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Abstract

The axiomatic characterization of price or market equilibrium is one of the most important problems
in the general equilibrium theory. There does not seem to exist, however, so many papers on the
axiomatic characterization problem of monetary equilibrium. The overlapping-generations model with
a double infinity of commodities and agents is one of the most fundamental frameworks for introducing
money into an economic model, although a simple game-theoretic or welfare characterization on the
role of money under competitive mechanism is widely known to be difficult. In this paper, we show
that the informational efficiency axiomatic characterization as in Hurwicz (1960), Mount and Reiter
(1974) and Sonnenschein (1974) is possible for the price-money competitive mechanism for overlapping-
generations economies among the class of all allocation mechanisms with messages. In particular,
the category theoretic universal mapping characterization in Sonnenschein (1974) is generalized and
applied to the overlapping-generations framework through our monetary version of Debreu-Scarf’s
core limit theorem of Urai and Murakami (2015). Our argument is also closely related to the replica
characterization approaches of Walrasian social choice mechanism like Thomson (1988) and Nagahisa
(1994), and provides a comprehensive perspective on them.
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1 Introduction

The axiomatic characterization of price or market equilibrium is one of the most important problems in

the general equilibrium theory. There does not seem to exist, however, so many papers on the axiomatic

characterization problem of monetary equilibrium (an equilibrium with fiat money or the non-negative

wealth transfer).

In order to describe money in the static economic model, it is widely known that an ordinary finite

economic setting is insufficient and the double infinity of agent-commodity structure, e.g., the overlapping-

generations framework, is necessary. The overlapping-generations model was firstly proposed by Samuelson

in 1958 (Samuelson 1958), and has generated much discussion and many papers. An outstanding character-

istic of this model is that competitive equilibria may not necessarily be Pareto-optimal and that the outside

money has the potential to improve on the welfare of the economy. Although Samuelson’s argument was

not entirely accurate, it is known that the characterization of money in an overlapping-generations econ-

omy is not so straightforward from the welfare and game theoretic viewpoint (see Hayashi 1976, Okuno

and Zilcha 1980 and Esteban 1986) except for the elementary welfare relation between the monetary

equilibrium and the weakly Pareto-optimal allocation (Balasko and Shell 1980 and Esteban 1986).

In this paper, to obtain an alternative explanation for the importance of money, we provide the axiomatic

characterization of the price-money competitive mechanism in overlapping-generations economies among

the class of allocation mechanisms with messages together with several axioms and category theoretic

treatments in Sonnenschein (1974). In his seminal paper (1974 Propositions 1, 2 and 7), Sonnenschein

characterizes the price mechanism as the unique resource allocation mechanism that can be referenced

(i) uniquely under many-to-one configurations by (ii) many allocation mechanisms satisfying the several

important axioms, where (i) means a certain kind of efficiency and (ii) means a universality for the

price message mechanism. His result uses Debreu-Scarf’s replica core equivalence theorem and a similar

characterization under the social choice framework is given as a replica stability condition in characterizing

Walrasian mechanism like Thomson (1988) and Nagahisa (1994). Also, his result can be related to the

informational efficiency problem like Hurwicz (1960), Mount and Reiter (1974), Osana (1978) and Jordan

(1982).1

In the double infinity economies including overlapping-generations ones, the non-negative wealth transfer

or outside money plays an essential role for equilibrium states, so it is important to characterize the

competitive market mechanism as the allocation mechanism with a message space not only of prices

but also of wealth transfers, the price-money message mechanism. We use in this paper the method of

Sonnenschein (1974) since his categorical treatment is appropriate for our infinite dimensional and partially

economy-dependent (monetary) message space settings. It should also be noted that in the approach of

Sonnenschein, the Cobb-Douglas dependent argument is not necessary. Recently the authors have shown a

core limit theorem for monetary overlapping-generations economies (Urai and Murakami 2015). Our limit

theorem together with Sonnenschein’s axioms and category theoretic framework is sufficient to characterize

the efficiency and universality properties of the price-money message mechanism.

