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Abstract

This study constructs an overlapping-generations model with endogenous fer-

tility, mortality, and R&D activities. We demonstrate that the model explains the

observed fertility dynamics of developed countries. When the level of per capita

wage income is either low or high, an increase in such income raises the fertility

rate. When the level of per capita wage income is in the middle, an increase in such

income decreases the fertility rate. The model also predicts the observed relation-

ship between population growth and innovative activity. At first, both the rates of

population growth and technological progress increase, that is, there is a positive

relationship. Thereafter, the rate of population growth decreases but the rate of

technological progress increases, showing a negative relationship.
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1 Introduction

Over the past two centuries, many developed countries have experienced changes in fer-

tility patterns. Galor (2005) identifies, what he calls, two distinct regimes the post-

Malthusian regime and the sustained growth regime. In the post-Malthusian regime,

technological progress showed a marked acceleration and the rising per capita income

has a positive impact on fertility. That is, this period saw the positive Malthusian effect

of per capita income on fertility.1 In the sustained growth regime, although technological

progress continues, the increase in per capita income has a negative impact on fertility.

Empirical studies in recent years have found that some developed countries are expe-

riencing a reversal of the fertility pattern. For example, Myrskylä et al. (2009) analyze

the cross-sectional relationship between total fertility rates (TFR) and the Human De-

velopment Index (HDI) in 1975 and 2005.2 They look at 2005 and find that a higher

HDI implies a higher fertility rate in sufficiently high HDI countries. Additionally, Luci-

Greulich and Thévenon (2014) analyze the relationship between TFR and per capita

GDP by using OECD countries from 1960 to 2007. They find results that are similar to

those found by Myrskylä et al. (2009): a higher per capita GDP implies a higher fertility

rate in several highly developed countries.3

In addition to fertility dynamics, Strulik et al. (2013) explore historical and empirical

evidence to show that ‘the erstwhile positive correlation between population growth and

innovative activity turns negative during economic development.’ They construct a uni-

fied growth model that incorporates R&D-based innovation to explain this “population-

productivity reversal.” The model proposes the following: At first, a high fertility rate

promotes innovative activity; that is, the relation between population growth and inno-

vative activity is positive. Subsequently, the emergence of mass education reduces the

fertility rate. However, because the accumulation of human capital outweighs the effect of

declining fertility, there is both R&D-based innovation and economic growth. Therefore,

1Galor (2005) refers the period before the post-Malthusian regime as the Malthusian epoch. In this
epoch, although there is a positive relationship between per capita income and fertility, the average
growth rate of per capita income is very low. However, our study does not focus on the Malthusian
epoch and the source of take-off from the Malthusian epoch.

2HDI measures human development and is composed of per capita gross domestic product (GDP),
life expectancy, and school enrolment.

3Hirazawa and Yakita (2017) also hint at a similar relationship between TFR and per capita GDP.
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the relation between population growth and innovative activity becomes negative in the

course of economic development.

The purpose of this study is to propose a simple model which explains this fertil-

ity dynamics of developed countries and provides an alternative mechanism to explain

the population-productivity reversal. To examine the fertility dynamics, we construct

a three-period-lived overlapping-generations (OLG) model with endogenous fertility and

mortality. Furthermore, we integrate our model with the R&D-based growth model of

Jones (1995). The two defining characteristics of our model are as follows: First, we con-

sider two types of rearing costs: goods and time. When parents raise children, they must

buy some final goods and sacrifice their time. Second, following Hirazawa and Yakita

(2017), we assume that a young individual probably survives to old age and an increase

in per capita wage income affects this probability positively. As discussed in Cutler et al.

(2006), in developed countries, improved nutrition, vaccinations, and medical treatments

are important factors in declining mortality during the course of economic development.4

In our model, the only income earned during one’s youth is wage income. Thus, a higher

wage income can be taken as implying better nutrition. Furthermore, in our model, an

increase in per capita wage income is induced by technological progress; that is, we can

consider a low-income (high-income) economy as an economy with low (high) knowledge

of health and technology.

Using this framework, we obtain the following results: When per capita wage income is

low, an increase in such income leads to an increase in the number of children people have

(this is the “income-effect”). When per capita income is at a middle level, an increase in

income leads to a fall in fertility rates because the effect of an increasing probability of

survival into old age comes into play. When per capita wage income increases, parents

increase their savings to provide for consumption in their old age and decrease the number

of children they have. When per capita wage income is high, the survival probability in

old age reaches a sufficiently high level and increasing the survival probability in old age

becomes smooth. Thus, when per capita wage income increases, the income-effect once

4Cutler et al. (2006) also emphasize the importance of public health. For example, Chakraborty
(2004) incorporates this aspect by assuming that the probability of survival into old age depends on
public health expenditure. However, for simplicity, we do not consider this aspect.
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again comes into play; parents increase the number of children they have. In this study,

an increase in per capita wage income is induced by technological progress. Hence, the

economy experiences this fertility dynamics in the course of economic development.

With regard to the population-productivity reversal, our model makes the following

predictions. At first, an increase in the fertility rate increases the size of the working-

age population, which accelerates technological progress because the aggregate savings

increase; that is, there is a positive relationship between population growth and innovative

activity. Thereafter, an increase in the probability of survival into old age reduces the

fertility rate and raises per capita savings. Although declining fertility rate has a negative

effect on aggregate savings, the increase in per capita savings outweighs this negative

effect. As a result, aggregate savings increase, which promotes technological progress

and economic growth. Thus, our model predicts the population-productivity reversal as

discussed in Strulik et al. (2013). In addition, our theoretical predictions are consistent

with empirical findings (e.g., Bloom et al., 2003; Gehringer and Prettner, 2014).5

The remainder of this paper is organized as follows. Section 2 describes the relevant

literature. Section 3 establishes the model. Section 4 investigates the relationship between

fertility and per capita wage income. Section 5 examines the equilibrium dynamics of the

economy, the sustainability of economic growth, and the balanced growth path (BGP).

Section 6 investigates the model numerically. Section 7 concludes the paper.

2 Literature review

In this section, we review the relevant literature from the following two points of view:

2.1 Fertility dynamics

de la Croix and Licandro (2013) construct an OLG model with endogenous fertility,

longevity, and education. The model explains the observed fertility dynamics from the

Malthusian and post-Malthusian regimes to the sustained growth regime. Our study is

different from theirs in the following respects. First, they do not propose the rebound of

5Bloom et al. (2003) find that an increase in life expectancy leads to higher savings rates. Gehringer
and Prettner (2014) find a positive effect of rising longevity on total factor productivity.
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the fertility rate. Second, they assume that longevity is extended by parents’ investment

in a child’s physical development. Third, in their model, a demographic transition is

induced by a Beckerian child quantity-quality trade-off. Finally, they do not consider

R&D activities, or in other words, economic growth is not driven by R&D activities.

