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1 Introduction

In this paper, we generalize the Debreu-Scarf core limit theorem to a case with a double infinity economy

that includes such typical examples as Samuelson consumption-loan models with money.

For standard finite general equilibrium settings, the Walrasian equilibrium is Pareto-optimal (the first

fundamental theorem of welfare economics), and every Pareto-optimal allocation is an equilibrium allo-

cation relative to a price-wealth system (the second fundamental theorem of welfare economics). If we

strengthen the concept of Pareto-optimal allocation to a replica core allocation (an allocation whose replica

is a core allocation for each replica economy), we obtain an equivalence result where every replica core

allocation is a competitive allocation and every competitive allocation is a replica core allocation (Debreu

and Scarf 1963, Theorems 1 and 3). This equivalence theorem between the replica core and the competitive

equilibria is commonly known as the Debreu-Scarf core limit theorem.

In a double infinity economy, competitive equilibrium (with or without money) is not necessarily Pareto-

optimal (Samuelson 1958), but it is known to be weakly Pareto-optimal (Esteban 1986 and Balasko and

Shell 1980). It is also known that every weakly Pareto-optimal allocation is an equilibrium allocation rel-

ative to a price-wealth system (Balasko and Shell 1980). Chae (1987), Aliprantis and Burkinshaw (1990)

and Chae and Esteban (1993) treat the core equivalence problem for Walrasian equilibrium allocations

in overlapping generations models. Their approaches, however, fail to treat competitive equilibrium al-

locations with money.1 Of course, an equilibrium with money (non-negative wealth transfers from the

government) is one critical issue that the overlapping generations model tries to describe.

In this paper, we show that if we strengthen the concept of weak Pareto-optimal allocation to replica

finite core allocation (an allocation whose replica is a certain kind of finite core allocation for each replica

economy 2), we obtain an equivalence result analogous to Aliprantis and Burkinshaw (1990) where a replica

finite core allocation is a competitive allocation with non-negative wealth transfers and every competitive

allocation with non-negative wealth transfers is a replica finite core allocation.3

Our replica core equivalence approach (as well as that of Aliprantis and Burkinshaw 1990) has three

important advantages: by concentrating on the equivalence argument without using the equal treatment

property, (i) we can show a weak core theoretic equivalence result merely based on weak optimality

conditions, (ii) we obtain a limit theorem of the core instead of a theorem in the limit measure space like

Chae and Esteban, and (iii) we can allow for an argument based on non-ordered preferences, and hence

our result may also be considered a non-ordered extension of the Debreu-Scarf core equivalence theorem.4

1 Their concepts, such as the short-term core (Aliprantis and Burkinshaw 1990) and the short-run core (Chae 1987),
exclude equilibrium allocations with non-zero fiat money in two-period overlapping generations economies. For the short-
term core argument, as a simple one-good per period economy example pointed out in Esteban (1986), such a monetary
equilibrium is blocked by a coalition of all agents after a certain period without changing all but the first finite members’
allocations. In the short-run core, we can also easily construct an example under which a typical Samuelson-type monetary
equilibrium allocation is always blocked by the t-generation for each t-economy for all t = 1, 2, · · ·.

2 More precisely, this is an allocation, x, whose replica is a finite core allocation for each replica economy even when the
endowments of some members are replaced by the allocation, x, itself.

3 In this paper, we use “wealth transfer” instead of “monetary transfer” because these two concepts are different unless
we use the perfect-foresight assumption on the expectation for dynamics. In the sense of Esteban and Millán (1990), we
concentrate on the set of all monetary equilibrium allocations and competitive equilibrium allocations without money.

4 Aliprantis and Burkinshaw (1990), however, do not successfully treat non-ordered preference cases. In our model, a
strong sense of the local non-satiation in (E.3) plays an essential role in the proof of Theorem 1.
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2 The Model

Let N be the set of all positive integers and R be the set of real numbers. A pure exchange overlapping

generations economy, or more simply, an economy, E, is comprised of the following list:

(E.1) {It}∞t=1: a countable family of mutually disjoint finite subsets of N such that
∪∞

t=1 It ⊂ N ,

and if It = ∅, It+1 = ∅ for each t ∈ N . It is the index set of agents in generation t.

