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Abstract

Do we have too few children? We intend to address this question. In devel-
oped countries, the fertility rate has declined since WWII. This may cause
a slowdown in the growth of GDP in developed countries. However, impor-
tant factors for the well-being of individuals are per capita variables, like per
capita growth and per capita consumption. In turn, the rate of technological
progress determines the growth rates of per capita variables. If the popu-
lation size is increasing, the labour inputs for R&D activity increase, and
thus speed up technological progress. As individuals do not take account
of this positive &ect when deciding the number of their own children, the
number of children may become smaller than the socially optimal number of
children. However, an increase in the number of children reduces the assets
any one child owns: that is, there is a capital dilutidfeet. This works in

the opposite direction. We examine this issue using an endogenous growth
model where the head of a dynastic family decides the number of children.
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1 Introduction

Do we have too few children? We intend to address this question in this paper.
Developed countries experienced a decline in the fertility rate after WWII. Conse-
guently, the population size of developed countries will decrease dramatically. As
is well known from standard growth theory, the natural rate of growth determines
the growth rate of GDP: that is, the sum of the rate of technological progress and
the rate of population growth. Therefore, it is often argued that the decline in pop-
ulation size due to the decrease in the fertility rate necessarily reduces the growth
rate of GDP and potentially the level of welfaréSome economists insist that an
increase in the rate of technological progress—another factor that determines the
growth rate of GDP—will counter the decline in the fertility rate, especially as
policies are required to promote technological growth.

This dual argument at first appears convincing. However, it does not consider
economic reasoning. First, the important variables for welfare are not GDP itself,
but rather per capita variables like GDP per capita or consumption per capita. In
fact, standard growth theory predicts that a decline in the population growth rate
leads to an increase in per capita variables like these, and therefore the growth rate
of per capita variables is determined by the rate of technological progress.

Second, we need to consider the endogenous mechaniusry the deter-
mination of economic growth. The dualism maintains that if a government could
increase the rate of technological progress, this would overcome the decline in the
fertility rate, that is, the decrease in population growth. However, how should the
government promote technological progress? Standard growth theory (that is, the
Solow model), cannot answer this question because the technological progress is
brought into the economy as manna from heaven. Therefore, we must resort to
endogenous growth models to respond. In these models, the rate of technology
progress is endogenously determined. The essential problem then becomes, when
the population size is decreasing, can the government raise the rate of techno-
logical progress? Importantly, to boost technological progress there is a need for

1The Japanese government recently appointed a minister of state for special missions to address
the declining fertility rate and undertake countermeasures.
2See any standard textbook; for example, Barro and Sala-i-Martin (2004).
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many researchers. A decrease in the population size may then reduce the number
of researchers working in research laboratories, and thus may lower the rate of
technological progress.

To investigate this issue, we employ the model in Jones (1995). In this model,
population growth invokes technological progress. Therefore, we can show that
the decline in population growth decreases the rate of technological progress and
thus decreases the growth rates of GDP and consumption per capita. Conse-
quently, it is questionable whether the government can increase the rate of tech-
nological progress when the rate of population growth is in decline. If this is the
case, should the government increase the rate of population growth to increase the
rate of technological progress?

However, the Jones (1995) model does not directly indicate that the govern-
ment should raise the rate of population growth. First, the purpose of economic
policy is not to promote economic growth, but rather to increase the welfare level
of individuals. Therefore, we first consider how individuals derive their utility.
Individuals derive utility not only from the consumption of final goods, but also
from having children. An increase in the number of children naturally raises their
level of welfare. However, while children are a source of enjoyment for their
parents, raising children invokes pecuniary costs along with opportunity costs be-
cause their parents usually stop working or reduce their working time to rear them.
By taking account of these costs and the utility from having children, individuals
make a decision on how many children they have.

