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Abstract

In this paper we investigate the principal–multi agent relationship
with moral hazard where a risk neutral principal contracts with mul-
tiple risk averse agents whose actions are unobservable to the princi-
pal. We show that the well–known trade–off between incentive and
risk sharing can be asymptotically resolved as the number of agents
becomes sufficiently large, when an arbitrary fraction of agents can
obtain unverifiable perfect signals about the actions of other agents.
In particular the contract to attain the asymptotic efficiency has the
following features: (i) The wage schemes to some agents are contin-
gent on the task performances of other agents as well as their own
performances even though all of them are technologically and statisti-
cally independent each other. (ii) The wage scheme specifies only two
payment levels for each agent. (iii) No message games or revelation
mechanisms which ask the agents to report their observed information
are used. (iv) The almost first best is uniquely implemented.
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1 Introduction

In this paper we provide a new approach for resolving the trade–off between
incentives and risk sharing in the principal–multi agent model where a risk
neutral principal contracts with many risk averse agents. In our model all
agents are symmetric, and there exist no technological and statistical re-
lations among their task performances at all. Despite such independence
structure, we show that interdependent wage scheme which makes wages of
one agent contingent on the performances of others can attain almost the
first best, by identifying the large number effect that contracting with suffi-
ciently many agents has the value of providing appropriate work incentives
to them with arbitrary small risk.

The standard principal–agent theory has discovered the result that there
exists the basic tension between incentives and risk sharing in contracting
environments where trading partners have different risk attitudes and choose
privately observed actions after contract is signed: When a risk neutral
principal contracts with risk averse agents, she should impose no risk on
them but this undermines their work incentives. 1

In general efficient risk sharing and the provision of work incentives can-
not be compatible each other. However, there are a few papers which show
that such trade–off can be resolved in certain situations. One approach to
this is that the principal hires multiple agents who can monitor about their
chosen actions each other and can report messages about these actions. In
this case, it is known that, by using the technique of the implementation
theory, the first best can be attained as a unique equilibrium outcome (See
Ma (1988)). The other approach is to consider the dynamic structure of
principal–agent relationships by allowing renegotiation of initial contracts
after agents take actions. Hermalin and Kaz (1991) show in the single–
agent model that any implementable action without renegotiation is also
implemented at the first best cost when the principal can obtain an unveri-
fiable perfect signal about agent’s actions and initial contract is renegotiated
after such information is revealed. Ishiguro and Itoh (2001) also show that
the principal can attain the first best in the multi–agent model with rene-
gotiation even when agents’ actions are still unobservable to the principal
at the renegotiation stage.

Our main finding is that the principal can asymptotically attain the first
best payoff as a unique equilibrium payoff when the number of agents be-
comes sufficiently large under certain information structure. The key feature
of our model is that there exists some subset of agents, called monitoring
agents, who can obtain unverifiable perfect signals about the actions of other
agents by taking monitoring activity. For example, the agents working at

1See Holmström (1979), Grossman and Hart (1983) and Mirrlees (1979) for pioneer
works on the moral hazard problems.
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upper levels of a hierarchy may perform monitoring activities to supervise
their subordinates as well as they are engaged in productive activities. First
we suppose that such monitoring activity is costless and enforceable, and
later extend the model to allow monitoring to be costly and unobservable
to the principal.

In contrast to Ma (1988), we will not rely on the message games or rev-
elation mechanisms which ask the monitoring agents to report about their
observed information. Thus our mechanism can be also applied to the envi-
ronments where direct communication between the principal and monitoring
agents may be limited or costly. For example, there may be the following
cases: (i) The principal may have no specific knowledge to understand the
reports made by the agents. (ii) The messages sent by the monitoring agents
may contain some noise through the process of transmitting such messages
to the principal. (iii) The principal may be able to manipulate the contents
of the messages sent by the monitoring agents in her own interests, e.g., for
the purpose of reducing the payments to the agents. This case occurs when
the messages themselves are unverifiable. (iv) Even if the messages about
actions are verifiable as usually assumed in the implementation theory, it
may not be effective to use the revelation mechanism because doing so may
open the possibility of collusion between the agent to be monitored and
monitoring agents: The former agent may bribe the latter in exchange of
sending the message that he has chosen the correct action even when he has
not done so. In any case, all I want to stress here is that our mechanism can
work well without using the revelation games through which the principal
and agents directly communicate each other. The similar point is also ex-
ploited by Strausz (1999) in the deterministic team production model (See
footnote 2 below).

As an alternative way, our model can be also interpreted as the model
in which the principal can organize the production structure as a series
of the sequential stages in which the agents who act at subsequent stages
(followers) can observe the actions taken by the previous agents (leaders). 2

Such sequential production structures are often observed in production lines
in the real world.

The main role of introducing the above monitoring structure in our pa-
per is to create endogenous externality among agents by designing inter-
dependent wage schemes. Specifically, we will construct the mechanism by

2Strausz (1999) considers such sequential productions in the deterministic partnership
model, and shows that there exists a budget balancing sharing scheme to attain the full
efficiency. The current paper differs from Strausz’s model: Our focus will be on how the
trade–off between risk sharing and incentives can be resolved in the agency setting, while
in Strausz (1999) stochastic and risk elements are assumed away from the model. See also
Miller (1997) for the team production model in which there exists some agent who can
monitor other agents’ actions. Miller then shows that the full efficiency can be attained
by using the budget balancing sharing rule with the message game.
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dividing the set of all agents into two subsets: One is the set of agents (called
non–monitoring agents) who choose the actions first and one of whom is ran-
domly selected by the principal to be monitored by other agents (monitoring
agents) at subsequent stage of the mechanism. We will call the agent who
was selected to be monitored from the first set of agents the selected agent.
The monitoring agents choose their actions after they obtain an unverifiable
perfect signal about the action chosen by the selected agent.

