
 
 
 

Discussion Papers In Economics 
And Business 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graduate School of Economics and 
Osaka School of International Public Policy (OSIPP) 

Osaka University, Toyonaka, Osaka 560-0043, JAPAN

 

Smeed’s Law and the Role of Hospitals in Modeling Fatalities 

and Traffic Accidents 
 
 

Yueh-Tzu Lu and Mototsugu Fukushige 

 
 

Discussion Paper 17-22 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
July 2017 

 

 

 

 

 

 

Graduate School of Economics and 
Osaka School of International Public Policy (OSIPP) 

Osaka University, Toyonaka, Osaka 560-0043, JAPAN 

 

Smeed’s Law and the Role of Hospitals in Modeling Fatalities 

and Traffic Accidents 
 
 

Yueh-Tzu Lu and Mototsugu Fukushige 

 
 

Discussion Paper 17-22 
 



1 

 

Smeed’s Law and the Role of Hospitals in Modeling Fatalities and Traffic 

Accidents 

 

Yueh-Tzu Lu 

Graduate School of Management 

National Cheng Kung University 

Tainan City, 701 Taiwan 

e-mail: enjourney321@gmail.com 

 

and  

 

Mototsugu Fukushige* 

Graduate School of Economics 

Osaka University 

Toyonaka, 560-0043, Japan 

e-mail: mfuku@econ.osaka-u.ac.jp 

  

Abstract 

We applied Smeed’s Law to Japanese prefectural data from between 1988 and 2016. We 

found that the coefficient for the number of vehicles was stable over the estimation period, 

but that the constant term decreased gradually. We decomposed fatalities per capita into 

fatalities per accidents and accidents per capita, and applied regression equations to the 

data. We conclude the following from this study. First, the relationship between fatalities 

per capita and the number of registered vehicles per capita was stable, which is consistent 

with Smeed’s Law. Second, the effects of technological advances have changed the 

estimated coefficients for time dummies. The role of hospitals may be difficult to 

incorporate into Smeed’s Law because of the complicated relationship between the 

distance to hospital and fatalities per capita. 
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Smeed’s Law and the Role of Hospitals in Modeling Fatalities and Traffic 

Accidents 

 

1. INTRODUCTION 

 

After Smeed (1949) found a relationship between the numbers of fatalities and 

vehicles, researchers have continued to apply this law in many countries.2  For example, 

Tamura (2013) has studied this law in Japan. However, this recent research by Tamura 

(2013) has indicated that the law is not stable over time in Japan. 

One question about the stability of Smeed’s Law is that it does not incorporate 

safety improvements in automobiles involved in traffic accidents or advances in medical 

technologies. For example, one of the earliest studies, by Pantridge and Geddes (1967), 

involved the cardiology unit and found that the time to hospital was one of the most 

important factors affecting patient survival. Jones and Bentham (1995) also investigated 

the effect of time to hospital.  Technological advances in automobile safety and 

emergency rescue at traffic accidents can also affect survival. For example, since the law 

requiring installation of airbags and provision of quicker transportation to hospitals, the 

survival of seriously injured people has increased. 

This paper investigated the possible need for structural changes in Smeed’s Law 

and the role of hospitals in Japan. We reformulated Smeed’s Law and used panel data in 

Japan to estimate whether the distance to hospital is an explanatory variable. We then 

decomposed the fatalities per capita into the number of fatalities per accidents and traffic 

                                                      
2 There are several models to explain the number of fatalities in traffic accidents that do 

not refer to Smeed’s Law. For example, Grimm and Treibich (2013) investigated the 

determinants of fatalities in different kinds of traffic accidents and found that income 

could explain the differences. 
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accidents per capita. We also explain the determinants of these two variables using 

Japanese prefectural data between 1988 and 2016. 

In section 2 of this paper, we first reformulate and decompose Smeed’s Law and 

extend it by using a model that includes the distance to hospital. In section 3, we 

decompose the fatalities per capita into two parts and estimate the relationships between 

related variables. Finally, we conclude by discussing the empirical implications of the 

relationships between a stable Smeed’s Law and the role of hospitals. 

