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1 事象と確率

1.1 事象

試行，標本点，標本空間

試行： 考察の対象となる実験 (または，観測)を行うこと
標本点 ω： 試行によって得られる個々の結果

標本空間 Ω： 標本点全体の集合
例： サイコロ投げ：

サイコロ投げ１回の試行

標本点： 1, 2, 3, 4, 5, 6 の六つ
標本空間： Ω = {1, 2, 3, 4, 5, 6}

事象とその演算

事象 A： 標本空間 Ω の部分集合
ω： 事象 A を構成する標本点の一つ

ω ∈ A

例： サイコロ投げ：

サイコロ投げ１回の試行

E = {2, 4, 6}： 偶数の目が出る事象
F = {1, 2, 3}： 3以下の目が出る事象
和事象：E ∪ F： 事象 E と F のどちらか一方に属する標

本点 ω の全体から成る集合

積事象：E ∩ F： 事象 E と F のどちらにも属する標本点

全体の集合

余事象：Ec： 事象 E に属さない標本点の集合

空事象：φ： 標本点を全然含まない事象

全事象：Ω： 全部を含む事象
排反：E ∩ F = φ のとき，事象 E と F は互いに排反で

ある

例：コイン投げ 3回
表を H，裏を T とする。
標本点は次の 8 つ：
ω1 = {H, H, H},
ω2 = {H, H, T},
ω3 = {H, T, H},

ω4 = {H,T, T},
ω5 = {T, H,H},
ω6 = {T, H, T},
ω7 = {T, T, H},
ω8 = {T, T, T}
標本空間： Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}
2 回目が表であるという事象 E：

E = {ω1, ω2, ω5, ω6}
2 回表が出るという事象 F：

F = {ω2, ω3, ω5}
E ∪ F = {ω1, ω2, ω3, ω5, ω6}
E ∩ F = {ω2, ω5}
Ec = {ω3, ω4, ω7, ω8}
F c = {ω1, ω4, ω6, ω7, ω8}
(E ∪ F )c = {ω4, ω7, ω8}
Ec ∩ F c = {ω4, ω7, ω8}
(E ∪ F )c = Ec ∩ F c =⇒ ド・モルガンの法則
(E ∩ F )c = {ω1, ω3, ω4, ω6, ω7, ω8}
Ec ∪ F c = {ω1, ω3, ω4, ω6, ω7, ω8}
(E ∩ F )c = Ec ∪ F c =⇒ ド・モルガンの法則

1.2 確率

事象 A の確率： P (A)

0 ≤ P (A) ≤ 1

P (Ω) = 1, P (φ) = 0

事象 Aと B は互いに排反であるとき，P (A∪B) = P (A)+
P (B)

条件付き確率： 事象 B の条件のもとで事象 A の確率

=⇒
P (A|B) =

P (A ∩B)
P (B)

P (A ∩B) = P (A|B)P (B) =⇒ 乗法定理
事象 A と B は独立： P (A ∩B) = P (A)P (B)

公式：

P (Ac) = 1− P (A)

P (A ∪B) = P (A) + P (B)− P (A ∩B) =⇒ 加法定理
A ⊂ B のとき，P (A) ≤ P (B)
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2 確率変数と分布

2.1 1 次元の確率変数と分布

確率変数 X： 標本空間 Ω の上で定義された実数値関数
X = X(ω) を考える。
X = X(ω)：試行結果 (標本点) ω が定まると X の値が定

まる。

X(ω) がある区間 I の中の値であるような標本点 ω の集

合： {ω; X(ω) ∈ I}
{ω;X(ω) ∈ I} を事象 {X ∈ I} と書く。

離散型確率変数と確率分布：

確率変数 X の取りうる値を a1, a2, · · · とするとき，

P (X = ai) = f(ai), i = 1, 2, · · ·

f(ai)： X の確率分布

性質：

f(ai) ≥ 0, i = 1, 2, · · ·
∑

i

f(ai) = 1

ある集合 A について，

P (X ∈ A) =
∑

ai∈A

f(ai)

となる。

連続型確率変数と確率密度関数：

ある区間 I について，

P (X ∈ I) =
∫

I

f(x)dx

f(x)： X の確率密度関数

性質：

f(x) ≥ 0,∫ ∞

−∞
f(x)dx = 1

また，

P (X = x) =
∫ x

x

f(t)dt = 0,

P (X ∈ A) =
∫

A

f(x)dx

分布関数：P (X ≤ x) = F (x)

