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Abstract

This paper analyzes an endogenous choice problem with regard to tax

instruments in a capital tax competition model. Considering a symmetric

and two-region model of tax competition, where each region is allowed to

choose either unit or ad valorem tax, we show that selecting unit tax as

a policy instrument is the dominant strategy of governments. An inter-

pretation of this result is clearly explained by the properties of the best

response curves.
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1 Introduction

As surveyed by Wilson (1999), there are many literatures on tax competition.

However, attention about whether it matters if the taxes are unit or ad valorem

is not so popular as the topic. In almost literatures in the context of the Zodrow-

Mieszkowski-Wilson (ZMW) model, the tax is levied per unit of capital (i.e., it

is a unit tax), whereas in reality, taxes are on capital income and are therefore

always ad valorem (i.e., a proportion of income from the capital).

The pioneering work on this problem is Lockwood (2004), which shows that

the Nash equilibrium in unit taxes is generally different from the Nash equilib-

rium in ad valorem taxes.

"If countries are symmetric, and both private and public goods are normal,

then (i) the symmetric Nash equilibrium in taxes exists and is unique in each

case; and (ii) equilibrium taxes and public good provision are always lower when

countries compete with ad valorem taxes." (Lockwood, 2004)

Given this interesting result, one simple straightforward extension of this

model is to introduce a stage for the selection of the tax system, a unit tax or an

ad valorem tax, before they compete with each other. Even if the equilibrium

with a unit tax is superior, this system may not be selected in the dynamic two-

stage strategic game. Therefore, it is valuable to explore this strategic behavior of

the government in a dynamic game with the strategic selection of tax instruments.

This paper analyzes an endogenous choice problem of tax instruments, unit

or ad valorem, in a capital tax competition model. Considering a symmetric

and two-region model where each region maximizing its tax revenue is allowed

to choose either a unit tax or an ad valorem tax,1 we show that both regions

choose unit taxes in a Nash equilibrium.

In order to interpret this result, we can point out the following two mech-

anisms. First, the reason for the difference in Nash equilibrium outcomes with

unit and ad valorem taxation. Second, the reason for the adoption of unit tax

in the dynamic game with strategic selection of tax instruments.

First, as clearly explained in Lockwood (2004), the difference in Nash equi-

librium outcomes with unit and ad valorem taxation depends on the elasticity of

tax increase on capital. The elasticity in the case where ad valorem taxation is

adopted in another region is greater in absolute value than that in the case with

unit tax.

The simple intuition for the greater elasticity when competing with the region

under ad valorem taxation comes from how the effective tax rate in another

region is changed with an inflow of capital. When an ad valorem tax is adopted

1Our model is the same as the Zodrow-Mieszkowski-Wilson (ZMW) model, except for the

number of regions and the revenue-maximizing governments.
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in another region, any outflow of capital by the tax increase lowers the effective

unit tax in another region, given that the ad valorem tax in region 2 is fixed,

because this effective rate is the fixed ad valorem tax multiplied by the marginal

product of capital that falls with an inflow of capital. The lower effective tax

rate in another region induces more inflow of capital into another region, which

means that the capital elasticity by the tax increase becomes greater.

Second, we consider why the unit tax is selected in the dynamic game with

the strategic selection of tax instruments. As long as the effective tax rate is the

same, the own reaction curve remained unchanged, given the tax instrument in

another region. This means that the reaction curve becomes the same in both

cases with unit and ad valorem taxation, given the tax instrument in another

region. The crucial fact is that the selection of the own tax instruments changes

the reaction of another region through the change of the tax elasticity on capital

in another region. The change of the reaction curve affects the equilibrium.

When the own tax instrument is unit, the effective tax rate in another region

becomes higher, which is better for the own region because its capital becomes

relatively large through the lower tax elasticity in another region. As a result,

both governments adopt unit tax and obtain a larger revenue as compared with

ad valorem taxation.

This paper is organized as follows. The model is explained in the next section,

and the main proposition is derived in Section 3. Section 4 concludes the paper.

2 The model

We consider a symmetric and two-region (regions 1 and 2) model.2 Region i is

populated by Li identical residents, and has Ki endowments of capital. Labor is

immobile, whereas capital is mobile, involving no transportation costs between

the two regions. Firms in each region are perfectly competitive and produce

an identical product. The profit of each firm is zero in equilibrium owing to

free entry. The output of region i is given by F i(Li,Ki), which has technology

involving constant returns to scale. The symmetric assumption implies that

L1 = L2 and K1 = K2. We set Li = 1 without loss of generality and conduct the

analysis by using the production function per capita, f i(ki), where ki ≡ Ki/Li.

