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Abstract

This paper presents some substantial relationships between the revealed preference test for a data

set and the shortest path problem of a weighted graph. We give a unified perspective of several

forms of rationalizability tests based on the shortest path problem and an additional graph the-

oretic structure, which we call the shortest path problem with weight adjustment. Furthermore,

the proposed structure is used to extend the result of Quah (2014), which sharpened the classical

Afriat’s Theorem-type result.
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1 Introduction

Given n observations of consumer’s choices xk ∈ Rℓ
+ (for k = 1, . . . , n) and prices pk ∈ Rℓ

++ (for

k = 1, . . . , n) of ℓ goods, we say that the data set O = {(pk, xk)}nk=1 is rationalizable if there exists a

non-satiated utility function U : Rℓ
+ → R such that, for each k = 1, . . . , n, the choice xk is generated

from the utility maximization problem with the utility function U and the budget constraint created

by the price pk and the wealth level pk · xk. Afriat (1967) provided the first characterization of the

rationalizability of data set O. The Afriat’s Theorem says that a given data set O is rationalizable if

and only if there is a solution Uk, λk > 0 (k = 1, . . . , n) to the following system of inequalities:

Uk′ ≦ Uk + λkp
k · (xk′

− xk) for all k, k′ = 1, . . . , n. (1)

This system of inequalities is known as the Afriat’s inequalities. Moreover, these conditions are also

equivalent to the generalized axiom of revealed preference (GARP), which requires that there is no revealed

preference cycle containing a revealed strict preference where revealed (strict) preference is defined on

the set of observed consumption X = {xk}nk=1 as xk ⪰∗ (≻∗)xk′
if pk · xk ≧ (>) pk · xk′

(Afriat 1967;

Varian 1982).

Subsequent research focused on the properties of the data set that is rationalizable by a particular form

of utility function, e.g., homotheticity (Varian 1983) and quasi-linearity (Brown and Calsamiglia 2007),

and extended Afriat’s Theorem for the rationalizability with integer observations (Fujishige and Yang

2012; Polisson and Quah 2013; Forges and Iehlé 2014) and the rationalizability with more general budget

constraints including non-linear budget constraints (Matzkin 1991; Chavas and Cox 1993; Forges and

Minelli 2009; Quah 2014). These various rationalizabilities are also characterized by the similar threefold

form: the rationalizability, the feasibility of a system of inequalities (like Afriat’s inequalities), and the

no-cycle condition (like the GARP). Therefore, it is intuitive that these rationalizability problems may

share some common mathematical structure. The main objective of this paper is to answer this intuitive

question, and we present a unified framework for those rationalizability problems.

As noted by Piaw and Vohra (2003), among others, the form (1) is related to a combinatorial opti-

mization problem called the shortest path problem (SPP), which seeks shortest paths from a given start

point to all the other points in a given network. It is known that the feasibility of the SPP is also char-

acterized in a threefold way with the feasibility of a system of inequalities similar to (1) and the absence

of negative cycles in the network. In this paper, we present a graph theoretic framework, which is a

common structure of the various rationalizability problems, based on the SPP.1 Our argument uses the

standard SPP and a modified version of it that we define in this paper. We call the modified problem the

SPP with weight adjustment (SPPWA), which asks whether there is a weight adjustment under which

the adjusted network has shortest paths from a given start point to all the other points. We show that

1 Kolesnikov et al. (2013) also demonstrated this relationship using the Monge–Kantorovich mass transportation

problem, which is a general mathematical framework containing the SPP. Here, we demonstrate the relationship in

a complete manner using elementary graph theoretic arguments that do not require linear programming techniques

or knowledge of the Monge–Kantorovich problem.
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the feasibility of the SPPWA is characterized by a graph theoretic counterpart of the GARP, which is

easily checked in empirical studies. Moreover, our graph theoretic argument allows us to extend the

result of Quah (2014), which concluded that one could always find a rationalization that is compatible

with a given rationally extended preference ⪰ of the revealed preference relation ⪰∗, and hence provided

a sharper conclusion than Afriat’s Theorem.2 In this paper, we present a graph theoretic counterpart of

Quah’s problem as well as the result using the SPPWA framework, and extend Quah’s result so that we

can treat both the integer observations and the real observations in a unified way.

The rest of the paper is organized as follows. In Section 2, first, we introduce various rationalizability

problems and review the characterization results. Next, we introduce the SPP and discuss its relation

to the rationalizability problems. In Section 3, we formalize the SPPWA, present our first main result

(Theorem 4), and apply it to the rationalizaiblity problems. In Section 4, we formalize the graph

theoretic counterpart of the problem in Quah (2014) and present our second main result (Theorem 6),

which extends the result of Quah (2014) using the SPPWA framework. Section 5 concludes this paper.

All proofs are consigned to the Appendix.

2 Rationalizability and Shortest Path Problem

2.1 Rationalizability Problem

Let X denote a consumption set (a subset of some finite dimensional Euclidean space). A budget set

on X is defined as B = {x ∈ X | g(x) ≦ 0} for some (real-valued or integer-valued) function g defined

on X. A data set on X is O = {(Bk, xk)}nk=1 where Bk = {x ∈ X | gk(x) ≦ 0} is a budget set on

X for the k-th observation and xk is interpreted as the k-th observed consumption bundle such that

xk ∈ X and gk(xk) = 0 for all k = 1, . . . , n.3 Let X denote the set of observed consumption bundles,

i.e., X = {xk}nk=1 for any data set O = {(Bk, xk)}nk=1.

Let U be a real-valued or an integer-valued utility function defined on a consumption set X. Let O
be a data set {(Bk, xk)}nk=1 on X. We say that U rationalizes O (or, O is rationalized by U) if, for all

k = 1, . . . , n, y ∈ Bk ⇒ U(y) ≦ U(xk).

In the following, we define various rationalizability problems by restricting the data set O and the

utility function U in various ways. For this reason, we introduce some notation for the data set O. We

say that a data set O is a linear budget data set (LB-data set) if X = Rℓ
+ and gk(x) = pk · (x − xk)

where pk ∈ Rℓ
++ and xk ∈ Rℓ

+ for all k = 1, . . . , n. A data set O is a linear budget data set with integer

observations (LBI-data set) if X = Zℓ
+ and gk(x) = pk · (x − xk) where pk ∈ Zℓ

++ and xk ∈ Zℓ
+ for all

k = 1, . . . , n. A data set O is a general budget data set (GB-data set) if X = Rℓ
+ and gk : Rℓ

+ → R is a

monotone and continuous function for all k = 1, . . . , n.4

2 Indeed, he extended the Forges–Minelli Theorem (Forges and Minelli 2009), and in particular, Afriat’s Theorem.
3 Because, in the following, we assume either X = Rℓ

+ or X = Zℓ
+, we shall often refer to a data set O without

mentioning its consumption set X explicitly.
4 A function f : Rℓ

+ → R is monotone if it satisfies x ≫ y ⇒ f(x) > f(y). We say that f is strictly monotone if it

satisfies x ≧ y and x ̸= y ⇒ f(x) > f(y).
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Linear budget rationalizability is the most classical presented in Afriat (1967).

Definition 1. A LB-data set O is linear budget rationalizable (LB-rationalizable) if there is a non-

satiated utility function U : Rℓ
+ → R, which rationalizes O.

Homothetic rationalizability (Varian 1983) requires that the rationalizing function to be homothetic.

Definition 2. A LB-data set O is homothetic rationalizable (H-rationalizable) if there is a non-satiated

homothetic utility function U : Rℓ
+ → R, which rationalizes O.5

Quasi-linear rationalizability (Brown and Calsamiglia 2007) requires the data set to be extended so

that the extended data set is rationalized by a quasi-linear utility function.

Definition 3. A LB-data set O is quasi-linear rationalizable (Q-rationalizable) if there are non-negative

numbers (sk)nk=1 and a wealth level I > 0 such that pk · xk + sk = I for all k = 1, . . . , n, and LB-

data set Ō = {(B̄k, (xk, sk))}nk=1 defined as X = Rℓ+1
+ and B̄k = {(x, s) ∈ X | gk((x, s)) ≦ 0} where

gk((x, s)) = pk · (x− xk) + (s− sk) for all k = 1, . . . , n, is rationalized by a quasi-linear utility function

U : Rℓ+1
+ → R such that U(x, s) = V (x) + s where V : Rℓ

+ → R is a continuous, concave, strictly

monotone function.

Linear budget rationalizability with integer observations (Fujishige and Yang 2012) requires that the

integer observations are utility maximizers in an indivisible goods setting and also cost minimizers among

those utility maximizing choices.6

Definition 4. A LBI-data set O is linear budget rationalizable with integer observations (LBI-

rationalizable) if there is a discrete concave utility function U : Zℓ
+ → Z, which rationalizes O, and it

holds that y ∈ argmax{U(x) |x ∈ Bk} ⇒ pk · y ≧ pk · xk for all k = 1, . . . , n.7

General budget rationalizability (Forges and Minelli 2009) considers the data set with possibly non-

linear budgets.8

Definition 5. A GB-data set O is general budget rationalizable (GB-rationalizable) if there is a mono-

tone and continuous utility function U : Rℓ
+ → R, which rationalizes O.