(E.2) {Kt}∞t=1: a countable family of non-empty finite intervals, Kt = {k(t), k(t)+1, · · · , k(t)+ℓ(t)}
where k(t) and ℓ(t) are elements of N such that

∪∞
t=1 Kt = N , k(t) < k(t + 1)≦ k(t) + ℓ(t) for all

t ∈ N , and {t | n ∈ Kt} is finite for each n ∈ N . Kt is the index set of commodities available to

generation t.

(E.3) {(≿i, ωi)}i∈∪
t∈N It : countably many agents, where ≿i is a reflexive binary relation on com-

modity space for each generation RKt
+ , representing a preference of i ∈ It. We write xi ∼i yi iff

xi ≿i yi and yi ≿xi, and xi ≻i yi iff xi ≿i yi and xi ̸∼ yi. Strict preference ≻i is continuous (having

an open graph in RKt
+ ×RKt

+ ), strictly monotonic (xi ≧ yi and xi ̸= yi implies xi ≻i yi), and has a

convex better set ({yi| yi ≻i xi} is convex) at every xi such that ωi ⊁i xi. The closure of the graph

of ≻i in RKt ×RKt is the graph of ≿i (a strong sense of local non-satiation). The initial endowment

of i, ωi, is an element of RKt
++ = {x | x : Kt → R++} for each i ∈ It.

It is convenient to identify the commodity space for each generation RKt
+ with a subset of RN, which is

the set of all functions from N to R, by considering x ∈ RKt
+ a function that takes value 0 on N \Kt.

Then we can define the total commodity space for economy ⊕∞
t=1R

Kt
+ as the set of all finite sums among

the points in the commodity spaces of the generations. Clearly, ⊕∞
t=1R

Kt
+ can be identified with a subset

of direct sum R∞, the set of all finite real sequences, which is a subspace of the set of all real sequences,

R∞ ≈ RN with pointwise convergence topology.

Given an economy, E = ({It}∞t=1, {Kt}∞t=1, {(≿i, ωi)}i∈∪
t∈N It), the price space for E, P(E), is defined

as the set of all p in RN
+ such that under the duality between R∞ (with relative topology) and R∞ (with

pointwise convergence topology), p positively evaluates all the agents’ initial endowments:

P(E) = {p ∈ RN
+ | p · ωi > 0 for all i ∈ It, for all t ∈ N}.(1)

Since for all i ∈ It, ω
i belongs to RKt

++ for all t ∈ N , the price space of E always includes RN
++ for all E

in Econ, where Econ denotes the set of all economies satisfying conditions (E.1), (E.2) and (E.3).

For each E = ({It}, {Kt}, {(≿i, ωi)}) ∈ Econ, sequence (xi ∈ RKt)i∈
∪

t∈N It is called an allocation for

E. Allocation (xi ∈ RKt)i∈
∪

t∈N It is said to be feasible if∑
t∈N

∑
i∈It

xi ≦
∑
t∈N

∑
i∈It

ωi,(2)

where the summability in RN of both sides of the inequality is assured by (E.2). The list of price

vector p∗ ∈ P(E), non-negative wealth transfer function M∗
E : N =

∪∞
t=1 It → R+, and feasible allocation

(xi
∗ ∈ RKt)i∈

∪
t∈N It , is called a non-negative wealth transfer Walrasian equilibrium for E, if for each t ∈ N

and i ∈ It, x
i
∗ is a ≻i-maximal element in set {xi ∈ RKt | p∗ ·xi ≦ p∗ ·ωi+M∗

E (i)}. Since the non-negative
wealth transfer is an abstraction of the money supply in perfect-foresight overlapping generations settings,

we denote the set of all non-negative wealth transfer Walrasian equilibrium allocations by MWalras(E).

A coalition in economy E = ({It}, {Kt}, {(≿i, ωi)}) ∈ Econ is a set of consumers S ⊂
∪∞

t=1 It.

Allocation x for economy E is said to be blocked by coalition S if it is possible to find commodity bundles
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x̂i for all i ∈ S such that
∑

i∈S(x̂
i − ωi) = 0 and x̂i ≿i x

i for all i ∈ S, and x̂i ≻i x
i for at least one i ∈ S.

