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Abstract

This paper develops an R&D decision-making model in the real options framework.

The model is generic enough to capture three types of uncertainty in an R&D project,

namely, uncertainty of research duration and costs, market value of technology, and a com-

petitor’s technology development. I derive analytical solutions, which help practitioners

and researchers to evaluate various cases of R&D investment. Further, by analyzing the

model with a wide range of parameter values, I reveal the following effects of the three

types of uncertainty on R&D investment: Higher uncertainty of research duration and

costs, unlike market value uncertainty, speeds up investment, especially combined with

a higher risk of competition. The investment timing can be U-shaped in the strength of

competition because of the trade-off between the preemptive investment effect and the

decreased project value effect. These results can account for empirical findings about the

uncertainty-investment relation in industries with high R&D intensity and severe compe-

tition.
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1 Introduction

Research and development (R&D) investment is a key determinant of a firm’s long-term

growth. It is critical for a firm’s management to accurately evaluate and execute an R&D

project. This paper contributes to both theory and practice by developing a tractable

model for evaluating and optimizing R&D investment as well as unveiling the interactions

of several key features associated with R&D investment.

The difficulties of R&D decision-making lie in three types of uncertainty, namely,

uncertainty of technology, market value, and competitors (e.g., see Raz, Shenhar, and

Dvir (2002)). In an R&D project, technological specifications, time schedule, and budget

are planned before project initiation, but, in many cases, the outcome is not as successful

as planned. This is called technological uncertainty. Market uncertainty means that the

market value of a newly developed technology is not deterministic but affected by both

technology-specific and macroeconomic shocks on the market. An R&D project also faces

a risk of competition. For example, if a competitor develops an alternative technology

first, the market value of technology in progress will greatly lower.

In reality, the R&D decision-making process involving the three risks is challenging

for managers. Although the net present value (NPV) method has been widely employed

for R&D decision-making, a more sophisticated method, which is called the real options

method, has gradually spread in the real world (e.g., Hartmann and Hassan (2006) and

Baker, Dutta, and Saadi (2011)). In fact, the literature argues advantages of the real

options method over the NPV method in R&D decision-making with high uncertainty.

Many case studies apply the real options method to R&D project valuation (e.g., Loch

and Bode-Greuel (2001), Lee and Paxson (2001), Cassimon, Backer, Engelen, Wouwe,

and Yordanov (2011), and Pennings and Sereno (2011)). To my knowledge, however, the

existent real options models miss any of the three types of uncertainty explained above.

Instead of a specific case study, I develop a generic and tractable real options model

for R&D decision-making with the three types of uncertainty so that researchers and

practitioners can analyze various cases of R&D investment using the model. This paper

considers the following model: A firm can initiate an R&D project by paying a sunk cost

at an arbitrary time. There is a lag between project initiation and completion (henceforth,

called research duration). The firm also continues to pay costs during research duration.

When the firm completes the project, the firm receives the market value of the technology.

The model takes into consideration the three types of uncertainty as follows. Techno-

logical uncertainty can be modeled by a random variable standing for research duration.

Note that total cost, which increases with longer research duration, is also stochastic.

With regard to market uncertainty, following the standard literature on real options, I

assume that the dynamics of the market value of the technology follows a geometric Brow-

nian motion. Lastly, as in the works of Armada, Kryzanowski, and Pereira (2011) and

Lavrutich, Huisman, and Kort (2016), the model assumes hidden competition, i.e., the
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firm faces the risk of a competitor’s technology development, which follows the Poisson

arrival process. If a competitor completes an alternative technology first, a fraction of the

technology value is lost.

By analytically deriving the model solutions as well as conducting numerical analysis

with a wide range of parameter values, I reveal several new effects of the three types

of uncertainty on R&D investment decisions. First, I show that higher uncertainty of

research duration improves the project value and accelerates R&D investment. This

implies that the uncertainty-investment sensitivity depends on the type of uncertainty. It

is well known that the market uncertainty-investment sensitivity is negative because higher

market uncertainty increases the incentive for a firm to wait for additional information.

On the other hand, technological uncertainty, which will not be dissolved by waiting,

has positive effects on R&D investment because the R&D project value is convex with

respect to research duration. A higher risk of a competitor’s technology development

intensifies the convexity. Because of the convexity, higher uncertainty of research duration

increases the project value and speeds up R&D investment, especially combined with

severe competition.1

These results can potentially explain several empirical findings. For instance, Grullon,

Lyandres, and Zhdanov (2012) and Kraft, Schwartz, and Weiss (2015) showed that the

sensitivity of uncertainty to firm value increases for a firm with higher R&D intensity.

Driver, Temple, and Urga (2006) showed that industries with high R&D intensity and

severe preemptive competition tend to have positive uncertainty-investment sensitivities.