Now, we review the characterization results. In essence, these results are threefold: the rationalizability,

the feasibility of a system of inequalities, and a no-cycle condition. First, the Q-rationalizability and the

H-rationalizability are characterized as follows.

5 A utility function U : Rℓ
+ → R is homothetic if it is a positive monotonic transformation of a function that is

homogeneous of degree 1; that is, if U(x) = f(g(x)) where g(x) : Rℓ
+ → R is homogeneous of degree 1 and f : R → R

is positive monotonic.
6 Polisson and Quah (2013) and Forges and Iehlé (2014) also considered rationalizability problems in the indivisible

goods settings.
7 A utility function U : Zℓ

+ → Z is discrete concave if, for any x1, x2, . . . , xm ∈ Zℓ
+ where m ≦ ℓ + 1 and any

rational numbers λ1 ≧ 0, λ2 ≧ 0, . . . , λm ≧ 0 where
∑m

t=1 λt = 1 and
∑m

t=1 λtxt ∈ Zℓ
+, we have U(

∑m
t=1 λtxt) ≧∑m

t=1 λtU(xt).
8 Matzkin (1991) and Chavas and Cox (1993) also considered non-linear budgets settings, which are special cases of

the setting of Forges and Minelli (2009). See also Quah (2014).
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Theorem 1 (Varian 1983; Brown and Calsamiglia 2007). Suppose that O is a LB-data set and S ∈
{Q,H}. For all k, k′ = 1, . . . , n such that k ̸= k′, let ℓ((xk, xk′

)) = pk · (xk′ − xk) if S = Q and

ℓ((xk, xk′
)) = log(pk · xk′

) otherwise. Then, the following three conditions are equivalent:

(i) The data set O is S-rationalizable.

(ii) There is a feasible solution (Uk)
n
k=1 ∈ Rn to the following system of inequalities: Uk′ ≦ Uk +

ℓ((xk, xk′
)) for all k, k′ = 1, . . . , n such that k ̸= k′.

(iii) For all m ≧ 2 and k1, . . . , km ∈ {1, . . . , n}, we have ℓ((xk1 , xk2)) + · · ·+ ℓ((xkm , xk1)) ≧ 0.

Note that, for the H-rationalizability, this result is an equivalent version of the original characteri-

zation result of Varian (1983). As mentioned in Varian (1983), we take the log values of the original

characterization conditions. Indeed, Condition (ii) is the log version of the feasibility condition of the

original system of inequalities with the form Uk′ ≦ Uk(p
k · xk′

) where Uk > 0 (k = 1, . . . , n) and Condi-

tion (iii) is the log version of the homothetic axiom of revealed preference (HARP), which has the form

(pk1 · xk2)(pk2 · xk3) · · · (pkm · xk1) ≧ 1. It is clear that these conditions are equivalent to each other.

For the LB, GB, and LBI-rationalizability characterizations, we first define the revealed preference

relation and the GARP. For a given data set O = {(Bk, xk)}nk=1 where Bk = {x ∈ X | gk(x) ≦ 0}
and gk(xk) = 0 for all k = 1, . . . , n, we say that xk is directly revealed (strictly) preferred to xk′

if

gk(xk′
) ≦ (<) 0, and denote as xk ⪰∗ (≻∗)xk′

, for any pair of observed consumptions xk, xk′ ∈ X . We

say that xk is directly revealed indifferent to xk′
if both xk ⪰∗ xk′

and xk′ ⪰∗ xk hold, and denote

as xk ∼∗ xk′
. We say that O satisfies the generalized axiom of revealed preference (GARP) if there is

a subset of observations {(Bki , xki)}mi=1 ⊂ O such that xk1 ⪰∗ xk2 , . . . , xkm ⪰∗ xk1 then those direct-

revealed preference relations do not hold with ≻∗.9 Using the GARP condition, the LB, GB, and

LBI-rationalizability are characterized as follows.

Theorem 2 (Afriat 1967; Forges and Minelli 2009; Fujishige and Yang 2012). Suppose S ∈
{LB,GB,LBI} and O is a S-data set. Let K = R if S ∈ {LB,GB} and K = Z otherwise. Then, the

following three conditions are equivalent:

(i) The data set O is S-rationalizable.

(ii) There is a feasible solution, (Uk)
n
k=1 ∈ Kn and (λk)

n
k=1 ∈ Kn

++, to the following system of in-

equalities: Uk′ ≦ Uk + λkg
k(xk′

) for all k, k′ = 1, . . . , n, where gk are the functions that define

the budget sets of O.

(iii) The data set O satisfies the GARP.

Note that, for the LBI-rationalizability, the GARP condition is not equivalent to the simple utility

maximization behavior. Instead the GARP is equivalent to the utility maximization and the cost effi-

9 The original definition of the GARP was based on the revealed preference relation ⪰∗∗, which is the transitive

closure of the direct-revealed preference relation ⪰∗ (Varian 1982). However, the original definition is equivalent to

that defined here, which is also referred to as the cyclical consistency condition from Afriat (1967). Note that, for

the rest of our analysis and results, we do not need the revealed preference relation ⪰∗∗ and hence we omit it. The

treatment of the GARP and the revealed preference relation ⪰∗∗ in this manner is common practice in the current

literature. (See, for example, Fostel et al. (2004) and Quah (2014).)
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ciency in the sense of Definition 4.10 In the following, we refer to both Condition (ii) in Theorem 1 and

Condition (ii) in Theorem 2 as the Afriat’s inequalities condition.

In the next subsection, we shall see that these rationalizability conditions are characterized also by

the feasibility of particular instances of the SPP. Indeed, it is known that the feasibility of the SPP is

characterized in a threefold way: the feasibility of the SPP, the feasibility of a system of inequalities,

and a non-negative cycle condition. The latter two conditions are actually generalizations of Conditions

(ii) and (iii) in Theorem 1 and hence, we can characterize the rationalizability also by the feasibility of

the SPP.

2.2 Shortest Path Problem and Rationalizability

The SPP asks for the shortest directed paths from one vertex to each of the other vertices in a

given directed graph with weighted edges. Consider the examples in Figure 1. Both graphs con-

sist of the same vertex and edge sets, namely, five vertices V = {a, b, c, d, e} and eight edges E =

{(a, b), (a, d), (a, e), (b, d), (c, b), (c, e), (d, c), (e, d)}. However, the graph on the left has shortest paths

from vertex a to all the other vertices, whereas the graph on the right does not have a shortest path

from a to b, c, or d. This is because any path to those vertices can be shortened by extending it along

the closed path b → d → c → b, which has total length −1.

a

b c

d

e3

5

8

4

-1

-3

6
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d

e3
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4

-1

-4

6

-1 -1

Figure 1

Formally, a directed graph is a pair G = (V,E) where V is a finite set and E is a subset of

the ordered pairs V × V . We call an element v ∈ V a vertex and an element (v, u) ∈ E an

edge.11 A path (or a v0-vm path) P : v0 → v1 → · · · → vm is a sequence of vertices and edges

v0(v0, v1)v1(v1, v2)v2 · · · vm−1(vm−1, vm)vm. A path is called a cycle if v0 = vm. A real-valued (or

an integer-valued) function ℓ : E → R (or ℓ : E → Z) is called a weight function and represents the

weight (or length) of the edge ℓ((v, u)) for each edge (v, u) ∈ E. The weight (or length) of a path

10 Whereas Fujishige and Yang (2012) characterized the GARP in the integer observations setting by assuming the cost

efficiency, Polisson and Quah (2013) characterized it by assuming the existence of an implicit divisible good in the

sense that the data set can be extended in a similar way to the quasi-linear rationalizability of Brown and Calsamiglia

(2007). In contrast, Forges and Iehlé (2014) characterized the simple utility maximization behavior in the integer

observations setting by modifying the GARP to the discrete axiom of revealed preference (DARP), which is a relaxed

version of the GARP in the integer observations setting.
11 In this paper, we only consider simple graphs. That is, we assume that there are no loops or parallel edges in

G = (V,E).
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P : v0 → v1 → · · · → vm is the sum of the lengths of its edges ℓ(P ) :=
∑m−1

k=0 ℓ((vk, vk+1)). A shortest

path from vertex s to vertex v is a s-v path that has the minimum length over all s-v paths.12

The following theorem is a known characterization for the feasibility of the SPP. For completeness,

we present a simple proof of this characterization in the Appendix. See Murota and Shioura (2013) and

Korte and Vygen (2012) for more detailed discussions.

Theorem 3. Let K = R or Z. Let G = (V,E) be a directed graph with n vertices and m edges. Let

ℓ : E → K be a weight function. Suppose that there is a path from vertex s ∈ V to each of the other

vertices v ∈ V \ {s}. Then, the following conditions are equivalent:

(i) There are shortest paths from s to the other vertices v.

(ii) There is a vector π = (π(v))v∈V ∈ Kn such that π(u) ≦ π(v) + ℓ((v, u)) for all (v, u) ∈ E.