The wage schemes to monitoring agents can be designed such that they
respond to the different actions of the selected agent by choosing different
actions. In particular, under the specified schemes, all monitoring agents are
induced to react to the first best action of the selected agent by choosing
the largest action among all possible actions but react to any lower action
than the first best one by choosing some lower action than the largest one.
This can endogenously create the externality effect that the action choice of
the selected agent affects not only his own task performance but also those
of all monitoring agents through its influence on their action choices. Thus
the task performances of monitoring agents convey some useful information
about whether the selected agent has worked well or not. Then, by aggre-
gating the performances of all monitoring agents, the principal can check
the deviation of non–monitoring agents from the first best action.

If the above information aggregation is possible, it suffices to design a
simple wage scheme offered to non–monitoring agents, by specifying only
two wage levels, bonus and penalty, which will be paid according to the
outcomes of the aggregated performances of monitoring agents. Specifically
we will use a statistical test contract which checks whether the aggregated
performances of monitoring agents can pass some statistical test or not. 3

The statistical test here estimates whether or not the aggregated per-
formances can be on average close to their expected values conditional on
all monitoring agents choosing the largest action within some small positive
constant. If the selected agent can pass this test he will be paid a bonus,
while if he fails the test he must pay a penalty. If the selected agent shirks,
then all monitoring agents will shirk as well at the subsequent stage. As
a consequence, the principal can collect many signals about such deviation

3Al–Najjar (1997) also utilizes the statistical test approach in the two–sided moral
hazard model where the principal exerts an unobservable effort as well as many agents
do so. Al–Najjar (1997) then shows that the second best optimum, which is attained
when the principal can commit herself to her effort choice, can be approximated as the
number of agents becomes large enough. The current paper, however, is different from
Al–Najjar (1997): First, we address the issue about whether or not the first best optimum
can be approximately implemented. Second, we emphasize the role of monitoring among
agents, which can be used for creating endogenous externality among them. Third, our
mechanism uniquely implements the almost first best, and hence is robust to multiple
equilibria. See also Matsushima (2001) for utilizing the statistical test approach in the
context of repeated games with imperfect monitoring (the implicit collusion between firms
contacting in many markets).
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of the selected agent and detect it with almost probability one. Then any
deviation of the selected agent can be heavily punished by taking a suffi-
ciently large penalty. On the other hand, by choosing the first best action,
the selected agent can pass the statistical test with almost probability one:
By the property of the incentive scheme offered to monitoring agents, they
will react to the first best action of the selected agent by choosing the largest
action. Then, by the Law of Large Numbers and the property of the sta-
tistical test contract offered to the selected agent, the probability to pass
the statistical test converges to one as the number of agents goes to infinity.
Thus the selected agent can almost surely obtain the bonus.

From this argument, all non–monitoring agents choose the first best ac-
tion and face almost no risk. However, monitoring agents choose the largest
action, which may not be the first best one, and face the non–trivial risk
because their wage schemes must satisfy the incentive compatibility con-
straints. This problem can be resolved by choosing a sufficiently small frac-
tion of monitoring agents. Therefore, the principal can succeed in eliciting
the first best action from almost all agents but imposing sufficiently small
risk on them when the number of agents becomes sufficiently large.

Our contract also has the following interesting features: (i) It makes
wages of any monitoring agent contingent on the task performances of the
selected agent as well as his own performance, even enough all of them
are technologically and statistically independent each other. This result is
in contrast to the standard argument that interdependent wage schemes
become suboptimal when the tasks of agents are technologically and statis-
tically independent. (ii) It is very simple in that the wage scheme specifies
only two wage levels for each agent. Since the contract theory is often criti-
cized on the complexity and reality of the optimal contracts derived from the
models, our result may help to fill the gap between the theory and practice,
at least in large organizations where many agents participate. (iii) We show
the unique implementation result that the principal can attain the almost
first best payoff as a unique equilibrium payoff. Thus our result is robust
to the problems of multiple equilibria under the proposed mechanism. (iv)
We need only very weak informational requirement to construct the mecha-
nism. It is sufficient to obtain verifiable performances of the selected agent
and monitoring agents but not those of all non–monitoring agents. (v) No
message games are used, as I have already explained.

The remaining sections are organized as follows: In section 2 we will set
up the model. In section 3 we will show the main result that the principal
can asymptotically attain the first best payoff as a unique equilibrium payoff
when the number of agents tends to be sufficiently large. In Section 4 we
will extend the model to allow costly and unobservable monitoring and show
that the asymptotic efficiency result still holds.
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2 The Model

2.1 Contractual Environment

We investigate the principal–multi agent relationship with moral hazard
where a risk neutral principal contracts with multiple risk averse agents
whose actions are unobservable to the principal. Let I ≡ {1, 2, ..., N} denote
the set of agents. All agents are identical in that they have the same pref-
erence (which will be explained later) and the same production technology.
Each agent is assigned a task to be performed and chooses an unobservable
action. Let ai ∈ A denote the action taken by agent i, where A ⊂ � is a
finite set. Let also a ≡ (ai)N

i=1 ∈ AN be an action profile of all agents. Let
a−i denote a vector a−i ≡ (aj)j �=i. The (von Neumann and Morgenstern)
utility function of agent i is additively separable over his income wi and
action cost C(ai) as follows:

u(wi) − C(ai). (1)

The reservation utility of all agents is normalized to zero.
We also make the following standard assumption:

Assumption S: (i) u : [w,∞) → � is strictly increasing and concave, (ii)
limw→w u(w) = −∞ and ∀ ai ∈ A, ∃ w ∈ (w,∞), u(w) > C(ai), and (iii)
C is strictly increasing.

Assumption S (i) and (ii) say that each agent is risk averse and we
can always find a low payment to punish the agent heavily as well as some
payment to ensure he covers his action cost. Assumption S (iii) simply states
that any agent dislikes to work hard.

Let a ∈ arg mina∈A C(a) denote the least costly action and define the
least cost of action as C ≡ C(a). Let φ be the inverse function of u (such
inverse exists by Assumption S (i)).

