Lecture Note #04 of Econometrics I & Advanced Econometrics I (2013SY)

TAKEUCHI, Yoshiyuki

May 8, 2013

§ 3. Random Variables

§ 3.1 What are random variables.

As mentioned briefly before, suppose a real valued function $X = X(\omega)$, for $\omega \in \Omega$.

$$X: \omega \rightarrow \mathbf{R}$$

This X is a random variable.

Now, let \mathcal{D} be a smallest σ -field of \mathbf{R} (a Borel field). And let μ be a measure defined on \mathcal{D} . Then, from correspondence between X and ω , X maps the probability space to a measurable space, such as,

$$(\Omega, \mathcal{B}, P) \longrightarrow (\mathbf{R}, \mathcal{D}, \mu).$$

Definition 3.1.1

For a arbitrary $D \in \mathcal{D}$, if

$$X^{-1}(D) \equiv \{ \omega \in \Omega ; X(\omega) \in D \} \in \mathcal{B}$$

be satisfied, then we call X as a random variable. (X is said as a measurable function.) < Note >

It is easy to understand if we set $D = (-\infty, x)$, $x \in \mathbb{R}$.

<u>Remark</u> When $X(\omega) = x$, an individual possible value of X is said a realized value.

If number of possible values of $X(\omega)$ is at most countable, then X is a **discrete random** variable.

If number of possible values of $X(\omega)$ is not at most countable (i.e. uncountably infinite), then X is a **continuous random variable**.

Random Vector

A random vector is an useful representation to describe multivariate random variables.

$$m{X}:\Omega\longrightarrow m{R}^k$$
 $m{X}(m{\omega})=(X_1(\omega_1),\ X_2(\omega_2),\ \cdots,\ X_k(\omega_k))'$

§ 3.2 Distribution Function

Let show you the definition of distribution function and its basic properties.

Definition 3.2.1

$$F: (-\infty, \infty) \longrightarrow [0, 1]$$
 such that
$$F(x) \equiv P(\omega : X(\omega) \le x) = \mu((-\infty, x]) \qquad x \in \mathbf{R}$$

Theorem 3.2.2

 μ is existed uniquely.

Theorem 3.2.3

- (1) $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$
- (2) $F(+\infty) = \lim_{x \to \infty} F(x) = 1$
- (3) For a < b $(a, b \in \mathbf{R})$, $F(a) \le F(b)$ (i.e. monotone non-decreasing)

Theorem 3.2.4

- (1) $P(a < X(\omega) \le b) = F(b) F(a)$
- (2) $\lim_{x \downarrow a} F(x) \equiv F(a+0) = F(a)$ (right continuous)
- (3) $\lim_{x \uparrow a} F(x) \equiv F(a) P(X(\omega) = a)$

Discrete random variables

Let $x_1, x_2, \cdots (x_1 < x_2 < \cdots)$ be realized values of a random variable X. And we call $p(x) \equiv P(X = x)$ as a **probability function** such that

$$P(X = x) = \begin{cases} p_{\ell} & x = x_{\ell}, & (\ell = 1, 2, ...) \\ 0 & \text{otherwise} \end{cases}.$$

3

Theorem 3.2.5

(1)
$$F(x) = \sum_{X_{\ell} < x} P(X_{\ell})$$

$$(2) p(x_{\ell}) = F(x_{\ell}) - \lim_{x \uparrow x_{\ell}} F(x)$$

(3)
$$p(x) \ge 0$$
 $\forall x$, where $\sum_{\ell} p(x_{\ell}) = 1$

Continuous random variables

Definition 3.2.6

If there exists a non-negative integrable function $f(\cdot)$ which satisfies

$$F(x) \equiv P(X \le x) = \int_{-\infty}^{x} f(u)du,$$

f is called the probability density function of a random variable X. The distribution of a random variable X is absolutely continuous.

Theorem 3.2.7

Let F(x), f(x) be the distribution function and the probability density function of X, respectively. Then,

(1)
$$P(X = x) = 0$$

(2)
$$f(x) = \frac{dF(x)}{dx}$$

(3)
$$\int_{-\infty}^{\infty} f(x)dx = 1$$
 $f(x) \ge 0$ $\forall x$.

(ex.) Uniform distribution on [0, 2] (same manner if it is defined on (0, 2))

$$F(x) = \begin{cases} 0 & x \le 0 \\ \frac{x}{2} & x \in (0, 2] \\ 1 & x > 2 \end{cases}$$

$$f(x) = \frac{dF(x)}{dx} = \begin{cases} \frac{1}{2} & 0 < x \le 2\\ 0 & \text{otherwise} \end{cases}$$

$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{2} f(x)dx = \left[\frac{x}{2}\right]_{0}^{2} = 1$$

mixture of discrete and continuous random variable

Omit here.

§ 3.3 Joint Distribution Function

Joint distribution function

Let $\boldsymbol{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ be random variables (random vector).

Then, suppose $P(X \leq x)$ for $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. As

$$P(X \le x) = P\{(X_1 \le x_1) \cap (X_2 \le x_2)\}\$$

is a function of x_1 and x_2 , then we can represent it as

$$F(x_1, x_2) = P\{(X_1 \le x_1) \cap (X_2 \le x_2)\}.$$

This $F(x_1, x_2)$ is called a joint distribution function.

Theorem 3.3.1

Let $F(x_1, x_2)$ be the joint distribution function of $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$. Then, it satisfies following properties.

