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Abstract

We develop a Schumpeterian growth model based on technology diffu-
sion. Each firm has a different productivity level. New entrants enter into
the targeted industries by learning the existing technologies owned by the
other firms. Some of the new entrants succeed to adopt the frontier tech-
nology. The other new entrants may adopt the non-frontier technologies.
We show that if it is extremely difficult to adopt the frontier technology,
the technology diffusion generates the Pareto distributions of firm size,
productivity, and innovation size. Further, we introduce the minimum
innovation size required for a patent into the model. That is, the patent
office grants the patents only for superior inventions. We show that an
increase in minimum innovation size may reduce the average patentable
innovation size because of an endogenous response of the distribution of
innovation size. This implies that if the patent office requires the superior
innovations for the patents, it may cause innovators to produce a larger
amount of inferior patentable innovations.
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1 Introduction

A Pareto (Pareto-tailed) distribution often emerges in the real economy, for
example, firm size (sales and employees), firm’s productivity level (total factor
productivity (TFP)), innovation size (citations of patents and scientific papers,
and financial returns from licensing fees of patents), income, wealth, consump-
tion, consumption growth, population of cities, etc.1 A Pareto distribution has
the following counter-cumulative distribution function:

Pr{X ≥ x} =
(xmin

x

)ζ

for x ≥ xmin,

where scale parameter xmin > 0, shape parameter ζ > 0, and X is a random
variable.2 Why do some variables follow the Pareto distribution? If there ex-
ists a unique mechanism to generate a Pareto distribution, it would explain the
evolution of any variable that follow a Pareto distribution. However, the pre-
vious studies found the several mechanisms to generate a Pareto distribution.
Therefore, we must develop several models to match the evolution of each vari-
able. This paper mainly focuses on the firm size, firm’s productivity level, and
innovation size.

To generate the long-run Pareto distributions, we develop the dynamic gen-
eral equilibrium model, which combines the elements of Aghion and Howitt
(1998, Ch.3), Lucas and Moll (2014), and Perla and Tonetti (2014). Each firm
tries to improve its productivity levels (technological level, product manage-
ment, product quality, etc.) by gaining the existing knowledge, which is owned
by the other firms. Some of the firms may succeed at adopting the frontier
knowledge (productivity) level into their productions. On the other hand, the
other firms may adopt the non-frontier level of knowledge into their productions.
The existing knowledge diffuses across many firms over time. These knowledge
diffusions (knowledge infections) improve the overall productivity level in the
economy over time. We show that if it is extremely difficult to adopt the frontier
technology, these diffusion processes generate the Pareto-tailed distributions of
firm size, productivity level, and innovation size. The results are consistent with
the empirical facts (see, e.g., Fujiwara et al. 2004, Luttmer 2007, Reed 2001 for
the firm size, König et al. 2016 for the firm’s TFP, and Silverberg and Verspagen
2007 for the innovation size). More precisely, each firm can adopt the frontier
technology with a probability, as in Aghion and Howitt (1998, Ch.3). If the firms
fail to adopt the frontier technology, they try to adopt the non-frontier tech-
nology, which is drawn from the endogenous productivity distribution across all
industries, as in Lucas and Moll (2014) and Perla and Tonetti (2014). We show
that if the probability for adopting a frontier technology is sufficiently small, the

1See, for example, Gabaix (2009), König et al. (2016), Luttmer (2007), Newman (2005),
Reed (2001), Silverberg and Verspagen (2007), and Toda and Walsh (2015).

2The distribution has a Pareto tail (fat tail), implying that there are c > 0 and ζ > 0 such
that lim

x→∞
Pr{X ≥ x}/x−ζ = c, where X is a random variable. When the literature refers to

the Pareto distribution, it usually means that the distribution has a Pareto tail, meaning that
it takes a power-law form for large x.
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distributions of firm size, productivity, and innovation size become the Pareto
distributions in the balanced-growth equilibrium. Furthermore, we yield the
endogenous shape parameter of the long-run Pareto distributions. These results
crucially differ from the results of Lucas and Moll (2014) and Perla and Tonetti
(2014). See section 2 for the differences between this paper and the previous
studies of Aghion and Howitt (1998, Ch.3), Lucas and Moll (2014), and Perla
and Tonetti (2014).

To demonstrate the importance of the endogenous shape parameter, we ap-
ply the model to a patent policy. In many countries, patent laws have designated
letters for the minimum innovation sizes required for patentability, that is, the
patent office grants a patent only for a sufficiently superior invention compared
to prior inventions. For example, the “inventive step” requirement in Europe
corresponds to the minimum innovation size, while it is synonymous with the
“nonobviousness” requirement of the United States. The Federal Trade Com-
mission (FTC) (2003) and the National Academy of Sciences (NAS) (2004) had
recommended strengthening the minimum innovation size in order to raise the
overall quality of patents by reducing the number of improperly issued patents.
Thereafter, in the decision of the United States Supreme Court for KSR Inter-
national Co. v. Teleflex Inc. (2007), the minimum innovation size substantially
increased in the United States.3

Inspired by these developments, we analyze the relationship between the
minimum innovation size required for a patent and the average patentable in-
novation size. We show that a Pareto distribution describes the long-run dis-
tribution of patentable innovation size. If the shape parameter of a Pareto
distribution is exogenous, an increase in minimum innovation size (scale param-
eter) always raises the average patentable innovation size. However, an increase
in minimum innovation size reduces the average patentable innovation size only
if it simultaneously raises the endogenous shape parameter. This is because a
higher shape parameter has a negative effect on the average value of a Pareto
distribution. More precisely, a higher shape parameter reduces the probability
of large innovation sizes, thus reducing the average patentable innovation size.
Since we show that there exists a negative relationship between minimum in-
novation size and average patentable innovation size under some assumptions,
the average patent quality in the United States may decrease after the United
States Supreme Court decision in 2007, which increased minimum innovation
size.

The remainder of the paper is organized as follows. In Section 2, we survey
the related literature. In Section 3, we outline the dynamic general equilibrium
model, which incorporates the elements of Aghion and Howitt (1998, Ch.3), Lu-
cas and Moll (2014), and Perla and Tonetti (2014). Further, we introduce the
minimum innovation size into the model. In Section 4, we derive the produc-
tivity distributions. In Section 5, we consider the functional form of economic
growth rate. In Section 6, we show the existence of a unique balanced-growth

3The purpose of this paper for the patent policy is the same as that of Kishi (2014). See
Kishi (2014) for more detailed discussion of minimum innovation size.
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Figure 1: The exponential negative growth and the Poisson jump to the deter-
ministic value generate a power-law distribution.

equilibrium. Section 7 analyzes the effects of minimum innovation size on the
average patentable innovation size and growth. Section 8 concludes.

2 Related literature

There are some mechanisms generating a Pareto distribution. Steindl (1965) is a
simple model to generate a Pareto distribution. The first application of Steindl
(1965) to an endogenous growth model is in Aghion and Howitt (1998, Ch.3). In
Aghion and Howitt’s model (1998, Ch.3), the firm’s relative productivity (the
productivity divided by the frontier technology) decreases at a constant rate
because of the growth of the frontier technology (see Fig.1). This implies the
obsolescence of the existing knowledge. However, the firm’s productivity can
jump to the frontier level if the firm succeeds in an innovation with a constant
Poisson arrival rate. This mechanism generates a power-law distribution of
the firm’s productivity with a bounded support. Furthermore, the innovation
size (the frontier technology divided by the productivity level) obeys a Pareto
distribution with no upper bound of the support (see also Kishi 2014).

Lucas and Moll (2014) and Parla and Tonetti (2014) generalize Aghion and
Howitt’s model (1998, Ch.3) in the sense that the innovation size is a random
variable, which is drawn from the endogenous productivity distribution across
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all industries. For example, in Lucas and Moll’s (2014) model, the firms can
draw the existing knowledge (productivity) from the productivity distribution
with a Poisson arrival rate. They decide to adopt the existing knowledge if the
drawn productivity is superior to the firm’s current productivity. In Parla and
Tonetti’s (2014) model, a firm conducts the research and development (R&D)
if the firm’s productivity reaches a lower threshold level because of the ob-
solescence of the productivity. This is because the low-productivity firm has
an advantage to improve the productivity by adopting the other firm’s supe-
rior productivity. Then, a sufficiently low-productivity firm adopts the existing
knowledge, which is drawn from the productivity distribution. In sum, in con-
trast to Aghion and Howitt (1998, Ch.3), the models of Lucas and Moll (2014)
and Perla and Tonetti (2014) admit to jump to the non-frontier technological
level because of innovation. Lucas and Moll (2014) and Perla and Tonetti (2014)
show that if the initial productivity distribution has a Pareto tail (fat tail), the
economy experiences the sustained growth in the balanced-growth equilibrium.
Further, Perla and Tonetti (2014) show that if the initial distribution is a Pareto
distribution, the long-run distribution is also a Pareto distribution, whose shape
parameter corresponds to that of initial distribution (see also Perla et al. 2015).
Lucas and Moll (2014) also show a similar result under a constant Poisson ar-
rival rate. The assumption of initial Pareto distribution implies that many firms
have very large productivities at the initial period, that is, we require an un-
bounded support and a fat tail of the initial productivity distribution. Further,
note that the initial distribution is historically determined, that is, it describes
the initial state of the economy. Since the Pareto distribution emerges in many
countries, it is unreasonable to apply the results of Lucas and Moll (2014) and
Perla and Tonetti (2014). For example, see Fujiwara et al. (2004) and Luttmer
(2007) for the Pareto-tailed distributions of firm size in the United States and
European countries. Therefore, we develop the sustained-growth model gener-
ating a Pareto distribution in the balanced-growth equilibrium, irrespective of
initial distribution.