The principal can obtain a benefit R(a) from an action profile a ∈ AN , by
hiring N agents and assigning them to the tasks. 4 One interpretation about
this is that R is deterministic but non–verifiable. The other interpretation
is that R(a) is the expected value of some random returns generated by an
action profile a ∈ AN . 5 R(a) is assumed to be symmetric and take the
form as R(a) =

∑N
i=1 r(ai) where r : A → �.

4Since task assignment itself is not issue of the paper, we assume that each agent is
assigned to a task due to some technological reasons.

5In the latter interpretation the random returns may correspond to the task perfor-
mances we will introduce below. Even when this is not always the case and hence the
random returns convey other verifiable information than the task performances to be de-
fined below, our result is not changed because the principal can attain almost the first
best even if she simply uses only the latter information by discarding any additional in-
formation.
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We define the first best (FB) solution as the outcome to be attained when
the actions of all agents are contractible. Since the agents are symmetric,
we will focus on the average payoff of the principal per agent. Let aFB ∈ A
denote the first best action level to maximize the average payoff of the
principal. Then, the first best outcome is characterized as the efficient risk
sharing and optimal action choice:

wi = φ(C(aFB)), for all i ∈ I, (2)

and
aFB ∈ arg max

a∈A
r(a) − φ(C(a)). (3)

Let V FB denote the principal’s average payoff at the first best solution:

V FB ≡ r(aFB)− φ(C(aFB)). (4)

To avoid the trivial result, we assume that aFB > a.

2.2 Information Structure

We assume that the action chosen by each agent is not observable to the
principal. However she may be able to access to some informative signal
about it.

Let yi ∈ Y be the performance of the task assigned to agent i. Here
Y ⊂ � is the set of all possible performances. We will assume that the
task performance of agent i depends on his own action and some random
shock which is not statistically correlated with those of other agents. As in
the standard agency model, we will regard yi itself as a random variable of
which probability distribution is affected by action ai. We assume that the
distribution of each yi has the full support over Y .

We will also assume that all the task performances (yi)N
i=1 are identically

distributed, given all agents choose the same action. In other words the
probability distribution of yi depends only on the action ai ∈ A but not
on the name of a particular agent. Let E[yi|ai] denote the expected value
of the task performance of agent i, conditional on his action ai. Each yi

is assumed to have a finite variance Var(yi|ai) for any given action ai ∈ A.
Note then that under our assumption Var(yi|ai) depends only on the action
level ai but not on the name of agent. Let also define v ≡ maxa∈A Var(y|a)
where v < +∞.

Let F (z|ai) denote the cumulative distribution function of yi, given an
action ai ∈ A. We will then make the following weak assumption, which
states that any lower action than the largest action, denoted a ≡ maxA, or
the first best one aFB negatively affects the improvement of the probability
distribution of the task performance, as compared to the largest action or the
first best one, in the sense of the first order stochastic dominance (FOSD):
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Assumption FOSD: For any y ∈ Y with min Y < y < maxY ,

F (y|a) > F (y|a) ∀ a < a, and F (y|a) > F (y|aFB) ∀ a < aFB

where a ≡ maxA.

Assumption FOSD requires only “local” conditions on the FOSD improve-
ment of the distribution function. Thus it will be satisfied when the FOSD
property “globally” holds, i.e., F (y|a) is decreasing in a ∈ A.

Under Assumption FOSD the expected value of yi conditional on ai ∈ A,
E[yi|ai], has the following property: E[yi|a] > E[yi|ai] for all ai < a.

We will also define the following function:

g(a; z) ≡ C(a) − C(a)
F (z|a) − F (z|a)

, for a < a (5)

Note that g(a; z) > 0 by Assumption FOSD. g(a; z) represents the ratio
between the change of action cost and the improvement of the distribution
function in the sense of FOSD evaluated at the largest action a. Note that
this function is well-defined because of Assumption S (iii) and Assumption
FOSD. We will use g(a; z) later for constructing the mechanism in the proof
of our main theorem.

2.3 Monitoring Structure

We assume that there exists some subset of agents who can obtain unveri-
fiable perfect signals about the actions other agents have chosen by taking
some monitoring activity. Specifically we assume that a fraction α ∈ (0, 1) of
all agents can engage in such monitoring activity as well as they choose their
productive actions. Each of them can obtain an unverifiable perfect signal
about any other agent’s action. Let Im ⊆ I denote the set of the agents who
can take monitoring activity, where #Im = αN . We assume that the prin-
cipal can identify the set Im. We also stress here that all agents of Im will
not actually monitor other agents’ actions, even though they can do so (See
the mechanism below for selecting the agents who actually take monitoring
activity).

For the time being, we will maintain the assumption that the monitoring
activity does not cost any monitoring agent and is not subject to the moral
hazard problem so that it is enforced by the principal. In Section 4 we will
relax this assumption and introduce costly and unobservable monitoring
activity.

Alternatively we can resort to the other model in which the principal
is allowed to organize the production structures of agents as the sequential
stages where the subsequent agents can observe the actions taken by the
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previous agents (See Strausz (1999) for the similar approach in the part-
nership model). All we need is that some subset of agents can observe the
actions taken by others before they will choose their actions.

As I have explained in the Introduction, we will not rely on the message
games or revelation mechanisms which ask the monitoring agents to report
about their observed outcomes. If the principal uses the message game in
which the monitoring agents are asked to report about the actions chosen
by other agents, the first best efficiency can be approximated. This can be
done by using the standard technique of the implementation theory. How-
ever, the goal I will pursue is to show that the first best efficiency can be
asymptotically attained in large organizations by using some simple wage
schemes, which I will explain below, instead of the message games. Thus our
mechanism can be also applied to the environments where communication
between the principal and agents is limited or costly.