Hirazawa and Yakita (2017) attempt to explain the observed facts that an increase

in per capita income raises both life expectancy and the fertility rate in several highly

developed countries. They construct an OLG model with endogenous elderly labor supply

and fertility. Their model proposes that rising longevity increases elderly labor supply,

which increases per capita wage income in old age. Hence, young individuals decrease

savings and raise their consumption and the number of children they have. Our study

is different in the following respects. First, our model does not allow for elderly labor

supply and our result is based on the notion of an increase in per capita wage income

when people are young. Second, their model does not propose the initial increase in the

fertility rate; that is, they do not consider the post-Malthusian regime. Third, in their

model, economic growth is not driven by R&D activities.

Maruyama and Yamamoto (2010) integrate endogenous fertility into the Grossman

and Helpman (1991) type of the variety expansion growth model and explain a new

mechanism for fertility decline. In their model, variety expansion derived from innova-

tion induces parents to raise consumption expenditure on differentiated goods and reduce

the number of children they have. Hence, their result of fertility decline is derived differ-

ently from our mechanism and the fertility rate decreases monotonically in the course of

economic development.

2.2 Population-productivity reversal and the effects of demo-
graphic change on economic growth

As mentioned in the Introduction, Strulik et al. (2013) propose a model that explains the

population-productivity reversal. Our study is different in the following respects: First, in

their model, a demographic transition is induced by the Beckerian child quantity-quality

trade-off and the fertility rate decreases monotonically. Second, they do not consider

endogenous mortality. Third, their mechanism of population-productivity reversal is

different from ours.
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This study is also related to studies showing that the growth rate can increase even

under declining fertility in R&D-based growth models (e.g, Prettner and Trimborn, 2016;

Hashimoto and Tabata, 2016). Prettner and Trimborn (2016) integrate the OLG model

of Blanchard (1985) with the R&D-based growth model of Jones (1995) and examine

the growth effects of demographic change during the transitional dynamics. In their

model, demographic change is represented by an exogenous decrease in mortality rate and

an exogenous reduction in fertility. They show that falling mortality increases savings,

which outweighs the effect of declining fertility and promotes technological progress and

economic growth in the short and medium run. Although their model describes the same

mechanism as ours to show how these effects play out, they do not investigate the growth

effect of demographic change under endogenous fertility and mortality.6 Hashimoto and

Tabata (2016) construct an OLG model with R&D-based growth and endogenous fertility

and education. In their model, young individuals choose the number of children they have,

the amount of education their children receive, and the amount of investment in their own

education. They show that an increase in the probability of survival into old age reduces

the fertility rate but raises young individuals’ investment in their own education. When

the probability of survival into old age is sufficiently low (high), the effect of human

capital accumulation outweighs (falls short of) the effect of declining fertility; that is,

an increase in the probability of survival into old age enhances (worsens) technological

progress and economic growth. Their result is based on a Ben-Porath mechanism which

our model does not consider.7 In addition, they do not show the population-productivity

reversal during the transitional dynamics.

3 Model

We consider a three-period overlapping-generations model following Diamond (1965). An

individual lives for three periods–childhood, youth, an old age. In childhood, they do not

make any economic decision. In youth, every individual supplies labor to the market and

6Prettner (2013) integrates the OLG model of Blanchard (1985) with the R&D-based growth models
of Romer (1990) and Jones (1995) and investigates the effects of demographic change on long-run growth.
However, he does not take into account the transitional dynamics.

7The Ben-Porath mechanism works as follows: rising life expectancy prolongs active working lives,
which has a positive impact on investment in human capital.
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earns labor income. Young individuals also raise children. From youth to old age, an

individual dies with a probability 1−λt ∈ [0, 1). That is, the probability of an individual

surviving to the next period is λt ∈ (0, 1]. In old age, individuals retire, consume their

savings, and have no bequest motive.

3.1 Individuals

Each young individual at period t maximizes the following utility:

Ut = log cyt + βλt log c
o
t+1 + γ log nt, (1)

where cyt is their consumption when young, cot+1 is their consumption when they are old,

nt is the number of children each young individual has, β is the subjective discount rate,

and γ is the weight on utility derived from the number of children an individual has.8

We assume that each young individual has one unit of time endowment. Raising children

involves two kinds of costs: time and goods. When each young individual raises nt units

of children, he or she has to incur δnt units of final goods and ρnt units of time. Let wt

be the wage rate. The disposable working income becomes (1− ρnt)wt. Additionally, we

normalize the price of final goods to one. Thus, the budget constraint for each young

individual can be expressed as,

cyt + st + δnt = (1− ρnt)wt, δ > 0, ρ ∈ (0, 1), (2)

where st represents the savings in youth. The disposable working income (1 − ρnt)wt is

divided among consumption, savings, and child-rearing expenses.

As in Yaari (1965) and Blanchard (1985), we assume that there are actuarially fair

insurance companies and the annuities market is perfectly competitive. At the end of the

youth period, each individual deposits his or her savings with an insurance company. The

company invests them and pays the return on that investment to the surviving insured old

individuals. Owing to perfect competition, the rate of return on the annuities becomes

(1 + rt+1)/λt, where rt+1 is the interest rate in period t + 1. Hence, the consumption of

8Following Galor (2005) and Strulik et al. (2013), we assume that nt is the number of surviving
children because we do not want to consider child mortality, for the sake of analytical simplicity.
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the surviving old individuals becomes

cot+1 =
1 + rt+1

λt
st. (3)

By using (1), (2), and (3), the intertemporal utility maximization problem can be

stated as,

max
st,nt

log
[
(1− ρnt)wt − δnt − st

]
+ βλt log

(
1 + rt+1

λt
st

)
+ γ log nt.

Solving this maximization problem, we obtain

st =
βλtwt

1 + βλt + γ
, (4a)

nt =
γwt

(1 + βλt + γ) (ρwt + δ)
. (4b)

3.2 Final goods sector

Following Romer (1990) and Jones (1995), we consider three production sectors: a final

goods sector, an intermediate goods sector, and an R&D sector. We assume that the

final goods market is perfectly competitive. The production technology of the final good

is given by

Yt = L1−α
Y,t

∫ At

0

xαj,tdj, 0 < α < 1, (5)

where Yt, LY,t, At, and xj,t represent the output level, labor input, the variety of interme-

diate goods, and the input of the jth intermediate good, respectively. Because markets

are perfectly competitive, factor prices equal their marginal products:

wt = (1− α)L−α
Y,t

∫ At

0

xαj,tdj = (1− α)
Yt
LY,t

, (6a)

qj,t = αL1−α
Y,t x

α−1
j,t , (6b)

where qj,t is the price of the jth intermediate good. From (6b), the demand function for

intermediate good j is given as,

xj,t =

(
α

qj,t

) 1
1−α

LY,t. (7)
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3.3 Intermediate goods sector

We make the following assumptions about the intermediate goods sector: Each differ-

entiated intermediate good is produced by a single firm because an intermediate good

is infinitely protected by a patent. That is, the intermediate goods market is monopo-

listically competitive. Firm entering the intermediate goods market must acquire new

blueprints. They issue shares to raise funds.

