

i=1,2
(Xi(τ2

1,2) − Ii)]. (17)

The leader’s advantage of choosing the better project is completely lost by its earlier

investment than the optimal timing. Furthermore, the leader’s profit becomes less than

that of the follower if and only if the process X(t) hits part (c).

Although so far we intuitively see the preemptive outcome, to do a more precise

derivation we formulate the following stopping game by two symmetric firms j = 1, 2.

Define the action space of both firms as follows:

A = {(τ, i) | τ ∈ T0, i : Fτmeasurable random variable taking values in {0, 1}}.
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(a)

(b)

(c)

Figure 1: The preemptive investment boundary ∂S2
1,2(t)

Define the firm 1’s payoff π1 as:

π1(τ1, i1, τ2, i2) = E[1{τ1<τ2}e
−rτ1(Xi1(τ1) − Ii1) + 1{τ1>τ2}e

−rτ2V 1
i′2

(Xi′2
(τ2), τ2)

+1{τ1=τ2}
e−rτ1

2
(Xi1(τ1) − Ii1 + V 1

i′2
(Xi′2

(τ2), τ2))], (18)

where (τ1, i1) and (τ2, i2) in π1(τ1, i1, τ2, i2) denote the strategies of firm 1 and 2, respec-

tively. The last term of (18) corresponds to the assumption in footnote 7. We also define

the payoff of firm 2 as π2 symmetrically.

We wish to find a Nash equilibrium in the stopping game, i.e., (τ̃1, ĩ1, τ̃2, ĩ2) ∈ A ×A
satisfying both:

π1(τ̃1, ĩ1, τ̃2, ĩ2) = max
(τ1,i1)∈A

π1(τ1, i1, τ̃2, ĩ2), (19)

and

π2(τ̃1, ĩ1, τ̃2, ĩ2) = max
(τ2,i2)∈A

π2(τ̃1, ĩ1, τ2, i2). (20)

Let τ2
1,2(t) denote (14), replacing initial time 0 with t. We assume that the diffusion

process X(t) satisfies the following condition9:

Assumption (iv)

max
i=1,2

(xi − Ii) ≤ Ex
t [e−r(τ2

1,2(t)−t) max
i=1,2

(Xi(τ2
1,2(t)) − Ii)] (x /∈ S2

1,2(t)).

9I do not know any proof, but the assumption is satisfied in many cases as far as I can judge from a wide

range of computations. Even if Assumption (iv) is not satisfied, the violation is so small that we can regard the

outcome as an approximate equilibrium.
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The next proposition shows that the intuitive equilibrium above is indeed a Nash equilib-

rium in the stopping game.

Proposition 1 The pair of strategies (τ2
12, i(τ

2
12), τ

2F
12 , i(τ2F

12 )) is a Nash equilibrium in

the stopping game, where the stopping times τ2
12, τ

2F
12 are defined by (14),(12), and the

functions i(τ2
12), i(τ

2F
12 ) are defined by (11), respectively.

Proof To simplify the notations, let τ̃1 = τ2
12, ĩ1 = i(τ2

12), τ̃2 = τ2F
12 , ĩ2 = i(τ2F

12 ). Recall

that ĩ2
′ denotes project ĩ2

′ 6= ĩ2. Take an arbitrary (τ1, i1) ∈ A. We calculate:

π1(τ1, i1, τ̃2, ĩ2)

= E[1{τ1<τ̃2}e
−rτ1(Xi1(τ1) − Ii1) + 1{τ1>τ̃2}e

−rτ̃2V 1
ĩ2

′(Xĩ2
′(τ̃2), τ̃2)

+1{τ1=τ̃2}
e−rτ1

2
(Xi1(τ1) − Ii1 + V 1

ĩ2
′(Xĩ2

′(τ̃2), τ̃2))]