Our stochastic process of the industry’s (firm’s) productivity also relates to
that of Luttmer (2007, 2012). In Luttmer’s (2007, 2012) models, the incumbent
firm’s productivity follows a geometric Brownian motion. This implies that
the expected growth rate of the productivity is constant over time. If the firm’s
productivity reaches a lower threshold level, the firm exits from the market since
the sufficiently low-productivity firm anticipates the long-time negative profits
stream in the future due to the payment of fixed cost for the production. New
entrants (R&D firms) enter into the economy, equipped with a deterministic
level of productivity. Luttmer (2007, 2012) shows that this stochastic process
generates a Pareto tail in the stationary productivity distribution. By contrast,
in our model, the growth rate of the industry’s (relative) productivity level is
simply deterministic and constant over time when the productivity improvement
does not occur.4 The incumbents exit from the market if the productivity level

4See Perla et al. (2015), who introduced the geometric Brownian motion into Perla and
Tonetti’s (2014) model.
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reaches a lower threshold level, because of the entry of new firms equipped
with superior productivity. That is, Schumpeter’s creative destruction works
as the force to exit the low-productivity firms. Furthermore, the new entrant’s
productivity is a random variable, which takes either a frontier level or the
random value drawn from the endogenous productivity distribution.

There are many recent studies about Pareto distribution. Acemoglu and Cao
(2015) and König et al. (2016) introduce the technology adoption (technology
diffusion) into the standard quality ladder models of Acemoglu (2009, Ch.14),
and Grossman and Helpman (1991, Ch.4). In Acemoglu and Cao’s (2015) model,
the imitation firms can enter into the targeted industry, equipped with a deter-
ministic productivity level. König et al. (2016) combine the models of Aghion
and Howitt (1998, Ch.3) and Grossman and Helpman (1991, Ch.4). Then, they
show a Pareto tail of the stationary productivity (firm size) distribution. Fur-
ther, as is well known, the geometric Brownian motion with a Poisson jump to
a deterministic value generates a Pareto tail in the stationary distribution (see
Gabaix 2009). This can be interpreted as a generalization of Steindl (1965), in
which the growth rate of the variable is constant over time when the variable
does not jump. This generalized version of Steindl (1965) is usually applied
to the economic models (see, e.g., Benhabib et al. 2016, Jones and Kim 2015,
Toda and Walsh 2015). The Kesten (1973) process is known as the discrete-
time stochastic process generating a Pareto tail. Nirei and Aoki (2016) apply
the Kesten process to generate the Pareto distributions of income and wealth.
Further, see Gabaix et al. (2016), who summarize the previous findings of the
continuous-time stochastic processes generating a Pareto tail. Then, Gabaix et
al. (2016) analytically show the transitional dynamics of the distributions and
the speeds of convergence.

As part of the literature on patent policy, this paper relates to Kishi (2014),
Koléda (2008), and O’Donoghue and Zweimüller (2004), who introduce the min-
imum innovation size required for a patent into the R&D-based growth models.
Kishi (2014) introduces the minimum innovation size into the model of Aghion
and Howitt (1998, Ch.3). Therefore, the stationary distribution of innovation
size is an endogenous Pareto distribution. Then, Kishi (2014) shows an increase
in minimum innovation size and reduces the average innovation size. This is
because a higher minimum innovation size causes smaller accumulation of the
low-productivity firms. Then, it reduces the average innovation size, since the
low-productivity firms tend to attain the large innovation size by adopting the
frontier technology. By contrast, this paper provides the opposite results. An
increase in minimum innovation size causes larger accumulation of the low-
productivity firms. Then, the firms tend to adopt lower productivity levels by
learning the existing lower levels of technologies. This leads to lower average in-
novation size. Further, in Kishi’s (2014) model, the distributions of productivity
and firm size do not have a Pareto tail, which is inconsistent with empirical facts.
In contrast, this paper shows that the distributions of productivity, firm size,
and innovation size have a Pareto tail. Koléda (2008) considers the exogenous
Pareto distribution of innovation size. Therefore, higher minimum innovation
size always raises the mean value of average patentable innovation size. In the
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model of O’Donoghue and Zweimüller (2004), each firm optimally chooses the
endogenous innovation size, which corresponds to the minimum innovation size.
That is, the distribution of innovation size is degenerate, which is inconsistent
with empirical facts (see, e.g., Silverberg and Verspagen 2007). Then, higher
minimum innovation size always raises the mean value.

3 Theoretical framework

To examine the stationary distributions of firm size, productivity, and innovation
size, we develop a Schumpeterian growth model based on the technology diffu-
sion in which time is continuous. Further, we examine the effect of the minimum
innovation size on the quality of innovations. We focus on the balanced-growth
equilibrium, in which all endogenous variables grow at constant rates.

3.1 Households

There is a representative household with CRRA (constant relative risk aversion)
preferences given by

U =

∫ ∞

0

e−ρtC(t)1−θ − 1

1− θ
dt (1)

where ρ > 0 and θ ≥ 1 are the subjective discount rate and the inverse of
the intertemporal elasticity of substitution, respectively.5 C(t) denotes the con-
sumption per capita at date t. There is no population growth. The represen-
tative household’s optimization problem implies the well-known Euler equation
for consumption:

Ċ(t)

C(t)
=

1

θ
(r − ρ) (2)

and the transversality condition (TVC)

lim
t→∞

e−ρtC(t)−θV (t) = 0 (3)

where r is the interest rate, which is constant over time in the balanced-growth
equilibrium, and V (t) is the asset value per capita at date t.

3.2 Final goods

The final good, which we take as the numéraire, is produced under perfect
competition, according to the production function

Y (t) = L1−α

∫ 1

0

A(i, t)1−αx(i, t)αdi, (4)

5We restrict our attention to the case θ ≥ 1, which is usually satisfied in the real economy.
See, for example, Havranek et al. (2015), which reports θ = 10/6 in the United States by
using 1429 estimates of published studies.
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where α ∈ (0, 1), Y (t) is gross output at date t, L is the population size, x(i, t)
is the amount of intermediate product i ∈ [0, 1] at date t, and A(i, t) is a
productivity level for the latest version of intermediate product i at date t.
The final good can be used interchangeably for consumption as an intermediate
input or as a R&D input. The inverse demand function for x(i, t) derived from
Eq. (4) is p(i, t) = ∂Y (t)/∂x(i, t) = αL1−αA(i, t)1−αx(i, t)α−1

3.3 Intermediate goods

One unit of intermediate product is produced using one unit of the final good.
The latest innovator in industry i chooses price pj(i, t) to maximize profit
Πj(i, t) ≡ pj(i, t)xj(i, t) − xj(i, t) where j = M,C. There are two states j =
M,C in each industry. The state j = M (j = C) represents the industry where
the latest innovator’s technology is (not) protected by the patent. Suppose
that the latest patented innovator can set the monopoly price pM (i, t) = 1/α
under the strong patent protection6 and thus can earn the monopoly profit

ΠM (i, t) = π̃MA(i, t), where π̃M ≡ [(1 − α)/α]Lx̃M and x̃M ≡ α
2

1−α . The
amount of production in the monopoly industry is xM (i, t) = x̃MLA(i, t). Sup-
pose that unpatented technology can be imitated immediately at no cost, and
thus, the industry becomes perfectly competitive. Then, the price is pC(i, t) = 1,
and thus, the profit for unpatented technology is ΠC(i, t) = 0. The amount of
the production for the competitive industry is xC(i, t) = x̃CLA(i, t), where

x̃C ≡ α
1

1−α . Note that x̃C > x̃M holds. Further, note that the firm size (sales),
that is, pj(i, t)xj(i, t), is proportional to the productivity A(i, t). Therefore, if
the distribution of A(i, t) has a Pareto tail, then the firm size distribution also
has a Pareto tail.

To simplify the analysis, we define the log of relative productivity a(i, t) ≡
ln[A(i, t)/B(t)], where B(t) ≡ min{A(i, t)|i ∈ [0, 1]} is the minimum productiv-
ity level in the economy. From these definitions, the monopoly profit can be
rewritten as ΠM (i, t) = π̃MA(i, t) = π̃Mea(i,t)B(t). Then, define the minimum
productivity B(t)-adjusted profit πM (i, t) ≡ ΠM (i, t)/B(t) = π̃Mea(i,t). Since
each B(t)-adjusted monopoly profit depends only on the log of relative produc-
tivity a(i, t), omitting the industry index i and time t, we simply restate the
B(t)-adjusted monopoly profit as

πM (a) = π̃Mea (5)

for the monopoly industry, whose log of relative productivity level is a ≡ lnA/B.
Later, we may simply state the variable a as either relative productivity or
productivity.

3.4 Frontier technology

Following Aghion and Howitt (1998, Ch.3), suppose that there exists the public
knowledge Ā(t), whose initial value corresponds to the frontier technology at

6For example, consider the sufficiently strong patent breadth, which ensures the monopoly
price (see Li 2001).
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initial period, that is, Ā(0) = max{A(i, 0)|i ∈ [0, 1]}. Define g as the growth

rate of the public knowledge, that is, g ≡ ˙̄A(t)/Ā(t), which can be endogenized
later. We can show that the public knowledge coincides with frontier technology
for all time, that is, Ā(t) = max{A(i, t)|i ∈ [0, 1]} for all t ≥ 0, since we later
show that there exist some industries whose technological level is Ā(t) for all t,
and each productivity level A(i, t) cannot exceed Ā(t) for all t.