2 Economies

Let N be the set of all positive integers and R be the set of real numbers. A pure exchange overlapping-

generations economy, or more simply, an economy, E, is comprised of the following list:

1 See Sonnenschein (1974, Propositions 3–6).
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(E.1) {It}∞t=1: a countable family of mutually disjoint finite subsets of N such that
∪∞

t=1 It ⊂ N ,

I1 ̸= ∅ and for each t ∈N , if It = ∅, then It+1 = ∅. It is the index set of agents in generation t.

(E.2) {Kt}∞t=1: a countable family of non-empty finite intervals, Kt = {k(t), k(t)+1, · · · , k(t)+ℓ(t)}
such that k(t) ∈ N , ℓ(t) ∈ N ,

∪∞
t=1 Kt = N , k(t) < k(t + 1)≦ k(t) + ℓ(t) for all t ∈ N . Kt is the

index set of commodities available to generation t.

(E.3) {(≿i, ωi)}i∈∪
t∈N It : countably many agents, where ≿i is a continuous, strictly monotonic,

strictly convex and rational weak preference relation on the commodity space for each generation,

RKt
+ , for each i ∈ It. The initial endowment of i, ωi, is an element of RKt

++ = {x | x : Kt → R++}
for each i ∈ It.

It is convenient to identify the commodity space for each generation RKt
+ with a subset of RN, which is

the set of all functions from N to R, by considering x ∈ RKt
+ a function that takes value 0 on N \Kt.

Then we can define the total commodity space for economy ⊕∞
t=1R

Kt
+ as the set of all finite sums among

the points in the commodity spaces of the generations. Clearly, ⊕∞
t=1R

Kt
+ can be identified with a subset

of direct sum R∞, the set of all finite real sequences, which is a subspace of the set of all real sequences,

R∞ ≈ RN with pointwise convergence topology.

Given an economy, E = ({It}∞t=1, {Kt}∞t=1, {(≿i, ωi)}i∈∪
t∈N It), the price space for E, P(E), is defined

as the set of all p in RN
+ such that under the duality between R∞ (with relative topology) and R∞ (with

pointwise convergence topology), p positively evaluates all the agents’ initial endowments:

P(E) = {p ∈ RN
+ | p · ωi > 0 for all i ∈ It, for all t ∈N}.(1)

Since for all i ∈ It, ω
i belongs to RKt

++ for all t ∈ N , the price space of E always includes RN
++ for all E

in Econ, where Econ denotes the set of all economies satisfying conditions (E.1), (E.2) and (E.3).

For each E = ({It}, {Kt}, {(≿i, ωi)}) ∈ Econ, sequence (xi ∈ RKt
+ )i∈

∪
t∈N It is called an allocation for

E. Allocation (xi ∈ RKt
+ )i∈

∪
t∈N It is said to be feasible if∑

t∈N

∑
i∈It

xi =
∑
t∈N

∑
i∈It

ωi,(2)

where the summability in RN of both sides of the inequality is assured by (E.2). The list of price

vector p∗ ∈ P(E), non-negative wealth transfer function M∗
E :

∪∞
t=1 It → R+, and feasible allocation

(xi
∗ ∈ RKt

+ )i∈
∪

t∈N It , is called a monetary Walras allocation for E, if for each t ∈ N and i ∈ It, x
i
∗ is a

≿i-greatest element in set {xi ∈ RKt
+ | p∗ · xi ≦ p∗ · ωi +M∗

E (i)}. Since the non-negative wealth transfer is

an abstraction of the money supply in perfect-foresight overlapping-generations economies, we denote the

set of all monetary Walras allocations by MWalras(E).

A coalition in economy E = ({It}, {Kt}, {(≿i, ωi)}) ∈ Econ is a set of consumers S ⊂
∪∞

t=1 It.

Allocation x for economy E is said to be blocked by coalition S if it is possible to find commodity bundles

yi for all i ∈ S such that
∑

i∈S(y
i − ωi) = 0 and yi ≿i x

i for all i ∈ S, and yi ≻i x
i for at least one i ∈ S.