 

 

2. SMEED’S LAW AND THE ROLE OF HOSPITALS 

 

2.1 Traditional Approach to Smeed’s Law 

 

Smeed’s original law is described as follows: 

Ndeath = 0.00030 ∗ (Nveh ∗ Pop2)
1

3. 

where Ndeath  is the number of fatalities in traffic accidents, Nveh is the number of 

registered vehicles, and Pop  is the size of the population, usually 100,000. This 

relationship can be rewritten as number of fatalities per registered number of vehicles: 

Ndeath

Nveh
= 0.00030 ∗ (

Nveh

Pop
)

−
2
3
 

or fatalities per capita: 

Ndeath

Pop
= 0.00030 ∗ (

Nveh

Pop
)

1
3

. 
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We linearized this using logarithmic transformation and generalized to estimate data from 

other countries as follows: 

ln (
Ndeath

Nveh
) = α0 − α1ln (

Nveh

Pop
),    (1) 

or 

ln (
Ndeath

Pop
) = β0 + β1ln (

Nveh

Pop
) . 3    (2) 

Using Japanese prefectural data between 1988 and 2016, we applied the above equation 

(2).  In practice, we added prefectural and time dummies to control the individual and 

time effects. Additionally, to capture the possibility that time could alter the coefficient 

for ln (
Nveh

Pop
) , we adopted the products of the trend term (Time) and ln (

Nveh

Pop
)  as 

explanatory variables. 

Before we explain the estimation results, we first describe the data source (Table 

Ⅰ) and variables that we used in this paper and their summary statistics (Table Ⅱ). The 

estimated results of several specifications are shown in Table Ⅲ. From the viewpoint of 

the maximum adjusted R-squared or minimum Akaike’s information criterion (AIC), 

Model 1C is the best model. This model is a simple least-square with dummy variables 

(LSDV) model.4  The estimated coefficient of β1 was 0.962085, which means that α1 

in equation (1) is 0.037013. We could not reject the hypothesis α1 = 0. 5 However, the 

                                                      
3 Hesse et al. (2016) and Koren and Borsos (2010) also investigate Smeed’s Law in the 

form of the same dependent variable (fatalities per capita). 
4  Ponnaluri (2012) took a similar approach to Indian panel data and found regional 

differences between states. 
5 The estimated standard error for the coefficient was 0.0883. 
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estimated results indicated significant and stable relationships between the number of 

fatalities in traffic accidents and registered vehicles.6 

To investigate the effects of technological advances, we estimated the 

coefficients for time dummies in Model 1C in Figure 1. This figure implies that the 

probability of death in traffic accidents gradually decreases during this period as the 

relationship between number of deaths and vehicles remains stable. We consider that 

these changes reflect the technological advances applied to the rescue of victims in traffic 

accidents. This result is consistent with Oppe’s (1991) findings for Japanese data. 

 

2.2 Accessibility to Hospitals 

When considering technological advances or transportation time to hospitals, 

one should add some explanatory variables to equation (2). In this paper, we modified the 

constant term as a linear function of the distance to hospital: 

β0 = θ0 + θ2ln(Hdist) 

where Hdist is the distance to hospital. In this paper, we estimated the distance to 

hospital using the following steps: 

1. We estimated each hospital’s area of coverage. 

2. We assumed that each area is circular. 

3. Using the formula to estimate the area of the circle, we estimated the radius of the 

circle. 

Using these steps, we estimated Hdist as: 

                                                      
6 Smith (1999) found a negative correlation between number of fatalities and vehicles 

using OECD cross-sectional data. Our result is different from that of Smith (2010), but 

our specification is expressed per capita. 



6 

 

Hdist =
√

Area
Nhospital

π
⁄

 

where Nhospital is the number of hospitals in each prefecture, Area is the total area of 

each prefecture, and π is the circular constant. We then modified equation (2) to: 

ln (
Death

Pop
) = θ0 + θ1ln (

Nveh

Pop
) + θ2ln(Hdist).  (3) 

In this empirical estimation, we estimated equation (3) in a similar way as for equation 

(2). The estimation results are reported in Table Ⅳ. Model 2B produced the minimum 

AIC. The estimated coefficient for ln (
Nveh

Pop
) was 1.12921, which means that α1  in 

equation (1) was –0.12921. We also could not reject the hypothesis α1 = 0. 7  The 

estimated coefficient for the additional variable Time ∗ ln(Hdist) was negative and was 

statistically significant. This result implies that the number of fatalities in traffic accidents 

per capita decreases when the distance to hospital increases. This is not a plausible result. 

In the following sections, we try to explain this result. 