F (x)： X の分布関数

性質：

x1 < x2 のとき，F (x1) ≤ F (x2)
P (a < X ≤ b) = F (b)− F (a)
F (−∞) = 0, F (+∞) = 1

1. 離散型確率変数：

F (x) =
∑

ai≤x

f(ai),

F (ai)− F (ai − 0) = f(ai)

2. 連続型確率変数：

F (x) =
∫ x

−∞
f(t)dt,

F ′(x) = f(x)

重要な分布：

1. ベルヌイ分布：

離散型確率変数 X の取りうる値は 0, 1 のどちらかで，
その確率分布は，

P (X = k) = pk(1− p)1−k, k = 0, 1

0 < p < 1

2. 2 項分布：

離散型確率変数 X の取りうる値が 0, 1, 2, · · · , n で，
その確率分布は，

P (X = k) = b(k; n, p)

≡ nCkpk(1− p)n−k,

k = 0, 1, · · · , n

0 < p < 1

3. ポアソン分布：

離散型確率変数 X の取りうる値が 0, 1, 2, · · · で，そ
の確率分布は，

P (X = k) = p(k; λ)

≡ e−λ λk

k!
, k = 0, 1, · · ·

λ > 0
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np = λ (一定) のもとで，n −→∞ のとき，

b(k;n, p) −→ p(k; λ)

4. 正規分布：

連続型確率変数 X の確率密度関数は，

f(x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

X ∼ N(µ, σ2)

N(0, 1) =⇒ 標準正規分布
5. 一様分布：

連続型確率変数 X の確率密度関数は，

f(x) =





1
b− a

, a ≤ x ≤ b のとき

0, その他のとき

6. 指数分布：

連続型確率変数 X の確率密度関数は，

f(x) =

{
λe−λx, 0 < x のとき

0, その他のとき

λ > 0

λ =
1
2
のとき，自由度 2 のカイ自乗分布に等しい。

7. χ2 (カイ 2乗)分布 (自由度 n)：

連続型確率変数 X の確率密度関数は，

f(x) =





1
Γ(n

2 )
2−

n
2 x

n
2−1e−

x
2 , x ≥ 0 のとき

0, x < 0 のとき

Γ(s) =
∫ ∞

0

us−1e−udu =⇒ ガンマ関数

Γ(s + 1) = sΓ(s), Γ(1) = 1, Γ(
1
2
) =

√
π

8. t 分布 (自由度 n)：

連続型確率変数 X の確率密度関数は，

f(x) =
Γ(n+1

2 )√
πΓ(n

2 )
1√
nπ

(
1 +

x2

n

)−n+1
2

9. Cauchy 分布：

連続型確率変数 X の確率密度関数は，

f(x) =
1

π(1 + x2)

自由度 1 の t 分布に等しい。

2.2 多次元の確率変数と分布

離散型確率変数 X と Y の取りうる値は a1, a2, · · · と
b1, b2, · · · とする。
事象 {ω; X(ω) = ai, かつ Y (ω) = bj} の確率は

P (X = ai, Y = bj) = h(ai, bj)

h(ai, bj)： X, Y の結合確率分布

性質：

h(ai, bj) ≥ 0, i, j = 1, 2, · · ·
∑

i,j

h(ai, bj) = 1

f(ai), g(bj) を次のように定義する。

f(ai) =
∑

j

h(ai, bj), i = 1, 2, · · ·

g(bj) =
∑

i

h(ai, bj), j = 1, 2, · · ·

f(ai), g(bj)： X, Y の周辺確率分布

連続型確率変数 X と Y

ある領域 D について，事象 {ω;
(
X(ω), Y (ω)

) ∈ D} の確
率は

P
(
(X,Y ) ∈ D

)
=

∫∫

D

h(x, y)dxdy

h(x, y)： X, Y の結合確率密度関数

性質：

h(x, y) ≥ 0,∫ ∞

−∞

∫ ∞

−∞
h(x, y)dxdy = 1

f(x), g(y) を次のように定義する。

f(x) =
∫ ∞

−∞
h(x, y)dy,

g(y) =
∫ ∞

−∞
h(x, y)dx,

f(x), g(y)： X, Y の周辺確率密度関数

条件付き分布：

離散型：

P (X = ai|Y = bj) = f(ai|bj)