(iii) There is no negative length cycle in the graph G with respect to weight ℓ.

A vector π that satisfies Condition (ii) above is called a feasible potential. In the above examples, the

graph on the left has a feasible potential (π(a), π(b), π(c), π(d), π(d)) = (0, 4, 5, 8, 3). However, the graph

on the right does not have a feasible potential because of the negative length cycle b → d → c → b. If

there was a feasible potential π̃, then π̃(b) ≦ π̃(d)+ 4 ≦ (π̃(c)− 4)+ 4 ≦ (π̃(b)− 1)− 4+ 4, which results

in the contradiction 0 ≦ −1.

Now, observe that Condition (ii) in Theorem 3 is a generalization of Afriat’s inequalities, (ii) in Theorem

1. Moreover, Condition (iii) in Theorem 1 is a particular case of the no-negative-cycle condition, (iii)

in Theorem 3.13 As mentioned in Varian (1983), Piaw and Vohra (2003), Fujishige and Yang (2012),

and Nobibon et al. (2015), we can construct a directed graph and associate it with weights generated

from the data set O.14 The directed graph G = (V,E) is constructed by introducing a vertex for each

consumption bundle xk ∈ X and an edge for each pair of distinct indices (xk, xk′
). That is,

V := X = {x1, x2, . . . , xn} and E := {(xk, xk′
) | k, k′ = 1, . . . , n and k ̸= k′}. (2)

If we take the weights ℓQ : E → R and ℓH : E → R to be

ℓQ((x
k, xk′

)) := pk · (xk′
− xk) and ℓH((xk, xk′

)) := log(pk · xk′
) (3)

where pk and xk are the prices and quantities that define the budget sets of the LB-data set O. Then,

we have a SPP characterization of the rationalizability problems. (We omit the proof as it is obvious

from Theorem 1 and Theorem 3.)

12 Note that we use the word weight or length even if ℓ((v, u)) or ℓ(P ) is negative.
13 It is interesting that almost the same form of the no-cycle condition appears in the mechanism design literature

(Rochet 1987). Rochet’s result concerns the rationalizability of a public decision function in a quasi-linear setting.

The problem asks, for any arbitrary given decision function, whether there is a monetary transfer function with which

the decision–transfer pair has the truth-telling property for a given agent equipped with a parameterized quasi-linear

utility function. He showed that the rationalizability of a given decision function for a given agent is characterized

by a non-positive cycle condition based on the agent’s parameterized quasi-linear utility function and the decision

function (Theorem 1, Rochet 1987).
14 Koo (1971) also investigated the graph theoretic representations of revealed preferences.
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Proposition 1. Let O be a LB-data set and S ∈ {Q,H}. Let G = (V,E) be defined by (2) and

ℓS : E → R be defined as (3). Then, the following conditions are equivalent:

(i) The data set O is S-rationalizable.

(ii) There is a feasible solution (Uk)
n
k=1 ∈ Rn to the following system of inequalities: Uk′ ≦ Uk +

ℓS((x
k, xk′

)) for all (xk, xk′
) ∈ E.

(iii) There is no negative length cycle in G = (V,E) with ℓS : E → R.
(iv) There are shortest paths from x1 to every other vertices in G = (V,E) with ℓS : E → R.

For the LB, GB, and LBI-rationalizabilities, the arguments are the same and straightforward. Indeed,

the correct SPP instance is clear if we compare the feasible potential condition of the SPP, (ii) in

Theorem 3, with Afriat’s inequalities of the rationalizabilities, (ii) in Theorem 2. Formally, for any

S ∈ {LB,GB,LBI}, we consider the weight function for each S-data set as follows.

ℓS((x
k, xk′

);λ) := λkg
k(xk′

) for any λ = (λk)
n
k=1 ∈ Kn

++ (4)

where K = R if S ∈ {LB,GB} and K = Z otherwise, and gk are functions that define the budget sets

of the S-data set O.

Proposition 2. Suppose S ∈ {LB,GB,LBI} and O is a S-data set. Let K = R if S ∈ {LB,GB} and

K = Z otherwise. Let G = (V,E) be defined by (2) and ℓS(λ) : E → K be defined as (4). Then, the

following three conditions are equivalent:

(i) The data set O is S-rationalizable.

(ii) There is a feasible solution, (Uk)
n
k=1 ∈ Kn and λ ∈ Kn

++, to the following system of inequalities:

Uk′ ≦ Uk + ℓS((x
k, xk′

);λ) for all (xk, xk′
) ∈ E.

(iii) The data set O satisfies the GARP.

(iv) There is some λ ∈ Kn
++ such that the directed graph G with the weight ℓS(λ) : E → K has shortest

paths from x1 to each of the other vertices.

(v) There is some λ ∈ Kn
++ such that the directed graph G with the weight ℓS(λ) : E → K has no

negative length cycle.

Again, we omit the proof for Proposition 2. However, note that for the LBI-rationalizability, the

weight is integer-valued; ℓLBI((x
k, xk′

);λ) = λkg
k(xk′

) = λkp
k · (xk′ − xk), and hence, the Afriat’s

inequalities condition is equivalent to the integer feasible potential condition in Theorem 3.

As shown in Proposition 1, the Q-rationalizability and the H-rationalizability are actually charac-

terized by particular instances of the SPP. However, as shown in Proposition 2, the LB, GB, and

LBI-rationalizabilities are characterized by a modified problem. The modified problem asks if there

is a weight adjustment λ ∈ Rn
++ (or λ ∈ Zn

++) under which the graph with the adjusted weight

ℓS((x
k, xk′

);λ) = λkg
k(xk′

) has shortest paths from a given start point to the other points. In the

next section, we formalize this modified problem with graph theoretic apparatus and characterize its

feasibility. Through this argument, we can develop a graph theoretic counterpart of the GARP, which

characterizes the feasibility of the modified problem.
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3 Rationalizability and Shortest Path Problem with Weight Adjustment

Proposition 2 shows that we can characterize the LB, GB, and LBI-rationalizabilities using a modified

SPP. The modified problem asks if there is a weight adjustment λ = (λv)v∈V ∈ R|V |
++ (or λ = (λv)v∈V ∈

Z|V |
++) under which the graph with adjusted weight λvℓ((v, u)) has shortest paths from a given start point

to the other points. We call this modified problem the SPP with weight adjustment (SPPWA). Note that

the adjustment λ never changes the signs of the weights ℓ((v, u)) because λ ≫ 0. Additionally, note that

the adjustment λv > 0 is identical for all the edges from the same vertex v.

Consider the examples in Figure 2. Both graphs consist of the same vertex and edge sets, five vertices

V = {a, b, c, d, e} and eight edges E = {(a, b), (a, d), (a, e), (b, d), (c, b), (c, e), (d, c), (e, d)}. The graph on

the left has a negative length cycle b → d → c → b. However, it has an adjustment (λa, λb, λc, λd, λe) :=

(1, 2, 1, 1, 1), so that adjusted weight never results in a negative length cycle (and hence, Theorem 3

implies that there are shortest paths from a to all other vertices in the adjusted network). In contrast,

the graph on the right does not have such an adjustment, because the negative length cycle b → d → c → b

is always a negative length cycle under any adjustment λ ≫ 0, as it does not contain a positive edge.

That is, λb0 + λd(−4) + λc(−1) ≦ min{λb, λd, λc}(0 − 4 − 1) < 0. Moreover, note that the graph on

the left does not contain such a problematic cycle. An important point that is highlighted by these
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examples is the existence of a negative length cycle that consists of only non-positive edges. Indeed, we

can characterize the feasibility of the SPPWA using this condition. The following theorem is our first

main result.

Theorem 4. Let K = R or Z. Let G = (V,E) be a directed graph with n vertices and m edges.

Let ℓ : E → K be a weight function. Suppose that there is a path from vertex s ∈ V to each of the

other vertices v ∈ V \ {s}. For any vector λ = (λv)v∈V ∈ Kn
++, define an adjusted weight function

ℓ(λ) : E → K as
ℓ((v, u);λ) := λvℓ((v, u)) for all (v, u) ∈ E.

Define a subset Enp of the edges E as

Enp := {(v, u) ∈ E | ℓ((v, u)) ≦ 0}.
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Then, the following conditions are equivalent:

(i) There is a vector λ ∈ Kn
++ such that the graph G with the adjusted weight ℓ(λ) has shortest paths

from s to each of the other vertices v.

(ii) There is a vector λ ∈ Kn
++ and a vector π ∈ Kn such that π(u) ≦ π(v) + ℓ((v, u);λ) for all

(v, u) ∈ E.

(iii) There is a vector λ ∈ Kn
++ such that the graph G with the adjusted weight ℓ(λ) has no negative

length cycle.

(iv) The graph Gnp := (V,Enp) has no negative length cycle with respect to the original weight ℓ : E →
K (a cycle containing a negative weighted edge with respect to the original weight ℓ : E → K).