 

 

3. DECOMPOSITION APPROACH 

 

To investigate why the distance and fatalities per capita correlated negatively 

correlated, as shown in section 2.2, we decomposed the dependent variable in equation 

(3) as: 

Ndeath

Pop
=

Ndeath

Accident
∗

Accident

Pop
. 

To investigate this reason, we applied the following two equations: 

                                                      
7 The estimated standard error for the coefficient was 0.1210. 
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ln (
Ndeath

Accident
) = 𝛾0 + 𝛾1ln (

Nveh

Pop
) + 𝛾2ln(Hdist),   (4) 

and 

ln (
Accident

Pop
) = 𝛿0 + 𝛿1ln (

Nveh

Pop
) + 𝛿2ln(Hdist).   (5) 

The estimated results for equation (4) are shown in Table Ⅴ. Model 3C produced the 

minimum AIC. This result shows that the number of fatalities per accident correlated 

positively with the products of the trend term and the distance to hospital: Time ∗

ln(Hdist) This variable is also included in Table Ⅳ, which shows the estimation results 

of equation (3). This result seems to be natural. If the distance to hospital increases, the 

access time to hospital for an injured person in a traffic accident also increases, and the 

potential of a fatality becomes high. 

The estimated results for equation (5) are shown in Table Ⅵ. Model 4B produced 

the minimum AIC. This result shows that the number of accidents per capita correlated 

negatively with the products of the trend term and the distance to hospital:Time ∗

ln(Hdist) This variable is also included in Table Ⅳ, which shows the estimation results 

of equation (3). This relationship explains the implication that the number of fatalities in 

traffic accidents per capita decreases when the distance to hospital increases when 

estimated using equation (3). However, we could not identify any reason why the number 

of accidents per capita increased when the number of hospitals increased and the distance 

to hospital decreased. 

Next, we investigated the possibility that there is reverse causality between the 

two variables.8  We estimated the following regression equation: 

                                                      
8  Some researchers have investigated the number of traffic accidents. For example, 

Hakim et al. (1991) reviewed models for traffic accidents and proposed some additional 

variables as explanatory variable in macro models. In this paper, we did not search for 

the best model to explain the number of traffic accidents. For example, Bishai et al. (2006) 
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ln(Hdist) = ϕ0 + ϕ1ln (
Nveh

Pop
) + ϕ2ln (

Accident

Pop
).   (6) 

In practice, to capture the possibility that the time coefficient varied for ln (
Nveh

Pop
) and 

ln (
Accident

Pop
), we adopted the products of the trend term (Time) and both ln (

Nveh

Pop
) and 

ln (
Accident

Pop
) as explanatory variables.  Additionally, we approximated the nonlinear 

relationship between ln(Hdist) and ln (
Accident

Pop
), and we added (ln (

Accident

Pop
))

2

as an 

additional explanatory variable. The estimation results with several specifications are 

shown in Table Ⅶ. Model 5C produced the minimum AIC model. In this result, the 

relationship between ln(Hdist) and ln (
Accident

Pop
) was unclear because the estimated 

relationship was quadratic. According to Table Ⅱ, we estimated the relationship between 

Hdist and 
Accident

Pop
 when 

Accident

Pop
 was from 1.822 (=exp(0.6)) to 13.4637 (=exp(2.6)), 

which were the minimum and maximum values, respectively. Figure 3 shows that the 

estimated relationship between these two variables was negative. 

We considered that hospitals were constructed in areas where traffic accidents 

occurred frequently during these years. In other words, people made the distance to 

hospitals shorter in the place where traffic accidents occurred frequently.  This is a 

natural policy to cope with injured people in traffic accidents. 

                                                      

investigated the determinants of the number of traffic accidents and found that GDP, 

population, number of vehicles, and length of roads were significant factors. However, 

their results are not useful for investigating traffic accidents per capita in prefectures in 

Japan because the time series data are relatively short and road lengths are almost fixed 

during the sample period. García-Ferrer, De Juan, and Poncela (2007) also investigated 

the relationship between number of traffic accidents and economic activity by 

constructing time series models with monthly data. We could not obtain monthly data, 

and therefore, we could not construct such a complicated model to investigate the number 

of traffic accidents. These are questions for future investigations of the determinants of 

traffic accidents per capita. 
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Following the estimation result described above, we next estimated equation (2) 

by adding (ln (
Accident

Pop
))

2

as an additional explanatory variable. We obtained the 

following result: 

 

 

ln (
Death

Pop
) 

= 1.050 ∗ ln (
Nveh

Pop
) − 0.00178 ∗ (Time ∗ ln(Hdist)) + 0.0144 ∗ (ln (

Accident

Pop
))

2

+ (others) 

 (8.286)            (−1.375)                   (2.075). 