≡ h(ai, bj)
g(bj)
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f(ai|bj)： Y = bj を与えたもとで X の確率分布

性質：

f(ai|bj) ≥ 0, i = 1, 2, · · ·∑

i

f(ai|bj) = 1

連続型：

f(x|y) =
h(x, y)
g(y)

f(x|y)： Y = y を与えたもとで X の確率密度関数

性質：

f(x|y) ≥ 0,∫ ∞

−∞
f(x|y) = 1

確率変数の独立性：

離散型： h(ai, bj) = f(ai)g(bj) のとき，X と Y は独立と

なる。

連続型： h(x, y) = f(x)g(y) のとき，X と Y は独立と

なる。

重要な分布：

1. 多項分布：

離散型確率変数 X1, X2, · · · , Xr について，

P (X1 = k1, X2 = k2, · · · , Xr = kr)

=
n!

k1!k2! · · · kr!
pk1
1 pk2

2 · · · pkr
r

k1, k2, · · · , kr は 0 以上の整数で，
∑r

i=1 ki = n を満

たす。

n は自然数

p1, p2, · · · , pr は正の定数で，
∑r

i=1 pi = 1 を満たす。

2. 2 変数正規分布：

連続型確率変数 X, Y の結合確率密度関数は

h(x, y)

=
1

2πσ1σ2

p
1− ρ2

× exp

0@− 1

2(1− ρ2)
(
(x− µ1)

2

σ2
1

−2ρ
(x− µ1)(y − µ2)

σ1σ2
+

(y − µ2)
2

σ2
2

)

1A
=

1

2π

���� σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

����−1/2

× exp

0@− 1

2

�
x− µ1

y − µ2

�′�
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

�−1 �
x− µ1

y − µ2

�1A
µ1, µ2, σ1, σ2, ρ は定数で，σ1 > 0, σ2 > 0, |ρ| < 1
とする。

exp(x) は ex と同じものであることに注意。

2.3 2.4節のための数学の公式

2.3.1 置換積分

1 変数： f(x) について，x = ψ(y) の置換積分を行う。

∫
f(x)dx =

∫
ψ′(y)f

(
ψ(y)

)
dy

証明：

F (x) =
∫

f(x)dx

=⇒ F ′(x) = f(x)

F (x) = F
(
ψ(y)

)
を y について微分する。

dF
(
ψ(y)

)

dy
=

dF (x)
dx

dx

dy

= f(x)ψ′(y) = f
(
ψ(y)

)
ψ′(y)

2 変数： f(x, y) について，x = ψ1(u, v), y = ψ2(u, v) の
とき，

∫
f(x, y)dxdy

=

∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣
f
(
ψ1(u, v), ψ2(u, v)

)
dudv

(証明略)

A =
(

a b

c d

)
とする。

|A| = ad− bc を行列式の値と言う。
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2.3.2 部分積分
∫

f(x)g′(x)dx = f(x)g(x)−
∫

f ′(x)g(x)dx

証明：

f(x)g(x) の微分を考える。
(
f(x)g(x)

)′
= f ′(x)g(x) + f(x)g′(x)

両辺を積分すると，
∫ (

f(x)g(x)
)′

dx

=
∫

f ′(x)g(x)dx +
∫

f(x)g′(x)dx

となり，

f(x)g(x) =
∫

f ′(x)g(x)dx +
∫

f(x)g′(x)dx

を得る。よって，
∫

f(x)g′(x)dx = f(x)g(x)−
∫

f ′(x)g(x)dx

2.3.3 テーラー展開: 関数 f(x) の近似

x = x0 の回りで f(x) をテーラー展開する。

f(x) ≈ f(x0) + f ′(x0)(x− x0)

+
1
2!

f ′′(x0)(x− x0)2

+
1
3!

f ′′′(x0)(x− x0)3

+ · · ·

=
∞∑

n=0

1
n!

f (n)(x0)(x− x0)n

ただし，f (n)(x0) は f(x) を n 回微分して，x = x0 で評

価したものである。

f (0)(x0) = f(x0) と 0! = 1 に注意。

2.4 分布関数の持つ性質の証明 (いくつかの分
布を例にとって)

1. ２項分布
n∑

k=0

b(k; n, p) = 1 の証明：

n∑

k=0

b(k; n, p)

=
n∑

k=0

nCkpk(1− p)n−k

=
(
p + (1− p)

)n = 1 (2項定理)

2. ポアソン分布
∞∑

k=0

p(k; λ) = 1 の証明：

∞∑

k=0

p(k;λ) =
∞∑

k=0

e−λ λk

k!