(v) The graph Gnp := (V,Enp) has no strongly connected component (SCC) that contains a negative

weighted edge with respect to the original weight ℓ : E → K.15

We call (π, λ) ∈ Kn ×Kn
++ in Condition (ii) a feasible solution of the SPPWA. Note that the equiva-

lences of the first three conditions are obvious consequences of Theorem 3: the characterization conditions

for the SPP. In the above examples in Figure 2, we observed that the non-existence of a negative length

cycle that consists of only non-positive edges may characterize the feasibility of the SPPWA, and the

equivalence (iii) ⇔ (iv) says that the observation is correct. Indeed, the subgraph Gnp can be constructed

by dropping all the positive weighted edges of the originally given graph and weight, (G, ℓ). Therefore,

a negative length cycle in Gnp with respect to the original weight ℓ : E → K is a negative length cycle

in G with ℓ : E → K that consists of only non-positive edges. Finally, (iv) ⇔ (v) holds through a graph

theoretic translation.16

We now return to the rationalizability problems. By Proposition 2, the LB, GB, and LBI-

rationalizability problems are characterized by particular instances of the SPPWA. Formally, the

directed graph is defined as the same as (2), i.e., V := {x1, x2, . . . , xn} and E := {(xk, xk′
) | k, k′ =

1, . . . , n and k ̸= k′}, and the weight and the adjusted weight functions are defined as follows: for all

S ∈ {LB,GB,LBI}, and for any S-data set O and any λ = (λk)
n
k=1 ∈ Kn

++,

ℓS((x
k, xk′

)) := gk(xk′
) and ℓS((x

k, xk′
);λ) = λkℓS((x

k, xk′
)) (5)

where K = R if S ∈ {LB,GB} and K = Z otherwise, and gk are functions that define the budget sets

of the S-data set O. Then, Proposition 2 and Theorem 4 imply the following proposition.

15 A directed graph G = (V,E) is strongly connected if each pair of vertices v and u are strongly connected; that is, there

are v-u and u-v paths in G. A subgraph C of a graph G = (V,E) is a SCC of G if there is no strongly connected

subgraph C′ of G where C is a subgraph of C′ and C ̸= C′, i.e., if C is a maximal strongly connected subgraph of G.

Because the strong connectivity of a pair of vertices is an equivalence relation, we can decompose the set of vertices,

V , into equivalence classes by the strong connectivity relation. This decomposition is called the SCC decomposition

of the directed graph. Note that we use the term SCC of a directed graph to describe the vertex sets that decompose

V into the SCC decomposition and the subgraphs that are induced by each of such vertex sets.
16 Condition (v) can be checked easily using the SCC decomposition algorithm (e.g., STRONGLY CONNECTED

COMPONENT ALGORITHM, Korte and Vygen 2012). Hence, as shown in Proposition 3 below, we can easily test

the rationalizability of the economic data set. This procedure was also proposed by Fujishige and Yang (2012) and

Nobibon et al. (2015) for the LBI and LB-rationalizabilities, respectively.
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Proposition 3. Suppose S ∈ {LB,GB,LBI} and O is a S-data set. Let G = (V,E) defined as (2) and

gk be the functions that define the budget sets of O. Then, the following conditions are equivalent:

(i) The data set O is S-rationalizable.

(ii) The subgraph graph Gnp = (V,Enp) of G, where Enp = {(xk, xk′
) ∈ E | gk(xk′

) ≦ 0}, has no cycle

that contains an edge (xk, xk′
) satisfying gk(xk′

) < 0.

(iii) The graph Gnp has no SCC that contains an edge (xk, xk′
) satisfying gk(xk′

) < 0.

Remark 1: Under the language of preferences, the graph Gnp = (V,Enp) has an edge (xk, xk′
) if the

consumption bundle xk is directly revealed preferred to xk′
. Hence, the graph Gnp = (V,Enp) is a

graph theoretic representation of the direct-revealed preference relation ⪰∗ on the finite set V = X =

{xk}nk=1. Formally, ⪰∗ is defined as xk ⪰∗ xk′ ⇔ gk(xk′
) ≦ 0 and so, if we construct a directed graph

G⪰∗ := (V,E⪰∗) where E⪰∗ := {(xk, xk′
) | k, k′ = 1, . . . , n, k ̸= k′, and xk ⪰∗ xk′

holds}, then we have

Gnp = G⪰∗ .

Remark 2: The GARP is actually equivalent to Condition (ii) in Proposition 3. In other words,

Condition (ii) in Proposition 3 is a graph theoretic representation of the GARP. Indeed, the GARP

requires that if we have “xk1 ⪰∗ xk2 , . . . , xkm ⪰∗ xk1 then, those revealed preference relations do not hold

with ≻∗”. If we restate it with the original data, then it becomes if we have gk1(xk2) ≦ 0, . . . , gkm(xk1) ≦ 0

then, those inequalities do not hold with strict inequality. Finally, if we translate this condition into the

graph theoretic language we developed above, then it becomes each cycle in Gnp contains zero-valued

edges only, and it is obviously equivalent to Condition (ii) in Proposition 3, which requires that there is

no cycle in Gnp that contains a negative-valued edge; an edge (xk, xk′
) satisfying gk(xk′

) < 0.

This section investigates a graph theoretic structure of the LB, GB, and LBI-rationalizability. In

other words, we recover Afriat’s Theorem-type results by a graph theoretic framework. However, Afriat’s

Theorem (for the LB-data set setting) and the Forges–Minelli Theorem (for the GB-data set setting)

were extended by Quah (2014) for more sharper results. The result says we can rationalize any rational

completion of the revealed preference relation and implies that no preference that is consistent with the

data set O can be eliminated by rationality. In the next section, we further recover this sharper result

based on the SPPWA framework and extend Quah’s result for integer observations (for the LBI-data

set setting).

4 Rationalizability of Consistent Preferences and SPPWA

4.1 The Quah’s Theorem

Suppose that O = {(Bk, xk)}nk=1 is a GB-data set. We call a binary relation ⪰ on a set of observed

consumption bundles X = {xk}nk=1 a preference relation (or a rational relation) if it is reflexive, transitive,

and complete. We say a relation between xk and xk′
is strict if xk ⪰ xk′

and xk′ ⪰̸ xk, denoting it as

xk ≻ xk′
, and a relation between xk and xk′

is indifferent if xk ⪰ xk′
and xk′ ⪰ xk, denoting it xk ∼ xk′

.

A preference relation ⪰ is said to be a consistent preference with the direct-revealed preference relation

⪰∗ (or, with the data set O) if it satisfies the following two conditions: (i) xk ⪰∗ xk′
=⇒ xk ⪰ xk′
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and (ii) xk ≻∗ xk′
=⇒ xk ≻ xk′

.17 In words, a consistent preference relation is a rational extension

of the direct-revealed preference relation, which preserves the direct-revealed strict preferences as strict

preferences. Note that condition (i) implies xk ∼∗ xk′
=⇒ xk ∼ xk′

and a consistent preference also

preserves any direct-revealed indifference relation. Finally, we say that the revealed preference relation

⪰∗ (or the data set O) admits a consistent preference if there is a consistent preference with it.

As noted in Proposition 2 of Quah (2014), the data set O admits a consistent preference if and only if

it satisfies the GARP, and in particular, any data set with a consistent preference can be rationalizable.

The following result, which was shown in Quah (2014), further says that any consistent preference on X
can be extended to a rationalizing preference.18

Theorem 5 (Quah 2014, Theorem 2). Suppose that a GB-data set O = {(Bk, xk)}nk=1 admits a consis-

tent preference ⪰. Then there is a monotone and continuous utility function U : Rℓ
+ → R that satisfies

the following two conditions:

(i) U : Rℓ
+ → R rationalizes the data set O = {(Bk, xk)}nk=1, and

(ii) U : Rℓ
+ → R preserves the consistent preference ⪰, i.e., U(xk) > (=)U(xk′

) if and only if

xk ≻ (∼)xk′
for all k, k′ = 1, . . . , n.

He shows this result by showing the following Lemma, which we focus on in the next subsection.

Lemma 1 (Quah 2014, Proof of Theorem 2). Suppose that a GB-data set O = {(Bk, xk)}nk=1 admits a

consistent preference ⪰. Then there is a solution of Afriat’s inequalities that preserves ⪰, i.e., there are

real numbers Uk, λk > 0 (k = 1, . . . , n) satisfying the following two conditions:

(i) Uk′ ≦ Uk + λkg
k(xk′

) for all k, k′ = 1, . . . , n, and

(ii) Uk > (=)Uk′ if and only if xk ≻ (∼)xk′
for all k, k′ = 1, . . . , n,

where gk are the functions that define the budget sets of O.

As noted in Remark 1 of Proposition 3, the graph Gnp of the SPPWA constructed from the data set O
is a graph theoretic representation of the direct-revealed preference relation ⪰∗. Hence, it is intuitive that

a problem asking whether there is a feasible solution of the SPPWA that preserves a rational extension

of Gnp is a generalization of the above rationalizability problem of Quah (2014). In the next subsection,

we present this problem with graph theoretic apparatus and extend the result of Quah (2014).