We further assume that one unit of labor input produces one unit of a differentiated

intermediate good. Therefore, a firm manufacturing an intermediate good j (firm j)

maximizes its own profit, πj,t = qj,txj,t − wtxj,t, subject to the demand function (7).

Solving this maximization problem, we obtain the following price charged by firm j:

qj,t = qt =
1

α
wt. (8)

Thus, all intermediate goods are priced equally. From (7) and (8), the output and

monopoly profits of firm j are given by,

xj,t = xt =

(
α2

wt

) 1
1−α

LY,t, (9a)

πj,t = πt =
1− α

α
wtxt. (9b)

Because the market value of new blueprints is equal to the sum of the discounted present

value of the profit flow after period t, we can express it as,

vt =
∞∑

τ=t+1

πτ∏τ
u=t+1(1 + ru)

,

where vt is the market values of new blueprints. Using this, we obtain the following

no-arbitrage condition:

rt+1vt = πt+1 + vt+1 − vt.

The return on stock purchase is equal to the sum of dividend πt+1 and capital gains or

losses vt+1 − vt.

3.4 R&D sector

Next, we consider the technology involved in developing a new intermediate good. R&D

activities require labor inputs and the R&D sector is also perfectly competitive. New
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blueprints developed by R&D activities are sold to intermediate good firms. We assume

the following R&D technologies:

At+1 − At = θtLA,t, (10)

where θt and LA,t represent the productivity of R&D and the amount of labor devoted to

R&D. At+1 − At measures new intermediate goods. Following Romer (1990), Grossman

and Helpman (1991), and Jones (1995), we assume the productivity of R&D depends on

existing knowledge produced through previous R&D activities. We assume the following

productivity for R&D:

θt = Aϕt . (11)

Thus, At also represents the stock of technological knowledge. As discussed in Jones

(1995), we consider a parameter range where 0 < ϕ < 1. The profit of R&D firms is

given by πAt = vt(At+1 − At) − wtLA,t = (vtθt − wt)LA,t. R&D activities are perfectly

competitive. Hence, when R&D is undertaken, the following equality holds:

vt =
wt

Aϕt
. (12)

On the other hand, when vtθt < wt, R&D is not conducted because πAt < 0.

3.5 Market clearing condition and dynamic system

Labor is used for production of final and intermediate goods and for R&D activities. As

mentioned above, the labor supply of each individual is 1−ρnt. Let Nt be the population

size of young individuals at period t. The labor market clearing condition becomes

LY,t + Atxt + LA,t = (1− ρnt)Nt. (13)

The aggregate savings of young individuals in period t must be used for investment in

R&D (At+1 − At)vt or for the purchase of existing stocks vtAt. Hence, the asset market

clearing condition is given by,

(At+1 − At)vt + Atvt = At+1vt = stNt. (14)
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Finally, we consider the equilibrium condition for the final goods market. The final

goods are used for consumption and for raising children. The final goods-market clearing

condition is as follows:

Yt = cytNt + cotλt−1Nt−1 + δntNt.

Note, because the probability of survival of old individuals in period t is λt−1, the popu-

lation size of old individuals in period t becomes λt−1Nt−1.

Next, we characterize the dynamic system of this economy. Substituting (9a) into (5)

yields

Yt =

(
α2

wt

) α
1−α

AtLY,t. (15)

Using (6a) and (15), we obtain,

wt = α̂A1−α
t , (16)

where α̂ ≡ α2α(1− α)1−α. Let us define the growth rate of At as gA,t ≡ (At+1 − At)/At.

(4a), (12), and (14) yield

1 + gA,t =
stNt

wt
Aϕ−1
t =

βλt
1 + βλt + γ

NtA
ϕ−1
t . (17)

Following Hirazawa and Yakita (2017), we assume that the probability of survival rate

λt depends on the wage rate wt, that is, λt = λ(wt). (16) shows there is a one-to-

one relationship between the wage rate wt and the stock of technological knowledge At.

Therefore, we can say that the probability of the survival rate λt depends on the stock

of technological knowledge.

Because At+1 > At (At+1 = At) corresponds to gA,t > 0 (gA,t = 0) and the dynamics

of the young individual population size becomes Nt+1 = ntNt, equations (4b), (16), and

(17) characterize the dynamic system with respect to At and Nt.
9 Note that both At and

Nt in period t are predetermined variables.

9In this study, At+1 < At does not hold because there is no product obsolescence.
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4 Relationship between fertility and per capita wage

income

In this section, we examine the relationship between nt and wt. First, following Hirazawa

and Yakita (2017), we specify λ(wt) as follows:

λ(wt) =
ν

1 + χe−ψwt
, (18)

where ν ∈ (0, 1] and χ, ψ > 0. Under this functional form, we have

λ′(wt) =
νψχe−ψwt

(1 + χe−ψwt)2
> 0, (19a)

λ′′(wt) =
νψ2χe−ψwt

(1 + χe−ψwt)3
(
χe−ψwt − 1

)
. (19b)

lim
wt→0

λ(wt) ≡ λ =
ν

1 + χ
, (19c)

lim
wt→+∞

λ(wt) ≡ λ = ν. (19d)

From (19b), we obtain the following properties of λ(wt). If 0 < χ ≤ 1, λ′′(wt) < 0 holds.

That is, λ(wt) is concave for any wt. If χ > 1, λ′′(wt) R 0 holds for any wt Q wλ, where

wλ ≡ 1
ψ
logχ. When wt is either low or high, an increase in wt raises λt but this increase

is not large. On the other hand, when wt is at a middle level, an increase in wt increases

λt substantially.

Next, using (4b), we differentiate nt with respect to wt:

∂nt
∂wt

=
γδ

[1 + βλ(wt) + γ] (ρwt + δ)2
− γβλ′(wt)wt

[1 + βλ(wt) + γ]2 (ρwt + δ)
. (20)

The first term shows that an increase in per capita wage income increases the fertility

rate. Because we normalize the price of final goods to one, an increase in the wage rate

decreases the relative price of final goods, which reduces the child-rearing costs by final

goods and raises the number of children. We call this the “income-effect.” The second

term shows that a rise in per capita wage income raises the probability of surviving into

old age, which decreases the fertility rate and increases the savings meant for consumption

in old age. As shown in Appendix A, we clarify which one is larger, and thus state the

following proposition:
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Proposition 1.