= e−λ
∞∑

k=0

λk

k!

= e−λeλ

= 1

ex =
∞∑

k=0

xk

k!
に注意。

なぜなら，f(x) = ex としたとき，f (k)(x) = ex と

なる。

テーラー展開の公式は，

f(x) =
∞∑

k=0

1
k!

f (k)(x0)(x− x0)k

なので，x0 = 0 として，x = 0 の回りでテーラー展開
すると，

f(x) =
∞∑

k=0

1
k!

f (k)(0)xk

=
∞∑

k=0

1
k!

xk

=
∞∑

k=0

xk

k!

を得る。

f (n)(0) = 1 に注意。

3. 正規分布 X ∼ N(µ, σ2) の確率密度関数 f(x) につい

て，
∫ ∞

−∞
f(x)dx = 1 の証明：

I =
∫ ∞

−∞
f(x)dx

=
∫ ∞

−∞

1√
2πσ2

exp
(
− 1

2σ2
(x− µ)2

)
dx

=
∫ ∞

−∞

1√
2π

exp
(
−1

2
u2

)
du
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u =
x− µ

σ
として，置換積分を行う。

dx

du
= σ に注意

I = 1 の証明は I2 = 1 の証明を行えば十分

I2 = (
∫ ∞

−∞

1√
2π

exp
(
−1

2
u2

)
du)

× (
∫ ∞

−∞

1√
2π

exp
(
−1

2
v2

)
dv)

=
1
2π

∫ ∞

−∞

∫ ∞

−∞
exp

(
−1

2
(u2 + v2)

)
dudv

=
1
2π

(
∫ 2π

0

dθ)(
∫ ∞

0

exp
(
−1

2
r2

)
rdr)

=
1
2π

(
∫ 2π

0

dθ)(
∫ ∞

0

exp(−s)ds)

=
1
2π

2π[− exp(−s)]∞0

= 1

u = r cos θ, v = r sin θ として置換積分を行う。∣∣∣∣∣∣

∂u

∂r

∂u

∂θ
∂v

∂r

∂v

∂θ

∣∣∣∣∣∣
=

∣∣∣∣
cos θ −r sin θ

sin θ r cos θ

∣∣∣∣ = r

0 < r < +∞, 0 < θ < 2π となることに注意

さらに，s =
1
2
r2 と置換積分される。

このように，I2 = 1が得られ，f(x) ≥ 0なので，I = 1
を得る。

4. 指数分布に従う X の確率密度関数 f(x) について，∫ ∞

−∞
f(x)dx = 1 の証明：

∫ ∞

−∞
f(x)dx =

∫ ∞

0

λe−λxdx

= [−e−λx]∞0

= 1

5. 一様分布に従う X の確率密度関数 f(x) について，∫ ∞

−∞
f(x)dx = 1 の証明：

∫ ∞

−∞
f(x)dx =

∫ b

a

1
b− a

dx

= [
1

b− a
x]ba

= 1

6. X, Y は 2変数正規分布に従うとき，X の周辺確率密

度関数は？

連続型確率変数 X, Y の結合確率密度関数は

h(x, y) =
1

2πσ1σ2

√
1− ρ2

× exp

(
− 1

2(1− ρ2)
(
(x− µ1)2

σ2
1

−2ρ
(x− µ1)(y − µ2)

σ1σ2

+
(y − µ2)2

σ2
2

)

)

− 1
2(1− ρ2)

(
(x− µ1)2

σ2
1

− 2ρ
(x− µ1)(y − µ2)

σ1σ2

+
(y − µ2)2

σ2
2

)

= − 1
2(1− ρ2)

(
y − µ2

σ2
− ρ

x− µ1

σ1
)2

−1
2

(x− µ1)2

σ2
1

= − 1
2(1− ρ2)σ2

2

(
(y − µ2)− ρ

σ2

σ1
(x− µ1)

)2

−1
2

(x− µ1)2

σ2
1

f(x) =
∫ ∞

−∞
h(x, y)dy

=
1√
2πσ2

1

exp
(
− 1

2σ2
1

(x− µ1)2
)