Define f(a) as the stationary probability density function for the relative
productivity a. Note that the support of the distribution is a ∈ [0, ā], since
the minimum support is ln[B(t)/B(t)] = 0 and the maximum support is ā ≡
ln[Ā(t)/B(t)]. If the stationary distribution f(a) exists, the support of the
distribution must be constant over time. Therefore, the growth rate of B(t)
must be equal to that of Ā(t) in the balanced-growth equilibrium, that is, g =
Ḃ(t)/B(t).

3.5 R&D and technology diffusion

Innovations result from R&D activity. Each R&D firm can freely target any in-
dustry i ∈ [0, 1] as a candidate industry for the entry. We consider the following
R&D activities, which combine the elements of Aghion and Howitt (1998, Ch.3),
Lucas and Moll (2014), and Perla and Tonetti (2014). Using the fixed amount
RB(t) of final goods, where the parameter R > 0 represents the B(t)-adjusted
fixed cost, the R&D firms (potential new entrants) can attain the frontier tech-
nology Ā(t) with exogenous probability p ∈ (0, 1). This setup follows Aghion
and Howitt (1998, Ch.3). On the other hand, with probability 1− p, the R&D
firms can draw the productivity from the endogenous productivity distribution
f(a). If the new productivity a caused by R&D is higher than the productivity
a′ in the targeted industry, that is, a > a′, the R&D firm enters into the targeted
industry as a new incumbent firm equipped with new superior productivity a.
This setup follows Lucas and Moll (2014) and Perla and Tonetti (2014).

In summary, each R&D firm tries to improve the productivities (technologi-
cal level, product management, product quality, etc.) of the existing production
processes by learning the existing knowledge owned by the existing firms. These
knowledge adoptions (diffusions) create new firms equipped with frontier knowl-
edge level with probability p. On the other hand, the knowledge adoptions are
incomplete with probability 1−p, in the sense that they create new firms whose
individual productivities are less than the frontier level.

3.6 Patent value

Define the value of the firm as Vj(a)B(t), where Vj(a) is the B(t)-adjusted value
of the firm for the relative productivity a and the state j = M,C. Since the
state j = C is perfectly competitive, the value of the firm must be zero:

VC(a) = 0 for all a ≥ 0. (6)

We later show that when the productivity a reaches the minimum level a = 0,
the incumbent firm exits from the industry due to the entry of the R&D firm.
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That is, the creative destruction occurs only at the industries whose productivity
is the minimum in the economy. Then, the B(t)-adjusted patent value VM (a)
must follow the following Hamilton-Jacobi-Bellman (HJB) equation

(r − g)VM (a) = πM (a)− gV ′
M (a) for all a > 0 (7)

and the boundary condition
VM (0) = 0. (8)

According to the HJB equation (7), the boundary condition (8), and the monopoly
profit (5), we obtain the B(t)-adjusted patent value

VM (a) =

(
π̃M

r

)
ea[1− e−rT (a)] (9)

where T (a) ≡ a/g. Note that T (a) represents the time to reach the minimum
productivity for the monopolist whose current productivity is a. More precisely,
a = (a−0) of the numerator of T (a) is the distance from the current productivity
a to the minimum productivity a = 0. On the other hand, g in the denominator
of T (a) represents the speed to run the given distance (a−0). Therefore, higher
a and lower g cause longer time T (a) until the incumbent firm exits from the
industry, which has a positive effect on the patent value VM (a). This implies
that T (a) represents the effective patent length, which is the waiting time until
creative destruction occurs for the monopolist whose current productivity is a.

3.7 Minimum innovation size and optimal industry choice

The patent office grants the patent if and only if the innovation size (the ratio
between the new entrant’s absolute productivity A and the incumbent’s abso-
lute productivity A′) exceeds χ ≥ 1, where the policy parameter χ represents
the minimum innovation size. That is, the patent office grants a patent only
for a superior innovation. As shown below, the R&D firms target only the in-
dustries whose productivity level is minimum in the economy. Then, A/B = ea

represents the innovation size. In summary, the patent office grants the patent
if and only if ea > χ ⇐⇒ a > lnχ.

So far, we have developed the model under the following guess. The R&D
firms target only the industries whose productivity is minimum in the economy.
Now, we verify this guess, that is, we show that any infinitesimal R&D firms
do not have an incentive to target the other industries. First, it is obvious that
R&D firms do not target the industry a′ where a′ ≥ ā − lnχ holds. This is
because R&D firms cannot obtain the patent with probability one, and thus,
they yield the negative R&D profit −RB(t) < 0. Next, consider the case of
a′ < ā− lnχ. R&D firms conduct the R&D investment in the industries where
the expected patent value is largest in the economy. Targeting industry a′, the
expected B(t)-adjusted patent value (R&D benefit) is given by

VR(a
′) ≡ (1− p)

∫ ā

a′+lnχ

VM (a)dF (a) + pVM (ā) for all a′ < ā− lnχ (10)
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where F (a) represents the cumulative distribution function for a. Note that
the infinitesimal R&D firms take the value function VM (a), the productivity
distribution F (a), and the maximum productivity ā as given. Differentiating
Eq. (10) with respect to a′ yields

∂VR(a
′)

∂a′
= −(1− p)f(a′ + lnχ)VM (a′ + lnχ) < 0 for all a′ < ā− lnχ,

since both f(a′ + lnχ) > 0, which can be shown later, and VM (a′ + lnχ) > 0
hold for all a′ < ā− lnχ. Therefore, R&D firms optimally target the industries
whose productivity is minimum a′ = 0 in the economy. In this case, R&D firms
maximize the probability for the patentable innovation for a given distribution
f(a). This is because the probability µ(a′) for the patentable innovation in the

industry a′ < ā− lnχ is µ(a′) ≡
∫ ā

a′+lnχ
f(a)da, and thus, µ(a′) is maximized by

targeting a′ = 0. Further, note that any R&D firm obtains the higher produc-
tivity a than the incumbent’s productivity a′ with probability one, regardless of
whether the innovations are patentable. This is because R&D firms target the
minimum productivity industries.

Since the R&D firms enter only into the industries where the productivity
is minimum, the free-entry (zero-profit) condition must hold at the industries:

R = VR (11)

where

VR ≡ VR(0) = (1− p)

∫ ā

lnχ

VM (a)dF (a) + pVM (ā). (12)

Then, R > VR(a
′) holds for all a′ > 0.

The above result relates to Luttmer (2007, 2012) and Perla and Tonetti
(2014). In Luttmer’s (2007, 2012) models, the firms optimally exit from the
industries if the productivity levels reach a lower threshold level, which be-
comes the minimum productivity level in the balanced-growth equilibrium. This
is because the sufficiently low-productivity firm forecasts the long-term nega-
tive profits because of the payment of the production fixed cost. In Perla and
Tonetti’s (2014) model, the incumbent firms conduct the R&D investments if the
productivity levels reach a lower threshold level, which becomes the minimum
productivity level in the balanced-growth equilibrium. This is because, as in our
model, the low-productivity firms have the advantage of improving the produc-
tivities, since the low-productivity firms tend to draw superior productivities
from the endogenous productivity distribution.7 In our model, Schumpeter’s
creative destruction (the entry of new firms equipped with superior productivi-
ties) occurs at the industries whose productivities are minimum in the economy,
since the new entrants tend to draw the superior productivities if they target
the minimum productivity industries.

7In our model, the incumbents equipped with productivity a > 0 do not conduct R&D
by paying the fixed cost RB(t), since they have additional (opportunity) cost of losing their
current firm values. That is, Arrow (1962) replacement effect works in our model.
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The existence of the positive minimum support B(t) for the distribution is
known as one of the important forces to generate a Pareto-tailed distribution.8

However, note that there exist mechanisms generating a Pareto tail without the
positive minimum support (see, e.g., Gabaix 2009 and Newman 2005).

4 The productivity distributions

In this section, we derive the productivity distributions for entire industries,
monopoly industries, and competitive industries.

4.1 The productivity distribution for entire industries

We derive the stationary distribution f(a) for the log of relative productivity a.
Note that f(a) also represents the log of innovation size distribution conditional
on drawing probability 1 − p. This is because innovations occur only at the
minimum productivity industries, and thus, a ≡ lnA/B is the log of innovation
size from the perspective of R&D firms. Fig.2 represents the sample path of
the productivity a. The productivity level a decreases at rate g because of the
growth of B(t), which implies the obsolescence of existing productivity. If the
productivity a reaches the minimum productivity a = 0, the industry’s produc-
tivity jumps to a higher value because of innovation. The productivity jumps
to the frontier level ā with probability p ∈ (0, 1). Moreover, with probability
1 − p, the productivity jumps to the non-frontier level, which is drawn from
the distribution f(a). We now derive the stationary distribution f(a), which is
generated by these dynamics of the productivity a.

Divide time into short intervals of duration ∆t > 0, and the a space into
short segments, each of length ∆h ≡ g∆t. Note that the productivity a falls
by ȧ∆t = −g∆t ≡ −∆h during time interval ∆t. Define ϕ∆t as the number
(share) of the industries that reaches the minimum productivity a = 0 during
interval ∆t.