 

where t values are in parentheses. In this result, the estimated coefficient for ln(Hdist) 

remained negative, but it was not statistically significant. We conclude that this reflects a 

reverse causality between the two variables. 

 

 

4. CONCLUSION 

 

In this paper, we estimated Smeed’s Law using Japanese prefectural data from 

between 1988 and 2016 in the form of ln (
Ndeath

Pop
) = β0 + β1ln (

Nveh

Pop
) . We then 

confirmed that the coefficient of ln (
Nveh

Pop
) was stable over the estimation period, but the 

constant term decreased gradually. The latter phenomenon might be related to the 

technological advances in the rescue of victims of traffic accidents. Including the distance 

to hospital as an additional explanatory variable to explain the role of hospital in Smeed’s 
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Law did not produce plausible results because of the complicated relationships between 

ln (
Death

Pop
)  and ln(Hdist) . We decomposed the number of fatalities per capita into 

ln (
Ndeath

Accident
) and ln (

Accident

Pop
), and we used different regression equations with the same 

explanatory variables. Finally, we reached the following conclusions. First, the 

relationship between fatalities per capita and number of registered vehicles per capita is 

stable, which is also implied by Smeed’s Law. However, estimation using the traditional 

linearized form: 

ln (
Ndeath

Nveh
) = α0 − α1ln (

Nveh

Pop
), 

which is used by most researchers, could not produce statistically significant relationships. 

Second, the effect of technological advances is reflected in changes in the estimated 

coefficients for time dummies. However, the role of hospitals is difficult to incorporate 

into Smeed’s Law because of the complicated relationship between the distance to 

hospital and fatalities per capita. 

Finally, we note some remaining problems. We found it difficult to model the 

role of hospitals when modeling traffic accidents, but we have not proposed any solutions. 

Our analysis was limited to Japanese data, and it may not be applicable to use our 

decomposition approach in other countries to check the robustness of our findings. These 

are remaining problems for future research. 
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Table Ⅰ. Sources of Data 

Variable Data Survey Date Year Source 

Accidents Number of Traffic Accidents Calendar Year 1988–2015 National Police Agency 

Ndeath Number of Fatalities in Traffic 

Accidents 

Calendar Year 1988–2015 National Police Agency 

Nveh Number of Registered Vehicles End of March 1988–2015 Car ownership number: 

Automobile Inspection & Registration Information Association 

Pop Prefecture Population October 1 1987–2014 Basic resident register 

Nhospital Number of Hospitals October 1 1988–2015 Medical Facilities Survey: Ministry of Health, Labor and Welfare 

Area Prefecture Area October 1 1985, 1990, 

1995, 2000, 

2005, 2010, 

2015 

Census: 

Statistical Survey Department, Statistics Bureau, Ministry of 

Internal Affairs and Communications 

Note: We fixed the area data in 1985–1989 to be equal to the surveyed data in 1985 and the data after 1990 are fixed in the same manner. 
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Table Ⅱ. Summary Statistics 

Variable Mean Standard Deviation Minimum Maximum 

ln (
Ndeath

Pop
) –2.69361 0.45435 –4.43015 –1.73229 

ln (
Ndeath

Accident
) –4.43517 0.50995 –5.70787 –3.31624 

ln (
Accident

Pop
) 1.74157 0.32360 0.60851 2.58690 

ln (
Nveh

Pop
) 6.43783 0.20993 5.78853 6.80430 

ln(Hdist) 1.22407 0.45435 –4.43015 –1.73229 
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Table Ⅲ. Estimation Results of Traditional Models 

Dependent Variables ln (
Ndeath

Pop
) 

 Model 1A Model 1B Model 1C Model 1D Model 1E 

ln (
Nveh

pop
) 0.098858 –1.94222 0.962085 0.959081 1.53061 

 (1.657) (–37.624) (10.894) (6.093) (25.371) 

Time ∗ ln (
Nveh

pop
) ― ― ― 0.00007541 –0.0095714 

    (0.023) (–63.4000) 