≤ E[1{τ1<τ̃2}e
−rτ1 max

i=1,2
(Xi(τ1) − Ii) + 1{τ1≥τ̃2}e

−rτ̃2 max
i=1,2

(Xi(τ̃2) − Ii)] (21)

= sup
τ1∈T0,τ1≤τ̃2

E[e−rτ1 max
i=1,2

(Xi(τ1) − Ii)]

= E[e−rτ̃1(Xĩ1
(τ̃1) − Iĩ1

)] (22)

= π1(τ̃1, ĩ1, τ̃2, ĩ2)

where (21) results from V 1
ĩ2

′(Xĩ2
′(τ̃2), τ̃2) = maxi=1,2(Xi(τ̃2) − Ii) and (22) is proved as

follows.

By Assumption (iv), immediate investment is not optimal for X(t) = x /∈ S2
1,2(t).

On the other hand, immediate investment is optimal for X(t) = x ∈ S2
1,2(t) \ S2F

1,2(t)

(the triangle-like region in Figure 1). In fact, for any τ1 < τ̃2, maxk=1,2(Xk(τ1) − Ik) ≤
V 1

i (Xi(τ1), τ1) (i = 1, 2) because of X(τ1) /∈ S2F
1,2(τ1). Then, for i′ satisfying (16) we have:

sup
τ1∈Tt,τ1≤τ̃2

Ex
t [e−r(τ1−t) max

k=1,2
(Xk(τ1) − Ik)] ≤ Ex

t [e−r(τ1−t)V 1
i′ (Xi′(τ1), τ1)]

≤ V 1
i′ (x, t) (23)

= xi′ − Ii′ ,

where (23) follows from the supermartingale property of the discounted price process

e−rtV 1
k (Xk(t), t). Thus, (22) (and hence (19)) has been proved. We can similarly show

(20) under Assumption (iv). ¤
Proposition 1 includes the results in a duopoly with a single project. In fact, if

Xi(0) = xi > Xi′(0) = 0 the preemptive equilibrium in Proposition 1 agrees with that

in Section 2.2. For most of the diffusion process Xi(t), higher volatility σi brings about

later investment τ1
i and higher option value V 1

i . In such a case, by (13) the preemptive

investment region S2
1,2 becomes smaller, which leads to later investment τ2

1,2 and a higher

option value V 2
1,2. That is to say, the effects of volatility σi in a duopoly are inherited

from a monopoly.
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If X(t) follows a GBM and T = ∞, we have an explicit form of the time homogeneous

investment boundary ∂S2
1,2 by (4), (5) and (15) .

Corollary 1 Assume that T = ∞, µi(Xi(t), t) = µiXi(t), and σi(Xi(t), t) = σiXi(t),

where µi(< r) and σi(> 0) are constant for i = 1, 2. For all t > 0, the preemptive

investment boundary ∂S2
1,2 is:

∂S2
1,2 =

{
xi ≤ x1

i′ − I ′i + Ii, xi − Ii =
(

xi′

x1
i′

)β1

(x1
i′ − Ii′)

}

∪

{
xi′ ≤ x1

i′ , xi′ − Ii′ =
(

xi

x1
i

)β1

(x1
i − Ii)

}
∪

{
xi′ = x1

i′ , (V
1
i )−1(x1

i′ − Ii′) ≤ xi ≤ x1
i′ − Ii′ + Ii

}
,

where i satisfies (16).

The explicit derivation of the investment boundary ∂S2
1,2 would be a big benefit in

applications of the model. Although the option value V 2
1,2 (see (17)) becomes the solution

of the corresponding partial differential equation with boundary ∂S2
1,2 instead of an explicit

form, I would like to emphasize that the results are quite useful for applications.

For a general diffusion process X(t) we can show the following properties of the in-

vestment region S2
1,2, the timing τ2

1,2, and the option value V 2
1,2.

Proposition 2 The following relationships hold.