Now, consider the segment centered at a ∈ (0, ā), which starts out with
f(a)∆h industries. In the next unit time period ∆t, all these industries move
to the left because of the obsolescence (reduction) of relative productivity level
a. New entrants, as well as industries from the right, arrive to take their places.
In the stationary distribution, the inflow and the outflow of the industries must
be equal:

f(a)∆h = f(a+∆h)∆h+ (1− p)ϕ∆tf(a)∆h for all a ∈ (0, ā) (13)

where the left-hand side of the equation represents the outflow of the industries
from the segment a due to the obsolescence of the relative productivity, the
first term on the right-hand side is the inflow of the industries to the segment a
due to the obsolescence of the relative productivity, and the second term on the

8If a random variable follows a geometric Brownian motion with reflection barrier, which
creates a positive minimum level of the variable, the stationary Pareto distribution emerges
(see Gabaix 2009).
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Figure 2: The evolution of the productivity a.

right-hand side is the inflow of the industries due to innovations. Expanding
f(a+∆h) around a by Taylor’s theorem yields

f(a+∆h) = f(a) + f ′(a)∆h (14)

Cancelling the common factor ∆h of Eq.(13), substituting Eq.(14) into the
equation, and simplifying this yields the stationary form of the Kolmogorov
forward equation (KFE):

0 = gf ′(a) + (1− p)ϕf(a) for all a ∈ (0, ā) (15)

Next, consider the segment at ā. The outflow of the industries is f(ā)∆h
because of the obsolescence of the relative productivity. The inflow of the
industries is pϕ∆t + (1 − p)ϕ∆tf(ā)∆h because of innovations. In the sta-
tionary distribution, the inflow and the outflow must be equal: f(ā)∆h =
pϕ∆t + (1 − p)ϕ∆tf(ā)∆h ⇐⇒ gf(ā) = pϕ + (1 − p)ϕgf(ā)∆t. Then, as
∆t → 0, we yield

f(ā) =
pϕ

g
. (16)

Solving the differential equation (15) by imposing the conditions 1 =
∫ ā

0
f(a)da

and f(ā) = lim
a↑ā

f(a) for the continuity yields the following lemma.
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Figure 3: The productivity distribution f(a).

Lemma 1. The following equations describe the stationary distributions of both
the log of relative productivity and the log of innovation size conditional on
drawing the probability 1-p:

f(a) =

(
η

1− p

)
e−ηa for a ∈ (0, ā] (17)

where

η ≡ (1− p)ϕ

g
> 0 and (18)

ā =

(
1

η

)
ln

(
1

p

)
> 0. (19)

Fig.3 represents the density function f(a). Note that ā > lnχ must hold in
the equilibrium to ensure the possibility of patentable innovations. Drawing the
productivity a > lnχ, the R&D firm can obtain a patent, and then, the firm
enters into the industries as the new monopolist. On the other hand, drawing
the productivity a ≤ lnχ, the R&D firm fails to obtain a patent, and then, the
targeted industry becomes perfectly competitive.

Lemma 1 implies that the distribution of the relative productivity â ≡
A/B = ea is a power law. Now, define the probability density function fâ(â)
for â. Conducting the transformation of variables, we yield the power-law dis-
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tribution with bounded support:

fâ(â) =

(
η

1− p

)
â−(η+1) for â ∈ (1, eā]. (20)

Later, we show that the distribution (20) is inconsistent with empirical facts.
Then, to reconcile the empirical facts and the distribution (20), we later show
that it requires p → 0.

4.2 The economic intuitions behind the productivity dis-
tribution

We consider the economic intuitions behind the lemma 1. According to Eq.(17),
the slope of the density f(a) is always negative. By Eq.(13), we can explain the
reason for this as follows. First, Eq.(13) has an alternative interpretation. The
right-hand side of Eq.(13) represents the composition of the number f(a)∆h
of industries equipped with the relative productivity around a. The first term
on the right-hand side of Eq.(13) represents the number of industries around
a, which comes from the right-hand neighboring segment a + ∆h due to the
obsolescence (reduction) of relative productivity. The second term of Eq.(13)
represents the number of industries around a, which comes from the innovations.
The sum of these industries corresponds to the total number f(a)∆h of the
industries equipped with the relative productivity around a. At the maximum
productivity ā, there is no inflow of the industries from above due to obsolescence
(reduction) of relative productivity. On the other hand, there is the inflow due
to innovation, which attains ā. In the neighboring segment ā − ∆h, there is
an inflow of industries from ā due to the obsolescence, and the inflow of new
entrants because of innovation. Then, the total number of industries in the
segment ā − ∆h is the sum of the number of new entrants in the segment
ā−∆h and the number of industries in the segment ā. Therefore, the number
of industries in the segment ā−∆h is larger than that in ā. Similarly, consider
the next neighboring segment ā − 2∆h. There is an inflow of industries from
ā −∆h due to the obsolescence, which is equal to the number of industries in
the segment ā−∆h. Furthermore, there is an inflow of new entrants because of
innovation in the segment ā−2∆h. Therefore, the total number of industries in
the segment ā− 2∆h is the sum of the number of new entrants in the segment
ā − 2∆h and the number of industries in the segment ā −∆h. Therefore, the
number of industries in the segment ā− 2∆h is larger than that in the segment
ā−∆h. Maintaining these considerations until the minimum productivity a = 0,
we can explain the reason why the density f(a) has a negative slope for all a.

Next, consider the economic intuitions behind η. According to lemma 1,
higher η leads to larger amount of industries around the minimum productivity
a = 0 (see Fig.4). According to Eq.(18), higher (1− p)ϕ raises η for a given g.
On the other hand, higher g reduces η for a given (1 − p)ϕ. We consider the
reasons behind these results. First, note that (1−p)ϕ∆t represents the aggregate
number of R&D firms that draw the probability 1−p during the interval ∆t. As
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Figure 4: The productivity distributions for η and η′(> η).

explained in the above paragraph, the industries are accumulated in the lower a
region because of the repeated summation of the number of new entrants and the
number of industries in the right-hand neighboring segment. Therefore, R&D
firms tend to draw the lower productivity from f(a). Then, higher (1 − p)ϕ
causes larger inflow of new entrants into the lower productivity region. This
leads to a larger amount of the industries around a = 0. Second, higher g
implies a faster obsolescence of relative productivity a for a given (1− p)ϕ, thus
causing a smaller accumulation of the industries in each segment a. This leads
to the flatter slope of the density f(a).

We consider the economic intuitions behind Eq.(16). Higher pϕ or lower g
leads to higher f(ā). This is because higher pϕ implies that a larger amount
of R&D firms adopt the frontier technology ā, which causes a larger amount of
the industries equipped with ā. Lower g implies a slower obsolescence of the
relative productivity. Then, it causes larger amount of the industries equipped
with ā.

According to Eq.(19), higher η reduces the maximum support ā of the dis-
tribution f(a). Higher η causes a larger amount of the industries around mini-
mum productivity a = 0 (see Fig.4). Then, it requires lower value of ā to ensure

1 =
∫ ā

0
f(a)da.
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4.3 The productivity distributions for monopoly indus-
tries and competitive industries

Derive the productivity distribution for both the monopoly and competitive
industries. Define the density function fM (a) for the monopoly industries,

which satisfies n =
∫ ā

0
fM (a)da, where n ∈ [0, 1] represents the total number

of monopoly industries. That is, fM (a) is not the probability density function.
Similarly, define the density function fC(a) for the competitive industries, which

satisfies 1− n =
∫ ā

0
fC(a)da. Therefore, it requires that the sum of the number

of monopoly industries equipped with productivity a and that of competitive
industries equipped with a must be equal to the total number of industries
equipped with a:

f(a) = fM (a) + fC(a) for all a. (21)

Note that there exist only monopoly industries in the region a ∈ (lnχ, ā]. This
is because any new competitive industry enters into the unpatentable region a ∈
(0, lnχ], and each competitive industry cannot enter into the region a ∈ (lnχ, ā]
because of the deterministic obsolescence (reduction) of relative productivity a.
Then, we obtain

fM (a) = f(a) for all a ∈ (lnχ, ā]. (22)

Next, consider the derivation of the stationary form of KFE for a ∈ (0, lnχ].
The outflow of the monopoly industries from a ∈ (0, lnχ] is fM (a)∆h during
the interval ∆t. The inflow of monopoly industries into a ∈ (0, lnχ] is fM (a +
∆h)∆h. The inflow and outflow must be equal in the stationary distribution:

fM (a)∆h = fM (a+∆h)∆h for all a ∈ (0, lnχ]. (23)

Conducting the Taylor expansion for fM (a+∆h) around a yields fM (a+∆h) =
fM (a) + f ′

M (a)∆h. Substituting this equation into Eq. (23) and simplifying it
yields 0 = f ′

M (a)g∆t. Then, we obtain the following stationary form of KFE:

0 = f ′
M (a) for all a ∈ (0, lnχ]. (24)

Eq.(24) implies the uniform distribution in the region a ∈ (0, lnχ]. Therefore,
according to Eqs.(17) and (22) and the condition lim

a↑lnχ
fM (a) = lim

a↓lnχ
fM (a) for

the continuity, we can obtain the distribution fM (a) for all a. Then, we have
fC(a) from Eq.(21). The results are summarized by the following lemma.