Although this is a completely private decision, should the government inter-
vene in this largely private decision? The answer is that if market failure exists,
it is rational for a government to intervene in the decision-making process using
taxes or subsidies. The question is whether there is any market failure in the deci-
sions made by individuals on the number of children they will have. Consider now
that researchers and engineers in private firms conduct research and development
(R&D) activities. When parents decide upon the number of children, they do not
take into account the positivetects of population size on these R&D activities
in private firms. Consequently, because of this positive externality, the resource
allocation of the market equilibrium mayfter from the socially optimal alloca-



tion. That is, the number of children in the market equilibrium is smaller than in
the socially optimal allocation. Thus, some scope may exist for government in-
tervention by granting households a subsidy for having children. Nevertheless, it
is not obvious whether the government should provide the subsidy to households
that want to have more children, for there exists yet another cost for households to
have a child: namely, if a household decides to have one more child, the amount
of household capital that child owns becomes smaller. This reduces the capital
income for each child. This is theapital dilution gfect Therefore, there is a
need for further analysis based on the Jones (1995) model.

Jones (2003) has already examined some of these issues by modeling the
household’s decision on the number of children in Jones (1995). In fact, Jones
(2003) also argues that the number of children in the market equilibrium is smaller
than in the socially optimal allocation. However, Jones (2003) does not take into
account those R&D activities that target profit. We incorporate profit-maximizing
firms conducting R&D activities in our model. In particular, this modification can
easily overturn Jones’s (2003) result. Moreover, Jones’s (2003) analysis is limited
to steady state analysis. In contrast, the present analysis extends Jones (1995) by
examining the transition paths to the steady staBmcause it takes a fairly long
time until the economy approaches the steady state, it is also important to exam-
ine the character of the transition pathdMe construct a dynamic system for the
model and conduct numerical simulations based on some plausible parameters.
We show that the number of children in the market equilibrium can become larger
than in the socially optimal allocation not only at the steady state, but also on the
transition paths. This implies that the government should not intervene in the
decisions of families by giving them subsidies to increase the number of children.

The rest of the paper is structured as follows: Section 2 sets up the model.
Section 3 constructs the dynamic system of the model. Section 4 derives the
socially optimal allocation. By conducting a numerical simulation, we compare

3Jones (1995) also only examines the character of the steady state. Arnold (2006) examines
the dynamics of Jones’s (1995) growth model.

4See, for example, Steger (2003).

5Jones (2003) also suggests this result for the steady state. However, he does not conduct a
formal analysis.



the number of children in the market equilibrium with that in the socially optimal
allocation. Section 5 provides some concluding remarks.

2 The Model

In this section, we set up a model based on Jones (2003). A representative dy-
nastic family populates the economy. Jones assumes that the government collects
lump sum taxes from households and uses them to pay wages for researchers. In
contrast to Jones (2003), we incorporate profit-maximizing private firms under-
taking R&D activity. Consequently, there are three sectors: a final goods sector,
an intermediate goods sector, and an R&D sector. First, we consider the final
goods sector.

2.1 Final Goods Sector

The final goody,, is produced by the following production function:
A
Yt:L\l(;“f xdj O<a<l, (1)
0

whereLy; and x;; respectively, represent labour input and the input of jtie
intermediate good at time A, stands for the variety of intermediate goods at
timet. If the R&D firms succeed in inventing a new variefy,increases. Perfect
competition is supposed to prevail in the final goods market. Therefore, we obtain
the following profit-maximization conditions:

Y,

(1- a/)L—t =W, (2)
Yt

oLy, = pjs (3)

wherew; and p;; are the wage rate and the price of intermediate gjoaitimet,
respectively. We normalize the price of final goods to one. From (3), we obtain
the following demand function for intermediate gopd

. ;
Xj,t = ql« m. (4)



2.2 Intermediate Goods Sector

A single firm produces each intermediate good. This firm is a monopoly and can
set the price of the intermediate good that it supplies. The monopoly is protected
by perfect patent protection. One unit of capital supplied by the family produces
one unit of the intermediate good. Therefore, the producer oftthmtermediate
good maximizes profit according to the following:

T = PjXj — rXj,

subject to the demand function of the final good sector, (4), whese¢he rental
rate of capital. This results in the following pricing rule:

1
p= pj:Er.