Finally we will make the following very weak informational requirement:

Assumption I. The principal can verify
(i) whether each agent i’s performance yi is realized as being higher than
some value ŷ ∈ (minY, maxY ) and
(ii)

∑
j∈J yj for any J ⊆ Im with #J ≥ n where n ≥ 2 is a fixed number.

Assumption I (i) says that all realizations of yi are necessarily not veri-
fiable but it is verified whether yi ≥ ŷ or not for some ŷ ∈ (minY, maxY ).
Assumption I (ii) says that the aggregated performances of more than n−1
agent who can take monitoring activity is verifiable. We here require n ≥ 2
just to rule out the case that when we allow #J = 1 the principal can ver-
ify the realization of yj for any j ∈ J, which makes the first statement (i)
meaningless for j ∈ J. Note that Assumption I will trivially hold when the
performances of all agents are verifiable, as assumed in the standard agency
setting.

3 Asymptotic Efficiency

We will now show that the principal can attain the almost first best payoff
V FB as a unique equilibrium payoff when the number of agents becomes
sufficiently large. Since we will employ the multi–stage mechanism, we will
use the subgame perfect equilibrium (SPE) as a solution concept.

Theorem. Suppose that Assumption S, FOSD and I are satisfied. Then,
for any ε > 0, there exists some N such that for all N ≥ N the principal
can obtain V FB − ε as a unique SPE payoff.
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Proof. See Appendix.

Although the formal proof is relegated to Appendix, we will here explain
the mechanism to attain the asymptotic efficiency and discuss its implica-
tions.

We will use the following mechanism:

Mechanism

Stage 0 All agents simultaneously decide whether to participate in the mecha-
nism or not as well as they simultaneously announce positive integers
(ki)N

i=1 where ki ∈ {1, 2, ...}. Let M be the set of the agents who have
decided to participate in the mechanism. Only they can go to the next
stage and all others obtain the reservation payoff, zero.

Stage 1-1 If #M < N , all agents of M simultaneously choose the actions. Then
the payments to agents are made according to the following wage
schemes:

– CASE 1: #M < N − 1. All agents of M obtain the following
constant utility payment:

u(yi) ≡ C + δ, ∀ yi ∈ Y

where δ > 0.
– CASE 2: #M = N − 1. Let L ⊆ M denote the set of the agents

who have announced the highest integer at Stage 0. Let also
K ≡ #L. Then all agents of L obtain the following constant
utility payment:

u(yi) ≡ C + ξK , ∀ yi ∈ Y

where ξ ∈ (0, 1), and all agents of M \ L obtain the constant
utility payment C + ξN .

CASE 3: If #M = N , the game goes to the following stages (Stage
1-2, 2, 3 and 4).

The principal divides the set of all agents, I , into two disjoint subsets,
denoted I1 and I2, where I1 ∩ I2 = ∅ and I1 ∪ I2 = I . Moreover, set
I2 ⊆ Im and let βN ≡ #I1 and (1 − β)N ≡ #I2 where β ∈ (0, 1)
and 1 − β < α. Recall here that Im is the set of the agents who can
engage in monitoring activity and α ∈ (0, 1) is its fraction relative to
all agents. Thus I2 is the set of the agents who can actually monitor
other agents. We call them monitoring agents, while its complement
I1 is called the set of non–monitoring agents.

Let y2 ≡ ∑
i∈I2

yi be the aggregated performances of all monitoring
agents of I2. Let also Y 2 be the set of all possible y2.
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Stage 1-2 The agents of I1 simultaneously choose the actions.

Stage 2 The principal randomly selects one agent from I1 with equal proba-
bility (1/βN ) and has all agents of I2 choose the monitoring activity.
Let i∗ ∈ I1 denote the agent selected to be monitored by the agents of
I2. This agent will be called the selected agent.

Stage 3 The agents of I2 simultaneously choose the actions after they have
obtained the unverifiable perfect signal about the action the selected
agent i∗ has chosen at Stage 1-2.

Stage 4 The task performances of all agents are realized and the payments to
them are made according to the following wage schemes:

– The utility payment to the agents of I1: Let T be the set of the ag-
gregated performances of monitoring agents (I2), y2 ≡ ∑

i∈I2
yi,

as follows:

T ≡
{

y2 ∈ Y 2 |
∣∣∣∣ 1
(1 − β)N

y2 − E[y|a]
∣∣∣∣ < ε

}
(6)

where ε > 0 is chosen to satisfy

1
2

min
a<a

(E[y|a] − E[y|a]) > ε. (7)

Then the utility payment to the selected agent i∗ ∈ I1 is given by

ui∗(y2) ≡
{

C(aFB) + η if y2 ∈ T ,
B if y2 /∈ T

(8)

where C(a) − C(aFB) > η > 0 for all a > aFB and B is chosen
to satisfy

γ <
1

βN
B < C − (C(aFB) + η) (9)

for some γ ∈ �.
– Any other agent k ∈ I1 than i∗ obtains the constant utility pay-

ment C(aFB) + η.
– The utility payment to agent j ∈ I2:

uj(yj, yi∗) ≡
{

u if yj ≥ ŷ and yi∗ ≥ ŷ,

u otherwise
(10)

where ŷ ∈ (minY, maxY ) is the performance value given in As-
sumption I. Here, by defining ∆u ≡ u−u and P (a) ≡ 1−F (ŷ|a),
u and u are given so as to satisfy the following inequalities:

1
maxa<aFB P (a)

max
a<a

g(a; ŷ) > ∆u >
1

P (aFB)
max
a<a

g(a; ŷ) (11)
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and
P (a)P (aFB)∆u + u − C(a) > 0. (12)

Remark: In the above mechanism we implicitly supposed that the number of
agents N is sufficiently large so that (1−β)N ≥ n is satisfied for the number
n given in Assumption I. Then, since the aggregated performances of the
monitoring agents y2 can be verified by Assumption I, the wage scheme to
the selected agent can be defined in the consistent way with our informa-
tional requirement (Assumption I). This implicit treatment makes no loss of
generality because our focus is on the implementation in large organizations
where N tends to be large enough.

