2009年度

エコノメトリックス II & 上級エコノメトリックス II レポート課題 (訂正版)

2010年2月4日

提出に関する注意

提出期限は2月15日(月)、提出場所は教務係。事情により教務係に提出できない受講生は、郵送(郵便番号560-0043 豊中市待兼山町1-7 大阪大学大学院経済学研究科教務係宛、表面に「エコノメトリックス II レポート在中」と朱記のこと)してもよい。その場合は15日の消印を有効とする。

また、用紙は A4 サイズに限る。

解答上の注意

課題は Matlab ないしは互換ソフト (Scilab など) を用い、実際に計算をしなさい。計算に使用したプログラム (\mathbf{J} (\mathbf{J}) のリストを必ず添付すること。また、繰り返し計算の際の収束判定基準は \mathbf{J} は \mathbf{J} とし、収束するまでの繰り返し数を記載すること。

課題

データが下表で与えられているとき、非線形回帰モデル

$$y_t = \beta_1 z_t^{\beta_2} + u_t \qquad u_t \sim \text{IID}(0, \sigma^2) \qquad (t = 1, \dots, n)$$
 (a)

の推定問題を考える。このとき次の問いに答えなさい。

- (1) (a) 式を非線形最小 2 乗法で推定したい。 Gauss=Newton 法で $\beta=(\beta_1,\ \beta_2)'$ を求めなさい。 ただし、学籍番号の最後の桁の数字が奇数の受講者は初期値として $\beta_1=1.0,\ \beta_2=3.0$ を、 偶数の受講生は初期値として $\beta_1=2.5,\ \beta_2=1.0$ を用いること。
- (2) (1) の推定結果を用いて、撹乱項の分散 σ^2 の推定を行いなさい。
- (3) (1) の推定結果のとき、 $\hat{\beta}_1$, $\hat{\beta}_2$ の標準誤差を求めなさい。

- (4) β_1 を 1.0 から 5.0 まで、 β_2 を -1.0 から 3.0 まで 1.0 刻みで動かし、それぞれのケースにおける撹乱項 (残差) の 2 乗和を求めなさい。その結果、残差 2 乗和が最小となるケースはどのような値のときであるか答えなさい。
- (5) (4) で求めた残差 2 乗和が最小となる β_1 , β_2 を初期値に用いて (a) 式を非線形最小 2 乗法で推定しなさい。
- (6) w_t は直交条件

$$E\sum_{t=1}^{n}\boldsymbol{w}_{t}u_{t}=\boldsymbol{0}$$

を満たす変数である。この直交条件を用いて、 β のモーメント法推定量を求めなさい。ただし、学籍番号の最後の桁の数字が奇数の受講者は初期値として $\beta_1=3.0,\ \beta_2=1.0$ を、偶数の受講生は初期値として $\beta_1=1.0,\ \beta_2=5.0$ を用いること。

(7) (余裕があればやってみること) $\beta_1=1.0,\ \beta_2=0.5$ を初期値として (a) 式を非線形最小 2 乗法で推定しなさい。

t	y_t	z_t	$oldsymbol{w}_t'$	
1	3	18	1	-1
2	4	24	6	2
3	3	9	-1	3
4	5	30	5	1
5	9	122	3	1
6	7	73	5	-5
7	6	52	2	-2
8	10	146	-4	2
9	8	97	3	0
10	6	59	2	4