For each E = ({It}, {Kt}, {(≿i, ωi)}) ∈ Econ, the set of all feasible allocations that cannot be blocked

by any coalition is said to be the core of economy E and is denoted by Core(E). Element x ∈ Core(E) is
called a core allocation. The set of all feasible allocations that cannot be blocked by any finite coalition is

called the finite core of economy E and is denoted by Fcore(E). Element x ∈ Fcore(E) is called a finite

core allocation for E.
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3 Replica Core Equivalence Theorem

The replica core equivalence theorem for overlapping-generations economy was proved in Aliprantis and

Burkinshaw (1990). Their result, however, does not include the case with monetary (non-negative wealth

transfer) equilibrium. Our previous paper (Urai and Murakami 2015) treats this problem through the

following replica finite core concept.

Given economy E = ({It}, {Kt}, {(≿i, ω
i)}) ∈ Econ and its feasible allocation x = (xi ∈ RKt

+ )i∈
∪

t∈N It

we denote by E(x) the economy whose initial endowment allocation, ω = (ωi), is replaced by x = (xi).2

Hence, we have E = E(ω). Let us consider the replica economy

Em(x)⊕ En(ω),(3)

consisting of all members of the m-fold replica economy of E(x) and all members of the n-fold replica

economy of E(ω) for each m and n in N . Note that when the number of agents of E is finite, Core(Em+n)

is equal to Fcore(Em+n) and for each feasible allocation x of E, if its (m+n)-fold replica allocation belongs

to Core(Em+n), then the replica allocation also belongs to Fcore(Em(x)⊕ En(ω)).3 Moreover, as we see

below, every (m + n)-fold replica allocation of x belongs to Fcore(Em(x) ⊕ En(ω)) if and only if x is a

monetary Walras allocation. Therefore the standard replica core limit theorem (Debreu and Scarf 1963)

can be restated as follows (because there is no difference between our monetary Walras allocation and the

Walras allocation for finite economies).

A feasible allocation x for E is a Walras allocation if and only if its (m+n)-fold replica allocation

belongs to Fcore(Em(x)⊕ En(ω)) for all m ∈N and n ∈N sufficiently large.

In general, the number of agents in E is not finite, and Fcore(Em(x) ⊕ En(ω)) gives us a complete

characterization of monetary Walras allocations. That is, an element of MWalras(E) has a certain kind

of stability-under-replication property with respect to the form Em(x) and En(ω) for the finite core solution

concept. The next theorem is proved in Urai and Murakami (2015) showing the above replica finite core

stability condition for the element of MWalras(E). Thus a replica stability condition like Thomson (1988)

and Nagahisa (1994) is satisfied automatically in our price-money message mechanism.

Theorem 1 (Replica Core Equivalence Theorem) : A feasible allocation x for E is a monetary Walras

allocation if and only if its (m + n)-fold replica allocation belongs to Fcore(Em(x) ⊕ En(ω)) for every

m ∈N and n ∈N .

Let Cm⊕n(E) be the set of allocations x for E such that the (m+n)-fold replica allocation of x belongs to

Fcore(Em(x)⊕En(ω)). Then Cm⊕n(E) ⊃ Cm′⊕n′
(E) ⊃ · · · where m′ ≧m and n′ ≧n, and MWalras(E) =∩∞

n=1

∩∞
m=1 C

m⊕n(E). Thus we have obtained an extension of Debreu-Scarf replica core limit theorem to

monetary Walras allocations in economies including overlapping-generations settings.

2 In the following, the subscript, i ∈
∪

t∈N It, for an allocation is sometimes omitted as long as there is no risk of confusion.
3 Assume that an (m+ n)-fold replica allocation xm+n for Em(x)⊕En(ω) does not belong to Fcore(Em(x)⊕En(ω)). If

the number of agents of E is finite, then allocation x is feasible for the finite set of all agents of E. It is possible, therefore, to
extend every finite coalition blocking xm+n in Fcore(Em(x) ⊕ En(ω)) to a finite coalition including all members of m-fold
replica economy of E, i.e., to a finite coalition blocking xm+n in Em+n(ω).
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4 An Axiomatic Characterization of the Price-Money Message

Mechanism

The replica finite core limit theorem in the above section, Theorem 1, enables us to provide an axiomatic

characterization of the price-money message mechanism through the universal mapping problem as in

Sonnenschein (1974). Our Theorem 2 on the price-money dictionary is corresponding to Sonnenschein’s

Proposition 1 and Theorem 3 on the isomorphism property is to his Proposition 7.