For each E = ({It}, {Kt}, {(≿i, ωi)}) ∈ Econ, the set of all feasible allocations that cannot be blocked

by any coalition is said to be the core of economy E and is denoted by Core(E). Element x ∈ Core(E) is
called a core allocation. The set of all feasible allocations that cannot be blocked by any finite coalition is

called the finite core of economy E and is denoted by Fcore(E). Element x ∈ Fcore(E) is called a finite

core allocation for E.

3 Replica Core Equivalence Theorem

For each feasible allocation x = (xi ∈ RKt)i∈
∪

t∈N It for E = ({It}, {Kt}, {(≿i, ω
i)}) ∈ Econ, we denote

by E(x) an economy where initial endowment allocation ω = (ωi) is replaced by x = (xi).5 Hence, we

have E = E(ω).

Consider the following replica economy,

Em(x)⊕ En(ω),(3)

which consists of all the members of the m-fold replica economy of E(x) and the n-fold replica economy

of E(ω) for each m ∈ N and n ∈ N . Let us denote by Cm⊕n(E) the set of allocations x for E such that

the (m + n)-fold replica allocation of x belongs to Fcore(Em(x) ⊕ En(ω)).6 Moreover, let us denote by

Cn(E) the set of allocations x for E such that the n-fold replica allocation of x belongs to Core(En). It

is easy to check that if x is a feasible allocation of E = E(ω) such that (m + n)-fold replica allocation

of x does not belong to Fcore(Em(x) ⊕ En(ω)), the replica allocation does not belong to Core(Em+n).7

Therefore, we can write Cm⊕n(E) ⊃ Cm+n(E) for each m ∈ N and n ∈ N . It is also easy to check that

Cm⊕n(E) ⊃ Cm′⊕n′
(E) ⊃ · · · wherem′ ≧m, n′ ≧n.8 For finite economy E, the Debreu-Scarf limit theorem

can be restated as
∩∞

m+n=2 C
m+n(E) = Walras(E). We see below (Theorem 1),

∩∞
n=1

∩∞
m=1 C

m⊕n(E) =

MWalras(E). Hence, the restriction of Theorem 1 to the case with finite economy E provides the following

extension of the replica core version of the Debreu-Scarf limit theorem because there is no difference in

our settings between Walras(E) and MWalras(E).

For finite economy E, feasible allocation x for E is a competitive equilibrium allocation iff its

(m + n)-fold replica allocation belongs to Fcore(Em(x) ⊕ En(ω)) for every sufficiently large

m ∈ N and n ∈ N . That is, Walras(E) =
∩∞

n=1

∩∞
m=1 C

m⊕n(E).

As above, concept Fcore gives a unified replica core equivalence characterization for all non-negative

wealth transfer Walrasian equilibrium allocations. Note that allocation x such that x ∈ Fcore(E(x))
is the weak Pareto-optimal allocations in Balasko and Shell (1980). It is easy to check that the n-fold

replica allocation of x∗ ∈ MWalras(E) belongs to Fcore(En(x∗)) for all n ∈ N and Fcore(En(ω)) for all

5 In the following, we sometimes omit the subscript i ∈
∪

t∈N It of an allocation for an economy as long as there is no risk

of confusion.
6 The (m+ n)-fold replica allocation of x is the allocation for Em(x)⊕En(ω) such that for each replica agent i in E(x) or

E(ω), we assign the same allocation under x in economy E.
7 Clearly, the replica allocation, xm+n, is feasible for Em(x)⊕ En(ω) and Em+n = Em+n(ω). If xm+n /∈ Fcore(Em(x)⊕

En(ω)), then there exists a finite coalition S in Em(x) ⊕ En(ω) that blocks allocation xm+n. We can write S = S1 ∪ S2,
where S1 (resp.S2) consists of members in Em(x) (resp.En(ω)). Then, coalition S∗ consisting of all members of Em(x) and
S2 also blocks xm+n ∈ Em(x)⊕ En(ω). Therefore xm+n /∈ Core(Em+n).