1. If χ > max
{
ψδ−2ρ
ψδ+2ρ

, χ̃
}
, an increase in wt raises nt for any 0 < wt < w̄1 or wt > w̄2,

while an increase in wt reduces nt for any w̄1 < wt < w̄2, where χ̃, w̄1, and w̄2 are

defined in Appendix A.

2. If 0 < χ < ψδ−2ρ
ψδ+2ρ

or 0 < χ < χ̃, an increase in wt raises nt for all wt.

Figure 1: Relationship between nt and wt.

In addition, by using (4b) and (19d), nt converges to the following value:

lim
wt→∞

nt ≡ n∗ =
γ

(1 + βν + γ)ρ
.

Figure 1 illustrates the relationship between nt and wt, corresponding to the first case of

Proposition 1. As discussed above, an increase in per capita wage income has opposite

effects on fertility. When per capita wage income is low, the income-effect is relatively

large. That is, rising per capita wage income has a positive impact on the number of

children. When per capita wage income is at a middle level, the effect of an increasing

probability of survival into old age comes into play. Thus, when per capita wage income

increases, parents increase their savings for consumption in old age and decrease con-

sumption in their youth and the number of children they have. When per capita wage

income is high, the probability of survival into old age becomes smooth. Thus, when per

13



capita wage income increases, the income-effect is higher, or in other words, parents once

again increase the number of children they have.

At the end of this section, we mention the probability of survival rate λ(wt). Intu-

itively, it seems that the first case of Proposition 1 does not hold if λ(wt) is a concave

function. However, in Section 6, we provide a numerical example and show that this case

holds even under a concave function λ(wt). Moreover, our result of the fertility rebound

is derived from the following: the survival probability in old age attains a sufficiently

high level and increasing the survival probability in old age becomes smooth. To show

the empirical plausibility, Figure 2 presents the ratio of survivors at different age points

in high-income countries from 1950 to 2100. In addition, Table 1 shows the average rate

of increase for the data presented in Figure 2. In the first decade of 2000, the ratio of

survivors at ages 50, 60, and 70 is sufficiently high, and the average rate of increase begins

to decline from 2015 to 2100.

Figure 2: Ratio of survivors at each age in high-income countries.

Source: World Population Prospects: The 2017 Revision (United Nations).

Note: World Population Prospects presents the number of survivors at different age
points assuming that there are 100,000 people at birth. We calculate the ratio of
survivors, using this data.
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age 50 age 60 age 70

1950-1985 0.0164 0.0227 0.0370

1985-2015 0.0057 0.0106 0.0240

2015-2100 0.0019 0.0040 0.0086

Table 1: Average rise rate of the data presented in Figure 2

5 Equilibrium path

5.1 Phase diagram

We consider a phase diagram in the (At, Nt) plane. For our purpose, we impose χ > ψδ−2ρ
ψδ+2ρ

and χ > χ̃, which corresponds to the first case of Proposition 1. To investigate whether

At+1 > At or At+1 = At at each point of the (At, Nt) plane, we set gA,t = 0 in (17) as

follows:

Nt =
1 + βλ(wt) + γ

βλ(wt)
A1−ϕ
t ≡ Γ(At). (21)

We have At+1 > At above this locus and At+1 = At below this locus. Hereafter, we refer

to the region where At+1 > At as R&D region and the region where At+1 = At as no

R&D region. Using (16), we differentiate Γ(At) with respect to At as follows:

Γ′(At) = −(1 + γ)λ′(wt)

β [λ(wt)]
2 A1−ϕ

t

∂wt
∂At

+
1 + βλ(wt) + γ

βλ(wt)
(1− ϕ)A−ϕ

t ,

=
A−ϕ
t

βλ(wt)

{
−(1− α)(1 + γ)

λ′(wt)wt
λ(wt)

+ (1− ϕ) [1 + βλ(wt) + γ]

}
. (22)

The first term of (22) implies that an increase in At increases the probability of surviving

λ(wt), from (16) and (19a). This increases the per capita savings, and thus, the no

R&D region shrinks. The second-term of (22) implies that an increase in At reduces the

marginal productivity of the R&D sector derived from the knowledge spillover, which

enlarges the no R&D region. If the first-term’s effect is larger, Γ′(At) < 0 holds. On the

other hand, if the second-term’s effect is larger, Γ′(At) > 0 holds. As shown in Appendix

B, we clarify which one is larger. If 0 < χ < χ̂, we obtain

Γ′(At) > 0 for all At,
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where χ̂ is as defined in Appendix B. We depict this case in the left-side panel of Figure

3. The shaded area represents the no R&D region. In contrast, if χ > χ̂, we obtain

Γ′(At) > 0 when 0 < At < AΓ,1, At > AΓ,2,

Γ′(At) < 0 when AΓ,1 < At < AΓ,2,

where AΓ,1 and AΓ,2 are defined as Γ′(AΓ,1) = 0 and Γ′(AΓ,2) = 0. We depict this case in

the right-side panel of Figure 3. As discussed below, the properties of the phase diagram

remain the same in both cases.

Figure 3: At+1 > At and At+1 = At regions on the (At, Nt) plane.

Next, we examine whether Nt+1 > Nt or Nt+1 < Nt at each point of the (At, Nt)

plane. As discussed below, if n∗ is less than 1, the population size of young individuals

continues to decrease in the long run, and as a result, the economy definitely falls into the

no R&D region in the long run. To ensure sustainable growth, we impose the following

assumption:

Assumption 1. n∗ =
γ

(1 + βν + γ)ρ
> 1.

We show in Appendix C the following lemma:
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Lemma 1. Suppose that χ > max
{
ψδ−2ρ
ψδ+2ρ

, χ̃
}

and Assumption 1 holds.

1. If γw̄2 > [1 + βλ(w̄2) + γ] (ρw̄2 + δ), the following holds. Nt+1 > Nt holds when

wt > ŵ1, while Nt+1 < Nt holds when 0 < wt < ŵ1, where ŵ1 is defined as shown

in Appendix C.

2. If γw̄1 > [1 + βλ(w̄1) + γ] (ρw̄1 + δ) and γw̄2 < [1 + βλ(w̄2) + γ] (ρw̄2 + δ), the

following holds. Nt+1 > Nt holds when ŵ1 < wt < ŵ2 or wt > ŵ3, while Nt+1 < Nt

holds when 0 < wt < ŵ1 or ŵ2 < wt < ŵ3, where ŵ2 and ŵ3 are as defined in

Appendix C.