Second, I show that the effects of hidden competition on investment are not monotonic

in an R&D project with research duration. It is well known that, in the absence of research

duration, a greater threat of competitors accelerates investment because it decreases the

value of waiting. With research duration, however, severe competition decreases the

expected project value at project initiation because a competitor can potentially develop

technology before project completion. When the latter effect dominates the former effect,

severe competition delays R&D investment. Indeed, I show that the investment timing

has U-shaped relation with the arrival rate of a competitor’s technology development. I

also show that the investment timing can be non-monotonic with respect to the remaining

value after a competitor’s technology development.

Lastly, I explain key differences from the related literature to date. A seminal work

by Weeds (2002) is the most similar to this paper. She examined a real options model

with uncertain research duration and rival preemption. However, in her model, a firm

has complete information about its competitor while research duration is exponentially

distributed. Unlike Weeds (2002), I assume that not research duration, which can be

estimated internally in the firm, but a competitor’s technology development, which can

1Although Huchzermeier and Loch (2001) also showed that higher uncertainty of time schedule can accel-

erate R&D investment, their model does not consider the interactions between technological uncertainty and

competition.

3



be an unexpected and exogenous event, follows an exponential distribution. Recently,

Cassimon, Backer, Engelen, Wouwe, and Yordanov (2011) and Pennings and Sereno (2011)

conducted case studies of R&D projects in the pharmaceutical industry taking account of

both technological and market uncertainty, but their models, which are based on European

options, do not entail any implications of the optimal R&D investment timing. Their

papers do not consider a risk of competition either. Thus, this paper, more so than the

previous works, helps R&D decision-making with the three types of uncertainty.

The remainder of this paper is organized as follows. After Section 2 introduces the

model setup, Section 3 derives the model solutions analytically. In Section 4, with nu-

merical examples, I analyze the model in full detail and provide empirical implications.

Section 5 briefly summarizes the paper.

2 Model setup

Consider a firm that has an option to initiate an R&D project by paying sunk cost I0, such

as investment costs in new facilities and equipment, which is a positive constant.2 The

project will take T years until completion, where T is a constant in Sections 3.1 and 3.2.

I will also consider random variable T in Section 3.3. Throughout the paper, T is called

research duration.3 For T years, the firm continuously pays cost I1, such as personnel

expenses and experimental costs, which is a positive constant. I define total cost by

I = I0 +

∫ T

0
e−rtI1dt = I0 +

(1− e−rT )I1
r

, (1)

where a positive constant r is the discount rate. Total cost (1) increases in T . When

T follows a random variable, total cost (1) is also stochastic. By introducing random T

in Section 3.3, the model can capture technological uncertainty of research duration and

costs.

At project completion, the firm receives one-shot profit X(t) as the market value of

the technology,4 where as in the standard real options literature (e.g., Dixit and Pindyck

2This paper focuses on a fixed-size investment project for developing a new technology. It could be interesting

for future research to incorporate the project type and/or size in the model. For instance, Nishihara and Ohyama

(2008), based on Weeds (2002), investigated the choice between two alternative technologies, while Nishihara

(2012) studied dynamic management of multiple investment projects with synergies. Several papers including

Huisman and Kort (2015), Shibata and Nishihara (2015a), and Lukas, Spengler, Kupfer, and Kieckhafer (2017)

examined both investment timing and sizing decisions.
3Some papers distinguish the lag between project inception and completion (the gestation lag) and the lag

between project completion and commercial application (the application lag) (e.g., Pakes and Schankerman

(1984)). For simplicity, I assume that the total lag is equal to T .
4X(t) may be interpreted as the expected discounted value of cash flows generated by the technology. I can

easily extend the model solutions in the setup, allowing for a stream of cash flows after the completion time

T rather than the one-shot profit. When cash flows follow a geometric Brownian motion, the solutions in the

extended model are essentially the same as the solutions in this paper.
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(1994)), X(t) follows a geometric Brownian motion:

dX(t) = µX(t)dt+ σX(t)dB(t) (t > 0), X(0) = x, (2)

where B(t) denotes the standard Brownian motion defined in the filtered probability

space (Ω,F , {Ft},P) and µ, σ(> 0) and x(> 0) are constants. For convergence, I assume

that r > µ.5 By introducing X(t), the model can capture market uncertainty, which

dynamically changes due to specific and macroeconomic shocks on the demand market.