8 Note that the equal treatment property is not necessary for ensuring the above inclusion relations. Here we are following
the replica core equivalence approach in Aliprantis and Burkinshaw (1990).
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n ∈ N .9 But we have an example where the n-fold replica of allocation x, which is not an element of

MWalras(E), belongs to Fcore(En(x)) ∩Fcore(En(ω)) for all n ∈ N .10

Theorem 1: Feasible allocation x for E is a non-negative wealth transfer Walrasian equilibrium allocation

iff its (m+n)-fold replica allocation belongs to Fcore(Em(x)⊕En(ω)) for every m ∈ N and n ∈ N . That

is, MWalras(E) =
∩∞

n=1

∩∞
m=1 C

m⊕n(E).

Proof : [Sufficiency] Let x∗ = (xi
∗) be an element of MWalras(E) under price p∗ and non-negative

wealth transfer function M∗
E . Assume that S = S1 ∪ S2 is a finite coalition of Em(x∗) ⊕ En(ω) for

some m and n in N blocking the (m + n)-fold replica allocation of x∗ = (xi
∗), where S1 is a coalition

in Em(x∗) and S2 is a coalition in En(ω). Then, under (E.3), especially by using the strong sense of

local non-satiation, an allocation (xi)i∈S for S exists such that
∑

i∈S xi =
∑

i∈S1
xi
∗ +

∑
i∈S2

ωi and

xi ≻i xi
∗ for all i ∈ S. Then we have p∗ · xi > p∗ · xi

∗ for all i ∈ S. This implies, however, that

p∗ · (
∑

i∈S1
xi +

∑
i∈S2

xi) > p∗ ·
∑

i∈S1
xi
∗ + p∗ ·

∑
i∈S2

xi
∗ ≧ p∗ · (

∑
i∈S1

xi
∗ +

∑
i∈S2

ωi), a contradiction to∑
i∈S xi =

∑
i∈S1

xi
∗ +

∑
i∈S2

ωi.

[Necessity] Let x̄ = (x̄i) be an allocation for E = ({It}∞t=1, {Kt}∞t=1, (≿i, ω
i)i∈

∪
t∈N It) such that every

(m + n)-fold replica allocation of x̄ belongs to Fcore(Em(x̄) ⊕ En(ω)) for all m and n in N . In this

proof, we denote by I(t) the set of all agents in generations from 1 to t,
∪t

s=1 Is, and by K(t) the set

of all commodities that are available for agents in I(t),
∪t

s=1 Ks. Define for each i ∈ It, t ∈ N , Γi as

Γi = {βizi1+(1−βi)zi2 | ωi+zi1 ≻i x̄
i, x̄i+zi2 ≻i x̄

i, 0≦βi ≦ 1} ⊂ RKt . Then, take the convex hull Γ(t) of

finite union
∪

i∈I(t) Γi ⊂
∪t

s=1 R
Ks ≈ RK(t) for each t ∈ N . Since, for every i, Γi is non-empty and convex,

non-empty convex set Γ(t) consists of all vectors z that can be written as
∑

i∈I(t) α
i(βizi1 + (1 − βi)zi2),

with αi ≧ 0,
∑

i∈I(t) α
i = 1, where zi1 + ωi ≻i x̄

i and zi2 + x̄i ≻i x̄
i for each i.

We will show in the similar way as in the proof of Debreu and Scarf (1963, Theorem 3) that Γ(t) does

not have 0 as its element for each t ∈ N . Let us suppose that 0 belongs to Γ(t). Then, one can write∑
i∈I(t) α

i(βizi1 +(1−βi)zi2) = 0, with αi ≧ 0,
∑

i∈I(t) α
i = 1, and zi1 +ωi ≻i x̄

i and zi2 + x̄i ≻i x̄
i for each

i. For each k sufficiently large, let ai1k and ai2k be the smallest integers greater than kαiβi and kαi(1−βi)

respectively. Also, let I be the set of i ∈ I(t) for which αi > 0. For each i ∈ I, we define zi1k as kαiβi

ai
1k

zi1

and zi2k as kαi(1−βi)
ai
2k

zi2. Observe that zi1k + ωi belongs to the segment [ωi, zi1 + ωi], zi2k + x̄i belongs to

the segment [x̄i, zi2 + x̄i].

I (αi > 0, 0≦βi ≦ 1)

I1 (βi ̸= 0)

I2 (1− βi ̸= 0)
1− βi = 0

βi = 0

Figure 1: The union of I1 and I2 is equals to I.