Investment Region

S1
1,2(t) ⊂ S1

i (t) ⊂ S2
1,2(t), (24)

Investment Timing

τ2
1,2 ≤ τ1

i ≤ τ1
1,2, (25)

Option Value

0 = V 2
i (xi, t) ≤ V 2

1,2(x, t) ≤ V 1
i (xi, t) ≤ V 1

1,2(x, t). (26)

for all i = 1, 2.

Proof I prove only V 2
1,2(x, t) ≤ V 1

i (xi, t) (i = 1, 2) because the others are clear (from

Figure 1). We have maxk=1,2(Xk(τ2
1,2) − Ik) ≤ V 1

i (Xi(τ2
1,2), τ

2
1,2) (i = 1, 2), because of

Xi(τ2
1,2) /∈ S2F

1,2(τ2
1,2) \ ∂S2F

1,2(τ2
1,2). Then we calculate (17):

V 2
1,2(x, t) ≤ Ex

t [e−r(τ2
1,2−t)V 1

i (Xi(τ2
1,2), τ

2
1,2)]

≤ V 1
i (xi, t), (27)

where (27) follows from the supermartingale property of the discounted price process

e−rtV 1
i (Xi(t), t). ¤
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The point of Proposition 2 is that preemptive investment in a duopoly with two

projects is less efficient than investment in a monopoly with a single project (needless

to say, than that in monopoly with two projects). In other words, the preemptive com-

petition becomes more severe if the numbers of both firms and projects increase by the

same amount. This result is consistent with both the theoretical and empirical results in

previous studies (cf. [7, 14]). We can say that the result extends previous finding in the

sense that the model considers the follower’s choice of an alternative project.

Let us consider two symmetric projects with the same initial value x1 = x2. We focus

on the correlation coefficient ρ. In the sensitivity analysis in the model, this correlation is

the most important because the previous strategic models with a one-dimensional state

variable cannot reveal its effects. For example, what happens if the profits X1(t) and

X2(t) are perfectly correlated, i.e., ρ = 1? In that case, no preemption occurs because

the two projects generate the same profit. Indeed, the preemptive investment timing τ2
1,2

and the option value V 2
1,2 (see (14) and (17)) coincide with τ1

i and V 1
i in monopoly with

a single project, respectively. Taking this and (26) into account, we can easily show the

following corollary.

Corollary 2 Consider the symmetric projects with x1 = x2. The following equalities

hold for the correlation coefficient ρ:

max
ρ∈[−1,1]

V 2
1,2(x, t) = V 1

i (xi, t) = min
ρ∈[−1,1]

V 1
1,2(x, t) (i = 1, 2), (28)

where ρ = 1 gives the maximum of V 2
1,2(x, t) and the minimum of V 1

1,2(x, t).

It should be noted that in a duopoly the option value V 2
1,2(x, t), unlike the investment

boundary ∂S2
1,2(t) (see (15)), depends on the correlation coefficient ρ. Recall that in a

monopoly a weaker correlation increases the option value by diversification. In contrast,

in a duopoly a stronger correlation increases the strategic option value by moderation

of the preemptive competition. The preemptive competition is moderated by a stronger

correlation because the leader’s advantage of project choice is reduced. This result is

consistent with frequent takeovers in the pharmaceutical industry where there are uncor-

related potential targets.

3.2 Numerical examples

This subsection presents numerical examples of the results. Assume that X(t) follows a

symmetric GBM. I set the same base parameter values as [3]:

r = 6%, µ1 = µ2 = 0%, σ1 = σ2 = 20%, I1 = I2 = 100,

which are also similar to those of [5]. All option values are computed for the initial point

x(t) = (100, 100).

11



Figure 2 illustrates the investment boundaries ∂S2
1,2(t), 6 months, 1 year, 5 years,

and 10 years before maturity. The investment boundary is composed of two parts (a)

and (b) with a vertex on (x1
1(t), x

1
2(t)) which is a pair of the investment triggers in a

monopoly with a single project.10 Needless to say, the investment region becomes larger

as time to maturity. This implies that the option value increases with time to maturity.