As in the works by Armada, Kryzanowski, and Pereira (2011) and Lavrutich, Huis-

man, and Kort (2016), the model considers hidden competition, which means that the

firm cannot observe a potential competitor until a technology developed by a competitor

appears in the market. The firm knows the ex-ante risk of competition that a hidden

competitor completes an alternative technology at probability λdt for infinitesimal time

interval dt, where arrival rate λ is a positive constant. In other words, a competitor’s

technology development follows an exponential distribution with arrival rate λ.6 This

paper assumes that the exponential distribution is independent of the stochastic process

X(t). If a competitor completes a technology first, the technology value X(t) will decrease

to αX(t), where constant α ∈ [0, 1) denotes the remaining fraction after a competitor’s

success. Note that for α > 0, the firm has an option of investing in the R&D project even

after a competitor’s success. By introducing λ and α, the model can capture the risk of

a competitor’s technology development.7

In the last part of this section, I explain key differences from the related models in the

previous literature. Weeds (2002) also focused on uncertainty of research duration and

a competitor’s development in the real options R&D model. The model adopts a game

theoretic framework with full information and assumes that research duration follows

an exponential distribution. In reality, however, a firm does not exactly know the R&D

progress of its competitors (cf. incomplete information in Lambrecht and Perraudin (2003)

and Nishihara and Fukushima (2008)) and may not recognize which firm is a potential

competitor for the project (cf. hidden competition in Armada, Kryzanowski, and Pereira

(2011) and Lavrutich, Huisman, and Kort (2016)). In addition, managers do not plan

exponentially distributed research duration. Because an exponential distribution has the

property of being memoryless, it is used for modelling an unexpected and exogenous event

5For the economic rationale behind these assumptions, refer to standard textbooks such as Dixit and Pindyck

(1994) and Guthrie (2009).
6An alternative approach for modeling competition is a game theoretic real option model (e.g., Huisman

(2001), Weeds (2002), Pawlina and Kort (2006), Nishihara and Shibata (2010), Shibata (2016)). However,

this approach typically imposes stronger assumptions about information of competitors. As was discussed by

Armada, Kryzanowski, and Pereira (2011), a hidden competition model better fits R&D decision-making in the

absence of information about competitors.
7A competitor’s technology development may reduce research duration T and costs I1 and I2. This is because

the firm can potentially develop a technology by utilizing the competitor’s technology. I can easily derive the

model solutions in the extended model, although I omit demonstrating the details.
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such as a natural disaster. Accordingly, unlike Weeds (2002), I assume that not research

duration, which can be estimated internally in the firm, but a competitor’s technology

development, which can be an unexpected and exogenous event, follows an exponential

distribution.

Cassimon, Backer, Engelen, Wouwe, and Yordanov (2011) and Pennings and Sereno

(2011) have conducted case studies of pharmaceutical R&D projects. Their models include

both market and technological uncertainty. However, their models, which are based on

European compound options, cannot provide any implications about the optimal R&D

investment timing. In addition, their models do not consider uncertainty of research

duration and competition.

3 Model solutions

3.1 Project value and investment timing after a competi-

tor’s success

In Sections 3.1 and 3.2, I assume that T is a constant. I consider the problem backward.

Suppose that a competitor has already developed a technology in this subsection. The

expected project value at the project initiation time τ is calculated as follows:

E[e−rTαX(τ + T ) | X(τ)] = AcX(τ), (3)

where

Ac = αe−(r−µ)T . (4)

The subscript c denotes the value after a competitor’s success. By (3), the project value

function is expressed as

Vc(x) = sup
τ

E[e−rτ (e−rTαX(τ + T )− I)]

= sup
τ

E[e−rτ (AcX(τ)− I)] (5)

where the investment time τ is optimized over all stopping times.

As is well known (e.g., see Dixit and Pindyck (1994)), in the continuation region, Vc(x)

satisfies the ordinary differential equation:

µx
dVc(x)

dx
+

σ2x2

2

d2Vc(x)

dx2
= rVc(x), (6)

where µxd/dx + σ2x2/2d2/dx2 corresponds to the generator of the geometric Brownian

motion (2). A general solution to (6) is expressed as Vc(x) = B1x
β +B2x

γ , where B1 and
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B2 are constants, and

β =
1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2r

σ2
(> 1), (7)

γ =
1

2
− µ

σ2
−

√(
µ

σ2
− 1

2

)2

+
2r

σ2
(< 0). (8)

By the trivial boundary condition, i.e., Vc(0) = 0, I have B2 = 0. For the investment

threshold x∗c , I have the boundary conditions:

Vc(x
∗
c) = B1x

∗β
c = Acx

∗
c − I (9)

dVc(x
∗
c)

dx
= B1βx

∗β−1
c = Ac, (10)

which are called the value matching and smooth pasting conditions, respectively (e.g., see

Dixit and Pindyck (1994)). By solving (9) and (10), I can derive B1 and x∗c as follows.