Figure 4 uses the results obtained so far to illustrate the relationship between nt

and wt and phase diagrams on the (At, Nt) plane. The first (second) case of Lemma 1

corresponds to the left-side (right-side) panels in Figure 4. Here, we define Āj and Âj as

w̄j = α̂Ā1−α
j and ŵj = α̂Â1−α

j (j = 1, 2, 3). As shown in Appendix C, the definition of ŵj

(j = 1, 2, 3) implies that Â1 < Ā1 and Â2 < Ā2 < Â3. Since At and Nt are predetermined

variables at time t, the initial state of the economy is given by point (A0, N0) on the

(At, Nt) plane. If the economy is in the no R&D region (the lower side of the Nt = Γ(At)

locus), At is constant, and as a result, the fertility rate nt is also constant from (4b), (16),

and (19a). In this case, when Nt+1 > Nt, the economy can reach the R&D region in a

finite time period. On the other hand, when Nt+1 < Nt, the economy falls into a trap.

For our research purposes, we assume that the initial stock of technological knowledge

is given by A0 ∈ (Â1, Ā1) in the discussions that follow. We describe the transition

dynamics in the R&D region (the upper side of Nt = Γ(At) locus).

First, we consider the first case of Lemma 1. Under A0 ∈ (Â1, Ā1), both At and Nt

continue to increase, that is, the economy is on a sustainable growth path. With regard

to the fertility dynamics, the fertility rate decreases with time under Ā1 < At < Ā2, and

increases with time under Â1 < At < Ā1 or At > Ā2.

Next, we consider the second case of Lemma 1. If N0 is sufficiently small, as rep-

resented by Q1 in the lower-right panel of Figure 4, R&D is undertaken and both the

population size of young individuals and the fertility rate increase, at first. After exceed-

ing the vertical line Ā1, the fertility rate begins to fall. After exceeding the vertical line
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Figure 4: Relationship between nt and wt and phase diagram on the (At, Nt) plane.
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Â2, the fertility rate drops to below 1; the population size of young individuals decreases

with time, and as a result, the economy falls into the no R&D region. If N0 is a specific

value as represented by Q2, the economy follows a path that is similar to that of the initial

point Q1. In this case, the economy converges to the point (Â3, N̂3), where N̂3 ≡ Γ(Â3).

At this point, the fertility rate is 1 and since there is no R&D, the economy remains at

this point. If N0 is sufficiently large as represented by Q3, the economy initially follows a

path similar to the one detailed above. However, after exceeding the vertical line Ā2, the

fertility rate increases with time. Hence, the economy goes beyond the vertical line Â3

and once again, the population size of young individuals increases. That is, the economy

attains a sustainable growth path.10 In summary, we can state that the path converging

to the point (Â3, N̂3) is a threshold curve that sustains economic growth. If (A0, N0) falls

into the lower side of this arm, the economy falls into a trap in the long run. These

results are summarized in the following lemma:

Lemma 2. Suppose that χ > max
{
ψδ−2ρ
ψδ+2ρ

, χ̃
}
, A0 ∈ (Â1, Ā1), and Assumption 1 holds.

1. If γw̄2 > [1 + βλ(w̄2) + γ] (ρw̄2 + δ), the economy can be on a sustainable growth

path.

2. If γw̄1 > [1 + βλ(w̄1) + γ] (ρw̄1 + δ) and γw̄2 < [1 + βλ(w̄2) + γ] (ρw̄2 + δ), there

is a threshold curve that sustains economic growth. This curve is an inverted-U on

the (At, Nt) plane.

When the economy is in the region where At ∈ (Â1, Ā1) and Nt > Γ(At), technological

progress is triggered by R&D activities. As mentioned earlier, both per capita wage

income and the fertility rate increase with time. Therefore, this region corresponds to

the post-Malthusian regime. After exceeding the vertical line Ā1, the economy enters the

sustained growth regime; that is, the economy experiences declining fertility although

per capita wage income continues to rise. As in Lemma 2, a reduction in the fertility

rate may lead the economy into a trap. However, if the initial population size of young

individuals is sufficiently large, sustainable growth can be attained. Along a sustainable

10If we do not impose Assumption 1, Nt+1 < Nt holds for all At > Â2. In this case, the economy
definitely falls into the no R&D region. Thereafter, At and nt become constant and nt falls to below 1.
Since Nt+1 < Nt, the economy cannot get out of the trap.
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growth path, if the economy exceeds the vertical line Ā2, the fertility rate rebounds, and

the economy converges to the BGP . In summary, we can state the following proposition:

Proposition 2. Suppose that χ > max
{
ψδ−2ρ
ψδ+2ρ

, χ̃
}
, A0 ∈ (Â1, Ā1), and Assumption 1

hold. If N0 is sufficiently large, the economy can be on a sustainable growth path. Along

the sustainable growth path, the fertility rate increases at first and then starts to fall.

Subsequently, the fertility rate rebounds and converges to n∗.

5.2 Growth rates

So far we have discussed the fertility dynamics and the sustainability of economic growth;

however, some important questions remain in our model. In this subsection, we discuss

the growth rate of At during the transitional dynamics, the value of GDP, and the growth

rates for each economic value along the BGP.

5.2.1 Growth rate of At

We first consider the growth rate of At. (17) leads to the following remark:

Remark 1. During the transitional dynamics, a lower At or a higher Nt or λt implies a

higher gA,t.

This can be intuitively explained as follows. A rising At reduces the effect of knowledge

spillover and the marginal productivity of the R&D sector (see (11)). By using (4a), we

obtain

st
wt

=
βλt

1 + βλt + γ
. (23)

A higher λt implies a higher per capita savings relative to wage income. From (17) and

(23), rising Nt or λt increases aggregate savings, which raises the supply of funds in the

asset market (see (14)). These two effects have a positive impact on investment in R&D.

Moreover, from individuals’ optimal decisions as discussed in Section 3, young individuals

allocate their wage income to consumption when young, and to savings for consumption

in old age and for raising children. Thus, we obtain the following relationship between

the fertility rate and the growth rate of the stock of technological knowledge.
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Remark 2. When the economy is in transitional dynamics, one sees the following static

and dynamic effects. Let us consider any period t:

1. Increasing (decreasing) nt has a negative (positive) impact on st, which can reduce

(raise) aggregate savings at period t and gA,t.

2. Increasing (decreasing) nt has a positive (negative) impact on Nt+1, which can raise

(reduce) aggregate savings at period t+ 1 and gA,t+1.

Because analytical investigation of the evolution of gA,t is too complicated, we explore

this through a numerical example (see Section 6).

5.2.2 GDP and BGP

In our model, the value of GDP is not equivalent to that of Yt. The correct value of GDP

is as given below:

GDP = Yt + vt(At+1 − At).