Let I1 be the set of i ∈ I such that βi ̸= 0, and I2 be the set of i ∈ I such that 1 − βi ̸= 0. Note that

I1 ∪ I2 = I (see Figure 1). For i ∈ I1, z
i
1k + ωi tends to zi1 + ωi, and for i ∈ I2, z

i
2k + x̄i tends to zi2 + x̄i

9 To see this, in the proof of Theorem 1, [Sufficiency], let S1 or S2 be an empty set.
10 See Appendix.
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as k tends to infinity. The continuity assumption on preferences implies that zi1k + ωi ≻i x̄
i for all i ∈ I1

and zi2k + x̄i ≻i x̄
i for all i ∈ I2 for all k sufficiently large. Select one of such k. Then we have

0 = k
∑
i∈I

αi(βizi1 + (1− βi)zi2) =
∑
i∈I

(ai1kz
i
1k + ai2kz

i
2k) =

∑
i∈I

kαi(βizi1 + (1− βi)zi2)(4)

=
∑

i∈I1\I2

kαiβizi1 +
∑

i∈I1∩I2

kαi(βizi1 + (1− βi)zi2) +
∑

i∈I2\I1

kαi(1− βi)zi2

=
∑

i∈I1\I2

ai1kz
i
1k +

∑
i∈I1∩I2

(ai1kz
i
1k + ai2kz

i
2k) +

∑
i∈I2\I1

ai2kz
i
2k

Let us consider the
(
(maxi∈I ai1k) + (maxi∈I ai2k)

)
-fold replica economy of E. Take the coalition composed

of ai1k replica members of i for each i ∈ I1 to each one of whom we assign ωi+zi1k, and ai2k replica members

of i for each i ∈ I2 to each one of whom we assign x̄i2 + zi22k. This coalition blocks the allocation (x̄i) as

equation (4) and the fact that zi1k + ωi ≻i x̄
i for all i ∈ I1 and zi2k + x̄i ≻i x̄

i for all i ∈ I2 show. This

is a contradiction to the definition of Fcore(Em(x̄)⊕ En(ω)). Hence, we have established that 0 does not

belong to the convex set Γ(t) for each t ∈ N .

Let π(t) ⊂ R∞ be the set of prices such that p ·z≧ 0 for all z ∈ Γ(t) ⊂ RK(t) ⊂ R∞, which is non-empty

by the separating hyperplane theorem. π(t) is closed in RK(t) × R × · · · = R∞. Moreover, under the

resource-related structure assured by (E.2) and ωi ≫ 0 for all i, π(t) is a subset of R
K(t)
++ × R × · · · ⊂

R∞.11 Next, we will obtain p∗ ∈
∩

t∈N π(t). From the definition of each Γ(t) ⊂ RK(t), we have

Γ(1) ⊂ Γ(2) ⊂ Γ(3) ⊂ · · · in R∞. Hence, we have π(1) ⊃ π(2) ⊃ π(3) ⊃ · · · in R∞. Thus we see∩t
s=1 π(s) = π(t). For finite economy, we have π(t) = π(t + 1) = · · · for all sufficiently large t, hence the

result is obvious. If the number of agents is infinite, for each t ∈ N , choose price p(t) = (p1(t), p2(t), · · ·)
in π(t) ⊂ R

K(t)
++ ×R× · · · ⊂ R∞ (see Figure 2).

qqq

�
�

�
��

�
�
�

�
�

�
��

�
�
�

RK(1)

RK(2)

RK(s−1)

RK(s)

p1(1) p2(1) · · ·

p1(2) p2(2) p3(2) p4(2) · · ·

p1(s− 1) p2(s− 1) · · ·

p1(s) p2(s) · · ·

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
⇓ ⇓ ⇓
p∗1 p∗2 p∗s

π(1) sp(1)

π(2) sp(2) qqq
π(s− 1) sp(s− 1)

π(s) sp(s) qqq

Figure 2: How to construct the limit price p∗.