Proposition 1 Suppose that a competitor has already developed a technology. The project

value function Vc(x) is given by

Vc(x) =


(

x

x∗c

)β

(Acx
∗
c − I) (x < x∗c)

Acx− I (x ≥ x∗c),

(11)

where the investment trigger x∗c is defined by

x∗c =
βI

(β − 1)Ac
(12)

The optimal investment time τ∗c is given by

τ∗c = {t ≥ 0 | X(t) ≥ x∗c}. (13)

In Proposition 1, the upper equation in (11) stands for the value of the option to invest

in the R&D project after a competitor develops a technology. Because the option value

is higher than the investment value, the firm waits until the technology value X(t) hits

the investment trigger x∗c . Once X(t) hits x∗c , the firm initiates the R&D project, and the

expected project value becomes Acx
∗
c . By ∂Ac/∂α > 0, ∂Ac/∂T < 0, ∂β/∂σ < 0, (11), and

(12), I have ∂Vc(x)/∂α > 0, ∂Vc(x)/∂T < 0, ∂Vc(x)/∂σ ≥ 0, ∂x∗c/∂α < 0, ∂x∗c/∂T > 0,

and ∂x∗c/∂σ > 0. In other words, a higher remaining value after a competitor’s success

and shorter research duration increase the project value and accelerate R&D investment,

whereas higher volatility increases the option value and delays investment.
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3.2 Project value and investment timing before a competi-

tor’s success

In this subsection, I consider the problem before a competitor’s success. Suppose that a

competitor has not yet developed a technology at the project initiation time τ . Because

the technology value falls to αX(τ + T ) for τ + T > Tc, where Tc denotes the time of a

competitor’s technology development, I can calculate the expected project value at τ as

follows:

E[e−rT (1{τ+T<Tc} + 1{τ+T≥Tc}α)X(τ + T ) | X(τ), τ < Tc]

=E[e−rTαX(τ + T ) | X(τ)] + E[e−rT (1{τ+T<Tc}(1− α)X(τ + T ) | X(τ), τ < Tc]

=αe−(r−µ)TX(τ) + (1− α)e−(r−µ)TX(τ)E[1{τ+T<Tc} | τ < Tc] (14)

=AX(τ), (15)

where in (14) I used the independence between Tc and X(t), and in (15) I have

A = αe−(r−µ)T + (1− α)e−(r+λ−µ)T (16)

using the distribution function of the exponential distribution.

By (15), the project value function is expressed as

V (x) = sup
τ

E[e−rτ1{τ<Tc}{e
−rT (1{τ+T<Tc} + 1{τ+T≥Tc}α)X(τ + T )− I}+ e−Tc1{τ≥Tc}Vc(X(Tc))]

= sup
τ

E[e−rτ1{τ<Tc}{AX(τ)− I}+ e−Tc1{τ≥Tc}Vc(X(Tc))] (17)

where the investment time τ is optimized over all stopping times, and Tc stands for the

time of a competitor’s technology development. Note that in (17), the project value

changes to Vc(X(Tc)), which is defined by (11), at time Tc, if Tc ≤ τ holds.

As is well known, in the continuation region, V (x) satisfies the ordinary differential

equation:

µx
dV (x)

dx
+

σ2x2

2

d2V (x)

d2x
+ λ(Vc(x)− V (x)) = rV (x), (18)

where λ(Vc(x) − V (x)) in (18) corresponds to the fact that V (x) changes to Vc(x) at

probability λdt in the infinitesimal time interval dt in the continuation region.

Now, suppose that the investment threshold x∗ before a competitor’s success is lower

than the investment threshold x∗c after a competitor’s success. This will be verified in

Appendix A. Because of x∗ < x∗c , a general solution to (18) is expressed as V (x) =

Vc(x) + B̃1x
β̃ + B̃2x

γ̃ , where B̃1 and B̃2 are constants, and β̃ and γ̃ are defined by

β̃ =
1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2(r + λ)

σ2
(> 1), (19)

γ̃ =
1

2
− µ

σ2
−

√(
µ

σ2
− 1

2

)2

+
2(r + λ)

σ2
(< 0). (20)
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Note that Vc(x) satisfies (6) for x < x∗(< x∗c). As in Section 3.1, by the trivial boundary

condition, i.e., V (0) = 0, I have B̃2 = 0. For the investment trigger x∗, the value matching

and smooth pasting conditions become

V (x∗) =

(
x∗

x∗c

)β

(Acx
∗
c − I) + B̃1x

∗β = Ax∗ − I, (21)

dV (x∗)

dx
=

(
x∗

x∗c

)β−1 β

x∗c
(Acx

∗
c − I) + B̃1βx

∗β−1 = A, (22)

respectively. By solving (21) and (22), I can derive B̃1 and x∗ as follows.