Governments of both regions impose taxes on the return on capital, and can

make a choice between a unit tax and an ad valorem tax. Their aims are to

maximize tax revenue, and they behave in a Nash manner.3 The game played

2Our model is the same as the Zodrow-Mieszkowski-Wilson (ZMW) model except for the

number of regions and the revenue-maximizing governments.
3This paper deals with a government that aims to maximize tax revenue, and hence does

not describe the behaviors of consumers and the uses of tax revenue. This assumption could be

justified, as Kanbur and Keen (1993), Janeba (2000), Kothenburger (2005), Keen and Ligthart
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between the two governments is constructed by two-stage decision making.4 In

the first stage, they choose the tax instruments; they choose either unit or ad

valorem taxation to maximize the tax revenue. Observing the tax instrument,

the regions choose the rate of tax in the second stage.

Let us denote the unit tax of region i by Ti and the ad valorem tax by ti.

Noting that the two regions face the same post-tax rate of return on capital (r)

as a result of the perfect mobility of capital, the market equilibrium conditions

of capital are described by½
r = f ik − Ti, unit tax,

r = f ik(1− ti), ad valorem tax,
(1)

k = k1 + k2, (2)

where f ik(≡ ∂f i/∂ki) is the marginal product of capital and k is the total amount

of capital in the economy.

The tax revenue (gi) of region i is½
gi = Tiki, unit tax,

gi = tif
i
kki, ad valorem tax.

(3)

3 The competition in tax instruments and tax

levels

This section analyzes a tax competition when there is a choice of tax instruments.

To avoid analytical complexity and derive solutions explicitly, we adopt the fol-

lowing quadratic function for capital, f i(ki) = [ai − (biki/2)] ki, where ai > 0 and
bi > 0. This function is often used in the literature on this field, for example,

Wildasin (1991), Brueckner (2004), and Itaya, Okamura and Yamaguchi (2008).

The marginal product of capital is f ik = ai − biki. From the assumption of the

symmetric regions, a1 = a2(≡ a) and b1 = b2(≡ b).
We consider a two-stage game of tax competition. In stage 1 of the game,

the governments of the two regions noncooperatively and simultaneously choose

(2006), and among others, if we assume a Leviathan-type of government. Alternatively, the

governments’ objective of revenue maximization can be justified when the tax-competing gov-

ernments face severe revenue shortfalls, such that tax revenue is sufficiently more important

than private good consumption. This setting, admittedly, is made only for technical reasons

and makes it possible for us to analytically solve the equilibrium when two governments impose

a different type of tax on capital.
4Wildasin (1991) is the pioneering research that has applied this type of two-stage game to

a tax competition analysis.
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the tax instruments: either unit or ad valorem taxation. In the second stage,

observing the tax instruments, they determine the levels of tax rates. Taking

tax instruments and tax levels of the two regions, firms maximize their profits.

We derive a tax instrument in the subgame perfect Nash equilibrium by using a

backwards induction.

3.1 Tax level (stage 2)

This section examines the tax rates determined by the two regions in stage 2,

given the tax instruments of the regions: (i) both regions choose unit tax; (ii)

both regions choose ad valorem tax; and (iii) one region chooses unit tax, while

the other chooses ad valorem tax. We show the equilibrium tax rates in each

case by the following:

Lemma 1 The equilibrium tax rates in Stage 2 are as follows. (i) When both

regions choose unit tax,

Ti = bk, i = 1, 2,

(ii) when both regions choose ad valorem tax,

ti =
bk

a
, i = 1, 2,

(iii) when region i chooses unit tax, while region j chooses ad valorem tax,

Ti =
bk

2
+
H

4
, and tj =

H

2(a− bk) , i, j = 1, 2 and i 6= j,

where H ≡ 6a− bk −√25b2k2 + 36a2 − 36abk.

Proof. See Appendix A.

To make our solution meaningful (for capital demands and the post-tax rate

of return on capital to be positive in all cases), we make the following assumption.

Assumption 2a > 3bk.

This guarantees that tax rates and tax revenues are positive in all cases (see

Appendix A).