The above mechanism essentially consists of two stages: One is the par-
ticipation stage in which all agents decide whether to participate in the
mechanism or not. This corresponds to Stage 0 defined above. The other is
the action choice stage in which agents choose their actions, given the wage
schemes defined above. What wage schemes are offered to agents depends
on how many agents decided to participate in the mechanism at Stage 0.
Except the case that all N agents decide to participate in the mechanism,
the utility based payments to all agents are independent of their perfor-
mances (see CASE 1 and CASE 2 in the mechanism). In the case that all
N agents participate in the mechanism (CASE 3), the action choice stages
are sequentially designed such that non–monitoring agents (I1) move first
at Stage 1-2 and then monitoring agents (I2) choose the actions at Stage 3
after one agent, i∗, is randomly selected from the first set of agents (I1) and
his action is monitored by the latter agents at Stage 2.

Furthermore, when CASE 2 is applied (i.e., the number of participating
agents is equal to N − 1), only the agents who have announced the highest
integer at Stage 0 can obtain some positive rent ξK where K is the number
of those agents. This will trigger the integer game so that some agent always
has the incentive to break the equilibrium in which CASE 2 is applied by
announcing a higher integer. This is because the rent ξK is decreasing
in the number of the agents who announced the highest integer K. The
role of introducing such integer game is simply to eliminate all undesirable
equilibria in which CASE 2 is applied, as in the standard implementation
theory. We also show that any equilibrium in which CASE 1 is applied can
be eliminated. This is simply because any agent can obtain at least positive
rents, δ > 0 or ξN > 0, by participating in the mechanism when CASE 1
is applied. Thus we can ensure that in any SPE all N agents participate in
the mechanism. Thus only CASE 3 occurs in any SPE under the proposed
mechanism.

In CASE 3, the wage schemes offered to the agents have the following
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features: First, the wage scheme to the selected agent i∗ depends only on the
aggregated performances of all monitoring agents (I2), y2 =

∑
i∈I2

yi. More
precisely, we define the set of the aggregated performances (see T in (6))
such that their average value (y2/(1 − β)N ) is close to their expected value
conditional on all the agents of I2 choosing the largest action a, i.e., E[y|a],
within some positive constant ε > 0. Then we say that the selected agent
can pass the statistical test when the realized aggregated performances y2

lie in this set T . The selected agent will be paid a bonus C(aFB) + η if
he can pass the test but will be fined otherwise. This is the wage scheme
offered to the selected agent (see (8)), which will work so as to check whether
non–monitoring agents have deviated from the first best action or not.

Note that the wage scheme to the selected agent depends only on the
performances of monitoring agents (I2) but not on his own performance.

Second, at Stage 2 all agents of I2 are forced to monitor what action
the selected agent i∗ ∈ I1 has chosen at Stage 1-2. Note here that we are
assuming that the monitoring activity is enforceable at no costs. Then, after
having observed the unverifiable perfect signal about this action, all agents
of I2 simultaneously choose their actions. In this stage agent j ∈ I2 will be
paid a high utility payment u (resp. a low payment u) if and only if both
his own and the selected agent’s performances exceed the critical value ŷ
given in Assumption I (resp. otherwise). Note that such payment scheme
to the agents of I2 is well–defined because P (aFB) > P (a) for all a < aFB

by Assumption FOSD.
One important implication about the above wage scheme (10) is that any

agent of I2 has the strict incentive to choose the largest action a ≡ maxA
whenever having obtained the unverifiable perfect signal that the selected
agent i∗ has chosen the first best action aFB while he has the strict incentive
to choose some lower action than a whenever having obtained the signal that
i∗ has chosen a lower action than the first best one. To see this, note that
the definition of ∆u implies the following two inequalities:

∆u >
1

P (aFB)
max
a<a

g(a; ŷ), (13)

and
1

maxa<aFB P (a)
max
a<a

g(a; ŷ) > ∆u. (14)

The first inequality (13) then implies

∆u >
1

P (aFB)
max
a<a

g(a; ŷ)

≥ 1
P (aFB)

C(a) − C(a)
P (a) − P (a)

∀ a �= a

which can be rewritten by

P (a)P (aFB)∆u− C(a) > P (a)P (aFB)∆u − C(a), ∀ a �= a. (15)
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This shows that any agent of I2 will choose the largest action a with certainty
when he has obtained the unverifiable perfect signal that the selected agent
i∗ has chosen the first best action aFB .

On the other hand, the second inequality (14) implies that for any a′ <

aFB there exists some action â < a such that

P (â)P (a′)∆u − C(â) > P (a)P (a′)∆u − C(a). (16)

Thus any agent of I2 never chooses the largest action a when he has obtained
any unverifiable signal revealing that the selected agent i∗ has chosen a lower
action than the first best one aFB . Instead, in this case each agent of I2 will
choose some lower action â < a.

Given the above argument, we can then show that any agent of I1 has
the incentive to choose the first best action. If some agent of I1 deviates
from the first best action and shirks, 6 by the above argument, all agents
of I2 will react to such deviation by choosing some lower action than the
largest one a when the deviating agent is selected to be monitored at Stage
2. Thus, shirking by any agent of I1 creates the large externality effect in the
subsequent stage: it affects the task performances of all monitoring agents
by changing their action choices at Stage 3. Thus the principal can exploit
such externality effect to check whether the selected agent has worked well
or not. In fact, when the number of agents becomes sufficiently large, by
the Law of Large Numbers such deviation can be almost perfectly detected
and heavily punished. On the other hand, if the selected agent chooses the
first best action, then all monitoring agents choose the largest action a and
hence the selected agent can pass the statistical test with almost probability
one, due to the Law of Large Numbers and (6). Anticipating the random
selection to be monitored at Stage 2 and fearing a small payment B, all
agents of I1 will choose the first best action. Thus, any agent of I1 obtains
the bonus C(aFB) + η with almost probability one and hence is imposed
almost no risk in the equilibrium.