Proposition 2 Suppose that a competitor has not developed a technology. The project

value function V (x) is given by

V (x) =


Vc(x) +

( x

x∗

)β̃
(Ax∗ − I − Vc(x

∗)) (x < x∗)

Ax− I (x ≥ x∗),

(23)

where Vc(x) is the upper equation in (11), and the investment trigger x∗ ∈ (0, x∗c) is defined

by the solution to

x∗ =
β̃I

(β̃ − 1)A
+

(
x∗

x∗c

)β (β̃ − β)(Acx
∗
c − I)

(β̃ − 1)A
. (24)

The optimal investment time τ∗ is given by

τ∗ = {t ≥ 0 | X(t) ≥ x∗}. (25)

In the upper equation in (23), the project value V (x) is decomposed into the project

value after a competitor’s success, i.e., Vc(x), and the value of the option of investing in

the project before a competitor’s success, i.e., (x/x∗)β̃(Ax∗ − I − Vc(x
∗)). Proposition

2 implies the R&D investment policy as follows. The firm waits for R&D investment

until the technology value X(t) hits the investment trigger x∗. If a competitor develops a

technology first, the firm increases the investment trigger from x∗ to x∗c . When X(t) hits

x∗ before a competitor’s technology development, the firm initiates the R&D project, and

the expected project value becomes Ax∗, where A includes a discount due to a risk of a

competitor’s success during research duration T .

By ∂Vc(x)/∂α > 0, ∂Vc(x)/∂T < 0, ∂Vc(x)/∂σ ≥ 0, ∂A/∂α > 0, ∂A/∂λ < 0, ∂A/∂T <

0, ∂β̃/∂λ > 0, ∂β̃/∂σ < 0, and (23), I have ∂V (x)/∂α > 0, ∂V (x)/∂λ < 0, ∂V (x)/∂T < 0,

and ∂V (x)/∂σ ≥ 0. In other words, a lower risk of competition, shorter research duration,

and higher volatility increase the R&D project value. On the other hand, the impacts

of α, λ, T, and σ on the investment trigger x∗ are not clear from (24). I will reveal the

impacts numerically in Section 4.
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3.3 Extended model

Although so far I have treated research duration T as a constant, it is easy to extend the

results in Sections 3.1 and 3.2 to a case with random variable T . In this subsection, I

assume that T follows a nonnegative random variable. For tractability, I assume that T

is independent of technology value X(t) and a competitor’s technology development time

Tc. This assumption means that risks of technology, market value, and competition are

not directly related to each other.

By taking expectations of (1), (4), and (16), I define

Ī = I0 +
(1− E[e−rT ])I1

r
, (26)

Āc = αE[e−(r−µ)T ], (27)

Ā = αE[e−(r−µ)T ] + (1− α)E[e−(r+λ−µ)T ]. (28)

By replacing I, Ac, and A with Ī , Āc, and Ā, respectively, and tracing the discussions in

Sections 3.1 and 3.2, I can easily derive the model solutions. Indeed, the project value

function and investment trigger after a competitor’s success are equal to (11) and (12),

replacing I and Ac with Ī and Āc, respectively. The project value function and investment

trigger before a competitor’s success are equal to (23) and (24), replacing I,Ac, and A

with Ī , Āc, and Ā, respectively. Clearly, the comparative statics results are unchanged

from those explained after Propositions 1 and 2.

The model can capture uncertainty of technology, market value, and competitors in

the R&D decision-making process, while previous models miss any of the three features.

Nevertheless, I can analytically derive the R&D project value and investment timing,

which help in a real-world decision-making process of R&D investment. It is one of the

contributions of this paper to develop such a general and tractable model and derive

the analytical solutions. In the next section, I will make another contribution to the

literature by analyzing the model and revealing the interactions of the three risks in

numerical examples.

4 Numerical analysis and implications

4.1 Baseline analysis

This paper does not focus on a case study of a specific R&D project. Instead, I show

numerical results for a wide range of parameter values, demonstrating several properties

of the project value and the investment policy in the model. I set the base parameter

values in Table 1. There are several methods for estimating the market parameter values,

i.e., r, µ, and σ, in a real options model (e.g., using the capital asset pricing model).

For instance, Chapter 3 of Guthrie (2009) explains the details of standard calibration

methods. I set r, µ, and σ in Table 1 following the standard literature.
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On the other hand, the technological parameter values, i.e., research duration T and

costs I1 and I2, as well as the competition risk parameter values, i.e., arrival rate λ

and remaining fraction α, can be internally estimated by a firm. These values greatly

differ depending on the project types and the industries. For example, in a project of

developing a new drug, research duration is long (e.g., Kellogg and Charnes (2000), Loch

and Bode-Greuel (2001), and Hartmann and Hassan (2006)). However, taking account of

the fact that the average research duration is around 2 to 4 years in most of the literature

(e.g., Pakes and Schankerman (1984)), I assume that T takes a value in [2, 4] following a

uniform distribution. The parameter values λ = 0.2 and α = 0.5 mean that a competitor

is expected to develop a technology 1/λ = 5 years later and that the technology value

decreases by half if a competitor develops prior to the firm.

