Assignments #01 of Econometrics I & Advanced Econometrics I (2013SY)

April 17, 2013

Instruction to students

- 1. Dead line for submission: April 24, 2013. Please submit at the end of the class.
- 2. Use A4 size papers to answer.
- 3. The answer may be written in Japanese as well as English.

Q1.

Show the limit supremum and the limit infimum of a sequence of sets, if A_n (n = 1, 2, ...) is givened by,

$$(1) A_n = \left[\left(\frac{1}{2} \right)^{n-1}, 1 \right],$$

$$(2) A_n = \left[\frac{1}{n}, 1\right],$$

respectively.

Q2.

Let $\Omega = \{R, G, B\}$. Then, please answer whether the following collection of subset of Ω is a family class or not with the reason.

(1)
$$\Im_1 = \{\emptyset, \Omega\}$$

(2)
$$\Im_2 = \{\emptyset, \{B\}, \{R, G\}, \Omega\}$$

(3)
$$\Im_3 = \{\emptyset, \{R\}, \{G\}, \{B, G\}, \{R, G\}, \Omega\}$$

Q3.

Let \mathcal{A} be a σ -algebra and A_n $(n=1,2,\ldots)$ be a sequence of sets such that $A_n \in \mathcal{A}$. Then, show that it satisfies following properties.

- $(1) \qquad \liminf_{n \to \infty} A_n \in \mathcal{A}$
- (2) $\limsup_{n \to \infty} A_n \in \mathcal{A}$
- $(3) \qquad \liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n$