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8 1. The Foundation of Set Theory

Probability represents a scale (or measure) on likeliness of a certain event (w) to be realized.
In this sense, the probability is a function such that P : w(= event) — [0, 1], i.e. probability

measure.

Events are introduced in the set theory. Their features concerning on probability are as follows;
Feature 1 Introducing the collection of sets; family class / field of sets.

Feature 2 Introducing the sequence of sets and its limit.

8§ 1.1 Basic Concepts of Sets

We define a set as a collection of elements. We denote

00 w € A, when an element w is included in the set A
and

00 w¢ A, when an element w is not included in the set A,
respectively. We call set A as ‘finite set’” when the number of elements in A is finite and call
it as ‘infinite set’ when it is infinite. In addition, we call A as ‘countable set’ if we could label
each element in it with unique number.

When sets A and B exist, if

weEA = wERB

then we call A as a subset of B and represent as A C B.
When A C B and A D B are satisfied, A equals to B, that is to say A = B.

Next, we define special sets.

empty set The set with no element. It is denoted by @. (Remind that it is different from
Greek letter ¢.)
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universal set The set of all elements under consideration. It is denoted by . (In the context
of probability theory, it is called the sample space or the state space. )

Union, intersection, and difference

We will define union, intersection, and difference of sets A and B.

Intersection

ANB={w:we€ Aand w € B}

When AN B = (), we note that A and B are disjoint.
Union
AUB={w:w€ Aorwe€ B}

Difference

A\B = {w:weAandw ¢ B}

= AnB°¢

Compliment

AY = {w:wd¢Aandwe Q)
= Q\4

Theorem 1.1.1 Basic Theorems for Sets

Associativity D AN(BNC) = (ANnB)NC
0AU(BUC) = (AuB)UC
Distributivity 0 AU(BNC) = (AUB)N(AUCQ)
0AN(BUC) = (ANnB)U(ANCQC)
Q
A B
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Theorem1.1.2 De Morgan’s Laws (HMC p.6 Example 1.2.17)

(AUB)Y = A°nB°¢
(AnNB)Y = A“UB¢

8 1.2 Sequences of sets

Let Ay, As, As,- -+, Ay, be sequences of sets (including the case of n = 00). We denote unions

and intersections of these sequences by
n
(14
i=1
n
U 4i
i=1

In particular, if A;NA; =0 for Vi # j, we have

J4=3 4.
i=1 i=1

A NAN---N Ay,

A UAU---UA,.

Theorem 1.2.1
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The Limit of a Sequence of Sets

Next, we will define the limit of a sequence of sets. The limit supremum and the limit infimum

of a sequence of sets are defined as follows;

oo oo
lirrlnsupAn = ﬂ (U A;),
n=1 i=n
o o
WM%z[ﬂﬂm.
n=1 i=n
The limit of a sequence of sets exists if the limit supremum of it coincides with the limit infimum
of it. That is to say,
lim A,, = limsup A,, = liminf A,,.
n n n

increasing sequence A} C Ay C---C A, C---
. monotone sequence
decreasing sequence Ay D Ay D ---
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Theorem 1.2.2

We have following properties for the limit of a monotone sequence.

o

(1) limA4, = U A, if increase sequence
n=1
(o)

(2) limA4, = ﬂ A, if decreasing sequence
n=1

§ 1.3 Family class (Field of sets, Algebra)

Next, suppose the collection of sets, i.e. the set having sets as its elements. We denote all of
subsets of © including () by 2. We will introduce the concepts of a family class (or a field)
for F, a subset of 22, i.e. F C 2%,

Definition 1.3.1

F, a collection of a subset of non-empty set ) satisfies the following properties, we call F as
a family class (or field, algebra).

(1) Qe F
(2) AceF = A°=Q\AcF
(3) AL BEF = AUBEF

Note:

We can extend (3) to

3) A4 eF (i=12,...,n)= |JA€F finite additivity
i=1

for n < oo.

Theorem 1.3.2

In addtion (1) and (2), if

o0
4) AjeF (i=12,...) = |JAie€eF  complete additivity
i=1

are satisfied, we call F as o-field (or o-algebra).

Theorem 1.3.3

If it satisfies complete additivity, then it satisfies finite additivity.
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Note: Borel set

Ex0 When Q = R, we call o-algebra generated by {(a,bl;a < b, a,b € R} as (Euclidean)Borel o-algebra.

8 2. Probability and Probability Space

§ 2.1 Family Class and Measure
Definition 2.1.1 Measure

Let A be an algebra (which satisfies finite additivity) generated by a subset of Q.
For ANB =00 A,Be€ A, if a function that u: A € A — [0, 00] is satisfied with

n(A+ B) = p(A) + u(B),
then we denote p as a finite additive measure. We define

p is finite  if p(Q) < oo
i is a probability measure and denoted by P(-). if u(Q) =1

In fact, to be a probability measure, an algebra A must be o-algebra.

Theorem 2.1.2 Probability Measure

Let B be a o-algebra generated a subset of €2.
If a function PO A € B — |0, 1] satisfies the following properties, we call P as a probability
measure (or simply probability).

1) P(A) =0
2 PO =1
(3) FOI‘AZ',A]'EB and AiﬂAj:(Z) (i # j),

P{Z A} = Z P(A;) (complete additivity)
i=1 i=1

Definition 2.1.3 Probability Spacel ” Triple”

A combination of 2 and (smallest) o-algebra generated by a subset of 2, and the probability
measure defined on it is called as a probability space and is denoted by (2, B, P).
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Theorem 2.1.4

Let (2, B, P) be a probability space (i = 1,---,00).
For A, B, C;, D; € B, the following properties are satisfied.

P(

=

)=0

P(Xn: C;) = zn: P(C;),  C;nC;j=10(i+#7) (finite addtivity)
=1 =1

P(A%) =1—-P(A)

AC B = P(A) < P(B)

P(A) <1

P(AUuB)=P(A)+ P(B)— P(ANB) (additive theorem)

)

o0
DnCDn+1 n:1727"' = P(Dn)TP(U-DTL)

n=1

o0
Dy D Dyt n=1,2,--- = P(Dy) | P([] D)

n=1

n n
P(|JDn) <> P(Dy) n=12-,00
=1 =1

If D,, is monotone, lim P(D,) = Plim(D,)