Table 2 presents the investment triggers and project values, while Figure 1 shows

the value functions V (X(t)) and Vc(X(t)). In the baseline case, the firm initiates the

R&D project when the technology value X(t) hits the investment trigger x∗ = 11.593

before a competitor’s technology development. The R&D project takes random duration

T ∈ [2, 4] years until completion. This delay decreases the project value by the multiplier

E[e−(r−µ)T ] = 0.942. A competitor may potentially develop a technology during research

duration T . This risk reduces the project value further by the multiplier Ā/E[e−(r−µ)T ] =

0.777. As a result, the NPV at the investment time becomes Āx∗ − Ī = 4.823 = 1.319Ī.

In other words, considering the option value of waiting, the firm waits until the expected

profit exceeds 1.319 times higher than the expected investment cost. At completion time

τ∗ + T , the firm receives the technology value X(τ∗ + T ) if a competitor has not yet

developed a technology. The firm receives the discounted technology value 0.5X(τ∗ + T )

if a competitor develops a technology during research duration.

If a competitor develops a technology before X(t) hits x∗ = 11.593, the firm changes

the R&D investment policy to the following. The firm invests in the R&D project once

X(t) hits x∗c = 40.658(> x∗ = 11.593). There is no longer risk of competition. The NPV

at the investment time becomes Ācx
∗
c− Ī = 15.49 = 4.236Ī, which means that, considering

the option value of waiting, the firm waits until the expected profit exceeds 4.236 times

higher than the expected investment cost. Note that 4.2360 is much higher than the

corresponding value 1.3188 before a competitor’s success. This is because due to λ = 0.2,

β̃ = 2.873 is much higher than β = 1.236 (cf. (7) and (19)). It can be interpreted that

a risk of competition greatly decreases the value of waiting. At completion time τ∗c + T ,

the firm receives the discounted technology value 0.5X(τ∗c + T ).

In the following subsections, I will examine the comparative statics with respect to

uncertainty of market value, research duration, and a competitor’s technology develop-

ment. I reveal how the interactions of the three risks affect the R&D project value and

investment policy.
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4.2 The impacts of market value uncertainty

This subsection presents the comparative statics with respect to market value volatility

σ. Figure 2 depicts investment triggers x∗ and x∗c as well as project values V (x) and Vc(x)

for varying levels of σ.8 The other parameter values are set in Table 1.

I can see from Figure 2 that higher σ increases x∗, x∗c , V (x), and Vc(x). The reason is

that β and β̃ decrease from 1.3007 and 3.7870 to 1.1327 and 2, respectively, for σ = 0.1

to 0.4, which means that the value of waiting increases for a higher σ. These results are

straightforward and consistent with the standard theory that higher market uncertainty

increases the option value of waiting and delays the exercise of the option (e.g., Dixit and

Pindyck (1994)). For a wide range of parameter values, I also investigated the impacts of

h, λ, and α on the volatility effects. However, I could not find any significant interactions

between uncertainty of market value and uncertainty of research duration or competition.

4.3 The impacts of uncertainty of research duration

This subsection presents the comparative statics with respect to uncertainty of T . I

assume that T follows a uniform distribution between [3− h, 3 + h] with E[T ] = 3 years.

Figure 3 depicts investment triggers x∗ and x∗c as well as project values V (x) and Vc(x)

for varying levels of h. The other parameter values are set in Table 1.

I can see from Figure 3 that higher h decreases x∗ and x∗c and increases V (x) and Vc(x).

The reason is explained as follows. Higher h increases T with respect to the convex order

(e.g., see Chapter 3.A in Shaked and Shanthikumar (2007)). Then, higher h decreases

Ī = I0 + (1− E[e−rT ])I1/r and increases Āc = αE[e−(r−µ)T ] and Ā = αE[e−(r−µ)T ] + (1−
α)E[e−(r+λ−µ)T ] because e−rT , e−(r−µ)T , and e−(r+λ−µ)T are convex functions of T . Thus,

interestingly, I can argue that higher uncertainty of research duration plays a positive role

in decreasing the expected investment cost and increasing the expected project values,

and hence, it accelerates R&D investment.

Next, I explain how a risk of competition influences the effects of uncertainty of T .

Figure 4 compares the results for λ = 0.2, 0.4, 0.6, and 0.8. I omit depicting x∗c and Vc(x)

because they are independent of λ. I can see from the figure that higher λ intensifies

the impacts of h on x∗. The reason is that higher λ intensifies the convexity of Ā =

αE[e−(r−µ)T ] + (1− α)E[e−(r+λ−µ)T ] with respect to T . Similarly, lower α intensifies the

impacts of h, although I omit depicting a figure. These results suggest that a higher risk

of competition magnifies the positive impacts of higher uncertainty of research duration

on R&D investment.