×
∫ ∞

−∞

1√
2π(1− ρ2)σ2

exp

(
− 1

2(1− ρ2)σ2
2

×(
(y − µ2)− ρ

σ2

σ1
(x− µ1)

)2

)
dy

積分の部分は，N
(
µ2 + ρ

σ2

σ1
(x−µ1), (1− ρ2)σ2

2

)
に対

応し，積分値は 1になる。

3 平均値，分散

3.1 平均・分散の定義と公式

1 変数： 確率変数 X のある関数： g(X)
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定義：

g(X) の期待値 E
(
g(X)

)
：

E
(
g(X)

)
=





∑

i

g(xi)pi =
∑

i

g(xi)f(xi),

離散型確率変数

∫ ∞

−∞
g(x)f(x)dx,

連続型確率変数

1. 確率変数 X の平均 E(X)

=⇒ X の期待値, g(X) = X

E(X) =





∑

i

xif(xi), 離散型確率変数

∫ ∞

−∞
xf(x)dx, 連続型確率変数

= µ, (または，µx)

2. 確率変数 X の分散 V(X)

=⇒ (X − µ)2 の期待値, g(X) = (X − µ)2

V(X) = E
(
(X − µ)2

)

=





∑

i

(xi − µ)2f(xi),

離散型確率変数

∫ ∞

−∞
(x− µ)2f(x)dx,

連続型確率変数

= σ2, (または，σ2
x)

確率変数 X の分散 V(X)

=⇒ X の確率分布の確率関数 (離散型の場合)，また
は，確率密度関数 (連続型の場合)の範囲が広ければ，
V(X) は大きい。

いくつかの公式：

1. a, b を定数とする。

定理： E(aX + b) = aE(X) + b

証明：

X が離散型確率変数の場合，

E(aX + b) =
∑

i

(axi + b)f(xi)

= a
∑

i

xif(xi) + b
∑

i

f(xi)

= aE(X) + b

途中で，
∑

i

f(xi) = 1 に注意

X が連続型確率変数の場合，

E(aX + b) =
∫ ∞

−∞
(ax + b)f(x)dx

= a

∫ ∞

−∞
xf(x)dx + b

∫ ∞

−∞
f(x)dx

= aE(X) + b

途中で，
∫ ∞

−∞
f(x)dx = 1 に注意

2. 定理： V(X) = E(X2)− µ2

証明：

V(X) = E
(
(X − µ)2

)

= E(X2 − 2µX − µ2)

= E(X2)− 2µE(X) + µ2

= E(X2)− µ2

途中で，µ = E(X) に注意

3. a, b を定数とする。

定理： V(aX + b) = a2V(X)

証明：

E(aX + b) = aµ + b に注意して，

V(aX + b) = E
((

(aX + b)− E(aX + b)
)2

)

= E
(
(aX − aµ)2

)

= E
(
a2(X − µ)2

)

= a2E
(
(X − µ)2

)

= a2V(X)

を得る。
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4. 定理： 確率変数 X について，E(X) = µ, V(X) = σ2

とする。

Z =
X − µ

σ
を定義する。

このとき，E(Z) = 0, V(Z) = 1 となる。

証明：

E(Z) = E
(

X − µ

σ

)
=

E(X)− µ

σ
= 0

V(Z) = V
(

1
σ

X − µ

σ

)
=

1
σ2

V(X) = 1

2 変数： 確率変数 X, Y のある関数： g(X,Y )

定義：

g(X,Y ) の期待値 E
(
g(X, Y )

)
：

E
(
g(X,Y )

)
=





∑

i

∑

j

g(xi, yj)f(xi, yj),

離散型確率変数

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y)dxdy,

連続型確率変数

1. 確率変数 X の平均 E(X)

=⇒ X の期待値, g(X,Y ) = X

E(X) =





∑

i

∑

j

xif(xi, yj),

離散型確率変数

∫ ∞

−∞

∫ ∞

−∞
xf(x, y)dxdy,

連続型確率変数
= µx

2. 確率変数 X の分散 V(X)

=⇒ (X − µx)2 の期待値, g(X, Y ) = (X − µx)2

V(X) = E
(
(X − µx)2

)

=





∑

i

∑

j

(xi − µx)2f(xi, yj),

離散型確率変数

∫ ∞

−∞

∫ ∞

−∞
(x− µx)2f(x, y)dxdy,

連続型確率変数

= σ2
x

3. 確率変数 X,Y の共分散 Cov(X,Y )