Finally, when the number of agents tends to be large enough (N →
∞), the principal’s expected payoff per agent can be given by the average
value between the payoffs obtaining from a monitoring agent and a non–
monitoring agent:

β{r(aFB) − φ(C(aFB) + η)}+ (1 − β){r(a) − W ∗}

where W ∗ denotes the expected wage paid to a monitoring agent (See the
Appendix for more precise derivation). Then, by taking a sufficiently small
fraction of monitoring agents, β → 1, and sufficiently small rent to non–
monitoring agents, η → 0, the above average payoff converges to the first

6Any deviation to a higher action than the first best one is not profitable for any agent
of I1 because he can obtain at most C(aFB) + η which is, by definition of η, smaller than
C(a) when a > aFB .
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best one V FB .

The mechanism has several interesting features: First, the wage scheme
is simple in that it specifies only two payment levels for each agent. This
is desirable property of the mechanism because contract theory has been
often criticized on the ground of its reality that derived contracts are more
complicated than those observed in practice. Second, the principal does
not need to observe all the performances of agents. The wage schemes are
contingent only on the performances of the selected agent and all monitoring
agents but not on those of all non–monitoring agents. Thus the number of
the task performances to be needed for contracting is given by 1 + (1 −
β)N . Since we take β → 1, the principal is required to observe only the
performances of relatively small fraction of agents, 1/N + (1 − β), when
N → ∞.

4 An Extension to Costly and Unobservable Mon-

itoring

We have so far assumed that the principal can force any monitoring agent to
monitor any other agent in the costless way. In this section we will extend
the model to allow monitoring to be costly and unobservable to the principal.

Specifically we will assume that any monitoring agent must incur some
cost ρ > 0 when he monitors any other agent’s action. Furthermore, the
principal cannot directly observe whether each monitoring agent has per-
formed the monitoring activity or not. Let m ∈ {1, 0} denote the action of
a monitoring agent representing whether he takes the monitoring activity
(m = 1) or not (m = 0). The principal is assumed to obtain a verifiable
informative signal about the monitoring activity of each monitoring agent.
Let s ∈ {s1, s2} denote this signal and assume that s = si occurs with prob-
ability q(si|m) ∈ (0, 1) and q(s1|1) > q(s1|0). Thus, obtaining the signal
s1 more accurately reveals the fact that a monitoring agent has taken the
monitoring activity (m = 1) rather than he has not taken it (m = 0).

Since the signal s is verifiable, contract can be contingent on this. Let
(v, v) be the utility payment scheme offered to any monitoring agent, where
v (resp. v) denotes the utility payment made when the signal s1 is obtained
(resp. the signal s2 is obtained). We add this scheme (v, v) to the original
payment scheme (u, u).

To specify (v, v), we define the following function which represents the
expected payoff of the monitoring agent without adding the new scheme
(v, v):

U(aj, ai∗) ≡ P (aj)P (ai∗)∆u − C(aj). (17)

Then, since q(s1|1) > q(s1|0), we can choose ∆v ≡ v − v to satisfy the
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following inequality:

min
ai∗

(
max

aj
U(aj, ai∗)

)
+ q(s1|1)∆v − ρ

> max
ai∗

(
max

aj
U(aj, ai∗)

)
+ q(s1|0)∆v. (18)

Here the left hand side of the above inequality is the minimum payoff
each monitoring agent can obtain when he takes the monitoring activity
(m = 1) while its right hand side is the maximum payoff he can obtain when
he does not take the monitoring activity (m = 0). Since the action of the
selected agent i∗ is not observable to any monitoring agent who does not take
the monitoring activity, his expected payoff off the equilibrium path when
he does not perform the monitoring activity depends on his belief about
what action the selected agent has chosen at Stage 1-2. However, the above
strict inequality implies that any monitoring agent has the strict incentive to
monitor the action of the selected agent, whatever beliefs about the selected
agent’s action off the equilibrium path following the deviation that he does
not take the monitoring activity. Thus, under the above payment scheme
(v, v), any monitoring agent will actually monitor the selected agent at Stage
2 with certainty.

Then the base payments v and u can be freely chosen to satisfy the
individual rationality constraint of monitoring agents:

P (a)P (aFB)∆u + u + q(s1|1)∆v + v − C(a)− ρ > 0. (19)

Although the additional incentive compatibility constraint (18) imposes
further risk on monitoring agents, such efficiency loss can be taken as small
as possible by choosing a sufficiently small fraction of monitoring agents
(β → 1). Therefore, the principal can still attain the asymptotic efficiency,
even when the monitoring activity is costly and subject to the moral hazard
problem.

5 Concluding Remarks

In this paper we have investigated the principal–multi agent relationship
with moral hazard where a risk neutral principal contracts with multiple risk
averse agents whose actions are unobservable to the principal. Our main
finding is that the standard trade-off between incentives and risk sharing
can be asymptotically resolved as the number of agents becomes sufficiently
large, when a fraction of them acts as monitoring players who can obtain
unverifiable perfect signals about the actions of other agents.

From our result we can derive several implications about organizational
designs. First, as Al–Najjar (1997) also discussed in the different context,
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the informational economy of scale works in large organizations: It is bene-
ficial to organize many production tasks which are technologically and sta-
tistically unrelated each other. This creates the source of information to be
used for checking whether agents take appropriate actions or not. Second,
our result may also explain the fact that large organizations are often formed
as the hierarchical structure where relatively small fraction of agents act as
monitoring players who supervise their subordinates. The role of monitoring
performed by the agents at upper levels of a hierarchy is to encourage the
subordinates to work well by linking the wage schemes of the former with
the performances of the latter.

6 Appendix: Proof of the Theorem

Under the mechanism defined in the text, we will first show the following
series of claims.

Claim 1. All agents of M choose the least costly action a with certainty in
the subgame at Stage 1-1.

