Lecture Note #02 of Econometrics I & Advanced Econometrics I (2013SY)

TAKEUCHI, Yoshiyuki

April 17, 2013

§ 1. The Foundation of Set Theory

Probability represents a scale (or measure) on likeliness of a certain event (ω) to be realized. In this sense, the probability is a function such that $P: \omega(=\text{event}) \longrightarrow [0, 1]$, i.e. probability measure.

Events are introduced in the set theory. Their features concerning on probability are as follows;

Feature 1 Introducing the collection of sets; family class / field of sets.

Feature 2 Introducing the sequence of sets and its limit.

§ 1.1 Basic Concepts of Sets

We define a **set** as a collection of **elements**. We denote

 $\omega \in A$, when an element ω is included in the set A

and

 $\omega \notin A$, when an element ω is not included in the set A,

respectively. We call set A as 'finite set' when the number of elements in A is finite and call it as 'infinite set' when it is infinite. In addition, we call A as 'countable set' if we could label each element in it with unique number.

When sets A and B exist, if

$$\omega \in A \quad \Rightarrow \quad \omega \in B$$

then we call A as a **subset** of B and represent as $A \subset B$.

When $A \subset B$ and $A \supset B$ are satisfied, A equals to B, that is to say A = B.

Next, we define special sets.

empty set The set with no element. It is denoted by \emptyset . (Remind that it is different from Greek letter ϕ .)

universal set The set of all elements under consideration. It is denoted by Ω . (In the context of probability theory, it is called the **sample space** or the **state space**.)

Union, intersection, and difference

We will define union, intersection, and difference of sets A and B.

Intersection

$$A\cap B\equiv\{\omega:\omega\in A\text{ and }\omega\in B\}$$

When $A \cap B = \emptyset$, we note that A and B are disjoint.

Union

$$A \cup B \equiv \{\omega : \omega \in A \text{ or } \omega \in B\}$$

Difference

$$A \setminus B \equiv \{\omega : \omega \in A \text{ and } \omega \notin B\}$$

= $A \cap B^C$

Compliment

$$\begin{array}{rcl} A^C & \equiv & \{\omega : \omega \notin A \text{ and } \omega \in \Omega\} \\ & = & \Omega \setminus A \end{array}$$

Theorem 1.1.1 Basic Theorems for Sets

Associativity
$$A \cap (B \cap C) = (A \cap B) \cap C$$

 $A \cup (B \cup C) = (A \cup B) \cup C$
Distributivity $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Theorem1.1.2 De Morgan's Laws (HMC p.6 Example 1.2.17)

$$(A \cup B)^C = A^C \cap B^C$$
$$(A \cap B)^C = A^C \cup B^C$$

§ 1.2 Sequences of sets

Let $A_1, A_2, A_3, \dots, A_n$ be sequences of sets (including the case of $n = \infty$). We denote unions and intersections of these sequences by

$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cap A_{2} \cap \cdots \cap A_{n},$$

$$\bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \cdots \cup A_{n}.$$

In particular, if $A_i \cap A_j = \emptyset$

for
$$\forall i \neq j$$
, we have

$$\bigcup_{i=1}^{n} A_i = \sum_{i=1}^{n} A_i.$$

Theorem 1.2.1

$$\left(\bigcup_{i=1}^{n} A_{i}\right)^{c} = \bigcap_{i=1}^{n} A_{i}^{c}$$

$$\left(\bigcap_{i=1}^{n} A_{i}\right)^{c} = \bigcup_{i=1}^{n} A_{i}^{c}$$

The Limit of a Sequence of Sets

Next, we will define the limit of a sequence of sets. The limit supremum and the limit infimum of a sequence of sets are defined as follows;

$$\lim_{n} \sup A_{n} \equiv \bigcap_{n=1}^{\infty} (\bigcup_{i=n}^{\infty} A_{i}),$$
$$\lim_{n} \inf A_{n} \equiv \bigcup_{n=1}^{\infty} (\bigcap_{i=n}^{\infty} A_{i}).$$

The limit of a sequence of sets exists if the limit supremum of it coincides with the limit infimum of it. That is to say,

$$\lim_{n} A_n = \lim_{n} \sup_{n} A_n = \lim_{n} \inf_{n} A_n.$$

increasing sequence
$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$$
 decreasing sequence $A_1 \supset A_2 \supset \cdots$ monotone sequence

Theorem 1.2.2

We have following properties for the limit of a monotone sequence.