Hence, the price is the same for all intermediate goodkhus, the output levels
of all intermediate goodgare the same and given by:

@2\
X = Xj = (T) Ly. (5)

The profit of each intermediate good firm is given by:

a,l+a T-o
ﬂxEﬂjz(l—a)( = ) Ly. (6)

2.3 R&D Sector

R&D activities are carried out using labour inputs according to the following tech-
nology:

At = gLA,t- (7)
whereL . is the labour input for R&D activities at timte 5 represents the produc-
tivity level of R&D activities® A, measures new intermediate goods. We assume
that the accumulated knowledge positiveljeats productivity in the following
manner:

s=6A, §>0, O<¢<1, (8)

81f we incorporate the duplicatiorfiect into the innovation technology, the production function
becomes\ = §(Lar)!, 0 < A < 1. We neglect thisféect for analytical simplicity.
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where¢ represents a parameter that expresses the extent of knowledge spillover.
¢ < 1 means there are decreasing returns in the production of new intermediate
goods. Perfect competition prevails in R&D races. Each R&D firm maximizes
its profit without considering this spilloveffect. Therefore, the objective of the
firm becomes:

At = PA,tAt — Wl at,
whereP,; is the price of a blueprint of a newly invented intermediate good. Free
entry into the R&D race leads to the following zero-profit condition:

PA,tg = Wt.

By using (8), we obtain:
PA,thA? = W 9)

The discounted sum of profit of the intermediate good firm buying the blueprint
determines the price of the blueprint. That is, the following holds:

Pat = f nx,re_fu;tr“d“dr, (20)
7=t

wherer, represents the return on assets at timeBy differentiating (10) with
respect to time, we obtain the following no-arbitrage condition:

rtPAt = 7TX,t + PA,t-

2.4 Dynastic Family

Individuals derive their utility not only from their own consumption but also from
the utility of their children’ Thus, parents care about the number of their children,
not just their own utility. We assume that the head of a representative dynastic
family maximizes the following:

U, = f u(e,. N,)e e dr, (11)
7=t

wherec, is the consumption of a member of the dynasty at time(> 0) is the
rate of time preference, and, is the number of members of the dynasty at time

’See Barro and Becker (1989) for this approach.
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7. We further assume that the instantaneous utility function of the head takes the
following form for analytical simplicity?

u(c., N;) =logc, + 0log N, (12)

whered(> 0) is the weight placed on the utility of thefspring.

We next formulate the budget constraint of the dynastynLdéenote the num-
ber of children at time for a member of the family. We assume that each member
has one unit of time endowment and that rearing children requires time: that is,
when rearingy children, an individual member of the family must devgte,)
units of time and hishe must give up the corresponding wage income. The rearing
cost function () satisfies the following conditiong/(n) > 0 andg”(n;) > 0.
Thus, the per capita stock of assets evolves according to the following equation:

a = (re — npag + w[1 - g(ny)] - ¢ (13)
Because there amg, identical individuals and each individual haschildren,
the size of the family evolves according to the following equation:

Nt = nt Nt- (14)

The head of the family maximizes (11) subject to (13) and (14). The first-order
conditions are given by:

L

- A, (15)
Ny = Aa + wis' ()], (16)
A= (o + =), (17)
i = (0 - e — — (18)

N’
wherel; andy; are costate variables associated with asset holding and the family
size, respectively. Furthermore, the following transversality conditions must be
satisfied:t_l)ior?{ta{e‘Pt =0 andtﬂg)utNte‘Pt = 0. The left-hand side of (16) rep-
resents the shadow value of children in the family. The right-hand side of (16)
represents the cost to have children. The first and second terms of (16) represent
the capital dilution &ect and the opportunity cost, respectively.