8For simplicity, I change σ, taking all other parameters, r and µ as constants. This means that changes in σ

have only an idiosyncratic risk component. Most of the literature, including Dixit and Pindyck (1994), presents

the comparative statics under this assumption, although a few papers, including Wong (2007), examine the

comparative statics assuming a relation between µ and σ.
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Although uncertainty of research duration and costs is recognized as a key characteris-

tic of an R&D project (e.g., Raz, Shenhar, and Dvir (2002)), few studies have revealed its

impacts on R&D investment timing and project value.9 In this paper, I demonstrate that

higher uncertainty of research duration increases project value and accelerates investment

and that severe competition intensifies the positive effects. These results contrast with the

impacts of market uncertainty (cf. Section 4.2). Technological uncertainty, unlike mar-

ket uncertainty, will never be dissolved by waiting, and hence, the firm has no incentive

to delay investment and obtain extra information. This difference leads to the opposite

effects of uncertainty.

Although my results about the positive effects of technological uncertainty are novel,

many empirical observations support the results. For example, Driver, Temple, and Urga

(2006) showed positive sensitivities of uncertainty to investment in industries with high

R&D intensity. They also documented that positive sensitivities are observed in industries

with strong first-mover advantages, i.e., high risks of competition. My results are also

consistent with empirical findings by Grullon, Lyandres, and Zhdanov (2012) and Kraft,

Schwartz, and Weiss (2015). Indeed, they showed that the sensitivities of uncertainty to

firm values are higher for firms with higher R&D intensity.

4.4 The impacts of competitor risk

This subsection presents the comparative statics with respect to the arrival rate λ of

a competitor’s technology development and the remaining value α after a competitor’s

success. Figure 5 depicts investment triggers x∗ and x∗c as well as project values V (x) and

Vc(x) for varying levels of λ. The other parameter values are set in Table 1. Note that

x∗c and Vc(x) do not depend on λ. As explained after Proposition 2, I can see from the

figure that V (x) decreases in λ.

Notably, in the figure, I find that x∗ is U-shaped in λ. This result can be explained by

the tradeoff between the two conflicting effects. Because of ∂Ā/∂λ < 0, higher λ lowers

the expected project value at project initiation. This effect delays R&D investment. On

the other hand, because of ∂β̃/∂λ > 0, higher λ decreases the value of waiting. This

effect accelerates R&D investment. For λ < 0.135, the latter effect dominates the former,

and hence, x∗ decreases in λ. For λ > 0.135, the former effect dominates the latter, and

hence, x∗ increases in λ. In my computations for a wide range of parameter values, I

always found the U-shaped relation for positive research duration T , although the level

of λ for the two effects offsets changes from 0.135 with changing parameter values. For

instance, shorter T decreases the former effect and hence increases the offsetting threshold

λ.

9A notable exception is Huchzermeier and Loch (2001). They studied the effects of uncertainty of project

delay in a discrete time model, but they did not reveal any interactions between uncertainty of research duration

and competition.
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Next, I explore the comparative statics with respect to α. Figure 6 depicts investment

triggers x∗ and x∗c as well as project values V (x) and Vc(x) for varying levels of λ. As

explained after Propositions 1 and 2, I can see from the figure that V (x) and Vc(x)

increases in α, while x∗c decreases in α.

The impacts of α on x∗ are interesting in Figure 6. As in the effects of λ, two conflicting

effects exist. Because of ∂Ā/∂α > 0, higher α increases the expected project value at

project initiation. This effect accelerates R&D investment. On the other hand, because

of ∂Vc(x)/∂α > 0, higher α increases the project value after a competitor’s success and

then increases the value of waiting. This effect delays R&D investment. For the baseline

parameter values, the latter effect dominates the former, and hence, x∗ increases in α.

However, the tradeoff changes with parameter values. For instance, Figure 7 shows the

results for λ = 0.2, 0.4, 0.6, and 0.8. For λ = 0.4 and 0.6, x∗ is U-shaped in α, whereas for

λ = 0.8, x∗ decreases in α. This is because the former effect, which is stronger for higher

λ, can dominate the latter effect.

In summary, I find that R&D investment timing can be U-shaped in the strength of

competition. This result is strongly contrasted with previous findings in the literature.

Indeed, the standard literature has argued that a higher risk of competition decreases the

value of waiting and accelerates investment. Because they do not consider any interac-

tions between competition and research duration, the monotonic results hold. Although

∂Ā/∂λ = ∂Ā/∂α = 0 holds in the absence of research duration, ∂Ā/∂λ < 0 and Ā/∂α > 0

hold in the presence of research duration. This paper complements the previous literature

by showing that a risk of competition can adversely affect R&D investment through the

interactions with research duration.