17 As noted in Quah (2014), the consistency of a preference relation that we have defined here is equivalent to the one

that is defined by the conditions (i) and (ii) with the revealed preference ⪰∗∗ and the revealed strict preference ≻∗∗,

instead of the direct-revealed preference ⪰∗ and the direct-revealed strict preference ≻∗.
18 For consistency in terminology, we state Quah’s Theorem based on the Forges–Minelli-type general budget rationaliz-

ability setting. Hence, in the presented result, the rationalizing utility function is monotone and continuous, instead

of strongly monotone and continuous as in the original Quah Theorem (Theorem 2, Quah 2014).
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4.2 SPPWA with Consistent Rational Extension of Gnp

Suppose we have an instance of the SPPWA, G = (V,E) and ℓ : E → K, where K = R or Z. We say

that a graph with the same vertex set V , Gr = (V,Er), is complete if for any pair of vertices v, u ∈ V

there is at least one edge (v, u) ∈ Er or (u, v) ∈ Er, and is transitive if it satisfies that for any pair of edges

such that (v, u), (u,w) ∈ Er there is the edge (v, w) ∈ Er. A graph Gr = (V,Er) is rational if it complete

and transitive.19 A rational graph Gr = (V,Er) is consistent with (G, ℓ : E → K) if the following two

conditions are satisfied: (i) Gnp is a subgraph of Gr and (ii) if (v, u) ∈ Enp and ℓ((v, u)) < 0, then

(v, u) ∈ Er and (u, v) /∈ Er, where Gnp = (V,Enp) is defined as Enp = {(v, u) ∈ E | ℓ((v, u)) ≦ 0}.

Note that a preference relation ⪰ on X = {xk}nk=1 in the previous subsection corresponds to a rational

graph Gr = (X , Er) where

Er = {(xk, xk′
) | k′, k = 1, . . . , n, k′ ̸= k, and xk ⪰ xk′

holds} (6)

in the current framework. Hence, intuitively, an edge (v, u) ∈ Er indicates that v is at least as good as

u. Note also that if we define (G, ℓ : E → K) as in (2) and (5), and Gr as in (6) for any data set O
and any preference ⪰, the consistency of ⪰ with O clearly is equivalent to the consistency of Gr with

(G, ℓ : E → K). Hence, our graph theoretic formalization actually generalizes Quah’s problem.

In our framework, analogously to Quah’s original formalization, we see that the existence of a consistent

rational graph with an instance of the SPPWA, (G, ℓ : E → K), is a necessary and sufficient condition

for the feasibility of the SPPWA. (Hence, it is equivalent to all conditions in Theorem 4). Formally, the

following proposition holds.

Proposition 4. For any instance of the SPPWA, G = (V,E) and ℓ : E → K, let Gnp be the subgraph

of G defined in Theorem 4. Then, the following two conditions are equivalent:

(i) The graph Gnp = (V,Enp) has no negative length cycle with respect to the weight ℓ : E → K (a

cycle containing a negative weighted edge with respect to the weight ℓ : E → K).

(ii) There is a consistent rational graph Gr = (V,Er) with the instance (G, ℓ : E → K).

Finally, we state our second main result. It gives a graph theoretic generalization of Quah’s Lemma.

Theorem 6. For any instance of the SPPWA, G = (V,E) and ℓ : E → K, with a consistent rational

graph, Gr = (V,Er), there exists a feasible solution of the SPPWA, which preserves the consistent rational

graph. That is, there is (π, λ) ∈ Kn ×Kn
++ that satisfies the following two conditions:

(i) π(u) ≦ π(v) + ℓ((v, u);λ) for all (v, u) ∈ E, and

(ii) π(v) > π(u) if and only if (v, u) ∈ Er and (u, v) /∈ Er and

π(v) = π(u) if and only if (v, u) ∈ Er and (u, v) ∈ Er, for all v, u ∈ V .

19 We say that a graph is rational without the reflexivity, i.e., we implicitly assume that there are loops (v, v) ∈ E for

all v ∈ V whenever we say that a graph G = (V,E) is rational. However, we do not need these loops for the results

and/or analysis and hence, we do not mention them any further.
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Remark 1: Because our result applies to any instance of the SPPWA with a real-valued or an integer-

valued weight, it extends Quah’s Lemma to the integer observations, and hence Quah’s Theorem with

the LBI-rationalizability. Indeed, as argued in the proof of Theorem 1 of Fujishige and Yang (2012), if

we define a utility function U : Zℓ
+ → Z as

U(x) := min{Uk + λkp
k · (x− xk) | k = 1, . . . , n}

where ((Uk)
n
k=1, (λk)

n
k=1) is a solution of Afriat’s inequalities obtained by Theorem 6 then, it LBI-

rationalizes the data set O. Moreover, it is known that this utility function satisfies that U(xk) = Uk

for all k = 1, . . . , n. Hence, from Condition (ii) in Theorem 6, the utility function U clearly preserves

the consistent preference ⪰ represented by Gr, which is defined as in (6). Therefore, Quah’s Theorem is

extended for the integer observations setting.

Remark 2: The implication “(iv) ⇒ (ii)” of Theorem 4 follows from Proposition 4 and Theorem 6, and

it follows that, in particular, the existence of a feasible solution of the SPPWA preserving a consistent

rational graph Gr of (G, ℓ : E → K) is also equivalent to all conditions in Theorem 4.

Remark 3: The proof of Theorem 6 is based on an algorithm to compute a feasible solution of the

SPPWA preserving the consistent rational graph. This algorithm is a modified version of the Varian–

Quah algorithm (Varian 1982; Quah 2014) based on the SCC decomposition of Gr. The idea to use the

SCC decomposition structure is similar to the one in Fujishige and Yang (2012). Moreover, this algorithm

can easily be modified to compute a feasible solution of the SPPWA based only on the instanceG = (V,E)

with ℓ : E → K. (See the proof of Theorem 6 in the Appendix.)

5 Concluding Remark

Apart from the revealed preference tests, many researchers investigated goodness-of-fit measures for

the GARP (Afriat 1973; Houtman and Maks 1985; Varian 1990; Echenique et al. 2011; Smeulders et al.

2013; Dean and Martin 2015). They proposed some indices as goodness-of-fit measures for the GARP,

but some of them have been shown to be computationally difficult. More precisely, the computations of

some indices are NP-hard problems (Smeulders et al. 2013; Smeulders et al. 2014; Shiozawa 2015).20

These indices were defined according to the weights of the GARP violations (or the cyclical consistency

violations). Hence, their validities are based on Condition (ii) in Proposition 3. However, the GARP

has another equivalent combinatorial form: Condition (iii) in Proposition 3. Hence, we have another

candidate for an index of a goodness-of-fit measure for the GARP:

SCCI :=

∑d
κ=1

∑
(xk,xk′ )∈Hκ

gk(xk′
)∑

(xk,xk′ )∈Enp
gk(xk′)

(7)

20 Specifically, Smeulders et al. (2013) and Smeulders et al. (2014) showed that it is NP-hard to compute the indices

defined in Houtman and Maks (1985), Varian (1990), and Echenique et al. (2011). Shiozawa (2015) showed that

computing the minimum cost index of Dean and Martin (2015) is also NP-hard. Note, in contrast, that Smeulders et

al. (2013) proposed two computationally feasible indices and Smeulders et al. (2014) proposed a feasible (polynomial-

time exact) algorithm for computing the index of Afriat (1973).
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where gk are the functions that define the budget sets of the LB, GB, or LBI-data setO = {(Bk, xk)}nk=1,

Hκ(κ = 1, . . . , d) is the SCC decomposition of Gnp = (V,Enp), which is constructed from the data set

O as in Proposition 3, and “(xk, xk′
) ∈ Hκ” expresses that the edge (xk, xk′

) is contained in the set of

edges of Hκ.
21 Note that SCCI ∈ [0, 1] for any data set. This index has a natural interpretation: the

ratio of the weight of irrational parts (negative weight SCCs) of the data set over the entire weight of

the revealed preference relation. Moreover, it has an O(n2) time algorithm: compute SCCs of Gnp using

the SCC decomposition algorithm and compute SCCI defined by (7). Hence, based on Proposition 3,

SCCI may be a new valid and computationally feasible goodness-of-fit measure for the GARP.
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Appendix

1. A proof of Theorem 3

This argument is based on Murota and Shioura (2013).

(i) ⇒ (ii): Let d(v) be the length of the shortest path from the vertex s to each of the other vertices

v ∈ V . We define d(s) := 0. (Note that if the weight function is integer-valued (ℓ : E → Z), the shortest

path length d(v) must be an integer for all v ∈ V .) Take an arbitrary edge (v, u) ∈ E. Because d(u) is

the length of the shortest path from s to u, we have

d(u) ≦ d(v) + ℓ((v, u)),

where the right-hand side is the length of a path from s to u that follows the shortest path from s to v

and the edge (v, u). Thus, d(u) ≦ d(v) + ℓ((v, u)) for all (v, u) ∈ E.

(ii) ⇒ (iii): Take an arbitrary cycle K : v0 → v1 → · · · → vm−1 → vm, where vm = v0. Then,

ℓ(K) =
m−1∑
h=0

ℓ((vh, vh+1)) ≧
m−1∑
h=0

(π(vh+1)− π(vh)) = π(vm)− π(v0) = 0.