Proof. This follows from the utility payment schemes defined in the mech-
anism: The utility payment scheme to any agent of M who has decided
to participate at Stage 0 is independent of the realizations of all the task
performances, when #M �= N . Thus all agents of M surely choose the least
costly action a in the subgame at Stage 1-1. Q.E.D.

Next we will consider the subgame at Stage 3 where monitoring agents
of I2 choose the actions simultaneously. As we discussed in the text, the
expected payoff of each agent j ∈ I2 depends only on his own action as well
as the action of the selected agent, ai∗ , which has been already fixed at Stage
1-2:

P (aj)P (ai∗)∆u + u − C(aj).

Let µj(ai∗) denote the mixed action strategy of agent j ∈ I2 which is used
at Stage 3 contingent on the observed action of the selected agent ai∗ , where
µj : A → ∆(A), a mapping from A to the set of probability distributions
over A, ∆(A).

Claim 2. In the subgame at Stage 3, agent j of I2 chooses µj(ai∗) which
has the support over a subset of Σ(a∗i ) where:

Σ(ai∗) ≡ argmax
a∈A

P (a)P (ai∗)∆u− C(a),

where Σ(aFB) = {a} and a /∈ Σ(ai∗) for any ai∗ < aFB .
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Proof. Since the action set A is finite and the expected payoff of any agent
of I2 depends only on his own action as well as that of the selected agent
i∗ which has been already fixed at Stage 3, any agent of I2 has the optimal
action choice in any subgame at Stage 3. Thus, Σ(ai∗) �= ∅ for all ai∗ ∈ A.
In particular, as we have argued (see inequalities (15) and (16) in the main
text), any agent of I2 will choose the largest action a with certainty when
the selected agent i∗ has chosen the first best action aFB but choose a
lower action than a with certainty when he has not done so. Thus we have
Σ(aFB) = {a} and a /∈ Σ(ai∗) for any ai∗ < aFB . Q.E.D.

Then we will turn to the subgame at Stage 1-2 in which agents of I1

choose the actions.

Claim 3. All agents of I1 choose the first best action aFB with certainty in
the subgame at Stage 1-2, when the number of agents N becomes sufficiently
large.

Proof. Take any agent l ∈ I1 and suppose that he chooses a lower action
than the first best one aFB, i.e., al < aFB. Suppose also that he is selected
to be monitored at Stage 2, i.e., i∗ = l. Then, by Claim 2, after having
obtained the unverifiable perfect signal about the action al, all agents of I2

never choose the largest action a, i.e., a /∈ Σ(al). Thus a /∈ suppµj(al) when
al < aFB where suppµj(·) denotes the support of µj(·).

Take any action profile â ∈ ∏
j∈I2

suppµj(al).
We will define by P (y2 ∈ T ; â) the probability that the shirking agent l

can pass the statistical test (y2 ∈ T ), given the action profile â. Then we
can obtain the following:

P (y2 ∈ T ; â)

= P

(∣∣∣∣ 1
(1 − β)N

y2 − E[y|a]
∣∣∣∣ < ε; â

)

= P

⎛
⎝ 1

(1 − β)N

∣∣∣∣∣∣y2 −
∑
j∈I2

E[yj|âj] +
∑
j∈I2

E[yj|âj] − N (1 − β)E[y|a]
∣∣∣∣∣∣ < ε; â

⎞
⎠

≤ P

⎛
⎝ 1

(1 − β)N

∣∣∣∣∣∣
∑
j∈I2

E[yj|âj] − N (1− β)E[y|a]
∣∣∣∣∣∣ < 2ε; â

⎞
⎠

+ P

⎛
⎝ 1

(1 − β)N

∣∣∣∣∣∣y2 −
∑
j∈I2

E[yj|âj]

∣∣∣∣∣∣ > ε; â

⎞
⎠ .

Here, by Chebyshev’s inequality, the second term appeared in the last ex-
pression can be bounded above by∑

j∈I2 Var(yj|âj)
ε2(1 − β)2N 2

≤ v

ε2(1 − β)N
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which converges to zero as N → ∞ (Recall here that v = maxa∈A Var(y|a)).
The first term in the last expression can be also written by

P

⎛
⎝ 1

(1 − β)N

∣∣∣∣∣∣
∑
j∈I2

{E[yj|âj] − E[yj|a]}
∣∣∣∣∣∣ < 2ε; â

⎞
⎠

= P

⎛
⎝ 1

(1 − β)N

∑
j∈I2

{E[yj|a] − E[yj|âj]} < 2ε; â

⎞
⎠

≤ P

(
min
a<a

(E[y|a]− E[y|a]) < 2ε; â
)

which becomes zero because by definition of ε:

min
a<a

(E[y|a]− E[y|a])/2 > ε.

Thus P (y2 ∈ T ; â) → 0 as N → ∞. This convergence result holds for
any action profile of agents of I2 belonging to the support of their action
strategies, i.e., any â ∈ ∏

j∈I2 suppµj(al). In other words, the shirking agent
l would fail the statistical test with almost probability one as N → ∞,
whatever action profiles of agents of I2 are considered from the support of
their action strategies. Hence the shirking agent l would be made a low
payment B with almost probability one if he were selected to be monitored
at Stage 2. More precisely, the shirking agent l ∈ I1 will obtain the following
expected payoff:

1
βN

{
P (y2 ∈ T ; â)(C(aFB) + η) + P (y2 /∈ T ; â)B

}
+

(
1 − 1

βN

)
(C(aFB)+η)−C(al)

because he will be selected from I1 to be monitored at Stage 2 with probabil-
ity 1/βN and obtain the expected utility P (y2 ∈ T ; â)(C(aFB)+η)+P (y2 /∈
T ; â)B while he can obtain C(aFB) + η when he will not be selected, which
occurs with probability 1 − 1/βN . By limN→∞ P (y2 ∈ T ; â) = 0 and the
definition of B (see (9)), the above expected payoff can be negative when
N → ∞.