5 Conclusion

In this paper, I developed a generic R&D decision-making model involving three types of

uncertainty in an R&D project, namely, uncertainty of research duration, market value

of technology, and technology development by a competitor. By deriving the analytical

solutions in the model, this paper helps practitioners and researchers to evaluate and

optimize various cases of R&D investment. In addition, by analyzing the model solutions

for a wide range of parameter values, I obtained novel implications about the effects of

the three risks on R&D decision making.

I showed that higher uncertainty of research duration increases the project value and

speeds up R&D investment through the convexity of the project value with respect to

research duration. I also showed that severe competition increases the convexity and then

intensifies the positive effects of uncertainty of research duration on R&D investment.

These results are novel and contrasted with the effects of market uncertainty, and they can

account for several empirical findings about positive effects of uncertainty in industries
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with high R&D intensities and severe competition. Furthermore, I showed that R&D

investment timing has a U-shaped relation with the strength of competition. Compared

to the monotonic results in the previous literature, I showed that the non-monotonic

results can occur through the interactions between competition and research duration.

A limitation of the model is the assumption that the three risks are independent.

Without this assumption, the model does not allow analytical solutions. In practice,

however, competitor risk may increase as the market value of technology increases. In

such a case, one may find that the effects of market uncertainty, combined with a risk of

competition, change from the normal effects. Further, the model does not consider how to

finance the R&D project. In recent years, many papers, including Nishihara and Shibata

(2013), Shibata and Nishihara (2015b), and Sundaresan, Wang, and Yang (2015), have

investigated the effects of financial frictions on investment. R&D investment timing and

project value could depend on how effectively a firm finances its project. These issues

could be interesting topics for future research.
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A Proof of the existence of x∗ ∈ (0, x∗c)

Define the function F (x) by

F (x) =
β̃I

(β̃ − 1)A
+

(
x

x∗c

)β (β̃ − β)(Acx
∗
c − I)

(β̃ − 1)A
− x.

For x = 0, I have

F (0) =
β̃I

(β̃ − 1)A
> 0. (29)

For x = x∗c , I have

F (x∗c) =
β̃I

(β̃ − 1)A
+

(β̃ − β)(Acx
∗
c − I)

(β̃ − 1)A
− x∗c

=
βI + (β̃ − β)Acx

∗
c − (β̃ − 1)Ax∗c

(β̃ − 1)A

<
βI + (β̃ − β)Acx

∗
c − (β̃ − 1)Acx

∗
c

(β̃ − 1)A
(30)

=
βI − (β − 1)Acx

∗
c

(β̃ − 1)A

= 0, (31)
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where in (30) I used β̃ > 1 and Ac < A, and in (31) I used (12). By β > 1, F (x) is a

convex function. Then, by (29), (31), and the convexity of F (x), the equation F (x) = 0

has a unique solution x∗ in the interval (0, x∗c).
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Table 1: Baseline parameter values.

r µ σ T λ α I1 I2 x

0.08 0.06 0.2 [2, 4] 0.2 0.5 1 1 8

Table 2: Investment triggers and project values.

x∗ x∗
c Ī Ā Āc V (x) Vc(x)

11.5927 40.6582 3.6566 0.7314 0.4709 2.6063 2.0764
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Figure 1: Value functions. The figure plots V (X(t)) and Vc(X(t)) as functions of X(t). The

parameter values are set in Table 1.
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Figure 2: The impacts of market value uncertainty. This figure plots x∗, x∗
c , V (x), and Vc(x)

for varying levels of σ. The other parameter values are set in Table 1.
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Figure 3: The impacts of uncertainty of research duration. This figure plots x∗, x∗
c , V (x), and

Vc(x) for varying levels of h, where research duration T follows a uniform distribution with

[3− h, 3 + h]. The other parameter values are set in Table 1.
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Figure 4: The impacts of uncertainty of research duration combined with the arrival rate of a

competitor’s technology development. The left and right panels plot x∗ and V (x), respectively,

for varying levels of h and λ, where research duration T follows a uniform distribution with

[3− h, 3 + h]. The other parameter values are set in Table 1.
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Figure 5: The impacts of the arrival rate of a competitor’s technology development. This figure

plots x∗, x∗
c , V (x), and Vc(x) for varying levels of λ. The other parameter values are set in Table

1.
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Figure 6: The impacts of the remaining value after a competitor’s technology development.

This figure plots x∗, x∗
c , V (x), and Vc(x) for varying levels of α. The other parameter values are

set in Table 1.
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Figure 7: The impacts of the remaining value after a competitor’s technology development

combined with the arrival rate of a competitor’s technology development. The left and right

panels plot x∗ and V (x), respectively, for varying levels of α and λ. The other parameter values

are set in Table 1.
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