A social choice correspondence g : Econ → (R∞)N is said to be compatible with a finite-core and

weakly Pareto-optimal allocation if and only if g(E) ⊂ Fcore(E) and g(E) ⊂ {x|x ∈ Fcore(E(x))} for all
E ∈ Econ. An abstract message mechanism (an allocation mechanism with messages under the framework

of Sonnenschein 1974) based on social choice correspondence g is a triple (A,µ, f), where A is a set that

is called a message domain, µ is a correspondence that indicates for each economy E the set µ(E) ⊂ A of

equilibrium messages for E, and f is a function that defines for each agent, i, and each message, a, the

response, f i(E, a), of the agent in E to the message, satisfying that g(E) = {(f i(E, a))∞i=1 | a ∈ µ(E)}.
The monetaryWalrasian social choice correspondence associates with each economy the monetaryWalras

allocations of the economy. In this section, we treat allocations that are compatible with finite-core and

weakly Pareto-optimal only. For the standard message mechanism, let A be the product of RN
+ and

{M |M : Econ→ RN
+ }, µ(E) be the set of equilibrium prices with the non-negative wealth transfers of E,

and f be the excess demand function of each consumer relative to price-money messages (more precisely,

see below). We use the following idempotency axiom.

Axiom I (Idempotency): For each economy E ∈ Econ and message a ∈ A, f(E(f(E, a)), a) = f(E, a).

In the above, we use the notation E(x) in section 3. Moreover, let us consider the following axiom of

Sonnenschein (1974).

Axiom S (Sonnenschein): For each finite list of agents and economies, (i1,E
1), (i2,E

2), . . . , (im,Em),

each message a ∈ A and each list of responses (f is(Es, a))ms=1, there exists an economy E∗ including

{i1, i2, . . . , im} such that a is an equilibrium message for E∗ for which the equilibrium list (f i(E∗, a))
∞
i=1

is an extension of (f is(Es, a))ms=1.

It follows that we do not treat messages that cannot constitute an equilibrium state for any sufficiently

large extension of a certain list of agents and economies. The above axiom together with the replica

equivalence theorem (Theorem 1) is closely related to the replication stability axiom of Thomson (1988).

We assume in the following that the commodity structure {Kt}∞t=1 is fixed. The set of all economies

with the commodity structure {Kt}∞t=1 is denoted by Econ∗. Denote by I(t) the set of all agents in

generations from 1 to t, i.e., I(t) =
∪t

s=1 Is, and by K(t) the set of all commodities that are available

for agents in I(t), i.e., K(t) =
∪t

s=1 Ks. For each t, denote by ∆K(t) the unit simplex in RK(t) and by

∆
K(t)
++ its relative interior, R

K(t)
++ ∩ ∆K(t). Let us consider the projective system (∆

K(t′)
++ , ϱt′t)t′,t∈N and

projective limit ∆++ = lim←−(∆
K(t′)
++ , ϱt′t), where ϱt′t : ∆

K(t)
++ → ∆

K(t′)
++ is defined as ϱt′t(p) =

prK(t′) p

∥ prK(t′) p∥
.4

We note that ∆++ can be recognized as a subset of R∞
++ by identifying the equivalence class [(xt)

∞
t=1]

of (xt)
∞
t=1 ∈

∏∞
t=1 ∆

K(t)
++ with the element p ∈ R∞

++ such that prK(1) p = x1 and
prK(t) p

∥ prK(t) p∥
= xt for

4 The projective limit is non-empty since t ∈ N is countable and every ϱt′t is surjective (see Bourbaki 1939, p.198,
Proposition 5).
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all t = 2, 3, · · ·.5 We can take the price and non-negative wealth transfer domain as P ×M = {p ∈
R∞| ∃[(xt)