8See the appendix for the rationale underlying this functional form.
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3 Market Equilibrium and Dynamics

Based on the model in the preceding section, we derive the market equilibrium
and construct a dynamic system. The goods market equilibrium is given by:

Yi=Ci + Kt, (19)

whereC; andK; are aggregate consumption and capital stock, respectively. Denot-
ing the per capita variables in lowercase, we can transform (19) into the following
per capita terms:

ke = yi — ¢ — nike. (20)
The equilibrium condition for capital is given by:

We note here that there exiat varieties of intermediate goods at tihand the
quantityx;; is the same for all intermediate goods. The market equilibrium con-
dition of the labour market is given by:

Lyt + Lat = [1 = B(n)] N (22)
To derive the dynamic system of the economy, let us define the following

variables:yi = c/k, z = A/k, & = uNy v = AT/Ny, Pag = Pag/Ny, and
ga: = A//A. In the appendix, we show that the following five equations constitute
the dynamic system of the economy:

) 1
Xt = {Xt + (1 - ?) Iy —P})(t, (23)
. r
7 = ()a + N+ Qg — a—tz)zt (24)
&= p& -6, (25)
v =[(1—-¢)9ar — ] m, (26)
.; 1- r —
PA,I = (rt - —a/ ,j - ntJ PA,t' (27)
@ ZzPay

The appendix also shows that n;, andga; are given by the solutions of the
following three equations:

5PA (12 0) (‘:—2)1_ : (28)

Vt
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1(e?\™ 1
Z (QT) + 5viar = 1-pB(ny), (29)
1 -1 v
B(n) = TR 4‘)“2( ree. (30)

We now derive the balanced growth path (hereafter BGP). Section 5 examines
the full dynamics. In this section, we characterize the BGP. The BGFz', P;,
r, v, ', gy, N*} is determined by the following equations:

* 1 *
X =p—(1——2)r, (31)
a
X*=?—n*—gZ, (32)
., 0
( = (33)
P
*_ n*
gA_1_¢’ (34)
n*:r*[l—l_—a iJ (35)
@ 7P

and the three equations, (28), (29), and (30). From (31), (32), and (34), the fol-
lowing holds:

r _p+1_¢n. (36)
Then, substituting (36) into (31), we obtain:
o P (L) 222
§% _az+(a2 1)1_¢n. (37)

Whené = 1, we obtain a clear result for the decision of the dynastic family. By
using (29) and (30), we obtain the following equation:

B(n) _o® -1
1-Bn)-4rgy 1-a 1

Due to (37) and (A8), we can rearrange this into the following:
B (n¥) _l+a
1-pm) -1y p
If the allocation of labour input to the R&D sector is determined, (38) gives the
steady state number of children in the market equilibrium.

(38)
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4 Socially Optimal Allocation

By solving the social planner’s problem, we can derive the socially optimal allo-
cation, especially the optimal number of children. The social planner maximizes
the following welfare level of the dynastic family:

U, = f [logc, + #logN,] e Vdr,
7=t
subject to the resource constraint and the production function of new varieties:

ke = K [A{1 = B(ny) = 1ad]" ™ — ¢ — ik, (39)
At = 5A;/)|-A,t = 6A¥§|A,tNta (40)
and (14). The head of the dynastic family does not take account of (40) when

he/she optimizes. This is the source of the externality.
The first-order conditions of this maximization problem are given by:

é:@, (41)
piNe = A [(1 - a)% n kt] , (42)

L2 AN, = A(1— a)m, (43)
A= (p . a%) A (44)

pag = (o — Nopre — % — p210A Iay, (45)

Hot = ppat — At a _A:V)yt — 20 pA AN, (46)

where;, u1t, anduy, are costate variables associated with capital, family size,
and the varieties of intermediate goods, respectively. Furthermore, the following
transversality conditions must be satisfied:limA;a;.e = 0, lim_. 1N =
0, and lim_., u2 A = 0.

From (41) and (44), we obtain:

& = [a(@h)™ - p-nfe. (47)
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From (39) and (47), we obtain:

xt =i - (1- @) @)™ - plxe. (48)

Due to the definition ok and (39), we obtain the following dynamics fr

Z = [Xt + N+ 0ar — (ZtlY,t)l_a] Z. (49)

We here defing; = p1(N; andy; = u /Ar. Then, from (45), we obtain:

4t = pli — 0 — YaQar. (50)
From (46), we obtain:
= 12 g ol - (- ) 1)
From (43), we obtain the following relationship:
(1-a)@h)"™ (52)

[1-B() —laddxt v

Note that we have used the following definitiomef v; = A}“*’/Nt. As for the
dynamics ofv;, we can obtain the same equation as (26). From (41) and (42), we
obtain:

1 Y8’ (ny)
=—|(1l-a)————— + k.
“= o |t Ty -
By using the definition of; andz, we can rearrange this relationship as follows:
1-apr n
G -1 = (1- o) 2 B (53)

[1-B(n) — lad®
Noting that (A8) andy; = 1 - B(ny) — las, (48), (49), (50), (51), and (26), to-
gether with (52) and (53), constitute the dynamic system of the socially optimal
allocation.