Lemma 2. The following equations describe the stationary productivity distri-
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Figure 5: The productivity distributions for monopoly industries and competi-
tive industries.

butions for monopoly industries and competitive industries:

fM (a) =


(

η
1−p

)
e−η lnχ for a ∈ (0, lnχ]

(
η

1−p

)
e−ηa for a ∈ (lnχ, ā]

(25)

fC(a) =


(

η
1−p

) (
e−ηa − e−η lnχ

)
for a ∈ (0, lnχ]

0 otherwise.

(26)

Fig.5 illustrates the distributions f(a), fM (a), and fC(a). The solid gray
curve represents f(a). The dotted curve represents fM (a). Then, the dark gray

area is equal to the number of monopoly industries, that is, n =
∫ ā

0
fM (a)da.

The distance between f(a) and fM (a) represents fC(a), since Eq.(21) holds.
Therefore, the bright gray area is equal to the number of competitive industries,

that is, 1− n =
∫ lnχ

0
fC(a)da.

The reason behind the result such that fM (a) is the uniform distribution in
the region a ∈ (0, lnχ] is as follows. There is no inflow of the new monopolists
in the region a ∈ (0, lnχ], because R&D firms cannot satisfy the requirement of
minimum innovation size for a patent if they draw the productivity a ∈ (0, lnχ].
Then, the number of monopolists for each a ∈ (0, lnχ] must be equal to that of
lim

a↓lnχ
fM (a). This implies uniform distribution.
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5 Economic growth rate

In this section, we endogenize the growth rate g of public knowledge (frontier
technology) Ā(t), which coincides with the growth rate of final output Y (t) in
the balanced-growth equilibrium, as shown in Appendix C. Note that ϕ repre-
sents the aggregate innovation rate, since the number ϕ∆t of the industries are
targeted by R&D during the interval ∆t. Then, we suppose that the growth rate
g is proportional to the aggregate innovation rate ϕ. In particular, we suppose
that

g = σM [ p+ (1− p)µ ]ϕ+ σC(1− p)(1− µ)ϕ (27)

where σM > 0 and σC > 0 are the parameters, and

µ ≡
∫ ā

lnχ

f(a)da =

(
1

1− p

)(
e−η lnχ − p

)
> 0. (28)

µ represents the probability for the patentable innovation when R&D firms draw
the probability 1 − p. Therefore, the right-hand side of Eq.(27) represents the
weighted sum of the aggregate patentable innovation [ p + (1− p)µ ]ϕ and the
aggregate unpatentable innovation (1− p)(1− µ)ϕ.

In actual economies (such as the United States, Europe, and Japan), patent
applicants must disclose information about their inventions, with this informa-
tion made public 18 months after the application is filed and in sufficient detail
to enable a person with ordinary skill in the art to replicate the invention. Hence,
as implied by Eq.(27), the more frequently the aggregate patentable innovations
[ p + (1− p)µ ]ϕ are created (and filed for patent), the greater is the growth g
of public knowledge Ā(t). Furthermore, we suppose that the unpatentable in-
novations have a positive effect on the growth g. In this model, the information
about unpatentable innovations is disclosed immediately in sufficient detail to
ensure that any imitators can replicate the unpatentable inventions at no cost.
Even though we consider the real economy, some of unpatented technologies
would be revealed by the imitation activities. Hence, as implied by Eq.(27),
the more frequently the aggregate unpatentable innovations (1− p)(1−µ)ϕ are
created, the greater is the growth g of public knowledge. The parameters σM

and σC represent the strength of the spillover effects of aggregate patentable
innovations and aggregate unpatentable innovations on g, respectively.

6 Balanced-growth equilibrium

In this section, we determine the equilibrium values of η and g and show the
existence of the balanced-growth equilibrium. Substituting Eqs. (27) and (28)
into Eq.(18), we yield

η =
1− p

(σM − σC)e−η lnχ + σC
. (29)

Eq.(29) determines the equilibrium value of η, since Eq.(29) contains only the
endogenous variable η.
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Lemma 3. Suppose that the following inequality holds:

(
σMp+ σC(1− p)

1− p

)
ln

(
1

p

)
> lnχ (30)

σM

σC
≤ 2. (31)

Then, there exists a unique equilibrium value of η.

Proof. See Appendix A.

Note that Eq.(30) ensures ā > lnχ in the balanced-growth equilibrium. In
particular, as p → 0, the left-hand side of Eq.(30) diverges to ∞. Then, we do
not have to suppose a sufficiently small χ when p → 0. The remainder of the
paper assumes that Eqs.(30) and (31) hold.

Lemma 4. An increase in lnχ strictly raises the equilibrium η if and only if
σM > σC . Otherwise, an increase in lnχ reduces η.

Proof. See Appendix A.

The lemma 4 is a key to analyze the relationship between minimum innova-
tion size and average innovation size. Therefore, we now consider the economic
intuitions behind the lemma 4. According to Eq.(28), an increase in minimum
innovation size lnχ has a power to reduce the probability µ of patentable inno-
vation for a given η. When σM > (<)σC holds, the spillover effect of aggregate
patentable innovations [ p + (1 − p)µ ]ϕ on growth g is larger (smaller) than
that of aggregate unpatentable innovations (1 − p)(1 − µ)ϕ. Then, higher lnχ
has a negative (positive) effect on g because of the power to reduce µ. This
causes a slower (faster) speed g of obsolescence of relative productivity a, then
it accumulates a larger (smaller) amount of the industries around the minimum
productivity a = 0. This implies a higher (lower) equilibrium value of η (see
Fig.4).

Later, we show that there exists a negative relationship between minimum
innovation size and average patentable innovation size for some small lnχ, only
if σM > σC holds. This is because according to Fig.4, higher lnχ has a nega-
tive effect on the average innovation size when σM > σC , since it reduces the
probability for larger innovation size.

Consider the effects of lnχ on µ and n. According to Eq. (28), dµ/d lnχ ⋛
0 ⇐⇒ d(η lnχ)/d lnχ ⋚ 0. The number n of the monopoly industries is

n ≡
∫ ā

0

fM (a)da =

(
η

1− p

)
e−η lnχ lnχ+

(
1

1− p

)
(e−η lnχ − p). (32)

Differentiating Eq.(32) yields dn/d lnχ ⋛ 0 ⇐⇒ d(η lnχ)/d lnχ ⋚ 0. Of
course, for a given η, an increase in minimum innovation size lnχ has a negative
effect on both the probability µ for patentable innovation size and the number
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n of the monopoly industries. However, from lemma 4, if σM < σC holds, an
increase in lnχ reduces η, which has a positive effect on both µ and n. This
is because the lower η increases the probability for large innovation size (see
Fig.4). We can show that this positive effect via endogenous response of the
distribution is sufficiently small. That is, the negative effect of lnχ on µ and
n outweighs the positive effect via η, then the overall effect is always negative,
that is, d(η lnχ)/d lnχ < 0 for σM < σC (see Appendix B). Therefore, we yield
dµ/d lnχ < 0 and dn/d lnχ < 0.

Proposition 1. As p → 0, f(a) converges to the exponential distribution

f(a) = ηe−ηa for a ∈ (0,∞). (33)

Proof. As p → 0, according to Eq.(29), we yield the equation for the determi-
nation of η:

η =
1

(σM − σC)e−η lnχ + σC
. (34)

In Appendix A, we show that the equilibrium η from Eq.(34) has a finite value.
Then, from Eq.(19), ā → ∞ as p → 0. Therefore, we yield the result (33) from
Eq.(17).

The proposition 1 implies that the distribution of relative productivity â ≡
ea = A/B converges to a Pareto distribution as p → 0, according to Eq.(20):

fâ(â) = ηâ−(η+1) for â ∈ (1,∞), (35)

where η is given by Eq.(34). More specifically, Eq.(35) is the Pareto distribution
with shape parameter η and scale parameter 1.

Note that the counter-cumulative distribution function 1−Fâ(â) ≡ Pr{â′ ≥
â} of Eq.(20) is 1− Fâ(â) = 1−

∫ â

0
fâ(â

′)dâ′ = −p/(1− p) + â−η/(1− p). This
equation does not provide the linear relationship between ln[1−Fâ(â)] and ln â,
that is, ln[1−Fâ(â)] = ln[−p/(1−p)+ â−η/(1−p)]. This is inconsistent with the
empirical facts of firm size distribution (see Fujiwara et al. 2004 and Newman
2005) and innovation size distribution (see Newman 2005 for the citation of
scientific papers and Silverberg and Verspagen 2007 for the citation of patents
and the financial returns from the patents). To reconcile the empirical facts and
the theory, the maximum support of the distribution must take a sufficiently
large value. That is, we require p → 0, and then, we yield the linear relationship:
ln[1− Fâ(â)] = −η ln â, which is consistent with the empirical facts. Then, the
long-run distributions of firm size (which is proportional to absolute productivity
A), the absolute productivity A, and innovation size â have a Pareto tail when
p → 0. These results crucially differ from Lucas and Moll (2014) and Perla and
Tonetti (2014), in which the long-run distribution of productivity A has a Pareto
tail if the initial distribution of productivity A has a Pareto tail. By contrast,
in our model, the long-run distribution always has a Pareto tail, irrespective of
the initial distribution.
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Note that the result is discontinuous at p = 0. In the case of p = 0, the result
is consistent with that of Lucas and Moll (2014), Perla and Tonetti (2014), and
Perla et al. (2015). In particular, when p = 0, the dynamics of the distribution
are equivalent to that of Perla et al. (2015). Thus, as shown in Perla et al.
(2015), if the initial distribution of productivity A is a Pareto, then the long-
run distribution of productivity A is also a Pareto with a shape parameter
that is consistent with that of initial Pareto distribution. In contrast, in the
case of p → 0, the shape parameter η is an endogenous variable, which is
given by Eq.(34). Furthermore, in the case of p → 0, we may suppose the
bounded support of the initial distribution due to the existence of initial finite
frontier technological level Ā(0), which rejects the assumption of initial Pareto
distribution in our model.