∞
t=1] ∈ ∆++, prK(1) p = x1,

prK(t) p

∥ prK(t) p∥
= xt, for each t = 1, 2, · · ·} × {M |M : Econ∗ ∋ E 7→

ME ∈ RN
+ }. The excess demand function ei for the i-th consumer (≿i, ωi) in E ∈ Econ∗ is defined as

ei : P×RN
+ ∋ (p,ME) 7→ ei(p,ME) ∈ R∞, where ei(p,ME) is identified with the points of the consumption

set RKt
+ , such that ei(p,ME) is the ≿i-greatest point in {xi ∈ RKt | p · xi ≦ p · ωi +ME(i)} for each i ∈ It

and each t ∈N .

Define e : Econ∗× (P×M)→ (R∞)N by e(E, p,M) = (ei(p,ME))i∈
∪

t∈N It .
6 If π(E) denotes the set of

all monetary Walrasian equilibrium messages (the set of market equilibrium price and non-negative wealth

transfer messages) for each E ∈ Econ∗, then (P×M, π, e) is a message mechanism based on social choice

correspondence MWalras(E). This is called the price-money message mechanism.

Theorem 2 (Price-Money Dictionary Theorem) : If (A,µ, f) is a message mechanism based on social

choice correspondence g that is compatible with the finite-core and weakly Pareto-optimal allocations,

and if (A,µ, f) satisfies Axioms I and S, then (i) there exists a unique function ϕ : A→ P×M such that

the following triangle commutes, and (ii) on ϕ(A) ⊂ P×M, the price-money message mechanism satisfies

axioms I and S.

(R∞)N �

6
1Econ∗ × ϕ

Econ∗ × (P×M)

Econ∗ ×A

e

f

@
@

@I

Proof : (i) Assume that (A,µ, f) is a message mechanism based on social choice correspondence g sat-

isfying Axioms I and S, and let a be an element of A. Define for each t ∈ N , h(t)(x,≿i) for each

consumption x ∈ RKs for agent i ∈ Is ⊂ I(t) of an economy E ∈ Econ∗ as h(t)(x,≿i) = {p ∈ ∆K(t)| y ≻i

x implies p·y≧ p·x}, where every RKs is canonically identified with a subspace of K(t). We first show that∩
h(t)(f i(E, a),≿i) is non-empty for each t ∈N , where the intersection is over all consumers and economies

in Econ∗, and f i(E, a) is a response of i ∈ I(t) in E to message a in (A,µ, f). Because ∆K(t) is compact,

and because each of the sets in the collection of which we are forming the intersection is closed, it is suf-

ficient to show that
∩m

s=1 h
(t)(f is(Es, a),≿is

) is non-empty for any [(i1,E1), (i2,E2), . . . , (im,Em)]. Given

the list [(i1,E1), (i2,E2), . . . , (im,Em)] of agents in I(t) and economies, by Axiom S there exists E∗ ∈ Econ∗

containing {i1, i2, . . . , im} and a ∈ µ(E∗), such that the equilibrium list, (f i(E∗, a))
∞
i=1, is an extension of

(f is(Es, a))ms=1. Because (f i(E∗, a))
∞
i=1 is weakly Pareto-optimal, by Balasko and Shell (1980) and Este-

ban (1986), it is supported by a price as a price-wealth equilibrium, and thus
∩m

s=1 h
(t)(f is(Es, a),≿is

) is

non-empty. Moreover, because for some economy and its agents,
∩∞

i=1 h
(t)(f i(E, a),≿i) is singleton and is

an element of ∆
K(t)
++ , it follows that

∩
h(t)(f i(E, a),≿i) is composed of a single point p(t).