The conversion of unit tax into the effective ad valorem rate enables the

comparison of the tax rates between different tax instruments; the best response

of unit tax is converted into ad valorem tax by using ti = Ti/f
i
k. Let us define

tmhi as the effective ad valorem tax rate of region i in the Nash equilibrium when

region i chooses tax instrument m for m = U,A and the other region chooses tax
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instrument h for h = U,A, where U indicates the choice of unit tax and A, that

of the ad valorem tax. The effective ad valorem tax rates in the Nash equilibrium

are given by

tUUi =
2bk

2a− bk , i = 1, 2, (4)

tAAi =
bk

a
, i = 1, 2. (5)

tUAi =
(2bk +H) [4(a− bk)−H]

4a [4(a− bk)−H]− 2(H + 2bk)(a− bk) , i = 1, 2, (6)

tAUi =
H

2(a− bk) , i = 1, 2, (7)

Note that (5) is given in Lemma 1-(ii) and that (7) is given in Lemma 1-(iii).

See Appendix B for the derivation of tUUi and tUAi . From these expressions, we

provide the following proposition.

Proposition 1 The equilibrium taxes evaluated in terms of the effective ad val-

orem rates in Stage 2 satisfy tAAi < tUAi < tAUi < tUUi .

Proof. See Appendix C.

We characterize the equilibrium tax rate in Proposition 1 by using the gov-

ernments’ reaction curves evaluated in terms of the effective ad valorem tax rate.

Such reaction curves are obtained by using ti = Ti/f
i
k. (i) When both regions

choose unit tax, the best response evaluated in terms of the effective ad valorem

tax rate of each region is given by

ti =
2tj(a− bk) + 2bk

4a− bk − tj(2a− bk) , i, j = 1, 2 and i 6= j, (8)

(ii) when both regions choose ad valorem tax, it is given by

ti =
(2− tj)[bk + (a− bk)tj]
4a− bk − (3a− bk)tj , i, j = 1, 2 and i 6= j, (9)

(iii) when region i chooses unit tax, while region j chooses ad valorem tax, the

best responses of regions i and j are, respectively

ti =
(2− tj)[bk + (a− bk)tj]
4a− bk − (3a− bk)tj , and (10)

tj =
2(a− bk)ti + 2bk

4a− bk − (2a− bk)ti , i, j = 1, 2 and i 6= j.
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See Appendix D for the derivation of these equations. In Figure 1, the ad valorem

tax rate of government i, ti ∈ (0, 1), is taken on the axis. Government i’s reaction
function when both governments employ the ad valorem tax system is plotted

by the curve RAAi , and the stable equilibrium is given by point A. The reaction

function when both governments employ the unit tax system can by plotted in

this figure since we can replace the unit tax by the effective ad valorem tax. The

curve RUUi represents government i’s reaction function when both governments

employ the unit tax system. Point B shows the (converted) ad valorem tax

rates in the equilibrium when both governments employ unit tax. Furthermore,

government i’s reaction function when it employs the ad valorem tax system

and government j employs the unit tax system is plotted by the curve RAUi .

Symmetrically, the curve RUAi represents government i’s reaction curve when it

employs unit tax but government j employs ad valorem tax. The points C and

D are the equilibria obtained in the tax competition in which one government

employs unit tax, while the other government employs ad valorem tax.

Two features of reaction curves should be mentioned in Figure 1. First,

government i’s reaction curve is unchanged when it changes its tax instrument

from unit to ad valorem tax, and vice versa. Second, government i’s reaction

curves when government j employs ad valorem tax is located further upwards

from its reaction curve when government j employs unit tax. Here, we give a

proof of the identity of RAAi and RUAi . When government i chooses the unit

tax and government j chooses the ad valorem tax, from (1), we have f ik − Ti =
(1− tj)f jk , which yields,

dki

dTi
=

1

f ikk + (1− tj)f jkk
, (11)

where f ikk ≡ ∂f ik/∂ki. When both governments choose ad valorem tax, from (1),

we have (1− ti)f ik = (1− tj)f jk , which yields

dki

dti
=

f ik

(1− ti)f ikk + (1− tj)f jkk
. (12)

When government i employs ad valorem tax, from gi = tif
i
kki, the first-order

condition for revenue maximization is expressed as

0 = f ikki + tikif
i
kk

dki

dti
+ tif

i
k

dki

dti
. (13)

Substituting (12) for dki/dti in (13) yields£
f ikk + (1− tj)f jkk

¤
ki + tif

i
k = 0. (14)
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When government i employs the unit tax, from gi = Tiki the first-order

condition for revenue maximization is expressed as

0 = ki + Ti
dki

dTi
. (15)

Substituting (11) for dki/dTi in (15) yields£
f ikk + (1− tj)f jkk

¤
ki + Ti = 0. (16)

The effective unit tax rate can be described by the ad valorem tax rate as

Ti = tif
i
k. (17)

From (16) and (17) we obtain£
f ikk + (1− tj)f jkk

¤
ki + tif

i
k = 0, (18)

Eq. (18) is identical to (14). Therefore, we find that RAAi is identical to RUAi .