Next, consider the existence of the balanced-growth equilibrium, where the
growth rate g of frontier technology Ā(t) corresponds to that of final good Y (t),
that is, g is economic growth rate, and thus, g must be equal to the growth
rate of consumption C(t) from the final good market-clearing condition (see
Appendix C). Therefore, from the Euler equation (2), we yield

r = θg + ρ. (36)

We consider the requirement of TVC (3). According to Eqs.(9) and (25), the

aggregate asset (patent) value is V (t)L = B(t)
∫ ā

0
fM (a)VM (a)da. Then, the

growth rate of asset value per capita V (t) is equal to g. To satisfy TVC (3), the
growth rate of the term e−ρtC(t)−θV (t) must be negative. We can satisfy this
requirement for all g ≥ 0, since θ ≥ 1 :

−ρ− θ
Ċ(t)

C(t)
+

V̇ (t)

V (t)
= −ρ− (θ − 1)g < 0.

Substituting the patent value (9) and the distribution (17) into the expected
patent value (12) yields the following equation

VR =

(
π̃M

r

)(
η

η − 1

)[
e−(η−1) lnχ − peā

]
−
(
π̃M

r

)(
η

η + k

)[
e−(η+k) lnχ − pe−kā

]
+

(
π̃M

r

)
p
(
eā − e−kā

) (37)

where k ≡ (r − g)/g = [(θ − 1)g + ρ]/g > 0, since θ ≥ 1 ensures k > 0. Note
that the first term on the right-hand side of Eq.(37) is always positive, since

the term represents (1−p)
∫ ā

lnχ
(π̃M/r)eaf(a)da > 0. The second term is always

negative, since it represents −(1 − p)
∫ ā

lnχ
(π̃M/r)e−kaf(a)da < 0. The third

term is always positive, since it represents pVM (ā) > 0. We can determine the
equilibrium value of economic growth rate g from the Euler equation (36), the
free-entry condition (11), and the expected patent value (37).

Proposition 2. If the fixed cost R is sufficiently small, there exists a unique
balanced-growth equilibrium.
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Figure 6: The existence of balanced-growth equilibrium.

Proof. First, we show that ∂VR/∂g < 0. Note that the equilibrium η is de-
termined independently from g, as shown in Eq.(29). Then, according to
Eqs.(17), (18), and (19), the productivity distribution f(a) and the support
a ∈ (0, ā] are independent of g. Therefore, if the patent value VM (a) is a de-
creasing function with respect to g, the expected patent value (R&D benefit)

VR ≡ (1 − p)
∫ ā

lnχ
VM (a)dF (a) + pVM (ā) is also a decreasing function with re-

spect to g, that is, ∂VM (a)/∂g < 0 for any a ⇒ ∂VR/∂g < 0. To show that
∂VM (a)/∂g < 0 for any a, according to Eq.(9) and the definition of k, we restate
the patent value for a given a:

VM (a) =

(
π̃M

r

)(
ea − e−ka

)
. (38)

Since ∂k/∂g < 0, according to Eq.(38), higher g reduces VM (a) via the variable
k for a given r. From Eq.(36), we have ∂r/∂g > 0. Then, according to Eq.(38),
higher g reduces VM (a) via the variable r for a given k. Summing these effects,
we yield ∂VM (a)/∂g < 0 for any a, and thus, ∂VR/∂g < 0 holds.

Noting that lim
g→∞

r = ∞ and lim
g→∞

k = θ − 1, we yield lim
g→∞

VR = 0 from

Eq.(37). In addition, noting that lim
g↓0

r = ρ and lim
g↓0

k = ∞, we obtain

lim
g↓0

VR =

(
π̃M

ρ

)(
η

η − 1

)[
e−(η−1) lnχ − peā

]
+ p

(
π̃M

ρ

)
eā > 0. (39)

Therefore, if the following inequality holds,

lim
g↓0

VR > R, (40)
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then, there exists a unique equilibrium value of g (see Fig.6). Note that since
η and ā are independent of R, if we take a sufficiently small R, it satisfies the
condition lim

g↓0
VR > R. If we obtain the unique equilibrium values of η and g, we

can ensure a unique initial consumption level C(0) from the final good market-
clearing condition (see Appendix C). This implies a unique balanced-growth
equilibrium.

As shown in Fig.6, the expected patent value VR ≡ (1−p)
∫ ā

lnχ
VM (a)dF (a)+

pVM (ā) is a decreasing function with respect to g. We have two channels of
negative effects of g on VR. First, higher g reduces the expected effective patent
length, which has a negative effect on VR. Recall that the effective patent length
T (a) ≡ a/g represents the waiting time until the creative destruction occurs for
the monopolist equipped with the relative productivity a. Higher g implies faster
obsolescence (reduction) of relative productivity a over time, which reduces the
expected effective patent length. Therefore, higher g has a negative effect on
the expected patent value VR. Second, we have the general equilibrium effect
via the interest rate r. Higher g increases the discount rate r to evaluate the
future profits stream. Thus, it reduces the expected patent value VR.

The proposition 2 crucially differs from Lucas and Moll (2014) and Perla
and Tonetti (2014), in which there exists a continuum of the balanced-growth
equilibria. Each equilibrium can be attained for each shape parameter of initial
Pareto distribution of productivity A. In contrast, our model has a unique
balanced-growth equilibrium, irrespective of initial productivity distribution.
Even though p → 0, we can ensure a unique balanced-growth equilibrium, if R
is sufficiently small and (σM − σC) + χ(σC − 1) < 0 holds (see Appendix D).
The requirement (σM −σC)+χ(σC −1) < 0 ensures η > 1 in a balanced-growth
equilibrium. Under η > 1, we yield the finite mean of the Pareto distribution
(35), and thus, the finite expected patent value VR when p → 0. Then, we can
ensure the existence of a unique equilibrium g under p → 0, if R is sufficiently
small and η > 1 holds. However, the result is discontinuous at p = 0. In
the case of p = 0, the result is consistent with that of Lucas and Moll (2014)
and Perla and Tonetti (2014), that is, the initial productivity A distribution
must be a Pareto to ensure the balanced-growth equilibrium with sustained
growth (R&D investments). This requirement implies that many industries
must already have very large productivities at initial date, that is, there is no
upper bound of the support of the initial distribution of the productivity A and
the initial distribution of the productivity A must have a fat tail. Therefore,
the R&D firms cannot exhaust the resources (possibilities) of the productivity
improvement in the long run, which ensures the sustained growth.

Let us consider why the initial distribution of productivity A does not need
to have a Pareto tail in our model. The frontier technology Ā(t) continues
to grow at rate g. Therefore, even though the maximum support of the ini-
tial distribution Ā(0) has a finite value, each R&D firm cannot exhaust the
resources (possibilities) of the productivity improvement. This ensures the sus-
tained growth. By contrast, in the models of Lucas and Moll (2014) and Perla
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and Tonetti (2014), if the initial productivity distribution has a finite maxi-
mum support (frontier technology), any firms’ productivities coincide with the
frontier level of initial productivity distribution in the long-run as long as the
firms continue to draw the new superior productivity from the productivity dis-
tribution. That is, degenerate distribution emerges in the long-run. This is
because the frontier technology is constant over time in the models of Lucas
and Moll (2014) and Perla and Tonetti (2014). Then, any firms do not have an
incentive to invest R&D in the long run, since they have already stood at the
frontier level. In other words, the firms exhaust the possibilities of productivity
improvement.

7 Patentable innovation size and growth

In this section, we show the effects of minimum innovation size on the average
patentable innovation size and growth.

7.1 Minimum and average innovation sizes

We show the relationship between the minimum innovation size and the average
patentable innovation size. To show this, we derive f(a|a > lnχ), which is the
probability density function conditional on the patentable innovation:

f(a|a > lnχ) =
f(a)

Pr{a > lnχ}
=

(
η

e−η lnχ − p

)
e−ηa for a ∈ (lnχ, ā]. (41)

Using Eq.(41), we yield the average patentable innovation size for the R&D
firms-drawn probability 1− p:

eaχ ≡
∫ ā

lnχ

eaf(a|a > lnχ) =

(
η

η − 1

)[
e−(η−1) lnχ − peā

e−η lnχ − p

]
. (42)

Then, according to Eq.(42), the average patentable innovation size is

ea
∗
χ ≡ peā + (1− p)eaχ . (43)

Proposition 3. Under the assumptions of p → 0 and σM < 1, an increase in
minimum innovation size lnχ strictly reduces the average patentable innovation
size ea

∗
χ around lnχ = 0 if and only if σC < (σM )2. Otherwise, an increase in

lnχ raises ea
∗
χ around lnχ = 0.

Proof. See Appendix E.