By definition of h(t), for all t′ ≦ t, p(t′) = ϱt′t(p(t)), and we obtain a unique element p ∈ P by identifying

it with the unique element of the projective limit lim←−
∩m

s=1 h
(t)(f is(Es, a),≿is

) ⊂ ∆++. Let us denote that

5 For example, if K(1) = {1, 2}, K(2) = {1, 2, 3}, K(3) = {1, 2, 3, 4}, · · ·, then the element ((1/2, 1/2), (1/3, 1/3, 1/3),
(1/4, 1/4, 1/4, 1/4), · · ·) of ∆++ can be identified with (1/2, 1/2, 1/2, 1/2, 1/2, · · ·) of R∞

++.
6 For the argument in the following, we use the property that for each price-money message (p,M) there is an economy in

Econ∗ such that (p,M) is the unique price-money equilibrium message supporting the equilibrium allocation. For this, the
condition that Econ∗ includes the class of economies consisting of agents with Cobb-Douglas utility functions, is sufficient
but not necessary.
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point, p, by ϕ1(a), and define ϕ2(a) = M , M : Econ∗ ∋ E 7→ME ∈ RN
+ , where ME(i) = ϕ1(a) · (f i(E, a)−

ωi), which we prove as follows that it is non-negative under Axioms S, I and Theorem 1. Let ϕ(a) be

(ϕ1(a), ϕ2(a)) ∈ P×{M |M : Econ∗ ∋ E 7→ME ∈ RN
+ } = P×M. To establish the theorem, it is sufficient

to show that for each economy E∗ ∈ Econ∗ and each a ∈ A, allocation y∗ = (yi∗)
∞
i=1 = (f i(E∗, a))

∞
i=1 is

such that, for each i, yi∗ = f i(E∗, a) can be extended (through Axiom S) to a monetary Walras allocation

under the message a for a large economy including i. To see this, by using Axiom S, let E∗∗ be an

economy including i such that a is an equilibrium message for E∗∗ and response yi∗∗ = f i(E∗∗, a) is equal

to yi∗ = f i(E∗, a). We show that the list of responses, y∗∗ = f(E∗∗, a), is a monetary Walras allocation.

Assume that it is not. Then, by Theorem 1, there are m and n such that (m+ n)-fold replica allocation

of y∗∗ = (yj∗∗)
∞
j=1 is not an element of Fcore(Em

∗∗(y∗∗) ⊕ En
∗∗(ω)). Then there are (k1 + k2) members

of Em
∗∗(y∗∗) ⊕ En

∗∗(ω) blocking y∗∗, where k1 members belong to Em
∗∗(y∗∗) and k2 members belong to

En
∗∗(ω). Under Axiom I, by applying Axiom S again, we obtain an economy E∗∗∗ including the (k1 + k2)

members of Em
∗∗(y∗∗) ⊕ En

∗∗(ω) such that a is a solution message for E∗∗∗ satisfying that the equilibrium

list, (f i(E∗∗∗, a))
∞
i=1, a finite core allocation, is an extension of those of the k1 members of Em

∗∗(y∗∗) (that

are by Axiom I, f i(E∗∗∗, a) = f i(E∗∗(y∗∗), a) = f i(E∗∗, a), equal to their original responses) and the k2

members of En
∗∗(ω) under a ∈ A. However, this is impossible, because the (k1 + k2) members can improve

upon it.

(ii) For the latter assertion, one can observe in the above argument, y∗∗ = f(E∗∗, a) = e(E∗∗, ϕ(a)) is a

monetary Walras allocation, which proves that axiom S is satisfied on ϕ(A). Moreover, it is straightforward

that the commutativity of the diagram with axiom I for (A,µ, f) means that axiom I is satisfied on ϕ(A)

since e(E(e(E, ϕ(a))), ϕ(a)) = e(E(f(E, a)), ϕ(a)) = f(E(f(E, a)), a) = f(E, a) = e(E, ϕ(a)). ■

The above theorem shows that the price-money message mechanism represents all the message mech-

anisms based on social choice correspondences compatible with finite-core and weakly Pareto-optimal

allocations under axioms I and S. The theorem, therefore, can be interpreted as a price-money message

mechanism representation theorem. We call ϕ the price-money dictionary.