In fact, the option values 6 months, 1 year, 5 years, and 10 years before maturity are

V 2
1,2 = 3.72, 5.15, 9.83, and 12.16, respectively.

Let us now examine the effects of the correlation coefficient ρ, which is the most

interesting feature in the model. Fix time to maturity as 1 year. Figure 3 depicts the

investment boundary ∂S2
1,2(t) in a duopoly with those of a monopoly with two projects,

i.e., ∂S1
1,2(t). The investment boundary in a duopoly, unlike that of a monopoly, is

independent of the correlation. We see from Figure 3 that the investment region in a

monopoly becomes smaller with the correlation. In other words, the monopolistic option

value decreases with the diversification effects.

Table 1 presents the option values and percentages for a range of correlation coefficients

ρ. The option value V 2
1,2 in a duopoly increases to V 1

i = 7.15 with ρ, while the option

value V 1
1,2 in a monopoly drops to V 1

i = 7.15, as shown in the previous subsection. For a

reasonable correlation ρ = −0.2 ∼ 0.8 the option value in a duopoly is 40% ∼ 60% of the

monopolist with two projects, or equivalently 70% ∼ 80% of the monopolist with a single

project.

It should be noted that the results concerning the percentages V 2
1,2/V 1

1,2, V
2
1,2/V 1

i are

robust for time to maturity T , drift µ, and volatility σ. For example, for ρ = 0, the option

value 10 years before maturity is V 2
1,2 = 12.16, which is more than twice that of Table

1, while the percentages are V 2
1,2/V 1

1,2 = 42.72%, V 2
1,2/V 1

i = 74.73%. The option value

and the percentages for volatility σ = 0.5 and ρ = 0 are V 2
1,2 = 12.32 and V 2

1,2/V 1
1,2 =

38.87%, V 2
1,2/V 1

i = 69.99%, respectively.

In a valuation of a project by a real options approach, it sometimes occurs that a

monopolistic model and strategic model generate polar valuations, namely, the value in

the former is too high while that in the latter becomes too low. Then, a substantial

problem for a practitioner arises. How can we judge the gap and which value is reliable?

The model of the paper would provide us with a useful criterion in such a case. That

is, we should evaluate the value of a project considering a potential alternative using the

methodology of this paper.

10All computations in the paper use a bivariate version of the lattice binomial method with 500 time steps,

and hence the discretization is rougher for longer times to maturity.
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Table 1: Option values.

ρ V 2
1,2 V 1

1,2 V 2
1,2/V

1
1,2 V 2

1,2/V
1
i

−0.4 4.99 13.41 37.27% 69.85%

−0.2 5.06 12.99 38.99% 70.78%

0 5.15 12.51 41.18% 72.01%

0.2 5.26 11.97 43.99% 73.6%

0.4 5.41 11.34 47.75% 75.7%

0.6 5.62 10.58 53.17% 78.64%

0.8 5.96 9.57 62.27% 83.33%

1 7.15 7.15 100% 100%

X
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Figure 2: The preemptive boundary ∂S2
1,2(t), 0.5, 1, 5, and 10 years before maturity.

13



X
1
(t)

X
2(t

)

 

 

50 100 150 200 250 300

50

100

150

200

250

300
duopoly

ρ=0

ρ=0.4

ρ=0.8

Figure 3: The investment boundary ∂S2
1,2(t) and ∂S1

1,2(t) for ρ = 0, 0.4, and 0.8.

3.3 n firms with m alternative projects

This subsection extends the results in Section 3.2 to an oligopoly of n firms with m

alternative projects. Assume that:

Xi(0) ≤ Ii (i = 1, 2, . . . ,m). (29)

As in Section 3.2, we can solve the problem backward. We restrict our attention to the

case of symmetric projects to avoid unnecessary confusion. For asymmetric projects the

preemptive investment regions include the region corresponding to part (c) in (15), but

the results below remain true.