We next derive the BGP of the socially optimal allocation. From (48), (49),
(50), (51), and (26), the BGP of the social optim{g?, 2°7, y°F, vOF, £9P, gQP,
n°P}, is determined by the following: equations:

x°F = (1-a) (9P +p, (54)

12



)(OP — (ZOP|$P)1—a _ r]OP _ ggP’ (55)

7% = 0+ yOPgRP, (56)

{(1- )" + o) x Py = (1 - a)(PAIN), (57)
op neP

9 =7C s (58)

and the relationshigy” = 1 — g(n°F) — 1992 and the two equations; (52) and
(53).

When6 = 1, we can obtain a clear result similar to (38) for the market equi-
librium:

1-B(°P) ~ p’
In order to compare the socially optimal number of children at the steady state
with the number of children in the market equilibrium at the steady state, it is
useful to rewrite (38) using the share of researchers allocated to R&D activities.
This share is defined bly, = sA[1 — B(n)]. Then, (38) is transformed into the
following form:

F(°) 1 59

) (1-s)d+a)
1-B(n) p '

Becauses’'(n)/[1 — B(n)] is an increasing function af, if the following inequality
holds, (1-s,)(1+a) > 1, then the number of children in the market equilibrium at
the steady state is larger than the socially optimal number of children at the steady
state. That is, too many children exist in the market equilibrium at the steady state.
However, because the share of researchers is an endogenous variable, we conduct
a simulation approach to obtain a much clearer result. Moreover, we calibrate the
transition paths based on some plausible parameters in the following section.

5 Simulation of Transition Paths

To analyse the model numerically, we specify the funcohas:

B(n) = Br?, (60)

whereg is a positive constant.

13



As a benchmark, we choose the parameter values as follows. The time prefer-
ence ratep, is set to 0.05, which is a conventional value in the growth literature.
The weight on the utility of ispring, 6, is equal to 1, because we analyse the
case wher@ = 1 holds in Section 4. We assume thais equal to 11.25, which
implies that the mark-up of the intermediate goods sector is 1.25. The valges of
and¢ are chosen so that the population growth rate of the market equilibrium at
BGP becomes dticiently close to 0.01. Then, we obtgn= 1300 ands = 0.3.
Finally, ¢ is set to 0.5 so that the annual growth rate of the econgjnys around
0.02.

Under this parameter set, the population growth rate of the market equilibrium
is equal to 0.0099, which is larger than that of the socially optimal allocation,
n°P = 0.0077. In this benchmark case, the number of children in the market equi-
librium at the steady state is larger than the socially optimal number of children
at the BGP. That is, there are too many children in the market equilibrium at the
steady state. Because the growth rates are given by (34) and (58), it is expected
that in our numerical example, is larger thargf\p. As expectedg, is 0.197
and larger tharyy” = 0.0147. The market equilibrium attains a higher growth
rate than the socially optimal growth rate. The share of labour allocated to R&D
activities in market equilibriuns, = 0.185 is smaller than the socially optimal
shares,” = 0.201 and satisfies the condition{1s;)(1 + ) > 1.

The next question is whether the number of children in the market equilibrium
is larger than the socially optimal number of children along all the transition paths
to the BGP. For this purpose, we analyse the transition paths by using the relax-
ation algorithm® In the following numerical examples, the initial values of the
state variables are chosenzs A;/k) = 0.015 andv(= A*?/N,) = 2.9 so that
in the benchmark market equilibrium, the population growth rate decreases over
time and the share of labour allocated to R&D activities increases over time.