A non-negative price-wealth transfer message, (p,M), has a huge scope. In particular, the domain of

M is Econ∗, and it must specify all non-negative wealth transfers for all economies. Such a message may

become too complicated to be called “simple” in the sense of Sonnenschein (1974) and one can easily

verify that the price-money message mechanism may not satisfy axioms I and S.7 However, if we restrict

the domain of non-negative price-wealth transfer messages to the class satisfying Axioms I and S, PM∗ =

{(p,M) ∈ P ×M| (p,M) is an image of ϕ for some (A, µ, f) in Theorem 2 satisfying axioms I and S.},
we have the following isomorphism theorem. For this assertion, we use the next axiom on the dependency

of monetary messages on economic structures.

Axiom D (Dependency on the Economic Structure) : If E = ({It}∞t=1, {Kt}∞t=1, {(≿i, ωi)i∈
∪

t∈N It}) and
E′ = ({I ′t}∞t=1, {K ′

t}∞t=1, {(≿′
i, ω′

i)i∈
∪

t∈N It}) are such that {It}∞t=1 = {I ′t}∞t=1, {Kt}∞t=1 = {K ′
t}∞t=1 and

ωi = ω′
i for all i ∈

∪
t∈N It, then ME = ME′ for all M ∈M.

7 Axiom I will be satisfied if we restrict our attention to monetary mesages that intend to realize a certain desirable level
of income for each person independently from their initial endowments for each economy E, but in general, it will not be
satisfied. To obtain a counter example for axiom S, assume that {Kt}∞t=1 is the two period one commodity overlapping-
generation structure. Consider M such that amount p ·ωi+ME(i) > 0 for each E, i ∈ I(1), is greater than the amounts of the
total value of their initial endowments under (1, 1, 1, · · ·) ∈ R∞

+ that is greater than all equilibrium prices for commodities in
K(1). (Note that a price (p∗1, p

∗
2, p

∗
3, · · ·) is assumed to satisfy p∗1 + p∗2 = 1. See definition of P.) Thus, we cannot expect the

above message to be an equilibrium of any E∈ Econ. In Sonnenschein (1974), the mnemonic S is used because the condition
states that “any finite number of individuals can be swamped” and it “restricts the messages of a message mechanism to be
simple.”
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Theorem 3 (Isomorphism Theorem) : Consider the restriction of price-monetary message mechanism

(PM∗, π, e). Let (P ′, π′, e′) be a message mechanism based on social choice correspondence g on Econ∗

compatible with the finite core and weakly Pareto-optimal allocations. If (P ′, π′, e′) satisfies axioms I and

S, and if, for every message mechanism (A,µ, f) satisfying axioms I and S, there exists a unique mapping

ϕ′ : A→ P ′ such that f(E, a) = e′ ◦ [1Econ∗ ×ϕ′](E, a), then (i) there exists an isomorphism (bijection) h′

such that h′ : PM∗ → P ′ and e = e′ ◦ [1Econ∗ ×h′]. (ii) Moreover, assume that monetary messages satisfy

Axiom D. If we can restrict the problem on spaces with topological (resp. on each component space of

an inverse system with differentiable) structures and continuous mappings (resp. differentiable coordinate

mappings ), then the isomorphism can be taken as the homeomorphism (resp. diffeomorphism for each

component space).8

Proof : Because (PM∗, π, e) is now assumed to be a message mechanism based on social choice corre-

spondence g satisfying axioms I and S, we have the next diagram by assumption.

(R∞)N �

6
1Econ∗ × ϕ′

Econ∗ × P ′

Econ∗ ×PM∗

e′

e

@
@

@I

Moreover, because (P ′, π′, e′) is also a message mechanism based on social choice correspondence g, the

previous theorem shows that we have the next diagram.

(R∞)N �

6
1Econ∗ × ϕ

Econ∗ ×PM∗

Econ∗ × P ′

e

e′

@
@

@I

Since the identity mapping is the unique mapping for P ′ to P ′ satisfying e′ = e′ ◦ id and PM∗ to PM∗

satisfying e = e ◦ id, we have ϕ′ ◦ ϕ = id and ϕ ◦ ϕ′ = id, which means that ϕ and ϕ′ are bijectives. Let us

define h′ as h′ = ϕ′, then we have the first assertion.