=⇒ (X − µx)(Y − µy) の期待値, g(X,Y ) = (X −
µx)(Y − µy)

Cov(X, Y )

= E
(
(X − µx)(Y − µy)

)

=





∑

i

∑

j

(xi − µx)(yj − µy)f(xi, yj),

離散型確率変数

∫ ∞

−∞

∫ ∞

−∞
(x− µx)(y − µy)f(x, y)dxdy,

連続型確率変数

いくつかの公式：

1. 確率変数 X, Y について，

定理： E(X + Y ) = E(X) + E(Y )

証明：

E(X + Y ) =
∑

i

∑

j

(xi + yj)f(xi, yj)

=
∑

i

∑

j

xif(xi, yj)

+
∑

i

∑

j

yjf(xi, yj)

= E(X) + E(Y )

2. 確率変数 X と Y が独立のとき，

定理： E(XY ) = E(X)E(Y )

証明：

E(XY ) =
∑

i

∑

j

xiyjf(xi, yj)
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=
∑

i

∑

j

xiyjf(xi)h(yj)

=
∑

i

xif(xi)
∑

j

yjh(yj)

= E(X)E(Y )

3. 確率変数 X, Y について，

定理： Cov(X, Y ) = E(XY )− E(X)E(Y )

証明：

Cov(X,Y )

=
∑

i

∑

j

(xi − µx)(yj − µy)pij

=
∑

i

∑

j

(xiyj − µxyj − µyxi + µxµy)pij

=
∑

i

∑

j

xiyjf(xi, yj)

− µx

∑

i

∑

j

yjf(xi, yj)

− µy

∑

i

∑

j

xif(xi, yj)

+ µxµy

∑

i

∑

j

f(xi, yj)

=
∑

i

∑

j

xiyjf(xi, yj)− µxµy − µyµx + µxµy

=
∑

i

∑

j

xiyjf(xi, yj)− µxµy

= E(XY )− E(X)E(Y )

より，一般的な証明：

Cov(X,Y )

= E
(
(X − µx)(Y − µy)

)

= E
(
XY − µxY − µyX + µxµy

)

= E(XY )− E(µxY )− E(µyX) + µxµy

= E(XY )− µxE(Y )− µyE(X) + µxµy

= E(XY )− µxµy − µyµx + µxµy

= E(XY )− µxµy

= E(XY )− E(X)E(Y )

4. 確率変数 X と Y が独立のとき，

E(XY ) = E(X)E(Y )

となるので，

Cov(X,Y ) = 0

を得る。

5. 相関係数 ρxy：

ρxy =
Cov(X, Y )√
V(X)

√
V(Y )

=
Cov(X, Y )

σxσy

6. 確率変数 X と Y が独立のとき，

Cov(X,Y ) = 0

となるので，

ρxy = 0

を得る。

7. 確率変数 X, Y について，

V(X ± Y ) = V(X)± 2Cov(X, Y ) + V(Y )

証明：

V(X ± Y )

= E
((

(X ± Y )− E(X ± Y )
)2

)

= E
((

(X − µx)± (Y − µy)
)2

)

= E
(
(X − µx)2 ± 2(X − µx)(Y − µy)

+(Y − µy)2
)

= E
(
(X − µx)2

)

± 2E
(
(X − µx)(Y − µy)

)

+ E
(
(Y − µy)2

)

= V(X)± 2Cov(X,Y ) + V(Y )

8. −1 ≤ ρxy ≤ 1

証明：

次のような t に関する式を考える。f(t) = V(Xt−Y )

分散なので，必ずゼロ以上となる。よって，すべての t

について，f(t) ≥ 0となるための条件を求めればよい。
t に関する２次方程式の判別式がゼロ以下となる条件
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を求める。V(Xt−Y ) = V(Xt)−2Cov(Xt, Y )+V(Y )
= t2V(X)− 2tCov(X, Y ) + V(Y )
D

2
=

(
Cov(X,Y )

)2 −V(X)V(Y ) ≤ 0
(
Cov(X, Y )

)2

V(X)V(Y )
≤ 1

−1 ≤ Cov(X, Y )√
V(X)

√
V(Y )