As mentioned above, when R&D is undertaken, πAt = vt(At+1 − At)− wtLA,t = 0 holds.

By using this and the final goods-market clearing condition, we obtain11

GDP = Yt + wtLA,t ≡ Zt.

The calculation of Yt is shown in Appendix D. In this study, we consider three generations

(children, young individuals, and old individuals). To calculate the per capita GDP, we

define the population size of the economy at time t as

Mt ≡ ntNt +Nt + λt−1Nt−1.

11Gross domestic income (GDI) is calculated by

GDI = (1− ρnt)wtNt + πtAt.

From (9b), (13), and (D.2), we obtain

GDI = wt (LY,t +Atxt + LA,t) +
1− α

α
wtAtxt =

1

1− α
wtLY,t + wtLA,t.

Because (6a) implies wtLY,t = (1− α)Yt, GDI is as given below:

GDI = Yt + wtLA,t.

Thus, we confirm that the value of GDI is equivalent to that of GDP.
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Hence, we define per capita GDP as zt ≡ Zt

Mt
.

If the economy is on a sustainable growth path, At and Nt grow forever. We define

BGP as that state of the economy in which the growth rates and the employment share

of each sector is constant. Let us define the growth rate of a variable Xt as gX,t ≡

(Xt+1 −Xt)/Xt. As mentioned above, the fertility rate converges to n∗ in the long run.

As shown in Appendix E, we can derive the growth rates along the BGP as follows:

1 + g∗M = n∗,

1 + g∗A = (n∗)
1

1−ϕ ,

1 + g∗Y = 1 + g∗Z = (n∗)
1−α
1−ϕ

+1 ,

1 + g∗z = (n∗)
1−α
1−ϕ .

As in Jones (1995), the growth rates along the BGP are determined by the fertility rate.

6 Numerical example

In this section, we analyze the model by using numerical examples. We set the maximum

value of λt to 1 (that is, λ = ν = 1) and the minimum value of λt to 0.2 (that is,

λ = ν/(1 + χ) = 0.2 leads to χ = 4). The time cost of raising children is assumed to be

ρ = 0.08, which lies between the value of Hirazawa and Yakita (2017) and Strulik et al.

(2013). To ensure sustained economic growth, we assume n∗ = 1.2. We set β = 0.5 and

adjust γ to satisfy n∗ = 1.2. According to Alvarez-Pelaez and Groth (2005), a plausible

range of monopoly markup in US industry is the interval [1.05, 1.40]. To achieve this,

we set α = 0.72. We let ϕ = 0.9 and obtain g∗z = 0.67. This implies that the annual

growth rate of per capita GDP is about 1.5%, assuming one period to be 35 years. We

choose the remaining parameter values as δ = 0.05, ψ = 0.1, χ = 4 and set the initial

values of At and Nt as A−1 = 500 and N−1 = 50. Figure 5 presents the evolution of the

survival probability, fertility, the growth rate of the stock of technological knowledge, and

the growth rate of per capita GDP from period t = 0 to t = 10.

The upper left- and upper right-side panels in Figure 5 show the evolution of the

survival probability, λt, and the evolution of fertility, nt, respectively. The numerical

result is consistent with our theoretical result in Sections 4 and 5. That is, the fertility
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rate first rises and then begins to fall. Subsequently, the fertility rate rebounds and

converges to the BGP.

The lower left-side panel in Figure 5 shows that gA,t first rises and then falls, converging

to the BGP. Moreover, we notice that the evolution of gz,t is similar to that of gA,t, from

the lower right-side panel in Figure 5. As mentioned in the Introduction, our model

predicts the population-productivity reversal. Initially, the rising fertility rate increases

the population size of young individuals. This enlarges aggregate savings and the growth

rate of the stock technological knowledge. Later, the increasing probability of survival

into old age decreases the fertility rate and raises per capita savings. As mentioned

in Remarks 1 and 2, the growth rate of the stock of technological knowledge has the

following effects: (i) A decrease in nt has a negative effect on gA,t+1, (ii) an increase

in λt has a positive effect on gA,t, and (iii) an increase in At has a negative effect on

gA,t. Our results show that the positive effect (ii) outweighs the negative effects (i) and

(iii); that is, the growth rate of the stock technological knowledge increases with time.

Figure 5: The evolution of λt, nt, gA,t, and gz,t from period t = 0 to t = 10.
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Figure 6: The evolution of λt, nt, gA,t, and gz,t at each value of χ from period t = 0 to
t = 10.

This suggests the population-productivity reversal. Subsequently, the negative effect (iii)

becomes sufficiently large, and the growth rate of the stock of technological knowledge

begins to decline and converge to the BGP.

Next, we show that our main results hold even if λ(wt) is a concave function. The

calculation of χ̃ and ψδ−2ρ
ψδ+2ρ

using the same parameter values as in Figure 5 yields the

value of χ̃ ≈ 0.405 and ψδ−2ρ
ψδ+2ρ

≈ −0.939. As discussed in Section 4, the condition of

concavity of λ(wt) is 0 < χ ≤ 1. Thus, if 0.405 < χ ≤ 1, the first case of Proposition 1

holds. To confirm this result, we present Figure 6, which shows the evolution of λt, nt,

gA,t, and gz,t for each value of χ from period t = 0 to t = 10. The green line represents

the case where χ = 0.4, and the red and blue lines show the cases where χ = 0.7 and

χ = 1. As we can see from Figure 6, the cases where χ = 0.7 and χ = 1 correspond to

the first case of Proposition 1, whereas the case where χ = 0.4 corresponds to the second

case of Proposition 1. In addition, the cases where χ = 0.7 and χ = 1 show that the

population-productivity reversal holds under the concave function λ(wt).
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7 Conclusion

In this study, we construct an overlapping-generations model with endogenous fertility,

mortality, and R&D activities. Our model demonstrates the observed fertility dynamics

from the post-Malthusian regime through the sustained growth regime to the rebound

of fertility rate. Furthermore, our model depicts another mechanism for the population-

productivity reversal.

There are several interesting directions for future research. First, we do not consider

human capital investment, even though human capital investment is an important factor

in fertility and economic growth. Most existing studies examine various important roles

of the Beckerian child quantity-quality trade-off and the Ben-Porath mechanism. More-

over, in recent years, many developed countries’ TFR has fallen to below the so-called

replacement level (2.1 children per women) even after the fertility rebound. Our model

predicts that the economy will definitely fall into a trap if the long-run fertility rate is

lower than the replacement level. However, as pointed out by Strulik et al. (2013), hu-

man capital investment can ensure economic growth if human capital growth exceeds the

decline in population. Future research could examine the implication of human capital in

our model. Second, we do not calibrate the model. As shown in Figure 5, our numerical

result does not match the actual data. In future research, incorporating human or physi-

cal capital could help match the results to actual data as in Strulik et al. (2013). Third,

Luci-Greulich and Thévenon (2013) state that family policies (paid leave, childcare ser-

vices, and financial transfers) of developed countries have a positive impact on fertility;

that is, family policies can contribute to the recent fertility rebound. Thus, investigating

the effects of child-rearing policies offers another area for further research. Fourth, as

mentioned in footnote 8, we do not consider child mortality. According to Cutler et al.