Furthermore, since this argument can be applied for any tax instrument govern-

ment j employs, we prove that RUUi is identical to RAUi .

We now turn to the consideration of the geometric positioning of the reaction

curves. The intuition for the positioning of the reaction curve follows from the

consideration of the welfare cost of increasing the tax rate in the jurisdiction.

Taking government 1, we first consider the positioning of RUU1 and RUA1 . Let

us assume that both governments employ unit tax. Government 1 expects some

outflow of capital to occur if it increases its unit tax, while the other keeps its

unit tax rate fixed. This capital outflow is recognized as the cost of raising unit

tax. If government 2 employs ad valorem tax, government 1 expects an even

larger outflow as it raises its unit tax rate and thereby the cost of raising the

unit tax. This is because the other jurisdiction, 2, lowers the effective unit tax

rate in response to the tax increase in region 1, and this magnifies the flow of

capital from region 1 to 2. As a description of this point, remember that the

effective unit tax in region 2 is equivalent to the ad valorem tax rate multiplied

by the marginal product of capital. Although the unit tax rate of government 2

is given when government 1 increases its unit tax rate, the capital inflow in region

2, accompanied by the tax increase in region 1, reduces the marginal productivity

of capital; hence, the effective unit tax rate will be lowered. The decrease in the

effective unit tax rate in region 2 leads to further capital outflow from region 1,

so that the tax base is more elastic for government 1 when the other employs

the ad valorem tax system. Therefore, the curve RUU1 lies on the upper side of

the curve RUA1 . The same explanation will be applicable to the positioning of

RUU2 and RUA2 . These properties of the reaction curves give rise to the pattern

of equilibrium outcome in Figure 1.

8



We now return to Proposition 1, in which the inequalities tUAi < tUUi and

tAAi < tAUi show that the tax rates of region i when the partner region (region

j) uses ad valorem tax are lower than those when region j chooses unit tax

regardless of whether the tax instrument of region i is unit or ad valorem. The

inequalities tAAi < tUAi and tAUi < tUUi show that the tax rates of region i when it

chooses ad valorem tax are lower than those when it chooses unit tax regardless

of whether the tax instrument of region j is unit or ad valorem. These findings

can be interpreted by considering the case of i = 1 and j = 2. When region 2

changes tax instruments from unit to ad valorem, the reaction curve of region 1

shifts downward and that of region 2 does not, so that the equilibrium tax rate

of region 1 decreases. When region 1 changes tax instruments from unit to ad

valorem, the reaction curve of region 2 shifts upward and that of region 1 does

not, so that the equilibrium tax rate of region 2 decreases.

3.2 Tax instrument (stage 1)

This section solves the equilibrium tax instruments in Stage 1. We use gmhi to

denote the tax revenue of region i when region i chooses tax instrument m for

m = U,A and the other region chooses tax instrument h for h = U,A, where U

indicates the choice of unit tax and A, that of the ad valorem tax.

Lemma 2 (i) When both regions choose unit tax, the tax revenues of both region

are

gUUi =
bk2

2
, i = 1, 2, (19)

(ii) when both regions choose ad valorem tax, these are

gAAi =
(2a− bk)bk2

4a
, i = 1, 2, (20)

(iii) when region i chooses unit tax, while region j chooses ad valorem tax, the

tax revenues of regions i and j are, respectively

gUAi =
(H + 2bk)2(a− bk)
8b[4(a− bk)−H] , and (21)

gAUj =
H[(a− bk)(6bk −H)− 2bkH][2(4a− 3bk)−H]

8b [4(a− bk)−H]2 , i, j = 1, 2 and i 6= j.

Proof. See Appendix E.

Table 1 shows the payoff matrix in the first stage, in which gmhi is given by

(19)-(21). Lockwood (2004) simply compares the symmetric equilibrium between
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gUUi and gAAi and shows gUUi > gAAi . This result is easily confirmed in Table 1

since gUUi − gAAi = b2k3/4a > 0. The characteristic feature is that in the case

where the two regions choose different tax instruments, the tax revenue is not

equal between the two regions (gAU1 6= gUA2 and gUA1 6= gAU2 ).

We provide the following proposition.