≤ 1

−1 ≤ ρxy ≤ 1

ρxy が 1 に近いほど， 正の相関が強くなる。

ρxy が −1 に近いほど， 負の相関が強くなる。

9. 確率変数 X と Y が独立のとき，

定理： V(X + Y ) = V(X) + V(Y )

証明：

V(X + Y ) = V(X) + 2Cov(X, Y ) + V(Y )

確率変数 X と Y が独立のとき，

Cov(X, Y ) = 0

なので，

V(X + Y ) = V(X) + V(Y )

を得る。

10. n 個の確率変数 X1, X2, · · ·, Xn について：

E(Xi) = µi とするとき，

E(
∑

i Xi) =
∑

i E(Xi) =
∑

i µi

V(
∑

i Xi) ≡ E
(∑

i(Xi − µi)
)2

= E
(∑

i(Xi − µi)
)(∑

j(Xj − µj)
)

= E
(∑

i

∑
j(Xi − µi)(Xj − µj)

)

=
∑

i

∑
j E

(
(Xi − µi)(Xj − µj)

)

=
∑

i

∑
j Cov(Xi, Xj)

11. n 個の確率変数 X1, X2, · · ·, Xn は互いに独立で同じ

平均 µ，分散 σ2 を持つとする。すなわち，すべての

i = 1, 2, · · · , n について，

E(Xi) = µ, V(Xi) = σ2

を仮定する。

さらに，算術平均 X =
1
n

n∑

i=1

Xi を考える。

このとき，

定理： E(X) = µ, V(X) =
σ2

n
が成り立つ。

証明：

E(X) = E(
∑

i

Xi

n
)

=
∑

i

E(
Xi

n
)

=
∑

i

1
n

E(Xi)

=
∑

i

1
n

µ

= µ

V(X) = V(
∑

i

Xi

n
)

=
∑

i

V(
Xi

n
)

=
∑

i

1
n2

V(Xi)

=
∑

i

1
n

2

σ2

=
σ2

n

3.2 いくつかの分布の平均・分散

ベルヌイ分布の平均と分散： ベルヌイ分布：

f(x) = px(1− p)1−x x = 0, 1

E(X) = p, V(X) = p(1− p)
証明：

平均：

E(X) =
∑

x

xf(x)

=
1∑

x=0

xpx(1− p)1−x

= p
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分散：

µ = E(X) のとき，V(X) = E(X2) − µ2 により，E(X2)
を求める。

E(X2) =
∑

x

x2f(x)

=
1∑

x=0

x2px(1− p)1−x

= p2

よって，

V(X) = E(X2)− µ2

= p− p2

= p(1− p)

2項分布の平均と分散： 2項分布：

f(x) = nCxpx(1− p)n−x

=
n!

x!(n− x)!
px(1− p)n−x, x = 0, 1, 2, · · · , n,

E(X) = np, V(X) = np(1− p)
証明：

平均：

E(X) =
∑

x

xf(x)

=
∑

x

xnCxpx(1− p)n−x

=
∑

x

x
n!

x!(n− x)!
px(1− p)n−x

=
∑

x

n!
(x− 1)!(n− x)!

px(1− p)n−x

= np
∑

x

(n− 1)!
(x− 1)!(n− x)!

px−1(1− p)n−x

= np
∑

x′

n′!
x′!(n′ − x′)!

px′(1− p)n′−x′

= np
∑

x′
n′Cx′p

x′(1− p)n′−x′

= np

ただし，n′ = n− 1, x′ = x− 1 と定義される。
確率関数の性質より，

∑
x

nCxpx(1− p)n−x = 1

を得ることに注意。

分散：

V(X) = E(X2)− µ2 により，E(X2) を求める。
X2 = X(X − 1) + X を利用する。

E(X2) = E
(
X(X − 1)

)
+ E(X)

したがって，

V(X) = E
(
X(X − 1)

)
+ µ− µ2 となる。

右辺第 1項を求める。

E
(
X(X − 1)

)

=
∑

x

x(x− 1)f(x)

=
∑

x

x(x− 1)nCxpx(1− p)n−x

=
∑

x

x(x− 1)
n!

x!(n− x)!
px(1− p)n−x

=
∑

x

n!
(x− 2)!(n− x)!

px(1− p)n−x

= n(n− 1)p2
∑

x

(n− 2)!
(x− 2)!(n− x)!

px−2(1− p)n−x

= n(n− 1)p2
∑

x′

n′!
x′!(n′ − x′)!

