

第24回 7月15日の授業内容

- ■§7. 母数の検定
 - § 7.9 その他の検定
 - ■§7.9.1 成功確率の検定
 - □§7.9.2 独立性の検定(2適合度検定)

7/15/09

§ 7.9.1 成功確率の検定

- □成功確率や母集団比率についての検定
 - 母平均の検定の枠組みで可能

 - <u>検定統計量の分布の導出</u> $X_i \sim Bin(1,p)$ であるから $\sum_{i=1}^n X_i \sim Bin(n,p)$

したがって、*n* のとき、

$$\overline{X}_n \equiv \frac{1}{n} \sum_{i=1}^n X_i$$
 とすると $\frac{\overline{X}_n - p}{\sqrt{p(1-p)/n}} \xrightarrow{d} N(0,1)$

7/15/09

2

§ 7.9.1 成功確率の検定(2)

- □一標本問題
 - H₀: $p = p_0$ vs. H₁: p p_0 の場合

$$z \equiv \frac{\overline{X}_{\scriptscriptstyle n} - p_0}{\sqrt{p_0 (1 - p_0)/n}} \xrightarrow{d} N(0,1)$$

7/15/09

§ 7.9.1 成功確率の検定(3)

- H₀: *p*=*p₀* vs. H₂: *p*>*p₀*の場合
 - □有意水準を としたとき、
 - $z > {}^{-1}(1)$ すなわち 1 (z) < のとき H_0 を棄却
- H₀: $p = p_0$ vs. H₃: $p < p_0$ の場合
 - □有意水準を としたとき、

z < -1() すなわち (z) < のとき

H_oを棄却

7/15/09

§ 7.9.1 成功確率の検定(4)

- □二標本問題
 - 標本A: {X₁,...,X_n}

大きさnのBin(1, p_A)からのランダム標本

- 標本B: {*Y*₁,..., *Y*_m}

大きさmのBin(1, p_R)からのランダム標本

- 仮説

□帰無仮説 (H_0) : $p_A = p_B$ □対立仮説 (H_1) : $p_A p_B$

7/15/09

§ 7.9.1 成功確率の検定(5)

- 検定統計量の分布

$$d = \frac{\left(\overline{X}_n - p_A\right) - \left(\overline{Y}_m - p_B\right)}{\sqrt{\frac{p_A(1 - p_A)}{n} + \frac{p_B(1 - p_B)}{m}}} \xrightarrow{d} N(0,1)$$

- 帰無仮説 (H_0) : ρ_A = ρ_B のもとでは、

$$\hat{d} = \frac{\overline{X}_{n} - \overline{Y}_{m}}{\sqrt{\frac{\hat{p}_{A}(1 - \hat{p}_{A})}{n} + \frac{\hat{p}_{B}(1 - \hat{p}_{B})}{m}}} \xrightarrow{d} N(0,1)$$

 $\hat{d} > \Phi^{-1}(1-\alpha/2)$ または $\hat{d} < \Phi^{-1}(\alpha/2)$ のとき、 H_0 を棄却

有意水準を に設定

7/15/09

§ 7.9.2 独立性の検定(2適合度検定)

- □ クロス集計表と「要因」の 「独立性」
 - クロス集計表
 - ロ (二つの)カテゴリー変数 の同時分布表
 - 二つのカテゴリー変数の独 立性を検証するには

「独立性」の検定(²適合 度検定)

		変数 <i>X</i>		計
		要因X ₁	要因X ₂	
変	要 因 Y ₁	15	21	36
数 Y	要 因 Y ₂	8	16	24
	要 因 Y ₃	12	48	60
Ē	t	35	85	120

7/15/09

§ 7.9.2 独立性の検定(2)

□ 検定

- 仮説

□ 帰無仮説 (H₀): Xと Yは独立□ 対立仮説 (H₁): Xと Yは従属

帰無仮説 (H_o)が正しいときの セル(i,j)の度数

$$E_{ij} = n \times \frac{W_i}{n} \times \frac{Z_j}{n}$$

$$W_i = \sum_{i=1}^l O_{ij}, \ Z_j = \sum_{i=1}^k O_{ij},$$

7/15/09

		変数X			計
		要因 <i>X</i> ,		要因X _k	
変数 /	要 因 Y,	0,11		01k	Z_1
			O_{ij}		
	要 因 <i>Y,</i>	0,1		O _{Ik}	Z _I
lin	†	W ₁		W _k	n

§7.9.2 独立性の検定(3)

- 検定統計量

$$\delta = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

帰無仮説の下で は自由度(k-1)x(l-1)の ²分布に 従う

7/15/09

§ 7.9.2 独立性の検定(4)

□ 数值例

$$\begin{split} \delta &= \frac{\left(15 - 10.5\right)^2}{10.5} + \frac{\left(21 - 25.5\right)^2}{25.5} + \frac{\left(8 - 7\right)^2}{7} \\ &+ \frac{\left(16 - 17\right)^2}{17} + \frac{\left(12 - 17.5\right)^2}{17.5} + \frac{\left(48 - 42.5\right)^2}{42.5} \\ &= 1.93 + 0.79 + 0.14 + 0.06 + 1.73 + 0.71 \end{split}$$

= 3.36 自由度2の ²分布の上側5% 点は5.99 _

=5.36<5.99 より帰無仮説は棄却できない

↓ 結論「XとYは独立である」

		安奴/		計		
		要因 <i>X₁</i>	要因 <i>X₂</i>			
変数γ	要 因 Y ₁	15 10.5	21 25.5	36		
	要 因 Y ₂	8 7	16 17	24		
	要 因 <i>Y₃</i>	12 17.5	48 42.5	60		
計		35	/85	120		

赤数字は期待度数

7/15/09

10