Note that the distribution fâ(â|â > χ) of the relative productivity â ≡
ea = A/B converges to the Pareto distribution with scale parameter χ and
shape parameter η when p → 0. Further, the assumption σM < 1 ensures that
η = 1/σM > 1 when p → 0 and χ = 1 in order to yield a finite mean value
ea

∗
χ of the Pareto distribution fâ(â|â > χ). Proposition 3 investigates the re-

lationship between minimum innovation size and average patentable innovation
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Figure 7: The comparative statics of f(a|a > lnχ) when σM > σC holds.

size in these cases. An increase in minimum innovation size lnχ required for a
patent, of course, has a positive effect on the average patentable innovation size
ea

∗
χ via scale parameter χ. This is because a higher scale parameter χ shifts

the distribution to the right (see Fig.7). However, if higher χ raises the shape
parameter η, we have an additional negative effect on the average value. This
is because higher η reduces the average value of Pareto distribution. Therefore,
σM > σC is the necessary condition for the negative relationship between mini-
mum and average innovation size (see lemma 4). More precisely, when σM > σC

holds, an increase in lnχ shifts the weigth in the distribution from the tail area
to the area around the minimum innovation size because of the higher shape
parameter η (see Fig.7). An increase in lnχ causes the reduction of probability
µ for patentable innovation, which has a negative effect on the speed g of obso-
lescence of the relative productivity a when σM > σC . Then, it causes a larger
accumulation of the industries in each segment a, which leads to a steeper slope
of the distribution f(a). Therefore, R&D firms tend to draw lower productivity,
which reduces the average patentable innovation size ea

∗
χ . Proposition 3 shows

that the total effect of higher lnχ on ea
∗
χ is negative around lnχ = 0 if and only

if σC < (σM )2.
Figs.8 and 9 report the relationship between minimum innovation size and

average innovation sizes of the simulations. We employ the following calibra-
tion strategy. We consider the case of χ = 1 as the basis model, that is, the
model without minimum innovation size, which is the standard Schumpeterian
growth model. The pre-selected parameter and normalization are the subjective
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Figure 8: The minimum and average innovation sizes when σM = 0.99 > σC =
0.9.

discount rate ρ = 0.02 and the population size L = 1, respectively.
Recall that the very small probability p leads to the Pareto distributions

of the firm size, productivity, and innovation size, which is consistent with the
empirical facts. Then, we set p = 2.2204e − 16, which is the machine epsilon
in MATLAB, that is, the smallest value ϵ > 0 satisfying 1 + ϵ > 1. Using
1429 estimates of published studies, Havranek et al. (2015) report that the
mean value of the elasticity of intertemporal substitution in the United States
is about 0.6. This suggests that 1/θ = 0.6. In the United States, the labor
share is about 2/3. This implies that α = 1/3. The variable η is interpreted
as a shape parameter of Pareto distribution when p → 0. Luttmer (2007) and
Gabaix (2009) estimate that η is slightly above unity (Zipf’s law), which is
based on a shape parameter of the size distribution of firms. To achieve this
under χ = 1, we set the spillover coefficient σM = 0.99 for aggregate patentable
innovations. The growth rate of the gross domestic product (GDP) per capita
in the United States has fluctuated around 2 percent at least since World War
II. This fact suggests the value g = 0.02. To achieve this value under χ = 1, we
set the fixed R&D cost R, that is, R = 42.5.

The only remaining parameter is the spillover coefficient σC of unpatentable
aggregate innovations. We conduct several simulations by setting different val-
ues of σC . For example, we set σC = 0.9 in Fig.8 as a case of σM > σC . In
the case of Fig.9, we set σC = 1.1 as a case of σM < σC . Note that these
choices of σC satisfy Eq.(31). We restrict the value χ to satisfy the conditions
(30) and (40). Then, we can ensure the unique balanced-growth equilibrium.
Further, note that only the parameters σM , σC , p, and χ affect the average
innovation sizes. The calibration of the other parameters can be used in the
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Figure 9: The minimum and average innovation sizes when σM = 0.99 < σC =
1.1.

analysis described in the other section.
Fig.8 reports the case of σM > σC . As shown in Fig.8(a), an increase in

minimum innovation size lnχ raises the shape parameter η, which is consistent
with lemma 4. Therefore, as shown in Fig.8(b), according to Eq.(19), it reduces
the maximum innovation size ā, which has a negative effect on the average
patentable innovation size ea

∗
χ . Fig.8(c) reports a U-shaped relationship between

lnχ and (1 − p)eaχ . There exist two competing forces that affect (1 − p)eaχ ,
that is, scale parameter χ and shape parameter η of the Pareto distribution. As
shown in Fig.7, an increase in lnχ shifts the distribution to the right, which has
a positive effect on (1− p)eaχ . However, we have the additional negative effect
on (1− p)eaχ when σM > σC . An increase in lnχ raises η, which causes smaller
probability for a large innovation size (see Fig.7). Then, it reduces (1 − p)eaχ .
The overall relationship between lnχ and (1 − p)eaχ can be nonmonotonic as
shown in Fig.8(c), which causes the nonmonotonic relationship between lnχ and
average patentable innovation size ea

∗
χ as shown in Fig.8(d).

Fig.9 reports the case of σM < σC . As shown in Fig.9(a)-(b), according
to lemma 4 and Eq.(19), an increase in lnχ reduces η when σM < σC holds,
which raises maximum innovation size ā. Then, it has a positive effect on the
average patentable innovation size ea

∗
χ . Note that lower η does not produce

a negative effect on (1 − p)eaχ . This is because it increases the probability
for large patentable innovation size. Then, an increase in lnχ always raises
(1 − p)eaχ , which causes the positive relationship between lnχ and average
patentable innovation size ea

∗
χ , as shown in Fig.9(c)-(d).
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7.2 Minimum innovation size and growth

We demonstrate the relationship between minimum innovation size lnχ and
economic growth rate g. Note that according to Fig.6, ∂VR/∂ lnχ ⋛ 0 ⇐⇒
dg/d lnχ ⋛ 0. That is, an increase in minimum innovation size lnχ leads
to faster (slower) growth g if and only if it causes higher (lower) expected
patent value VR for a given g. Figs.10, 11, and 12 report the cases of σC =
0.9, 1.1, and 1, respectively.

Let us consider the case of σM > σC . Higher lnχ has a negative effect on
VR ≡ (1−p)

∫ ā

lnχ
VM (a)dF (a)+pVM (ā) for a given g because of the reduction of

probability for a patentable innovation size. Furthermore, according to lemma
4, higher lnχ raises η when σM > σC . Then, it reduces the average innovation
size, as shown in Fig.4, which causes the reduction of VR for a given g. In
summary, we do not have a positive effect of lnχ on VR in the case of σM > σC .
Therefore, we have a negative relationship between lnχ and g, as demonstrated
in Fig.10.

Next, consider the case of σM ≤ σC . As in the case of σM > σC , higher lnχ
reduces the probability for a patentable innovation size, which has a negative
effect on VR for a given g. However, we have a positive effect on VR via η.
According to lemma 4, higher lnχ reduces η when σM ≤ σC . It increases the
average innovation size (see Fig.4), which leads to higher VR for a given g. In
summary, we have two competing effects of lnχ on VR. Then, an increase in
lnχ may have an ambiguous effect on g. Fig.11 reports the positive relationship
between lnχ and g. However, as shown in Fig.12, where σM = 0.99 and σC = 1,
if σC is slightly larger than σM , we yield the nonmonotonic relationship between
lnχ and g.

8 Conclusion

We developed a Schumpeterian growth model based on technology diffusion.
Some of the firms may succeed to adopt the frontier technology into the produc-
tion processes. The other firms may adopt the non-frontier level of technology
into the production processes. The diffusion of technology improves the overall
productivity level in the economy. Then, the economy achieves sustained growth
with the aid of the evolution of the frontier technology. These technology diffu-
sion processes generate the Pareto distributions of firm size, productivity, and
innovation size if it is extremely difficult to adopt the frontier technology.

Further, we showed that an increase in minimum innovation size required for
a patent may reduce the average patentable innovation size due to the endoge-
nous response of the innovation size distribution. In particular, strengthening
the minimum innovation size reduces the probability for the patentable innova-
tions, which reduces the knowledge spillover of the existing technologies. This is
because the information about the patented technologies is disclosed in the econ-
omy under the patent law. The reduction of the amount of knowledge spillover
causes a larger amount of inferior existing technologies. Then, each firm tends
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Figure 10: The minimum innovation size and growth when σM = 0.99 > σC =
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to adopt less-effective technologies by learning the existing inferior knowledge,
which may reduce the average patentable innovation size. Therefore, the United
States may experience a lower average patent quality after the decision of the
United States Supreme Court for KSR International Co. v. Teleflex Inc. (2007),
which substantially increased the minimum innovation size. This is counter to
the predictions of the FTC (2003) and the NAS (2004).