Hence, there is no negative length cycle.

(iii) ⇒ (i): Take an s-v path P ∗ that has shortest length over all simple paths from s to v. (We say a

path is simple if it contains no cycle.) Such P ∗ exists because the set of all simple paths from s to v is

not empty by assumption, and this set is finite; a simple path must consist of at most n − 1 edges out

of m edges in E. Now, take an arbitrary s-v path P that is not simple. Because P is not simple, there

is a vertex v′ through which P passes at least twice. Thus, P contains a cycle K. Because there is no

21 Note that if the denominator
∑

(xk,xk′
)∈Enp

gk(xk′
) is zero, then the data set is rationalizable by Proposition 3. In

such cases, we define SCCI := 0.
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negative length cycle, the length of a s-v path P ′ generated by removing K from P is no more than the

length of P . That is, ℓ(P ′) ≦ ℓ(P ). Continuing this procedure until P is reduced to a simple s-v path

P̄ , we still have ℓ(P̄ ) ≦ ℓ(P ). However, because P ∗ is the shortest length simple path from s to v, we

must have ℓ(P ∗) ≦ ℓ(P̄ ). Therefore, ℓ(P ∗) ≦ ℓ(P ) holds. Hence, P ∗ is a shortest s-v path.

2. Proof of Theorem 4

As previously mentioned, the equivalences (i) ⇔ (ii) ⇔ (iii) are consequences of Theorem 3. Hence,

we prove the remaining equivalences in the following.

(iii) ⇒ (iv): We show the contraposition. If (iv) does not hold, then there is a cycle in Gnp that

contains a negative weighted edge. Let v0 → v1 → · · · → vm−1 → v0 denote this cycle. Note that this

cycle v0 → v1 → · · · → vm−1 → v0 is also contained in the original graph G, because Gnp is a subgraph

of G. Take an arbitrary adjustment λ ≫ 0. Then, the weight of the cycle with respect to the adjusted

weight ℓ(λ) is

ℓ((v0, v1);λ) + · · ·+ ℓ((vm−1, v0);λ) = λ0ℓ((v0, v1)) + · · ·+ λm−1ℓ((vm−1, v0))

≦ min{λh|h = 0, 1, . . . ,m− 1}(ℓ((v0, v1)) + · · ·+ ℓ((vm−1, v0))) < 0.

Thus, the graph G has a negative cycle with respect to the adjusted weight ℓ(λ). Because the adjustment

λ ≫ 0 is arbitrary, there is no λ ≫ 0 such that the graph G with adjusted edge weight ℓ(λ) has no negative

length cycle (i.e., Condition (iii) does not hold).

(iv) ⇔ (v): We show the contraposition. If (iv) does not hold, then there is a cycle in Gnp that contains

a negative weighted edge (v∗, u∗) ∈ Enp. For all pairs of vertices v, u ∈ V that are in this cycle, there

are v-u and u-v paths. Hence, vertices v∗ and u∗ are in the same SCC. Therefore, Condition (v) does

not hold. Conversely, if (v) does not hold, there is a SCC of Gnp that contains a negative weighted edge

(v∗, u∗) ∈ Enp. Because the vertices v∗ and u∗ are in the same SCC, there is a u∗-v∗ path

u∗(u∗, w1)w1 · · ·wm−1(wm−1, v
∗)v∗

in Gnp. Therefore, a cycle v∗(v∗, u∗)u∗(u∗, w1)w1 · · ·wm−1(wm−1, v
∗)v∗ is in Gnp and contains the

negative weighted edge (v∗, u∗) (i.e., Condition (iv) does not hold).

(v) ⇒ (ii): As we noted in Remark 2 of Theorem 6, “(iv) ⇒ (ii)” in Theorem 4 is a consequence of

Proposition 4 and Theorem 6. Hence, as we have shown “(iv) ⇔ (v)” above, the implication “(v) ⇒
(ii)” is also a consequence of those. However, as shown in the proof of Theorem 6 below, an algorithm

given in the proof of Theorem 6 can be used to compute a solution (π, λ) of any feasible instances of the

SPPWA. Hence, the proof of Theorem 6 can be applied to show “(v) ⇒ (ii)” in Theorem 4 directly.

3. Proof of Proposition 4

(i) ⇒ (ii): Suppose that the graph Gnp = (V,Enp) has no negative length cycle with respect to the

weight ℓ : E → K. Then, form Theorem 4, we have a feasible solution of the SPPWA, (π, λ) ∈ Kn
+×Kn

++.
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Define a graph Gr = (V,Er) in the following way

Er := {(v, u) | v, u ∈ V, v ̸= u, and π(v) ≧ π(u)}. (8)

Then, since K = Z or R are totally ordered, it is clear that Gr is a rational graph, i.e., complete and

transitive. Moreover, Gr is consistent with the instance (G, ℓ). Indeed, since (π, λ) is a feasible solution

of the SPPWA, we have
π(u) ≦ π(v) + λvℓ((v, u)) for all (v, u) ∈ E.

If we have (v, u) ∈ Enp(⊂ E) then ℓ((v, u)) ≦ 0, and hence

π(u) ≦ π(v) + λvℓ((v, u)) ≦ π(v),

i.e., (v, u) ∈ Er. Moreover, if ℓ((v, u)) < 0, we have

π(u) ≦ π(v) + λvℓ((v, u)) < π(v),

and hence (v, u) ∈ Er and (u, v) /∈ Er from the definition (8).

(ii) ⇒ (i): Suppose that, there is a consistent rational graph Gr = (V,Er) with the instance (G, ℓ).

Suppose also that, to the contrary, graph Gnp = (V,Enp) has a negative length cycle with respect to

the weight ℓ : E → K, i.e., a cycle in Gnp that contains a negative weighted edge ℓ((v∗, u∗)) < 0.

Let w0(w0, w1)w1 · · ·wm−1(wm−1, wm)wm be that cycle where w0 = wm = v∗ and w1 = u∗. Since,

(wk, wk+1) ∈ Enp for all k = 0, . . . ,m − 1 and Gr is consistent, we have (wk, wk+1) ∈ Er for all

k = 0, . . . ,m − 1. This implies, in particular, that there is edge (w1, w0) ∈ Er, since Gr is transitive.

However, since ℓ((w0, w1)) = ℓ((v∗, u∗)) < 0 and Gr is consistent, we must have (w1, w0) /∈ Er by

definition of the consistency. That is a contradiction.

4. Proof of Theorem 6 (and Proof of “(v) ⇒ (ii)” in Theorem 4).

In the following, we show that proofs for Theorem 6 and for the implication “(v) ⇒ (ii)” in Theorem

4 can be done by an almost the same argument based on an algorithm we define below. For this reason,

we denote Gsub = Gr or Gnp. Here, we assume that Gsub is a consistent rational graph with the SPPWA

instance (G = (V,E), ℓ : E → K) or that Gnp satisfies Condition (v) of Theorem 4, respectively. First,

we show a combinatorial property between (G = (V,E), ℓ : E → K) and Gsub.

Claim 1. Suppose that (H1, . . . , Hd) is the SCC decomposition of the graph Gsub where Gsub = Gr

or Gnp. Here, Hκ are assigned a topological order by their subscripts κ = 1, . . . , d.22 Then, we have the

22 That is, H1, . . . , Hd are assigned their subscripts so that the following statement holds: if there is a v-u path in Gsub

where v ∈ Hκ, u ∈ Hκ′ and κ ̸= κ′ then, κ > κ′. It is known that we can have such subscripts for any directed

graph as follows. Consider each SCC as a single vertex and re-define a graph consisting of the re-defined vertices

(SCCs) and edges from SCC H′ to another SCC H′′ where there is a path from a vertex of H′ to a vertex of H′′.

Then, the new graph is clearly acyclic and hence, has a topological order (Proposition 2.9, Korte and Vygen 2012).

When we assign subscripts κ = 1, . . . , d to the SCCs that correspond to the topological order of the new graph,

we get the stated structure. It is also known that the SCC decomposition algorithm (STRONGLY CONNECTED

COMPONENT ALGORITHM, Korte and Vygen 2012) simultaneously provides such a topological order of SCCs in

an inverse manner we define here (Theorem 2.20, Korte and Vygen 2012).
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following two properties:

(i) (v, u) ∈ E such that v, u ∈ Hκ for some κ = 1, . . . , d ⇒ ℓ((v, u)) ≧ 0.

(ii) (v, u) ∈ E such that v ∈ Hκ and u ∈ Hκ′ such that κ < κ′ ⇒ ℓ((v, u)) > 0.

Case 1: Gsub = Gr. First, we show that (i) holds. Suppose, to the contrary, v, u ∈ Hκ and ℓ((v, u)) < 0.

Then we have (v, u) ∈ Enp and hence, from the consistency of Gr, we also have (v, u) ∈ Er and

(u, v) /∈ Er. However, because v and u are in the same SCC, Hκ, there is a path u → · · · → v in Gr.

Therefore, by transitivity of Gr, there must be an edge (u, v) ∈ Er, which is absurd. Next, we show (ii).