Proposition 2 Choosing unit tax is a dominant strategy; two regions choose

unit tax as a policy instrument in a Nash equilibrium.

Proof. See Appendix F.

This result shows that unit tax is selected when the tax instrument can be

selected before the governments compete with regard to the tax rate. Given the

result from Lockwood (2004) that the equilibrium with unit tax is superior, this

proposition suggests that this desirable equilibrium with unit tax is derived even

if we allow for endogenous choice on tax instruments.

Region 1 tries to make region 2 set a higher tax rate in order to attract

capital to region 1. To make region 2 set a high tax rate, it is an effective

strategy for region 1 to employ unit tax. This is because while the employment

of ad valorem tax produces a side effect that gives region 2 an incentive to lower

the tax rate, the employment of unit tax does not have such an unfavorable

effect. To demonstrate this, we consider the tax setting of region 2. When

region 1 employs unit tax in the first stage, given region 1’s unit tax rate in the

second stage, region 2 sets its tax rate to equate the marginal benefits of tax

increase (an increase in tax revenue) with marginal cost (a decrease in regional

output accompanied by tax outflow). When region 1 employs ad valorem tax,

region 2 sets its tax rate to equate the marginal benefit and marginal cost. In

this case, however, the marginal cost region 2 faces is greater than that it faces

when region 1 employs unit tax. Since the effective (unit) tax rate of region 1 is

given by T1 = t1f
1
k (k1), the tax increase in region 2 increases k1 and decreases

f1k , which lowers the effective tax rate of region 1 even if t1 is given. This will

cause further capital outflow from region 2, resulting in region 2 choosing a lower

tax rate. Owing to the presence of the unfavorable side effect in the case of ad

valorem tax, region 1 commits itself to employing unit tax.

4 Conclusion

Extending the result obtained from Lockwood (2004), we have shown in this

paper that a superior equilibrium can be achieved with the selection of the unit

tax, even in the case where the tax instrument can be selected before tax com-

petition. In this paper, we focus on which tax instruments, unit or ad valorem,
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are selected in the capital tax competition model. This analysis can be applied

to various models with tax instruments, for example, tax exporting competition

or tariff competition.

Our model, which is in the line of a basic one in the literature on tax com-

petition, generates a tax-cutting war as each region avoids the outflow of capital

to the partner’s country. As explained below Proposition 2, the outflow effect

of capital owing to the imposition of tax can be repressed when the partner’s

region employs unit tax as compared to ad valorem tax. Therefore, the use of

unit tax leads to a higher effective tax rate than ad valorem tax, and hence, unit

taxes are beneficial to both countries. However, in a optimal tariff framework

with two symmetric countries, Lockwood and Wong (2000) showed that ad val-

orem tariffs lead to less tariff-induced distortion in Nash equilibrium, and both

countries choose the ad valorem tariffs. The choice of tax instruments, unit or

ad valorem forms, depends on the structure of a model.

Finally, it should also be noted that the results are derived within the context

of a model that is very general in some respects, but they obviously depend on

other less general assumptions. For example, the model qualifies the governments

as Leviathans, but one could easily imagine that the governments are benevolent

and compete for mobile capital so as to maximize the utility of residents, or more

specifically, they could be moderate Leviathans so that they take both resident’s

welfare and budget size into account. Furthermore, the production function

is specified by the quadratic form. On the one hand, these assumptions clear

the way for analytical examination, on the other they leave room for additional

generalization for future research.

Appendix A: the proof of Lemma 1.

(i) Unit vs. Unit

Noting the symmetry (a1 = a2(≡ a) and b1 = b2(≡ b)), from a quadratic-type

production technology and (1), we obtain

r = a− bki − Ti, i = 1, 2. (A-1)

The revenue maximization problem for government i is given by

max
Ti

gi = Tiki, i = 1, 2.

The first-order condition gives

∂gi

∂Ti
= ki + Ti

∂ki

∂Ti
= 0, i = 1, 2. (A-2)
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From (2) and (A-1), we obtain

ki =
bk + Tj − Ti

2b
, i = 1, 2. (A-3)

which yields
∂ki

∂Ti
= − 1

2b
, i = 1, 2. (A-4)

Using (A-2)-(A-4), we obtain the best response of region i:

Ti =
bk + Tj

2
, i, j = 1, 2 and i 6= j, (A-5)

which yields the tax rate in the Nash equilibrium:

T1 = T2 = bk. (A-6)

From the symmetry, k1 = k2 = k/2 in the equilibrium. From this, (A-1), and

(A-6), the post-tax rate of return on capital in the equilibrium is given by

r =
2a− 3bk

2
> 0,

where the inequality follows from the Assumption.