Figure 1 presents the results for the benchmark case. The upper panel shows
the transitional paths of the number of children (the population growth rate). The

9Trimborn et al. (2008) detail the relaxation algorithm. They also provide Mat-
Lab programs for the relaxation algorithm, freely downloadable at /Mtgw.rrz.uni-
hamburg.ddWK /trimborryrelaxation.htm.
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solid line stands for the number of children in the market equilibrium while the
dotted line stands for the socially optimal number of children. The panel shows
that along all transition paths to the BGP, the number of children in the market
equilibrium is larger than the socially optimal number of children in this bench-
mark economy.

The middle and lower panels of Figure 1 depict the transitional patlg of
and s,, respectively. From the lower panel, we know that the labour share allo-
cated to R&D activities in the market equilibrium increases over time along the
transition path whereas it decreases over time in the socially optimal allocation.
The share of labour allocated to R$D activities is also smaller than the socially
optimal share along the transition path. The growth rate of the market equilibrium
is smaller than the socially optimal growth rate during the early stage of transition
due to the smaller share of labour allocated to R&D activities in the market equi-
librium. During the later stages of transition and at the BGP, however, the growth
rate of the market equilibrium becomes higher than the socially optimal rate. This
is because the flerences between the shares of labour allocated to R&D activi-
ties of the market equilibrium and that of the social optimum decrease over time
along the transition path, and because the higher population growth of the market
equilibrium positively &ects the growth rate.

In Figures 2—4, we present numerical examples other than the benchmark case.
Figure 2 shows where the value @fs increased and decreased from the bench-
mark level. Figures 3 and 4 show where the valueg ahdé are increased and
decreased from the benchmark levels. All figures show that not only at the BGP
but also along the transition path to the BGP, the number of children in the market
equilibrium is larger than the socially optimal number of children. In all of the
figures, the growth rate and the share of labour allocated to R&D activities exhibit
similar transitional paths. The only exception is when the valyeisfincreased
from the benchmark. Whemis 0.07, the share of labour allocated to R&D activ-
ities in the market equilibrium becomes higher than that of the social optimum in
the later stage of transition (the lower left panel of Figure 2). However, even in
this exceptional case, the number of children in the market equilibrium is larger
than the socially optimal number of children along the transition path.

15



6 Concluding Remarks

In this paper, we incorporated profit-maximizing innovating firms and thus ex-
tended the model in Jones (2003). Importantly, the present model is much more re-
alistic than Jones (2003), where the labour allocation is fixed. Moreover, we have
examined transition paths by conducting simulation analysis. We have shown that
the number of children in the market equilibrium is larger than in the socially op-
timal allocation. Based on plausible parameters, this is not only at the steady state
but also on the transition paths.

The usual argument is that because the number of children that parents actu-
ally have is smaller than the number of children they want to have, the government
must subsidize parents so they can have more children. However, our result im-
plies that the government should be cautious with policy when intervening in the
private decisions of parents with respect to the number of children.

Finally, we provide some directions for future research. First, in the present
model, we assume that the number of children take real numbers. However, in
reality the number of children must be nonnegative integers. Therefore, there may
be a substantial ffierence between having two children and having three children.

If so, we must investigate this issue by taking into account the integer problem.
Second, a continuous decrease in the population leads to zero population size.
Given at least some population size must exist for economic activities and human
life, we must consider the possibility of an optimal population size. These are
important issues to be considered in future research.

Appendix
Al

In this appendix, we show how the objective function (11) and the instantaneous
utility function (12) are derived. Consumption at tirnby a member of the dy-
nastic family is given by;. Because a member haschildren, the utility of this
memberU; is defined as:

Ut = u(c) - dt+ (1 - pd)T(ndt) - (ndt)Up.a, (A1)

16



whereY'(ndt) is the degree of altruism of parents toward their children. For sim-
plicity, we assume the following functional formsic;,) = Cl‘i—; and Y(ndt) =
(ndt)—.