(2006), the child mortality rate declined significantly before 1960. Incorporating child

mortality could provide interesting insights into fertility dynamics. Fifth, in life-cycle

models, an expansion of public pension is crucial to individual decisions on fertility and

savings. If there is a pay-as-you-go pension system, individual savings may decrease,

which works against the population-productivity reversal. Future research should exam-

ine the effects of public pension in our model.
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Appendix

A Proof of Proposition 1

To investigate the sign of ∂nt

∂wt
, we rearrange (20) as follows:

∂nt
∂wt

= γ
Φ(wt)

[1 + βλ(wt) + γ]2 (ρwt + δ)2
,

where Φ(wt) ≡ δ[1 + βλ(wt) + γ]− βλ′(wt)wt(ρwt + δ). The sign of ∂nt

∂wt
is determined by

that of Φ(wt), that is, Φ(wt) R 0 implies ∂nt

∂wt
R 0. Differentiating Φ(wt) with respect to

wt and using (19a) and (19b) yield

Φ′(wt) = −βwt
[
2ρλ′(wt) + λ′′(wt)(ρwt + δ)

]
,

= −βνψχwte
−ψwt

(1 + χe−ψwt)3

{
2ρ− ψ(ρwt + δ) + χ

[
2ρ+ ψ(ρwt + δ)

]
e−ψwt

}
,

≡ −βνψχwte
−ψwt

(1 + χe−ψwt)3
Ω(wt).

Here, Ω(wt) satisfies

Ω(0) = 2ρ(1 + χ) + ψδ(χ− 1),

Ω′(wt) = −ψρ− ψχ
[
ρ+ ψ(ρwt + δ)

]
e−ψwt < 0.

If Ω(0) < 0, we have Φ′(wt) > 0 for all wt. On the other hand, if Ω(0) > 0, we have

Φ′(wt) Q 0 for any wt Q w̃, where w̃ is defined as Φ′(w̃) = 0. Here, the condition of

Ω(0) > 0 is as follows:

χ >
ψδ − 2ρ

ψδ + 2ρ
.

These results imply that the relationship between Φ(wt) and wt has a U-shape and w̃

minimizes the value of Φ(wt).

We then substitute (18) and (19a) into Φ(wt) as follows:

Φ(wt) = δ(1 + γ) +
δβν

1 + χe−ψwt
− βνψwt(ρwt + δ)χe−ψwt

(1 + χe−ψwt)2
.
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Using this, we obtain

lim
wt→0

Φ(wt) = δ(1 + γ) +
δβν

1 + χ
> 0,

lim
wt→∞

Φ(wt) = δ(1 + γ) + δβν > 0.

In addition, if Φ(w̃) < 0, we obtain the following relationship:

Φ(wt) > 0 when 0 < wt < w̄1 or wt > w̄2,

Φ(wt) < 0 when w̄1 < wt < w̄2,

where w̄1 and w̄2 are defined as Φ(w̄1) = 0 and Φ(w̄2) = 0 hold. In contrast, if Φ(w̃) > 0,

we have Φ(wt) > 0 for all wt.

Next, we examine the condition of Φ(w̃) < 0. Because w̃ satisfies Φ′(w̃) = 0, we

obtain

2ρ− ψ(ρw̃ + δ) + χ
[
2ρ+ ψ(ρw̃ + δ)

]
e−ψw̃ = 0,

⇔ 1 + χe−ψw̃ =
2ψ(ρw̃ + δ)

2ρ+ ψ(ρw̃ + δ)
. (A.1)

An investigation of (A.1) gives us the following properties:

dw̃

dχ
=

[2ρ+ ψ(ρw̃ + δ)]e−ψw̃

ψρ+ ψχ[ρ+ ψ(ρw̃ + δ)]e−ψw̃
> 0, (A.2)

w̃ → ∞ when χ→ ∞. (A.3)

Using (A.1), we rearrange the condition of Φ(w̃) < 0 as given below:

Φ(w̃) < 0,

⇔ δ(1 + γ) +
δβν

1 + χe−ψw̃
− βνψw̃(ρw̃ + δ)χe−ψw̃

(1 + χe−ψw̃)2
< 0,

⇔ δ(1 + γ) + δβν
2ρ+ ψ(ρw̃ + δ)

2ψ(ρw̃ + δ)

− βνψw̃(ρw̃ + δ)
ψ(ρw̃ + δ)− 2ρ

2ρ+ ψ(ρw̃ + δ)

[
2ρ+ ψ(ρw̃ + δ)

2ψ(ρw̃ + δ)

]2
< 0,

⇔ 4δ(1 + γ)ψ(ρw̃ + δ) + 2δβν[2ρ+ ψ(ρw̃ + δ)] < βνw̃
{
[ψ(ρw̃ + δ)]2 − 4ρ2

}
,

⇔ ψρ

[
2(1 + γ)

βν
+ 1

]
+

[
2(1 + γ)ψδ

βν
+ (2ρ+ ψδ)

]
1

w̃
<
ψ2(ρw̃ + δ)2 − 4ρ2

2δ
. (A.4)

Let us define the left- and right-hand sides of (A.4) as ηL(w̃) and ηR(w̃). ηL(w̃) is

decreasing in w̃ and limw̃→0 ηL(w̃) = ∞ and limw̃→∞ ηL(w̃) = ψρ
[
2(1+γ)
βν

+ 1
]
hold. On the
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other hand, ηR(w̃) is increasing in w̃ and limw̃→0 ηR(w̃) =
ψ2δ2−4ρ2

2δ
and limw̃→∞ ηR(w̃) = ∞

hold. From (A.2) and (A.3), we find that there is a unique χ̃ that satisfies ηL(w̃) = ηR(w̃).

Hence, χ > χ̃ implies ηL(w̃) < ηR(w̃). In contrast, if 0 < χ < χ̃, ηL(w̃) > ηR(w̃) holds

(that is, Φ(w̃) > 0 holds).

B Properties of Γ(At)

Using (18), (19a), and (22), we obtain

Γ′(At) =
A−ϕ
t

βν

{
(1− ϕ)(1 + γ + βν) +

[
(1− ϕ)− (1− α)(1 + γ)ψwt

]
χe−ψwt

}
,

≡ A−ϕ
t

βν
Θ(wt).