(ii) Ad valorem vs. ad valorem

In this case, it follows from (1) that

r = (a− bki)(1− ti), i = 1, 2. (A-7)

The revenue maximization problem for government i is given by

max
ti

gi = ti(a− bki)ki, i = 1, 2.

The first-order condition gives

∂gi

∂ti
= ki(a− bki) + ti(a− 2bki)∂ki

∂ti
= 0, i = 1, 2. (A-8)

Using (2) and (A-7), we obtain

∂ki

∂ti
= − a− bki

b(2− ti − tj) , i, j = 1, 2 and i 6= j. (A-9)
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From (2), (A-8), and (A-9), we obtain the best response of region i:

ti =
(2− tj) [bk + (a− bk)tj]
4a− bk − (3a− bk)tj , i, j = 1, 2 and i 6= j. (A-10)

which yields the tax rate in the Nash equilibrium:

t1 = t2 =
bk

a
. (A-11)

Note that ti < 1 from the Assumption.

From the symmetry, k1 = k2 = k/2 in the equilibrium. From this, (1), and

(A-11), the post-tax rate of return on capital in the equilibrium is given by

r =
(2a− bk)(a− bk)

2a
> 0,

where the inequality follows from the Assumption.

(iii) Unit vs. ad valorem

Without loss of generality, we consider the case where region 1 chooses unit tax

and region 2 chooses ad valorem tax. In this case,

r = a− bk1 − T1 = (a− bk2) (1− t2). (A-12)

The revenue maximization problem in each region is given by

max
T1

g1 = T1k1,

max
t2

g2 = t2(a− bk2)k2.

The first-order conditions are

∂g1

∂T1
= k1 + T1

∂k1

∂T1
= 0, (A-13)

∂g2

∂t2
= k2 (a− bk2) + t2 (a− 2bk2) ∂k2

∂t2
= 0. (A-14)

From (2) and (A-12), we have

k1 =
at2 + (1− t2)bk − T1

b (2− t2) , (A-15)

k2 =
−at2 + T1 + bk
b(2− t2) . (A-16)
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These show that

∂k1

∂T1
= − 1

b(2− t2) , and
∂k2

∂t2
= − a− bk2

b(2− t2) . (A-17)

From these, (A-13), (A-14), and (A-17), we obtain the best responses:

T1 =
at2 + (1− t2)bk

2
, (A-18)

t2 =
2 (T1 + bk)

(4a− T1 − bk) . (A-19)

By using these, the tax rates in the Nash equilibrium are given by

T1 =
bk

2
+
H

4
, (A-20)

t2 =
H

2(a− bk) . (A-21)

To confirm that T1 > 0 and t2 > 0, we prove that H > 0. By noting that

6a− bk > 0 and 25b2k2 + 36a2 − 36abk > 0 from the Assumption, H > 0 if and

only if (6a− bk)2 − (25b2k2 + 36a2 − 36abk) > 0. It follows that
(6a− bk)2 − ¡25b2k2 + 36a2 − 36abk¢ = 24bk(a− bk),

which shows that H > 0 from the Assumption. Thus, (A-20) and (A-21) show

that T1 > 0 and t2 > 0.

Next, we confirm that k1 > 0, k2 > 0 and r > 0. From (A-12), (A-15),

(A-16), (A-18), and (A-19), the capital demand in each region and the post-tax

rate of return on capital in the equilibrium are given by

k1 =
(H + 2bk)(a− bk)
2b [4(a− bk)−H] , (A-22)

k2 =
(a− bk)(6bk −H)− 2bkH

2b [4(a− bk)−H] , (A-23)

r =
[2(4a− 3bk)−H] [2(a− bk)−H]

4 [4(a− bk)−H] . (A-24)

Let us prove that 2(a− bk)−H > 0 under the Assumption. It follows that

2(a− bk)−H = −(4a+ bk) +
√
25b2k2 + 36a2 − 36abk.

Note that 2(a− bk)−H > 0 if and only if

25b2k2 + 36a2 − 36abk − (4a+ bk)2 > 0.

14



We obtain

25b2k2 + 36a2 − 36abk − (4a+ bk)2 = (10a− 7bk)(2a− 3bk) + 3b2k2 > 0,

where the inequality immediately follows from the Assumption. Thus,

2(a− bk)−H > 0. (A-25)

This and the Assumption imply that

2(4a− 3bk)−H > 0, and 4(a− bk)−H > 0. (A-26)

From the Assumption, H > 0, (A-22) and (A-24), to (A-26), we obtain k1 > 0

and r > 0.