11 Indeed, π(t) is the set of supporting price vectors for the better set at x̄i under the strictly monotonic preference for
each i ∈ I(t), where every x̄i is necessarily evaluated positively (at least as great as the value of ωi).
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Let us define for each t ∈ N , compact set ∆K(t) = {qt | qt ∈ RK(t), ∥qt∥ = 1}. Moreover, for each s, t ∈ N ,

s≦ t, define mapping hst : π(t) → ∆K(s) as hst(p) =
prK(s) p

∥ prK(s) p∥
for each p ∈ π(t), where pr denotes the

projection.12 Since ∆K(1) is compact, if t → ∞, h1t(p(t)) converges to a limit, p̂∗1 ∈ ∆K(1) ∩ h11(π(1)).

Then we take a subsequence, {p(t)}t∈N(1), of {p(t)}t∈N, where N(1) is a cofinal subset of N , such that

h1t(p(t)) converges to p̂∗1. Define p∗1 ∈ RK(1) as p∗1 = p̂∗1. Next, since ∆K(2) is compact, when t → ∞, by

taking a subsequence, {p(t)}t∈N(2), of {p(t)}t∈N(1), where N(2) is a cofinal subset of N(1) constructed

by elements greater than or equal to 2, h2t(p(t)) also has a limit p̂∗2 ∈ ∆K(2) ∩ h22(π(2)). We define

p∗2 ∈ RK(2)\K(1) as 1
∥ prK(1) p̂

∗
2∥

prK(2)\K(1) p̂
∗
2. Generally, from the compactness of ∆K(s) for each s ∈ N , if

t → ∞, by taking a subsequence, {p(t)}t∈N(s), of {p(t)}t∈N(s−1), where N(s) is a cofinal subset of N(s−1)

constructed by elements greater than equal to s, hst(p(t)) has a limit p̂∗s ∈ ∆K(s) ∩ hss(π(s)). Hence we

can define p∗s ∈ RK(s)\K(s−1) as p∗s = 1
∥ prK(1) p̂

∗
s∥

prK(s)\K(s−1) p̂
∗
s. By repeating the above procedure, we

obtain p∗ = (p∗1, p
∗
2, · · ·). Since for each s ∈ N ,

(p∗
1 ,···,p

∗
s)

∥(p∗
1 ,···,p∗

s)∥
= p̂∗s is an element of hss(π(s)), p

∗ belongs to

h−1
ss (p̂

∗
s) = π(s), so we have p∗ ∈

∩
t∈N π(t).

Since xi ≻i x̄
i means that both xi−ωi and xi−x̄i belong to Γi, we have p

∗ ·xi ≧ p∗ ·ωi and p∗ ·xi ≧ p∗ ·x̄i.

By taking xi arbitrarily near to x̄i (from the local non-satiation property), we can see that p∗ · x̄i ≧ p∗ ·ωi.

Define M∗
E (i)≧ 0 as M∗

E (i) = p∗ · x̄i − p∗ · ωi for all i. Then, we have p∗ · x̄i = p∗ · ωi +M∗
E . In addition,

the condition of initial endowments ωi ≫ 0 for all i, implies that p∗ · ωi > 0. Since xi ≻i x̄
i means that

p∗ · xi ≧ p∗ · x̄i, the continuity of preference together with p∗ · ωi +M∗
E (i) > 0 implies that for every i, x̄i

is an individual maxima under p∗ and M∗
E . ■

As we mentioned before, Cm⊕n(E) ⊃ Cm′⊕n′
(E) ⊃ · · ·, where m′ ≧m, n′ ≧n, and MWalras(E) =∩∞

n=1

∩∞
m=1 C

m⊕n(E). Thus we obtained a replica finite-core limit equivalence theorem to the non-negative

wealth transfer Walrasian equilibrium allocations, especially, the perfect-foresight monetary Walrasian

equilibrium allocations for overlapping generation economies. Note that in the above proof, we do not

assume preferences ≻is to be ordered. Our equivalence theorem can also be utilized to axiomatically

characterize the price-wealth message mechanisms as Sonnenschein (1974), where the Debreu-Scarf limit

theorem plays an essential role in showing the category theoretic main result (see, Urai and Murakami

2015).
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Appendix

Let us consider overlapping generations economy E such that every agent lives for young and old two

periods, where there is one consumption good for each period, and every t generation consists of two

agents, it and i′t, for t = 1, 2, · · ·. Each agent has initial endowment (2+ ϵ
2 ,

ϵ
2 ), where ϵ > 0 will be defined

in the following as sufficiently small.