Time Dummies No No Yes Yes No 

Prefectural Dummies No Yes Yes Yes Yes 

Constant Yes No No No No 

Adjusted R-squared 0.0013 0.6957 0.9344 0.9343 0.9270 

AIC 829.277 69.7879 –926.534 –925.534 –869.179 

Note: t values are in parentheses. 
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Table Ⅳ Estimation Results of Accessibility to Hospital Models 

Dependent Variable ln (
Ndeath

Pop
) 

 Model 2A Model 2B Model 2C 

ln (
Nveh

pop
) 1.00248 1.03195 1.12921 

 (6.109) (6.427) (9.332) 

Time ∗ ln (
Nveh

pop
) 0.00363244 0.00329325 ― 

 (1.011) (0.922)  

ln(Hdist) –0.106817 ― ― 

 (–0.872)   

Time ∗ ln(Hdist) –0.00287974 –0.00302830 –0.00251735 

 (–2.093) (–2.218) (–2.002) 

Time Dummies Yes Yes Yes 

Prefectural Dummies Yes Yes Yes 

Constant No No No 

Adjusted R-squared 0.9345 0.9345 0.9345 

AIC –926.546 –927.142 –927.690 

Note: t values are in parentheses. 
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Table Ⅴ. Estimation Results of Fatalities per Accidents Models 

Dependent Variable ln (
Ndeath

Accident
) 

 Model 3A Model 3B Model 3C 

ln (
Nveh

pop
) 0.209680 ― ― 

 (0.854)   

Time ∗ ln (
Nveh

pop
) –0.032053 –0.029014 –0.028817 

 (–5.959) (–7.195) (–7.150) 

ln(Hdist) –0.196897 –0.229130 ― 

 (–1.074) (–1.278)  

Time ∗ ln(Hdist) 0.020719 0.021113 0.020905 

 (10.062) (10.523) (10.451) 

Time Dummies Yes Yes Yes 

Prefectural Dummies Yes Yes Yes 

Constant No No No 

Adjusted R-squared 0.8836 0.8836 0.8835 

AIC –396.123 –396.736 –396.869 

Note: t values are in parentheses. 
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Table Ⅵ. Estimation Results of Per Capita Accidents Models 

Dependent Variables ln (
Accident

Pop
) 

 Model 4A Model 4B 

ln (
Nveh

pop
) 0.792801 0.0767950 

 (4.133) (4.092) 

Time ∗ ln (
Nveh

pop
) 0.035686 0.035972 

 (8.493) (8.613) 

ln(Hdist) 0.090081 ― 

 (0.629)  

Time ∗ ln(Hdist) –0.023599 –0.023474 

 (–14.671) (–14.710) 

Time Dummies Yes Yes 

Prefectural Dummies Yes Yes 

Constant No No 

Adjusted R-squared 0.8235 0.8236 

AIC –721.073 –721.862 

Note: t values are in parentheses. 
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Table Ⅶ Estimation Results of Checking Reverse Causality 

Dependent Variable ln(Hdist) 

 Model 5A Model 5B Model 5C 

ln (
Nveh

pop
) –0.107059 –0.223446 –0.220667 

 (–0.238) (–5.698) (–6.054) 

Time ∗ ln (
Nveh

pop
) 0.0046643 0.00422610 0.00417486 

 (3.640) (5.238) (5.483) 

(ln (
Nveh

pop
))

2

 –0.00977686 ― ― 

 (–0.260)   

ln (
Accident

Pop
) –0.119793 –0.119768 –0.121706 

 (–5.159) (–5.238) (–5.819) 

Time ∗ ln (
Accident

Pop
) –0.0000904455 –0.0000710097 ― 

 (–0.241) (–0.193)  

(ln (
Accident

Pop
))

2

 0.035709 0.035602 0.035762 

 (5.646) (5.643) (5.720) 

Time Dummies Yes Yes Yes 

Prefectural Dummies Yes Yes Yes 

Constant No No No 

Adjusted R-squared 0.9962 0.9962 0.9962 

AIC –2854.769 –2855.733 –2856.713 

Note: t values are in parentheses. 
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Figure 1 Estimated Coefficients of Time Dummies in Model 1C 
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Figure 2 Estimated Coefficients of Time Dummies in Model 5C 
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Figure 3 Relationship between Distance to Hospital and Accidents Per Capita 
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