Here, Θ(wt) satisfies

Θ(0) = (1− ϕ)(1 + γ + βν) + (1− ϕ)χ > 0,

Θ′(wt) = −
[
(1− α)(1 + γ) + 1− ϕ− (1− α)(1 + γ)ψwt

]
ψχe−ψwt .

Hence, Θ′(wt) Q 0 when wt Q wΘ, where wΘ ≡ (1−α)(1+γ)+1−ϕ
(1−α)(1+γ)ψ . Using these results, we

can define the following two cases: When Θ(wΘ) > 0, we obtain

Θ(wt) > 0 for all wt.

On the other hand, when Θ(wΘ) < 0, we obtain

Θ(wt) > 0 when 0 < wt < wΓ,1, wt > wΓ,2,

Θ(wt) < 0 when wΓ,1 < wt < wΓ,2,

where wΓ,1 and wΓ,2 are defined as Θ(wΓ,1) = 0 and Θ(wΓ,2) = 0. Because the sign of

Γ′(At) is the same as that of Θ(wt) and wt is determined by At, we can state the properties

of Γ(At) as in Subsection 5.1.

We then investigate the condition Θ(wΘ) < 0. Rearranging Θ(wΘ) < 0 yields

Θ(wΘ) < 0,

⇔ (1− ϕ)(1 + γ + βν)− (1− α)(1 + γ)χe−ψwΘ < 0.
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This implies that Θ(wΘ) < 0 holds when χ > χ̂, where χ̂ is defined as follows:

χ̂ ≡ (1− ϕ)(1 + γ + βν)

(1− α)(1 + γ)e−ψwΘ
.

In contrast, we obtain Θ(wΘ) > 0 when 0 < χ < χ̂.

C Proof of Lemma 1

From Proposition 1, nt has a local maximum (minimum) value at wt = w̄1 (wt = w̄2).

Because Nt+1 R Nt is equivalent to nt R 1, we examine the following two cases:12 First,

if nt > 1 at wt = w̄2, we obtain

Nt+1 R Nt when wt R ŵ1,

where ŵ1 is defined as nt|wt=ŵ1 = 1. This case corresponds to the panels on the left side

of Figure 4. We next consider the other case. From Assumption 1, if nt > 1 at wt = w̄1

and nt < 1 at wt = w̄2, we obtain

Nt+1 > Nt when ŵ1 < wt < ŵ2 or wt > ŵ3,

Nt+1 < Nt when 0 < wt < ŵ1 or ŵ2 < wt < ŵ3,

where ŵ2 and ŵ3 are defined as nt|wt=ŵj
= 1 (j = 2, 3) and ŵ1 < ŵ2 < ŵ3. This case

corresponds to the panels on the right side of Figure 4. Using (4b), we obtain the following

relationship:

nt R 1 ⇔ γwt R [1 + βλ(wt) + γ] (ρwt + δ).

Hence, the case where nt > 1 at wt = w̄2 corresponds to γw̄2 > [1 + βλ(w̄2) + γ] (ρw̄2+δ).

On the other hand, the case where nt > 1 at wt = w̄1 and nt < 1 at wt = w̄2 corresponds

to γw̄1 > [1 + βλ(w̄1) + γ] (ρw̄1 + δ) and γw̄2 < [1 + βλ(w̄2) + γ] (ρw̄2 + δ), respectively.

12We rule out the case where nt < 1 at wt = w̄1 because this runs contrary to the observed data.
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D Calculation of Yt

Substituting (16) into (15), we obtain

Yt =

(
α2

1− α

)α

A1−α
t LY,t, (D.1)

We consider the labor market clearing condition to derive LY,t. By using (9a) and (16),

the labor input into production of intermediate goods becomes

Atxt =
α2

1− α
LY,t. (D.2)

From (13) and (D.2), we obtain

LY,t =
1− α

1− α + α2

[
(1− ρnt)Nt − LA,t

]
if LA,t > 0. (D.3)

Furthermore, (10), (11), and (17) yield

LA,t =
βλ(wt)Nt

1 + βλ(wt) + γ
− A1−ϕ

t . (D.4)

By using (4b), (16), (D.1), (D.3), and (D.4), we can calculate the output of final goods

Yt.

E Derivation of the growth rates along the BGP

E.1 Derivation of g∗M

Because Nt+1 = n∗Nt and λt = λ̄ hold along the BGP, the growth rate of population

along the BGP is given as,:

1 + g∗M =
n∗Nt+1 +Nt+1 + λ̄Nt

n∗Nt +Nt + λ̄Nt−1

=
(n∗)2 + n∗ + λ̄

n∗ + 1 + λ̄
n∗

= n∗.

E.2 Derivation of g∗A

By using (D.4) and (19d), we obtain the employment share of R&D along the BGP as

follows:

LA,t
Nt

=
βλ̄

1 + βλ̄+ γ
− A1−ϕ

t

Nt

.
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Because the employment share of R&D is constant, the term A1−ϕ
t /Nt also becomes

constant along the BGP. Thus, the growth rate of At along the BGP is as follows:

(1 + g∗A)
1−ϕ =

(
At+1

At

)1−ϕ

=
Nt+1

Nt

= n∗.

E.3 Derivation of g∗Y

From (D.1), the growth rate of Yt is determined by those of At and LY,t. (D.3) implies

LY,t
Nt

=
1− α

1− α + α2

(
1− ρn∗ − LA,t

Nt

)
.

Because the employment share of final goods production becomes a constant, the growth

rate of LY,t along the BGP is equal to n∗. Therefore, the growth rate of Yt along the

BGP is given by

1 + g∗Y = (1 + g∗A)
1−α n∗ = (n∗)

1−α
1−ϕ

+1 .

E.4 Derivation of g∗Z and g∗z

From the definition of Zt, the growth rate of Zt is as follows:

1 + gZ,t =
Zt+1

Zt
=
Yt+1 + wt+1LA,t+1

Yt + wtLA,t
=
wt+1

wt

1
1−αLY,t+1 + LA,t+1

1
1−αLY,t + LA,t

,

=
wt+1

wt

1
1−α

LY,t+1

Nt+1
+

LA,t+1

Nt+1

1
1−α

LY,t

Nt
+

LA,t

Nt

Nt+1

Nt

.

Along the BGP,
LY,t

Nt
and

LA,t

Nt
become a constant. These results and (16) imply

1 + g∗Z = (1 + g∗A)
1−α n∗ = (n∗)

1−α
1−ϕ

+1 .

Because zt =
Zt

Mt
, the growth rate of zt along the BGP is given by

1 + g∗z =
zt+1

zt
=
Zt+1

Zt

Mt

Mt+1

=
1 + g∗Z
1 + g∗M

= (n∗)
1−α
1−ϕ .
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