Let us first look at a case where n ≤ m. Consider the last two firms’ game among

m−n+2 projects. Assume that at time t with X(t) = x, m−n+2 projects in−1, . . . , im

remain. If one of the firms (the leader) invests in project ik at time t, the follower’s option

value becomes V 1
in−1,...,ǐk,...,,im

(X(t), t), where ǐk denotes the exclusion of ik. Recall that

the superscript and the subscript represent the number of firms and the available projects,

respectively.

Then, the region where the leader’s payoff exceeds the follower’s, denoted by S2
in−1,...,im

(t),

is:

S2
in−1,...,im(t) = ∪k=n−1,...,m{xik − Iik ≥ V 1

in−1,...,ǐk,...,,im
(x, t)}. (30)

Under the assumption that:

X(t) = x /∈ S2
in−1,...,im(t), (31)

14



both firms attempt to invest at the preemptive time:11

τ2
in−1,...,im(t) = inf{s ≥ t | X(s) ∈ ∂S2

in−1,...,im(s)}

and gain the option value:

V 2
in−1,...,im(x, t) = Ex

t [e−r(τ2
in−1,...,im

(t)−t) max
k=n−1,...,m

(Xik(τ2
in−1,...,im(t)) − Iik)].

It is readily verified from (30) that the investment region S2
in−1,...,im

(t) has the relationship:

S1
in−1,...,im(t) ⊂ S1

in−1,...,ǐk,...,im
(t) ⊂ S2

in−1,...,im(t)

for any k (cf. (24)). Thus we have:

τ2
in−1,...,im(t) ≤ τ1

in−1,...,ǐk,...,im
(t) ≤ τ1

in−1,...,im(t)

with respect to the timing (cf. (25)) and:

V 2
in−1,...,ǐk,...,im

(x, t) ≤ V 2
in−1,...,im(x, t) ≤ V 1

in−1,...,ǐk,...,im
(x, t) ≤ V 1

in−1,...,im(x, t)

with respect to the value (cf. (26)).

Next let us turn back to the 3 firm game among projects in−2, . . . , im at time t with

X(t) = x. If one of the firms (the leader) invests in project ik at time t, the two followers’

option value becomes V 2
in−2,...,ǐk,...,im

(X(t), t) derived under assumption (31) earlier.

The region where the leader has the advantage of preemption, denoted by S3
in−2,...,im

(t),

is:

S3
in−2,...,im(t) = ∪k=n−2,...,m{xik − Iik ≥ V 2

in−2,...,ǐk....,im
(xik , t)} (32)

Under the assumption that:

X(t) = x /∈ S3
in−2,...,im(t),

all the firms attempt to invest at the preemptive time:

τ3
in−2,...,im(t) = inf{s ≥ t | X(s) ∈ ∂S3

in−2,...,im(s)}

and gain the option value:

V 3
in−2,...,im(t) = Ex

t [e−r(τ3
in−2,...,im

(t)−t) max
k=n−2,...,m

(Xik(τ3
in−2,...,im(t)) − Iik)].

Note that the state variable X(τ3
in−2,...,im

(t)) satisfies (31) necessary at the initial point in

the duopoly game.

It readily follows from (32) that the relationship:

S2
in−2,...,im(t) ⊂ S2

in−2,...,ǐk,...,im
(t) ⊂ S3

in−2,...,im(t)
11To be precise, similar assumptions to footnote 7 and Assumption (iv) are necessary.
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hold for any k. By this we have:

τ3
in−2,...,im(t) ≤ τ2

in−2,...,ǐk,...,im
(t) ≤ τ2

in−2,...,im(t)

and

V 3
in−2,...,ǐk,...,im

(x, t) ≤ V 3
in−2,...,im(x, t) ≤ V 2

in−2,...,ǐk,...,im
(x, t) ≤ V 2

in−2,...,im(x, t).