(1)
$$F(-\infty, x_2) = F(x_1, -\infty) = 0$$

(2)
$$F(\infty, \infty) = 1$$

(3) for
$$a_1 < a_2$$
, $b_1 < b_2 \in \mathbf{R}$
 $F(a_1, x_2) \le F(a_2, x_2) \quad \forall x_2$
 $F(x_1, b_1) \le F(x_1, b_2) \quad \forall x_1$

(4) for
$$a_1 < a_2, b_1 < b_2 \in \mathbf{R}$$

$$P\{(a_1 < X_1 \le a_2) \cap (b_1 < X_2 \le b_2)\}\$$

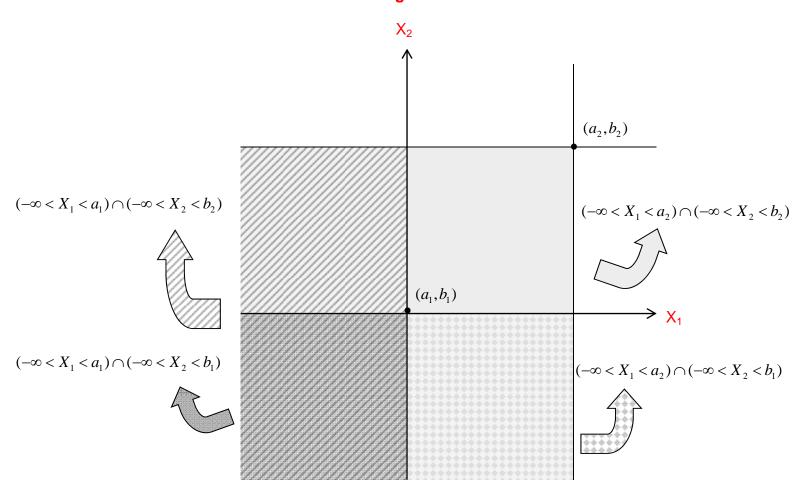
= $F(a_2, b_2) - F(a_1, b_2) - F(a_2, b_1) + F(a_1, b_1)$ See Figure 3.3.1

(5) for $a, b \in \mathbf{R}$

$$\begin{cases}
F(a+0, x_2) &= F(a, x_2) & \forall x_2 \\
F(x_1, b+0) &= F(x_1, b) & \forall x_1 \\
F(a-0, x_2) &= F(a, x_2) - P((X_1 = a) \cap (X_2 = x_2)) & \forall x_2 \\
F(x_1, b-0) &= F(x_1, b) - P((X_1 = x) \cap (X_2 = b)) & \forall x_1
\end{cases}$$

(Remark: The second term of left hand side become zero if X is continuous.)

Figure 3.3.1



Marginal distribution function

We can define a marginal distribution function by use of a joint distribution function. Suppose $F(x_1, x_2)$ when $x_2 = \infty$. Then, we get the marginal distribution function of X_1 as,

$$F(x_1, \infty) = P((X_1 \le x_1) \cap (X_2 < \infty))$$

= $P(X_1 \le x_1)$
= $F_1(x_1)$.

In the same way,

$$F(\infty, x_2) = F_2(x_2)$$

is called the marginal distribution function of X_2 .

Joint Density Function and Marginal Density Function (for discrete random variables)

Let X_1 , X_2 be discrete random variables, and

$$X_1 = \{a_1, a_2, \cdots\}$$

 $X_2 = \{b_1, b_2, \cdots\}$

Then, their joint probability function is defined as

$$p(a_i, b_k) = P(X_1 = a_i \cap X_2 = b_k)$$
 $j, k, = 1, 2, \cdots$

Theorem 3.3.2

Let a joint probability function of X_1 and X_2 be $p(x_1, x_2)$. If $F(x_1, x_2)$ be their joint distribution function, then the following properties are satisfied.

- (1) $p(x_1, x_2) \ge 0$ $\forall x_1, \forall x_2$
- $(2) \sum_{j} \sum_{k} p(a_j, b_k) = 1$
- (3) $F(x_1, x_2) = \sum_{a_j < x_1} \sum_{b_k < x_2} p(a_j, b_k)$

Theorem 3.3.3

Let the marginal probability function of X_1 be $p_1(a_j)$, and that of X_2 be $p_2(b_k)$. Then,

$$p_1(a_j) = \sum_k p(a_j, b_k)$$
$$p_2(b_k) = \sum_j p(a_j, b_k)$$

(ex.) Let a_j and b_k be random variables with binary values. Then,

$$p_1(X_1(\omega_1)) = p_1(X_1(\omega_1) \cap X_2(\omega_2)) + p_1(X_1(\omega_1) \cap X_2(\omega_2^c)).$$

Joint Density Function and Marginal Density Function (for continuous random variables)

Definition 3.3.4

(An extension of Definition 3.2.6) If

$$F(x_1, x_2) = P(X_1 \le x_1 \cap X_2 \le x_2)$$

=
$$\int_{-\infty}^{x_1} \int_{-\infty}^{x_2} f(u_1, u_2) du_2 du_1$$

exists, we call $f(x_1, x_2)$ as a joint density function.

Theorem 3.3.5

- (1) $f(x_1, x_2) = \frac{\partial^2}{\partial x_1 \partial x_2} F(x_1, x_2)$
- (2) $f(x_1, x_2) \ge 0$ and

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, x_2) dx_1, dx_2 = 1 \qquad \forall x_1, \forall x_2$$

(3) Let be $S \in \mathcal{B}(\mathbf{R} \times \mathbf{R})$, then

$$P((X_1, X_2) \in S) = \int \int_S f(x_1, x_2) dx_1 dx_2.$$