Next, we define

(a− bk)(6bk −H)− 2bkH =M1 −M2,

M1 ≡ (a+ bk)
p
25b2k2 + 36a2 − 36abk),

M2 ≡ 5b2k2 + 6a2 − abk.
As M1 > 0 and M2 > 0, (a− bk)(6bk −H)− 2bkH > 0 if M2

1 −M2
2 . It follows

that

M2
1 −M2

2 = 8abk (3a− bk) (2a− 3bk) + 15a2(bk)2 > 0,
where the inequality follows from the Assumption. Thus, (a − bk)(6bk −H) −
2bkH > 0. From this and (A-23), k2 > 0.

Appendix B: the derivations of (4) and (6)

From f ik = a− bki and ti = Ti/f ik, we have

ti =
Ti

a− bki . (B-1)

We obtain (4) from (A-6), (B-1) and ki = k/2, and (6) from (A-20), (A-22), and

(B-1).

Appendix C: the proof of Proposition 1

To prove Proposition 1, we show that (i) tAAi < tUAi , (ii) tUAi < tAUi and (iii)

tAUi < tUUi .

15



(i) the proof of tAAi < tUAi

From (5) and (6),

tUAi − tAAi =
(2bk +H) [4(a− bk)−H]

4a [4(a− bk)−H]− 2(H + 2bk)(a− bk) −
bk

a
.

Rearranging this yields

a (O1 −O2)
¡
tUAi − tAAi

¢
= (O3 −O4) , (C-1)

where

O1 ≡ (3a− bk)
√
25b2k2 + 36a2 − 36abk > 0,

O2 ≡ abk + 10a2 − b2k2 > 0,
O3 ≡

¡
4a2 − abk + b2k2¢√25b2k2 + 36a2 − 36abk > 0,
O4 ≡ 24a3 − 18a2bk + b3k3 + 13ab2k2 > 0,

where the ineqaulities follows from the Assumption.

It follows that

O21 −O22 = 8b2k2(a− bk)
£
8a(a− bk)2 + 3b2k2(a− bk) + 2a2bk¤ > 0,

O23 −O24 = 8b2k2(a− bk)
£
8a(a− bk)2 + 2a2bk + 3b3k3(a− bk)¤ > 0,

where the inequalities follow from the Assumption. These show that O1−O2 > 0
and O3 −O4 > 0. From this and (C-1), we have 0 < tUAi − tAAi .

(ii) the proof of tUAi < tAUi

From (6) and (7),

tAUi − tUAi =
H

2(a− bk) −
(2bk +H) [4(a− bk)−H]

4a [4(a− bk)−H]− 2(H + 2bk)(a− bk) .

This yields
(a− bk) (O1 −O2)

¡
tAUi − tUAi

¢
2

= N1 −N2, (C-2)

where

N1 ≡
¡
5a2 − abk + b2k2¢√25b2k2 + 36a2 − 36abk > 0,
N2 ≡ 30a3 + 15ab2k2 − 21a2bk + b3k3 > 0,

where the inequalities follow from the Assumption.

It follows that

N2
1 −N2

2 = 4b
2k2(a− bk)2(5a− 6bk)(2a− bk) > 0,

in which the inequality follows from the Assumption. This shows that N1 > N2.

Since O1 −O2 > 0 and N1 −N2 > 0, (C-2) shows that tAUi > tUAi .
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(iii) the proof of tAUi < tUUi

From (4) and (7),

tUUi − tAUi =
2bk

2a− bk −
H

2(a− bk) .

This yields

2(a− bk) (2a− bk) ¡tUUi − tAUi ¢
= Q1 −Q2,

where

Q1 ≡ (2a− bk)
√
25b2k2 + 36a2 − 36abk,

Q2 ≡ −12abk + 5b2k2 + 12a2.
From the Assumption (a− bk) (2a− bk) > 0, Q1 > 0 and Q2 > 0.
It follows that

Q21 −Q22 = 16ab2k2 (a− bk) > 0,
in which the inequality follows from the Assumption. Therefore, tUUi > tAUi .

Appendix D: the derivations of (8), (9), and (10)

From (2), (A-1), and Ti = (a− bki)ti(= f ikti), we have

(a− bki) (1− ti) = [a− b (k − ki) (1− tj)] , i, j = 1, 2 and i 6= j.