A Equilibrium value of η

First, we show the existence of a unique η. For convenience, we restate Eq.(29):

η =
1− p

(σM − σC)e−η lnχ + σC
. (44)

Rewriting Eq.(44), we have

y(η) ≡ (σM − σC)ηe
−η lnχ + σCη − (1− p) = 0 (45)

Differentiating the left-hand side of Eq.(45) obtains

∂y(η)

∂η
= (σM − σC)e

−η lnχ(1− η lnχ) + σC (46)

From Eq.(46), we obtain

∂y(η)

∂η
⋛ 0 ⇐⇒ y1(η) ⋛ y2(η), (47)

where

y1(η) ≡
(
σM − σC

σC

)
+ eη lnχ and (48)

y2(η) ≡
(
σM − σC

σC

)
η lnχ. (49)

Note that y1(0) > y2(0) holds. Then, we have ∂y(η)/∂η|η=0 > 0.
If (σM − σC)/σC ≤ 1 ⇐⇒ σM/σC ∈ (0, 2] holds, according to Eqs.(48)

and (49), we yield ∂y1(η)/∂η = eη lnχ lnχ ≥ ∂y2(η)/∂η = [(σM − σC)/σC ] lnχ.
According to Eq.(47), this implies that ∂y(η)/∂η ≥ 0, since ∂2y1(η)/∂η

2 ≥ 0
and ∂2y2(η)/∂η

2 = 0. Note that the equilibrium η must satisfy

ā > lnχ ⇐⇒ η <
ln (1/p)

lnχ
. (50)

To ensure that Eq. (50), the following equation must hold

y

(
ln (1/p)

lnχ

)
= (σM − σC)p

(
ln (1/p)

lnχ

)
+ σC

(
ln (1/p)

lnχ

)
− (1− p) > 0

⇐⇒
(
σMp+ σC(1− p)

1− p

)
ln

(
1

p

)
> lnχ. (51)
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Figure 13: The determination of η.

Then, we have a unique η according to Fig.13. Note that ∂y(η)/∂ lnχ =
−η2(σM −σC) ⋛ 0 ⇐⇒ σM ⋚ σC . That is, an increase in lnχ shifts down (up)

y(η) if and only if σM > (<)σC . Then, we have dη/d lnχ ⋛ 0 ⇐⇒ σM ⋛ σC .
Note that the above-described results hold even though p → 0. In particular,

when p → 0, we do not have to assume a sufficiently small χ to ensure ā > lnχ.
This is because the left-hand side of Eq.(51) diverges to ∞ as p → 0. However,
η > 1 must hold when p → 0 to ensure the existence of a balanced-growth
equilibrium (see Appendix D). Then, we derive the requirement to satisfy η > 1.
When p → 0, according to Eq.(45), the following equation determines η:

y(η) ≡ (σM − σC)ηe
−η lnχ + σCη − 1 = 0.

To yield η > 1 in equilibrium, y(1) < 0 must hold, since ∂y(η)/∂η > 0 under
the assumption σM/σC ≤ 2. Then, the following equation must hold:

y(1) < 0 ⇐⇒ (σM − σC) + χ(σC − 1) < 0. (52)

For example, when χ = 1, Eq.(52) requires σM < 1. This is because, according
to Eq.(44), η = 1/σM when χ = 1 and p → 0.
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B The effects of lnχ on µ and n

Now, we consider the effects of lnχ on µ and n. For convenience, we restate
Eqs.(28) and (32):

µ ≡
∫ ā

lnχ

f(a)da =

(
1

1− p

)(
e−η lnχ − p

)
(53)

n ≡
∫ ā

0

fM (a)da =

(
η

1− p

)
e−η lnχ lnχ+

(
1

1− p

)
(e−η lnχ − p). (54)

According to Eq.(53), we have dµ/d lnχ ⋛ 0 ⇐⇒ d(η lnχ)/d lnχ ⋚ 0. Differ-
entiating Eq.(54) obtains

dn

d lnχ
= −

(
1

1− p

)
(η lnχ)e−η lnχ d(η lnχ)

d lnχ
. (55)

Then, from Eq.(55), we yield dn/d lnχ ⋛ 0 ⇐⇒ d(η lnχ)/d lnχ ⋚ 0.
Next, derive dη/d lnχ. We restate Eq.(29):

η =
1− p

(σM − σC)e−η lnχ + σC
. (56)

Differentiating Eq.(56), we yield

dη

d lnχ
=

(σM − σC)η
2e−η lnχ

(σM − σC)e−η lnχ(1− η lnχ) + σC
. (57)

Note that lemma 4 shows that dη/d lnχ ⋛ 0 ⇐⇒ σM ⋛ σC . This implies that
the denominator of Eq.(57) is always positive. Then, we have

d(η lnχ)

d lnχ
=

η
[
σMe−η lnχ + σC

(
1− e−η lnχ

)]
(σM − σC)e−η lnχ(1− η lnχ) + σC

> 0, (58)

since both numerator and denominator of Eq. (58) are always positive. Then,
we obtain the result: dµ/d lnχ < 0 and dn/d lnχ < 0.

C Final good market-clearing condition

This appendix shows the final good market-clearing condition. Substituting the
amount of production for monopoly and competitive firm into the production
function of final good (4), we obtain

Y (t) = (x̃M )αLA∗
M (t) + (x̃C)

αLA∗
C(t) (59)

where A∗
M (t) ≡ B(t)

∫ ā

0
eafM (a)da and A∗

C(t) ≡ B(t)
∫ lnχ

0
eafC(a)da represent

the aggregate productivity level in the monopoly industries and that in the com-
petitive industries, respectively. Note that we have the following relationship:
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A∗(t) = A∗
M (t) + A∗

C(t), where A∗(t) ≡ B(t)
∫ ā

0
eaf(a)da represents the aggre-

gate productivity in the entire economy because Eq.(21) holds. Eq.(59) implies
that g = Ẏ (t)/Y (t). From Eqs.(25) and (26), we yield

A∗
M (t)

B(t)
=

(
η

1− p

)
e−η lnχ

(
elnχ − 1

)
+

(
1

1− p

)(
η

η − 1

)[
e−(η−1) lnχ − peā

] (60)

A∗
C(t)

B(t)
= −

(
η

1− p

)
e−η lnχ

(
elnχ − 1

)
+

(
1

1− p

)(
η

η − 1

)[
1− e−(η−1) lnχ

]
.

(61)

The final good market-clearing condition is Y (t) = C(t)L + x̃MLA∗
M (t) +

x̃CLA
∗
C(t)+ϕRB(t). Substituting Eq.(59) into this equation and simplifying it

yields(
C(t)

B(t)

)
L = [(x̃M )α − x̃M ]L

(
A∗

M (t)

B(t)

)
+[(x̃C)

α − x̃C ]L

(
A∗

C(t)

B(t)

)
−ϕR. (62)

Note that the sum of the first and second terms on the right-hand side of Eq.(62)
represents B(t)-adjusted GDP. We yield g = Ċ(t)/C(t), because the right-hand
side of Eq.(62) is constant over time. Noting that ϕ = (gη)/(1−p) from Eq.(18)
and using Eqs. (60) and (61), the right-hand side of Eq.(62) can be rewritten
as a function of η and g. Then, if we can ensure the unique equilibrium values
of η and g, we obtain a unique value of C(0) for a given initial state variable
B(0).

D The existence of a balanced-growth equilib-
rium when p → 0

This appendix shows the existence of a balanced-growth equilibrium when p →
0. Even though p → 0, ∂VR/∂g < 0 holds because ∂VM (a)/∂g < 0 and η is
independent of g. As shown in Appendix A, if (σM −σC)+χ(σC −1) < 0 holds,
we yield η > 1 when p → 0. Note that η > 1 ensures the finite mean of the
Pareto distribution (35), and thus, we yield the finite expected patent value VR.
To show this, noting that peā = p(η−1)/η → 0 as p → 0, under η > 1, according
to Eq.(37), the expected patent value under p → 0 is

VR =

(
π̃M

r

)(
η

η − 1

)
e−(η−1) lnχ −

(
π̃M

r

)(
η

η + k

)
e−(η+k) lnχ. (63)

Recall that r = θg + ρ and k ≡ (r − g)/g = [(θ − 1)g + ρ]/g > 0. Since
lim
g→∞

r = ∞ and lim
g→∞

k = θ − 1, according to Eq.(63), we have lim
g→∞

VR = 0.
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Further, since lim
g↓0

r = ρ and lim
g↓0

k = ∞, according to Eq.(63), we have lim
g↓0

VR =

(π̃M/ρ) [η/(η − 1)] e−(η−1) lnχ. Then, if lim
g↓0

VR > R and (σM−σC)+χ(σC−1) <

0 hold, we obtain a unique equilibrium g, which satisfies the free-entry condition
R = VR.

E Proof of proposition 3

We prove the proposition 3. According to Eq. (34), when p → 0, the equilibrium
η is given by

η =
1

(σM − σC)e−η lnχ + σC
. (64)

Note that η > 1 must hold to ensure a finite mean ea
∗
χ . To ensure η > 1,

we suppose that (σM − σC) + χ(σC − 1) < 0 (see Appendix A). According to
Eqs.(42) and (43), when p → 0, the average patentable innovation size is

ea
∗
χ = eaχ =

(
η

η − 1

)
elnχ. (65)

Differentiating Eq.(64), evaluating at lnχ = 0, and simplifying it yields

dη

d lnχ

∣∣∣∣
lnχ=0

=

(
σM − σC

σM

)
η2. (66)

Differentiating Eq.(65) yields

dea
∗
χ

d lnχ
⋛ 0 ⇐⇒ η(η − 1) ⋛ dη

d lnχ
. (67)

Noting that η = 1/σM > 1 when lnχ = 0, according to Eqs.(66) and (67), we
yield

dea
∗
χ

d lnχ

∣∣∣∣∣
lnχ=0

⋛ 0 ⇐⇒ σC ⋛ (σM )2.

Then, we yield the proposition 3.
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