We assume that the size of the dynastic family at tinseone, that isN; = 1.
Then, we haveéN;, 4 = nedt, Ny ot = Nydt X ng,g:dt, and so on. Therefore, by using
(A1), we can obtain the following discounted sumlf

U = U(Ct)'dt+(1_pdt)u(ct+dt)(Nt+dt)l_8'dt+(1_pdt)zu(ct+2dt)(Nt+2dt)1_8’dt+""
(A2)
Because of the assumption of the functional form, we have:

(eNEE)™7 -1

Nl—a —
u(c) Ty

As in Barro and Sala-i-Martin (2004, p410), we add the term -1 in the numerator
so that we obatin the log-utility form as approaches 1. When approaches 1
by keeping the ratio (+ ¢)/(1 — o) constant, then its limit becomes:

lim
-l 1-0

=Inc+6InN, (A3)

whered = (1 - £)/(1 - o). Consequently, (A2) can be rewritten as follows:

U = [In ¢+6In Ne]dt+(1—pdt){[In Cr,qt+6 IN N, g dt+(1—pdt)[In Ciogi+6 IN Niyoge] dt+---}.

Neglecting the higher-order terms aft]” (n > 1), (A1) finally becomes:
Ui=[Inc+0InN] - dt+ (1 - pdt)Us,qt.

Dividing both sides of this equation and taking the limitddf— 0, we obtain the
following differential equation:

U, = pU; = (Inc + 81 Ny).

By integrating this dierential equation, we can obtain the desired result.
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A2

In this appendix, we derive the dynamic system of the economy. Noting that the
same amount of the intermediate goods is produced, we can transform (1) into the
following production function in intensive form:

yi = K (AdV), (A4)

wherely = Ly/N. Thus, (20) becomes:

ke = K (Ady)7™ = ¢ — nike. (A5)

From (15) and (17), we obtain:

Ct = (It — p — NYCe. (A6)

By using (5) and (21), and definirg= A/k;, we obtain:
zly; = (a®/r)"" . (A7)

By defining y; = ¢/k and using (A7), we obtain (23). We next derive the
dynamics ofz, (24). By definingl; = u¢N;, we obtain (25). By similarly defining
vi = A”?/N;, we obtain (26). Again, by defininBa; = Pa;/N; and using (6) and
(A7), we obtain (27).

By using (2), (9), and (A7), we obtain (28).

From the definition oy, (7), and (8), we obtain:

1
LA,t/Nt = lA,t = thgAt. (A8)

Substituting (A7) and (A8) into (22), we obtain (29).
From (15) and (16), we obtain:

_ ke wg(ng

e o

(A9)

By using (2), and (A4), we obtain () (%)“ = %. Substituting this into (A9),
using (A7), and rearranging, we obtain (30).
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A3

In this appendix, we derive the equation that determines the socially optimal num-
ber of children at the steady state, (59).
From (54), (55), we obtain:

(1 _ CY) (ZOPl(Y)P)l—w +p= (ZOPleP)l—a _ r‘|OP _ ggP

By using (58), this relationship can be rearranged as follows:

a(PPIP) T = p + i:—ZnOP. (A10)
Next, substituting (A10) into (55) and using (58), we obtain:
x°F = 1 —lp+ (1- a) Z OF’] : (A11)

From (57), (A10), and (A11), we obtain:
1l-a) (p + & ¢nop)
(o +1°P) [p + (1 — a)32noP|

OP _

(A12)

Substituting (A12) into (52) and noting that = 1 — 8(n) — I, and (All), we

obtain:
I =
(lep)a Ca(p+ nop)vop
By multiplying both sides of (A13) byoP and substituting(A10) into them, we

obtain:

(A13)

p+ i 2nOP

From (53) and (56), we obtain:

(A14)

_ () n°P) = ¢OPyOP _ 9 op_ @ OP OP

(1-a) B'(n7) = —l=—" -1+ —y
(19"

Substituting (58), (A11), and (A12) into this relationship, we obtain:

(PP 0 [0-a —¢
) | e 0

N l1-a noP 2
ap(L—¢)p+noP T 1

(1-0)

zn ) (A15)

19



When6 = 1, we can rearrange (A15) as follows:

(ZOP)l—a/ ,r OPy 1 2_¢ op 1 nop
@- e = o+ 15 1 12575

Substituting (A13) into this and using (A14), we obtain (59).
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