(1)
$$\lim A_n = \bigcup_{n=1}^{\infty} A_n$$
 if increase sequence
(2) $\lim A_n = \bigcap_{n=1}^{\infty} A_n$ if decreasing sequence

(2)
$$\lim A_n = \bigcap_{n=1}^{\infty} A_n$$
 if decreasing sequence

§ 1.3 Family class (Field of sets, Algebra)

Next, suppose the collection of sets, i.e. the set having sets as its elements. We denote all of subsets of Ω including \emptyset by 2^{Ω} . We will introduce the concepts of a **family class** (or a **field**) for \mathcal{F} , a subset of 2^{Ω} , i.e. $\mathcal{F} \subset 2^{\Omega}$.

Definition 1.3.1

 \mathcal{F} , a collection of a subset of non-empty set Ω satisfies the following properties, we call \mathcal{F} as a family class (or field, algebra).

(1)
$$\Omega \in \mathcal{F}$$

(1)
$$\Omega \in \mathcal{F}$$

(2) $A \in \mathcal{F} \Rightarrow A^C = \Omega \setminus A \in \mathcal{F}$
(3) $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$

(3)
$$A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$$

Note:

We can extend (3) to

$$(3)'$$
 $A_i \in \mathcal{F}$ $(i = 1, 2, ..., n) \Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{F}$ finite additivity

for $n < \infty$.

Theorem 1.3.2

In addition (1) and (2), if

(4)
$$A_i \in \mathcal{F}$$
 $(i = 1, 2, ...) $\Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ complete additivity$

are satisfied, we call \mathcal{F} as σ -field (or σ -algebra).

Theorem 1.3.3

If it satisfies complete additivity, then it satisfies finite additivity.

Note: Borel set

Ex: When $\Omega = \mathbf{R}$, we call σ -algebra generated by $\{(a,b]; a < b, a,b \in \mathbf{R}\}$ as (Euclidean)Borel σ -algebra.

§ 2. Probability and Probability Space

§ 2.1 Family Class and Measure

Definition 2.1.1 Measure

Let \mathcal{A} be an algebra (which satisfies finite additivity) generated by a subset of Ω . For $A \cap B = \emptyset$, $A, B \in \mathcal{A}$, if a function that $\mu : A \in \mathcal{A} \to [0, \infty]$ is satisfied with

$$\mu(A+B) = \mu(A) + \mu(B),$$

then we denote μ as a finite additive measure. We define

$$\mu$$
 is finite if $\mu(\Omega) < \infty$

 μ is a probability measure and denoted by $P(\cdot)$. if $\mu(\Omega) = 1$

In fact, to be a probability measure, an algebra \mathcal{A} must be σ -algebra.

Theorem 2.1.2 Probability Measure

Let \mathcal{B} be a σ -algebra generated a subset of Ω .

If a function $P: A \in \mathcal{B} \to [0, 1]$ satisfies the following properties, we call P as a **probability** measure (or simply **probability**).

- (1) P(A) > 0
- $(2) P(\Omega) = 1$
- (3) For A_i , $A_j \in \mathcal{B}$ and $A_i \cap A_j = \emptyset$ $(i \neq j)$, $P\{\sum_{i=1}^{\infty} A_i\} = \sum_{i=1}^{\infty} P(A_i)$ (complete additivity)

Definition 2.1.3 Probability Space ("Triple")

A combination of Ω and (smallest) σ -algebra generated by a subset of Ω , and the probability measure defined on it is called as a **probability space** and is denoted by (Ω, \mathcal{B}, P) .

Theorem 2.1.4

Let (Ω, \mathcal{B}, P) be a probability space $(i = 1, \dots, \infty)$.

For $A, B, C_i, D_i \in \mathcal{B}$, the following properties are satisfied.

$$(a) P(\emptyset) = 0$$

(b)
$$P(\sum_{i=1}^{n} C_i) = \sum_{i=1}^{n} P(C_i), \qquad C_i \cap C_j = \emptyset \ (i \neq j)$$
 (finite additivity)

$$(c) P(A^C) = 1 - P(A)$$

(d)
$$A \subset B \Rightarrow P(A) \leq P(B)$$

$$(e)$$
 $P(A) \leq 1$

(f)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (additive theorem)

$$(g)$$
 $D_n \subset D_{n+1}$ $n = 1, 2, \dots \Rightarrow P(D_n) \uparrow P(\bigcup_{n=1}^{\infty} D_n)$

(h)
$$D_n \supset D_{n+1}$$
 $n = 1, 2, \dots \Rightarrow P(D_n) \downarrow P(\bigcap_{n=1}^{n-1} D_n)$

$$(i) P(\bigcup_{i=1}^{n} D_n) \le \sum_{i=1}^{n} P(D_n) n = 1, 2, \dots, \infty$$

(j) If
$$D_n$$
 is monotone, $\lim P(D_n) = P \lim(D_n)$