From this, we obtain

ki =
ati − atj − bk + bktj
−2b+ bti + btj , i, j = 1, 2 and i 6= j.

Substituting this for ki in Ti = (a− bki)ti yields

Ti =
(2a− bk)(tj − 1)ti

ti + tj − 2 , i, j = 1, 2 and i 6= j.

From this and (A-5), we obtain (8).

Expression (9) is given by (A-9).

From (2), (A-12), and T1 = (a− bk1)t1, we have

ki =
ati − atj − bk + bktj
−2b+ bti + btj , i, j = 1, 2 and i 6= j. (D-1)

From (A-13), (A-17), and (D-1), we obtain the first equation in (10). From

(A-14), (A-17), and (D-1), we obtain the second equation in (10).
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Appendix E: the proof of Lemma 2

Expression (19) is derived from (3), (A-6) and ki = k/2, and (20) from (3), (A-

11), and ki = k/2. In the case of (iii), without loss of generality, we assume that

region 1 chooses unit tax and region 2 chooses ad valorem tax. We obtain the

first equation in (21) from (3), (A-20), and (A-22) and the second equation from

(3), (A-21), and (A-23).

Appendix F: the proof of Proposition 2

To prove Proposition 2, we show that gUUi > gAUi and gUAi > gAAi .

(i) The proof of gUUi > gAUi

From Lemma 2, we obtain

gUUi − gAUi =
bk2

2
− H [(a− bk) (6bk −H)− 2bkH] [2 (4a− 3bk)−H]

8b [4 (a− bk)−H]2 . (F-1)

Let us define s ≡ bk/a and h ≡ H/a(= 6 − s − √25s2 − 36s+ 36). Note that
s < 1 from the Assumption. Using this definition, (F-1) can be rewritten as

= ¡gUUi − gAUi
¢
= 4s2[4(1− s)− h]2 − h[(1− s)(6s− h)− 2sh][2(4− 3s)− h]
= V1 − V2,

where

= ≡ 8b [4 (a− bk)−H]2 /a4 > 0
V1 ≡ (6 + 5s+ 2s2 + 2s3)

√
36− 36s+ 25s2 > 0,

V2 ≡ (36 + 12s+ 5s2 + 14s3 + 8s4) > 0,
in which V1 > 0 follows from s < 1. It is easily shown from 1− s > 0 that

V 21 − V 22 = 12s3(3s+ 4)(1− s)2(2− s)2 > 0.

This shows that V1 − V2 > 0 and, hence, gUUi − gAUi > 0.

(ii) The proof of gUAi > gAAi

From Lemma 2, we obtain

gUAi − gAAi =
(H + 2bk)

2
(a− bk)

8b[4 (a− bk)−H] −
(2a− bk)bk2

4a
. (F-2)
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Using the definition of s ≡ bk/a and h ≡ H/a, (F-2) can be rewritten as
< ¡gUAi − gAAi ¢

= (h+ 2s)
2
(1− s)− 2 [4(1− s)− h] (2− s)s2

= (36− 48s+ 29s2 − 9s3 − 3s4)
−(6− 5s+ s2 − s3)

√
36− 36s+ 25s2,

where < ≡ 8b[4 (a− bk) −H]/a3 > 0, where the inequality follows from (A-25)

and a− bk > 0.
Let us define the following:

W1 ≡ (36− 48s+ 29s2 − 9s3 − 3s4)

= 3s2(4 + s)(1− s) + 17
µ
s− 24

17

¶2
+
36

17
> 0,

W2 ≡ (6− 5s+ s2 − s3)
√
36− 36s+ 25s2

=
£
1 + (1− s)(5 + s2)¤√36− 36s+ 25s2 > 0,

where the inequalities follow from 1 > s. It follows from 1− s > 0 that
W 2
1 −W 2

1 = 4s
3(1− s)[(1− s)(11− 4s) + 1](2− s)2 > 0.

This shows that W1 −W1 > 0 and, hence, g
UU
i − gAUi > 0.
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Unit tax Ad valorem tax

Unit tax gUU1 , gUU2 gUA1 , gAU2

Ad valorem tax gAU1 , gUA2 gAA1 , gAA2

Table 1.

21



 

t1  

t2  

1 

1

R 2
UU  (=R 2

AU) 
R 1

AA (=R 1
UA) 

R 2
AA (=R 2

UA) 

R 1
UU  (=R 1

AU) 

D

C

A  

B

bka

bk

24 
 

bka

bk

24 

 

Figure 1. Reaction Curves
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