Suppose v ∈ Hκ and u ∈ Hκ′ such that κ < κ′. Suppose also ℓ((v, u)) ≦ 0. Then, (v, u) ∈ Enp and hence

by the consistency of Gr, we have (v, u) ∈ Er, i.e., there is a path in Gr which connects a vertex in Hκ

to a vertex in Hκ′ . Because we take the index κ = 1, . . . , d as the topological order, we have κ > κ′ and

this is a contradiction.

Case 2: Gsub = Gnp. This case is more straightforward. Because we assume that Gnp has no SCCs

with a negative weighted edge in it, (i) follows. Furthermore, if we have v ∈ Hκ and u ∈ Hκ′ such that

κ < κ′ and ℓ((v, u)) ≦ 0, it contradicts the topological ordering of SCCs represented by κ = 1, . . . , d,

because ℓ((v, u)) ≦ 0 means (v, u) ∈ Enp and, in particular, κ > κ′.

For the time being, our goal is to show that, in either of the cases K = R or K = Z, there are real

numbers (π, λ) ∈ Rn×Rn
++ with Condition (i) in Theorem 6 and, in addition, Condition (ii) in Theorem

6 if Gsub = Gr. For this purpose, let Ep and En denote the positive edges and negative edges of (G, ℓ),

respectively:

Ep := {(v, u) ∈ E | ℓ((v, u)) > 0} and

En := {(v, u) ∈ E | ℓ((v, u)) < 0}.

We can compute numbers (π, λ) ∈ Rn×Rn
++, which satisfies Conditions (i) and (ii) in Theorem 6 by the

following four-step algorithm:

— ALGORITHM-1 —————————————————————————————————

Step 1: Compute the SCC decomposition, H1, . . . ,Hd ofGsub. Here, Hκ are assigned a topological

order by their subscripts κ = 1, . . . , d.

Step 2: Let P and N be numbers such that

P :=

{
min{ℓ((v, u)) | ℓ((v, u)) > 0} if Ep ̸= ∅
1 otherwise

(9)

and

N :=

{
min{ℓ((v, u)) | ℓ((v, u)) < 0} if En ̸= ∅
−1 otherwise.

(10)

Step 3: Define numbers (ϕ1, . . . , ϕd) and (µ1, . . . , µd) as follows:

(1): ϕ1 = 1 and µ1 = 1.
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(2): For all κ = 2, . . . , d, define (ϕκ, µκ) recursively as

ϕκ := (min
s<κ

{ϕs + µsP}+ ϕκ−1)2
−1, and (11)

µκ := (ϕκ−1 − ϕκ)N
−1. (12)

Step 4: For any v ∈ V such that v ∈ Hκ, let π(v) and λv be

π(v) := ϕκ and λv := µκ. (13)

——————————————————————————————————————————–

In the following, we show that the numbers (π, λ) = ((π(v))v∈V , (λv)v∈V ) computed in

ALGORITHM-1 actually satisfy the inequality condition (i) in Theorem 6. Moreover, we also

show that if Gsub = Gr then (π, λ) also satisfies Condition (ii) in Theorem 6. First, we show some

properties of (ϕ1, . . . , ϕd) and (µ1, . . . , µd) computed in ALGORITHM-1.

Claim 2. By ALGORITHM-1, the computed numbers ϕ = (ϕ1, . . . , ϕd) and µ = (µ1, . . . , µd) has

the following conditions: for all κ = 2, . . . , d,

ϕκ > ϕκ−1 and (14)

ϕκ < min
s<κ

{ϕs + µsP}. (15)

In particular, µκ > 0 for all κ = 1, . . . , d.

We show this claim by mathematical induction argument on κ. Because P > 0, the base case κ = 2 is

clear. Indeed, from (11) and µ1 = 1, it follows

ϕ2 = ϕ1 +
1

2
P > ϕ1

and

ϕ2 = ϕ1 +
1

2
P < ϕ1 + P = ϕ1 + µ1P.

Moreover, because N < 0 and ϕ1 < ϕ2, it follows

µ2 =
(ϕ1 − ϕ2)

N
> 0.

Next, assume that we have (14) and (15) for κ (where κ ≧ 2), and µκ > 0. Then, by assumption, we

have mins<κ{ϕs + µsP} > ϕκ and, because µκP > 0, we have ϕκ + µκP > ϕκ. Hence, from (11), we

have

ϕκ+1 = ( min
s<κ+1

{ϕs + µsP}+ ϕκ)
1

2
= (min{min

s<κ
{ϕs + µsP}, ϕκ + µκP}+ ϕκ)

1

2
> (ϕκ + ϕκ)

1

2
= ϕκ.

Moreover, because mins<κ{ϕs + µsP} > ϕκ and ϕκ + µκP > ϕκ imply

min
s<κ+1

{ϕs + µsP} − ϕκ > 0,
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we also have

ϕκ+1 = ( min
s<κ+1

{ϕs + µsP}+ ϕκ)
1

2
= ( min

s<κ+1
{ϕs + µsP} − ϕκ)

1

2
+ ϕκ

< ( min
s<κ+1

{ϕs + µsP} − ϕκ) + ϕκ = min
s<κ+1

{ϕs + µsP}.

Finally, because N < 0 and ϕκ < ϕκ+1, it follows

µκ+1 =
(ϕκ − ϕκ+1)

N
> 0.

Hence, Claim 2 is valid.

Next, we show that π = (π(v))v∈V and λ = (λv)v∈V satisfy Condition (i) of Theorem 6.

Claim 3. ALGORITHM-1 computes real numbers (π, λ) ∈ Rn × Rn
++, which satisfies the following

condition:

π(u) ≦ π(v) + λvℓ((v, u)) for all (v, u) ∈ E.

Take any edge (v, u) ∈ E. We have the following three cases.

Case 1: (v, u) ∈ E such that v, u ∈ Hκ for some κ = 1, . . . , d.

By definition (13), we have π(v) = π(u) = ϕκ and λv = µκ > 0. Moreover, by Claim 1, we have

ℓ((v, u)) ≧ 0. Hence, it follows

π(u) = ϕκ ≦ ϕκ + µκℓ((v, u)) = π(v) + λvℓ((v, u)).

Case 2: (v, u) ∈ E such that v ∈ Hκ and u ∈ Hκ′ such that κ > κ′.

From the definition (13), we have π(v) = ϕκ, λv = µκ > 0, and π(u) = ϕκ′ . From Condition (14) of

Claim 2 and κ > κ′, we have
π(u) = ϕκ′ < ϕκ′+1 < · · · < ϕκ−1.

Moreover, by definitions (12) and (10), we have

ϕκ−1 = ϕκ + µκN ≦ ϕκ + µκℓ((v, u)) = π(v) + λvℓ((v, u)).

Hence, π(u) ≦ π(v) + λvℓ((v, u)) holds.

Case 3: (v, u) ∈ E such that v ∈ Hκ and u ∈ Hκ′ such that κ < κ′.

From the definition (13), we have π(v) = ϕκ, λv = µκ > 0, and π(u) = ϕκ′ . From Condition (15) of

Claim 2 and κ < κ′, we have
π(u) = ϕκ′ < ϕκ + µκP.

Moreover, by the Condition (ii) of Claim 1, we have ℓ((v, u)) > 0 and hence, Ep ̸= ∅. Therefore, by the

definition (9), we have

ϕκ + µκP ≦ ϕκ + µκℓ((v, u)) = π(v) + λvℓ((v, u)).

Therefore, we have π(u) ≦ π(v) + λvℓ((v, u)).

Hence, Claim 3 is valid.
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From Claim 3, we have real numbers (π, λ) satisfying Condition (i) in Theorem 6. In addition to this,

we show that if Gsub = Gr then (π, λ) preserves Gr.

Claim 4. If Gsub = Gr, ALGORITHM-1 computes numbers (π, λ) ∈ Rn × Rn
++, which satisfy the

following condition:

π(v) > π(u) if and only if (v, u) ∈ Er and (u, v) /∈ Er, for all v, u ∈ V, and

π(v) = π(u) if and only if (v, u) ∈ Er and (u, v) ∈ Er, for all v, u ∈ V.

First, we show the former part of the condition. From the definition (13) and the condition (14) of

Claim 2, we have
π(v) > π(u) ⇔ v ∈ Hκ and u ∈ Hκ′ where κ > κ′.

From the definition of the SCC decomposition (H1, . . . , Hd) of Gr with the topological order in its

subscripts and from the rationality of Gr, we have

v ∈ Hκ and u ∈ Hκ′ where κ > κ′ ⇔ there is v-u path but no u-v path in Gr.

Finally, from the rationality of Gr, we have

there is v-u path but no u-v path in Gr ⇔ (v, u) ∈ Er and (u, v) /∈ Er.

Therefore, the the former part of the condition is valid. For the the latter part, we have the following

equivalences from almost the same argument:

π(v) = π(u) ⇔ v, u ∈ Hκ

⇔ there is v-u path and u-v path in Gr ⇔ (v, u) ∈ Er and (u, v) ∈ Er.

Therefore, Claim 4 is valid.