By backward induction we can show the following results in n firms’ game at time 0

with Xi(0) = xi < Ii (i = 1, 2, . . . ,m). The preemptive investment region Sn
1,...,m(t), the

preemptive timing τn
1,...,m, and the option value V n

1,...,m(x, t) are:

Sn
1,...,m(t) = ∪k=1,...,m{xik − Iik ≥ V n−1

1,...,ǩ,...,m
(xk, t)},

τn
1,...,m = inf{t ≥ 0 | X(t) ∈ ∂S3

i1,...,m(t)},

and

V n
1,...,m(x, t) = Ex

t [e−r(τn
1,...,m−t) max

k=1,...,m
(Xk(τn

1,...,m) − Ik)],

respectively. The following relationships and inequalities hold:

Sn−1
1,...,m(t) ⊂ Sn−1

1,...,ǩ,...,m
(t) ⊂ Sn

1,...,m(t),

τn
1,...,m(t) ≤ τn−1

1,...,ǩ,...,m
(t) ≤ τn−1

1,...,m(t),

and

V n
1,...,ǩ,...,m

(x, t) ≤ V n
1,...,m(x, t) ≤ V n−1

1,...,ǩ,...,m
(x, t) ≤ V n−1

1,...,m(x, t).

The results are a generalization of Proposition 2. Again, the point is that the preemptive

competition intensifies if the numbers of both firms and projects increase by the same

amount. It is intuitively explained that in the preemptive equilibrium all the firms are

dragged into a scenario with the worst project.

Let us focus on the symmetric projects with the same initial value. The perfect

correlation gives V 1
1 (x, t) in a monopoly with a single project. For n = m, as in Corollary

2, V 1
1 (x, t) agrees with the maximum of V n

1,...,n(x, t). On the other hand, it does not

necessarily hold for n < m. This is because the last firm’s monopolistic value V 1
in,...,im

(x, t)

decreases with the correlation. Generally, the sensitivity of the correlation in an oligopoly

depends on a trade-off between moderation of the preemptive competition (positive effect)

and a decrease in a value of project choice (negative effect).

In the case where the number of firms is larger than that of projects, i.e., n > m, it

can be easily shown that at each stage all the remaining firms attempt to invest with the

zero-NPV timing and hence obtain nothing. The outcome is precisely the same as that

in Section 2.2.
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4 Conclusion

This paper has investigated the preemptive equilibrium in a real options model with

the multidimensional state variable, which represents potential alternative projects. The

results are summarized as follows.

First, preemptive investment takes place earlier and the option value becomes lower

if the numbers of both firms and projects increase by the same amount. The result can

be regarded as extension of the previous results with a one-dimensional state variable as

well as being consistent with empirical findings.

Second, the preemptive competition is moderated by the correlation among profits

from projects. The effect contrasts with that in a monopoly where a strong correlation

decreases the value of project choice. The sensitivity of the correlation to the project value

in an oligopoly depends on a trade-off between moderation of the preemptive competition

and a decrease in the value of project choice.

Third, the strategic option values with a symmetric alternative is 40% ∼ 60% of a

monopoly with two alternative projects, or equivalently 70% ∼ 80% of a monopoly with

a single project. This indicates the importance of the existence of a potential alternative.

Although monopolistic and strategic models with a one-dimensional state variable tend

to calculate extreme values, the method in this paper allows a reasonable valuation taking

account of the follower’s potential alternative investment.

Lastly, I should point out important but difficult topics for future research. The paper

assumes that profits from the projects are not sensitive to a competitor’s alternative

investment. However, the leader’s cash flow could be affected by the follower’s initiation

of a project even if it is an alternative project that is different from the leader’s project.

Also, the projects may have different maturity in some cases.
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