For the second assertion, for each (p,M) ∈ PM∗, each economy E ∈ Econ∗ and each generation t,

consider two agents is and js, s ∈ {1, . . . , t} such that e = (· · · , ei1 , · · · , ej1 , · · · , ei2 , · · · , ej2 , · · ·) on P×M

is one to one, continuous and/or differentiable.9 ■

8 In this paper, the price-money message space can be identified with an inverse limit of the finite dimensional domains
of each coordinate function ei for e and the differentiable structure can be discussed under such finite dimensional domains.

For example, we can take the domain of ei for i ∈ I(t) as ∆
K(t)
++ × R

I(t)
+ and identify it with a subset of PM∗ under the

canonical identification R∞ ⊂ R∞. Then, we can also obtain under h′, the image of ∆
K(t)
++ ×R

I(t)
+ in P ′, the domain of all

e′i, i ∈ I(t), and the diffeomorphism between them.
9 If generation s ∈ {1, . . . , t} of E consists of a single member, alternatively consider an economy Ê including all members

of generations 1, · · · , t of economy E such that every generation s of Ê consists of at least two members and (p,M) is an
equilibrium message of it by Axiom S. To obtain a concrete example for such a one-to-one, continuous and/or differentiable
mapping, take a pair of Cobb-Douglas and Leontief utility agents for each generation. Note that the Leontief type utility is
not differentiable, but the demand function induced from it can be differentiable.

7



By Theorem 3, we see that an allocation mechanism with messages that can play the role of the dictionary

property described in Theorem 2 is essentially unique. The result can also be restated through the

universal mapping theorem (Bourbaki 1939, p.284) that assures the existence of such an object unique up

to isomorphism as a solution to the universal mapping problem.

5 Conclusion

1. We have seen that for every private representation (A,µ, f) of a social choice correspondence g

compatible with the finite core and weakly Pareto-optimal allocations satisfying Axioms I and S, there

exists a dictionary function, ϕ : A → P ×M uniquely (Theorem 2). In other words, the result of such

a private representation (an allocation mechanism with message) can be universally realized through the

price-money message mechanism (P×M, π, e) uniquely (the universality and the efficiency property).

2. If we restrict the domain of an abstract message mechanism to those satisfying axioms I and S, the

price-money message mechanism has the unique (up to isomorphism) minimum size of the information

space satisfying the dictionary property (Theorem 3).

3. Based on the differentiable structure, to develop the alternative informational efficiency argument to

our framework is also desirable. By considering the differentiable structure on the message and commodity

spaces, we will be able to obtain the same results as Propositions 3–6 in Sonnenschein (1974) that will

provide an informational efficiency theorem like Hurwicz (1960), Mount and Reiter (1974) and Osana

(1978), as well as a uniqueness theorem of the competitive message mechanism like Jordan (1982). These

will be, however, the subjects of further investigations.

4. It should also be noted that our monetary equilibrium concept (a competitive equilibrium with non-

negative wealth transfer) is related to the concept of “dividend equilibrium” or “equilibrium with slack”

(see, e.g., Aumann and Drèze 1986) and the role of our replica finite core concept can also be identified

with that of “rejective core” in Konovalov (2005) on the limit core characterization for such equilibria.

Therefore, if we generalize the preference satiation structure for the double infinity economy (see our Urai

and Murakami 2015, footnote 15), our results are possible to be identified with an another replica core

characterization for such dividend equilibria.

5. Thomson (1988) and Nagahisa (1994) use the replication stability axiom like Axiom S of Sonnenschein

(1974) to characterize Walrasian correspondences in a direct way for the standard social choice setting.

It will be interesting to apply their arguments for our double infinity monetary economic situation, since

various social choice axioms and frameworks would be desirable for describing the institution like money.

6. The method of Sonnenschein is appropriate for our setting of (i) the infinite dimensional commodity

and generation structure and (ii) the partially economy-dependent property of messages. Moreover, his

strongly structured response function setting has an advantage over the message-process argument in

Hurwicz (1960), Mount and Reiter (1974), Osana (1978) and Jordan (1982) since it does not necessarily

depend on (iii) the Cobb-Douglas utility assumption of the agents.
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