Finally, we complete the proof. Note that we have shown that if the weight is a real-valued function,

ℓ : E → R, there is a feasible solution of the SPPWA computed by ALGORITHM-1 (Claim 3).

Moreover, if Gsub = Gr then, this feasible solution preserves the consistent rational graph Gr (Claim 4).

If the weight is an integer-valued function, ℓ : E → Z, then the numbers (π, λ) computed by

ALGORITHM-1 are, in general, rational numbers. Hence, we modify ALGORITHM-1 slightly, so

that we can have integers (π̃, λ̃) with the same properties. In essence, the following algorithm calculates

the numerators and denominators of the rational numbers (π, λ), and uniformly and positively normalizes

these rational numbers to be integers.

— ALGORITHM-2 —————————————————————————————————

Step 1: Decompose Gsub into SCCs (H1, . . . , Hd) as same as the Step 1 of ALGORITHM-1.

Step 2: Define P and N as same as the Step 2 of ALGORITHM-1.

Step 3: Define numbers (α1, . . . , αd) and (β1, . . . , βd) as follows:

(1): α1 := 1 and β1 := 1.

(2): α2 := 2α1 + β1P and β2 := 2α1 − α2.
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(3): For all κ = 3, . . . , d, define (ακ, βκ) recursively as

ακ := min{(2N)κ−2(α1 + β1P ), min
1<s<κ

{(2N)κ−1−s(Nαs + βsP )}}+Nακ−1 and (16)

βκ := 2Nακ−1 − ακ. (17)

Step 4: Define numbers (ϕ̃1, . . . , ϕ̃d) and (µ̃1, . . . , µ̃d) as follows:

(1): ϕ̃1 := (2 |N |)d−1α1 and µ̃1 := (2 |N |)d−1β1.

(2): For all κ = 2, . . . , d, define (ϕ̃κ, µ̃κ) as

ϕ̃κ := (−1)κ−2 2d−κ |N |d−κ+1ακ, and (18)

µ̃κ := (−1)κ−1 2d−κ |N |d−κβκ. (19)

Step 5: For any v ∈ V such that v ∈ Hκ, let π̃(v) and λ̃v be

π̃(v) := ϕ̃κ and λ̃v := µ̃κ. (20)

——————————————————————————————————————————–

Clearly, if the weight is an integer-valued function, ℓ : E → Z, the numbers N , P , α = (α1, . . . , αd),

and β = (β1, . . . , βd) are integers, and hence, ϕ̃ = (ϕ̃1, . . . , ϕ̃d), µ̃ = (µ̃1, . . . , µ̃d), π̃ = (π̃(v))v∈V , and

λ̃ = (λ̃v)v∈V are also integers. Moreover, we shall show in the Claim 5 below, that

(π̃, λ̃) = M(π, λ) (21)

where M := (2 |N |)d−1 > 0 and (π, λ) are numbers computed in ALGORITHM-1.23 Note that if we

show Equation (21) then it is clear from Claims 3 and 4 that (π̃, λ̃) is an integer feasible solution of

the SPPWA (G, ℓ : E → Z), and that if Gsub = Gr then it preserves the consistent rational graph Gr.

Hence, the following claim completes the proof.

Claim 5. Let (ϕ, µ) and (π, λ) be numbers defined in ALGORITHM-1, and (α, β), (ϕ̃, µ̃), and (π̃, λ̃)

be numbers defined in ALGORITHM-2. Then we have

ϕ1 = α1 and µ1 = β1, (22)

ϕκ =
1

2κ−1Nκ−2
ακ and µκ =

1

(2N)κ−1
βκ, for all κ = 2, . . . , d. (23)

In particular, we have (ϕ̃, µ̃) = M(ϕ, µ) where M := (2 |N |)d−1 > 0, and hence (π̃, λ̃) = M(π, λ).

Equation (22) is obvious since ϕ1 = 1 = α1 and µ1 = 1 = β1. We show Equation (23) by induction.

The case κ = 2 follows, from the definitions α2 := 2α1 + β1P , β2 := 2α1 − α2, (11), and (12), as

1

2
α2 =

1

2
(2α1 + β1P ) =

1

2
(2ϕ1 + µ1P ) =

1

2
((ϕ1 + µ1P ) + ϕ1) = ϕ2

and
1

2N
β2 =

1

2N
(2α1 − α2) =

1

N
(α1 −

1

2
α2) =

1

N
(ϕ1 − ϕ2) = µ2.

23 We mean M(π, λ) := ((Mπ(v))v∈V , (Mλv)v∈V ).
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Now, suppose we have (23) for all s such that 2 ≦ s < κ (where κ > 2). Then, we have

1

2κ−1Nκ−2
ακ =

1

2κ−1Nκ−2
(min{(2N)κ−2(α1 + β1P ), min

1<s<κ
{(2N)κ−1−s(Nαs + βsP )}}+Nακ−1)

=
1

2

1

(2N)κ−2
(min{(2N)κ−2(α1 + β1P ), min

1<s<κ
{(2N)κ−1−s(Nαs + βsP )}}+Nακ−1)

=
1

2
(min{α1 + β1P, min

1<s<κ
{(2N)1−s(Nαs + βsP )}}+ 1

2κ−2Nκ−3
ακ−1)

=
1

2
(min{α1 + β1P, min

1<s<κ
{ 1

2s−1Ns−2
αs +

1

(2N)s−1
βsP )}}+ 1

2κ−2Nκ−3
ακ−1)

=
1

2
(min{ϕ1 + µ1P, min

1<s<κ
{ϕs + µsP )}}+ ϕκ−1)

= (min
s<κ

{ϕs + µsP )}+ ϕκ−1)2
−1 = ϕκ,

where the first equation follows from (16), the last equation follows from (11), and the third equation

from the last follows from the equations in (23) for the cases s such that 2 ≦ s < κ.

Moreover, we have

1

(2N)κ−1
βκ =

1

(2N)κ−1
(2Nακ−1 − ακ) =

1

N
(

1

2κ−2Nκ−3
ακ−1 −

1

2κ−1Nκ−2
ακ) =

1

N
(ϕκ−1 − ϕκ) = µκ,

where the first equation follows from the definition (17), the last equation follows from the definition

(12), and the second equation from the last follows from the former part of equations in (23) for the

cases κ − 1 and κ. Therefore, all the equations in (23) hold. Hence, if we define M := (2 |N |)d−1 > 0,

then we have M(ϕ, µ) = (ϕ̃, µ̃) from equations (22) and (23). Indeed, from (22) and the definitions of ϕ̃1

and µ̃1, we have
Mϕ1 = (2 |N |)d−1α1 = ϕ̃1 and Mµ1 = (2 |N |)d−1β1 = µ̃1.

Moreover, from (23) and the definitions (18) and (19), we have, for any κ = 2, . . . , d,

Mϕκ =
(2 |N |)d−1

2κ−1Nκ−2
ακ =

2d−1 |N |d−1

2κ−1(−1)κ−2|N |κ−2
ακ = (−1)κ−2 2d−κ |N |d−κ+1ακ = ϕ̃κ and

Mµκ =
(2 |N |)d−1

(2N)κ−1
βκ =

2d−1|N |d−1

2κ−1(−1)κ−1|N |κ−1
βκ = (−1)κ−1 2d−κ |N |d−κβκ = µ̃κ.

Finally, from the definitions (13) and (20), and from the equation (ϕ̃, µ̃) = M(ϕ, µ), we have (π̃, λ̃) =

M(π, λ). Hence, Claim 5 is valid.

Therefore, the proof of Theorem 6 is completed. (The proof of the implication “(v) ⇒ (ii)” in Theorem

4 is also completed.)

Remark 1: As we see in the proof above, if we set Gsub = Gnp, we can compute a feasible solution

of the SPPWA, (π, λ), for a real-valued feasible instance, (G, ℓ : E → R), by ALGORITHM-1. If we

need an integer solution for an integer-valued feasible instance, (G, ℓ : E → Z), we can compute one

by ALGORITHM-2. Moreover, if we set Gsub = Gr we can compute a solution, which preserves the

consistent rational graph Gr.

Remark 2: The complexity of ALGORITHM-1 is O(n2), where n is the number of vertices of G =

(V,E), given that we can find a maximum (or a minimum) value of given κ numbers in O(κ) time.
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Indeed, Step 1 requires O(n +msub) time, where msub is the number of edges of Gsub (Theorem 2.19,

Korte and Vygen 2012).24 Step 2 requires O(m) time where m is the number of edges of G. Step

3 requires O(κ) time for each κ = 1, . . . , d where d ≦ n. Finally, Step 4 requires O(n) time. Hence,

because msub,m ≦ n(n − 1), all steps can be bounded by O(n2) time for any instances. (By a similar

analysis, we can see that ALGORITHM-2 is also O(n2) complexity.) To the best of our knowledge,

this is one of the most efficient algorithm for computing a feasible solution of the SPPWA, because other

algorithms for computing a solution of Afriat’s inequalities are O(n3) time complexity, where n is the

number of observations. (Piaw and Vohra 2003; Fostel et al. 2004; Fujishige and Yang 2012).
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