Next suppose that the same agent l ∈ I1 chooses the first best action
aFB at Stage 1-2 and that he was selected to be monitored at Stage 2. By
Claim 2, after having obtained the unverifiable perfect signal about al, all
agents of I2 will choose the largest action a with certainty at Stage 3.

Let a ∈ A(1−β)N denote the action profile of agents of I2 where all of
them choose a. Then, if agent l is selected by the principal to be monitored
at Stage 2, he will face the following probability to fail the test:

P (y2 /∈ T ; a) = P

(∣∣∣∣ 1
(1 − β)N

y2 − E[y|a]
∣∣∣∣ ≥ ε; a

)

≤ Var(y|a)
ε2(1 − β)N

→ 0 (N → ∞)
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where the inequality follows from the Chebyshev’s inequality.
Thus, by choosing aFB, agent l will obtain the following expected payoff:

1
βN

{
P (y2 ∈ T ; a)(C(aFB) + η) + P (y2 /∈ T ; a)B

}
+

(
1 − 1

βN

)
(C(aFB)+η)−C(aFB)

which converges to η > 0 as N → ∞, because B/βN is bounded (see (9))
and P (y2 /∈ T ; a) → 0 when N → ∞.

Finally suppose that agent l ∈ I1 chooses a higher action than the first
best one, i.e., al > aFB. By the property of the wage scheme (8), any agent
of I1 cannot obtain higher payoffs than C(aFB) + η − C(a), which is then
negative for any action a > aFB due to the definition of η. Thus any agent
of I1 would obtain a negative payoff if he chose a higher action than the first
best one.

The above arguments then show that any agent of I1 has no incentives
to choose other actions than aFB at Stage 1-2, when the number of agents
N becomes sufficiently large, because those actions give him negative ex-
pected payoffs while choosing aFB yields a positive rent η > 0 with almost
probability one. Q.E.D.

Finally, we will show that all agents participate in the mechanism at
Stage 0.

Claim 4. When the number of agents N is sufficiently large, there exists
a SPE in which all agents decide to participate in the mechanism at Stage
0 with probability one (i.e. Pr[#M = N ] = 1) and other possibilities never
become SPEs (i.e. Pr[#M �= N ] = 0 in any SPE).

Proof. First, suppose that all but one of I decide to participate in the
mechanism with certainty at Stage 0 and consider the incentive of the re-
maining agent. If such agent does not participate in the mechanism, he
will obtain the reservation payoff, zero. However, if he participates in the
mechanism, he will obtain some positive payoff, regardless of being a mon-
itoring or non–monitoring agent: If #M �= N , all participating agents will
obtain at least positive rents δ > 0 or ξN . If #M = N , by Claim 2 and
3, any monitoring agent will obtain a positive rent given by (12) and any
non–monitoring agent will obtain the payoff η > 0 with almost probability
one. Thus we have a SPE having all agents participating in the mechanism
with certainty at Stage 0.

Next we will show that Pr[#M �= N ] = 0 in all SPEs.
By Claim 1, in the subgame at Stage 1-1 with the outcome of Stage 0

being #M ≤ N − 1, any agent surely chooses the least costly action a.
We first show that Pr[#M = N−1] = 0 in any SPE. Suppose contrary to

the claim that Pr[#M = N−1] > 0 in some SPE. Then some agent i who has

20



decided to participate with positive probability at Stage 0 has the incentive
to raise an announced integer and become a unique “winner” in the integer
game to obtain the prize ξ > 0. This is explained as follows: Note that
announced integers affect only the equilibrium outcomes in which CASE 2
is applied but not others where CASE 1 and 3 are applied. Furthermore, the
prize ξK obtained by the winners who have announced the highest integer is
decreasing in the number of them K and all losers who have not announced
the highest integer obtain a smaller rent ξN . Thus, the deviation to become a
unique winner in the integer game can increase the expected payoffs in all the
states when CASE 2 is applied but not those in other states. The states when
CASE 2 is applied have positive measures because Pr[#M = N − 1] > 0.
Thus we must have Pr[#M = N − 1] = 0 in any SPE.

Next note that Pr[#M < N − 1] = 1 never happens in any SPE: If
such case occurs, some agent must not participate in the mechanism with
certainty at Stage 0 but then he would deviate to choose “participation” and
the highest integer with certainty. This deviation gives him some positive
payoff (Note that such deviation can increase the number #M at most by
N − 1). Thus Pr[#M < N − 1] < 1 in any SPE.

Then we must have Pr[#M = N ] > 0 because Pr[#M = N − 1] = 0
by the above argument. Then Pr[#M = N ] > 0 implies that all agents
must choose “participation” with strictly positive probabilities at Stage 0.
However, this can be satisfied only when Pr[#M = N ] = 1 so that all agents
choose “participation” with probability one because if 0 < Pr[#M = N ] < 1
some agent must choose “not participation” with strictly positive probability
but this contradicts the fact Pr[#M = N −1] = 0. Therefore, we must have
Pr[#M = N ] = 1 in all SPEs. Q.E.D.

From Claim 1–4, we have established the result that a SPE exists and
all SPEs must have the following equilibrium properties when N → ∞: (i)
All agents of I1 choose the first best action aFB while all agents of I2 choose
the largest action a. (ii) Any agent of I1 is paid C(aFB) + η with almost
probability one. (iii) The expected wage paid to any agent of I2 is given by

W ∗ ≡ P (a)P (aFB)φ(u) + (1 − P (a)P (aFB))φ(u).

Thus, when N is large enough, the (average) expected payoff of the principal
per agent can be unique and given by

β{r(aFB) − φ(C(aFB) + η)} + (1 − β){r(a) − W ∗}.

Then, by taking η → 0 and β → 1 along with N → ∞, 7 we show that the
average payoff of the principal converges to the first best one V FB .

7More precisely, we take the limit β → 1 and N → ∞ while we keep (1 − β)N → ∞.
For example, we can choose β = 1 − 1/

√
N .
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