Consider allocation x = (xi1 , xi′1 , xi2 , xi′2 , · · ·) such that xit = (0.1 + ϵ, 0.1 + ϵ) for all t = 1, 2, · · ·,
xi′1 = (3.9, 0.9) and xi′t = (2.9, 0.9) for all t = 2, 3, · · ·. Clearly, x is feasible. Assuming that all the agents’

marginal rate of substitution at x is 1 (see Figure 3 for generations t≧ 2), we have p = (1, 1, · · ·) as the

supporting price for allocation x, which means that the replica allocation of x is weakly Pareto-optimal

for all replica economies: the n-fold replica allocation of x is an element of Fcore(En(x)) for all n ∈ N .

Assume further that all agents’ preferences are of the Cobb-Douglas type; their utility becomes arbitrarily

a small level when their consumption at one of their life time periods is near to 0. Then we can check that

the replica allocation of x is a finite core allocation for all replica economies: the n-fold replica allocation

of x is an element of Fcore(En(ω)) for all n ∈ N .

Young

Old i3

0.1

0.1

21

(1,0.1)

0

↗
ps

s
s

Young

Old i ′3

2.9

0.9

0.8

3.920

↗
ps

s s(3.9,0.8)

Figure 3: MRS for each agent is 1. Parameter ϵ > 0 for each allocation is neglected.
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For example, let uit(y1, y2) = y0.51 y0.52 for each t = 1, 2, · · ·, ui′1(y1, y2) = (y1 − 3)0.5y0.52 when y1 ≧ 3,

ui′1(y1, y2) = y1 − 3 when 0≦ y1 ≦ 3, ui′t(y1, y2) = (y1 − 2)0.5y0.52 when y1 ≧ 2 and ui′t(y1, y2) = y1 − 2

when 0≦ y1 ≦ 2 for each t = 2, 3, · · ·. Then, no finite coalition in En(ω) can improve upon the n-fold

replica allocation of x. Any finite coalition among members in the first generation fails to improve upon

(0.1 + ϵ, 0.1 + ϵ) as long as ϵ < 10−3. Indeed, utility level of at least one of such coalition members, i∗,

should be less than or equal to ui∗(2 + ϵ
2 ,

ϵ
2 ) = (2 + ϵ

2 )
0.5 ϵ

2
0.5 under the maximality for utility allocation

with Cobb-Douglas type utility functions of homogeneity of degree 1. When ϵ < 10−3, such coalition fails

to block any utility allocations greater than or equals to those under (0.1+ ϵ, 0.1+ ϵ), hence never improve

upon those under the n-times replica allocation of x. Suppose that the n-times replica allocation of x

cannot be improved upon by any finite coalition among members of generations from 1 to k− 1. We show

in the following that any finite coalition, S, among members from 1 to k also fails to block the n-times

replica allocation of x. Let us denote S by S1∪S2, where S1 is the set of members in generations from 1 to

k−1, and S2 is the set of members in generation k. Note that between S1 and S2, we have only to consider

two cases that there is a non-negative transfer of endowment commodity in period k from S2 to S1 or that

there is a positive transfer of it from S1 to S2. For the first case, under the same discussion in the previous

paragraph, it is impossible to make utility levels of members of S2 greater than or equal to those under

(0.1 + ϵ, 0.1 + ϵ). For the second case, it would be possible to keep all utility levels of members of S1 as

good as those under x, but if so, by not doing such a positive endowment transfer, S1 can improve upon

the replica allocation of x, which contradicts the assumption. It follows that, by mathematical induction,

the n-fold replica allocation of x is an element of Fcore(En(ω)).

Allocation x is not a non-negative wealth transfer Walrasian equilibrium under p. (The wealth transfer

for type it agents should be negative.) The two-fold replica allocation of x does not belong toFcore(E1(x)⊕
E1(ω)) since, for example, i3 in E1(ω) and i′3 in E1(x) block the replica allocation of x with (1+ ϵ

2 , 0.1+
ϵ
2 )

for i3 and (3.9, 0.8) for i′3.
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