px′(1− p)n′−x′

= n(n− 1)p2
∑

x′
n′Cx′p

x′(1− p)n′−x′

= n(n− 1)p2

途中で，n′ = n− 2, x′ = x− 2 と定義されている。
まとめると，

V(X) = E(X2)− µ2

= E
(
X(X − 1)

)
+ µ− µ2

= n(n− 1)p2 + np− n2p2

= −np2 + np

= np(1− p)

ポアソン分布の平均と分散： ポアソン分布：

f(x) = e−λ λk

k!
, k = 0, 1, 2, · · · , n,

E(X) = λ, V(X) = λ

証明：

平均：

E(X) =
∑

k

kf(k)
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=
∑

k

ke−λ λk

k!

=
∑

k

λe−λ λk−1

(k − 1)!

= λ
∑

k′
e−λ λk′

k′!

= λ

ただし，k′ = k − 1 と定義される。
確率関数の性質より，

∑

k

e−λ λk

k!
= 1,

を得ることに注意。

分散：

V(X) = E(X2)− µ2 により，E(X2) を求める。
X2 = X(X − 1) + X を利用する。

E(X2) = E
(
X(X − 1)

)
+ E(X)

したがって，

V(X) = E
(
X(X − 1)

)
+ µ− µ2 となる。

右辺第 1項を求める。

E
(
X(X − 1)

)

=
∑

k

k(k − 1)f(k)

=
∑

k

k(k − 1)e−λ λk

k!

=
∑

k

λ2e−λ λk−2

(k − 2)!

= λ2
∑

k′
e−λ λk′

k′!

途中で，k′ = k − 2 と定義されている。
まとめると，

V(X) = E(X2)− µ2

= E
(
X(X − 1)

)
+ µ− µ2

= λ2 + λ− λ2

= λ

正規分布の平均と分散： 正規分布：X ∼ N(µ, σ2)

f(x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

E(X) = µ, V(X) = σ2

証明：

平均：

E(X) =
∫ ∞

−∞
xf(x)dx

=
∫ ∞

−∞

(
(x− µ) + µ

)
f(x)dx

=
∫ ∞

−∞
(x− µ)f(x)dx + µ

∫ ∞

−∞
f(x)dx

=
∫ ∞

−∞
(x− µ)

1√
2πσ2

e−
1

2σ2 (x−µ)2dx + µ

=
1√

2πσ2

[
−σ2e−

1
2σ2 (x−µ)2

]∞
−∞

+ µ

= µ

確率密度関数の性質にから，
∫ ∞

−∞
f(x)dx

=
∫ ∞

−∞

1√
2πσ2

e−
1

2σ2 (x−µ)2dx

= 1

となることに注意。

合成関数の微分：

y = h
(
g(x)

)
=⇒ y = h(u), u = g(x)

dy

dx
=

dy

du

du

dx
= h′(u)g′(x)

= h
(
g(x)

)
g′(x)

上の計算では，

h(u) = −σ2eu, g(x) = − 1
2σ2

(x− µ)2

とすればよい。

ロピタルの定理：

ある関数 g(x), f(x) について，

lim
x→∞

f ′(x)
g′(x)

= A

ならば，

lim
x→∞

f(x)
g(x)

= A

12



となる。

例：

lim
x→∞

x

ex
= lim

x→∞
1
ex

= 0
dex

dx
= ex に注意。

分散：

V(X) = E(X − µ)2

V(X) =
∫ ∞

−∞
(x− µ)2f(x)dx

=
∫ ∞

−∞
(x− µ)2

1√
2πσ2

e−
1

2σ2 (x−µ)2dx

=
1√

2πσ2

∫ ∞

−∞
(x− µ)

d
(
−σ2e−

1
2σ2 (x−µ)2

)

dx
dx

=
1√

2πσ2

[
(x− µ)

(
−σ2e−

1
2σ2 (x−µ)2

)]∞
−∞

+
1√

2πσ2

∫ ∞

−∞
σ2e−

1
2σ2 (x−µ)2dx

= σ2

∫ ∞

−∞

1√
2πσ2

e−
1

2σ2 (x−µ)2dx

= σ2

部分積分：∫ b

a

h(x)g′(x)dx =
[
h(x)g(x)

]b

a
−

∫ b

a

h′(x)g(x)dx を利用。

h(x) = x− µ, g(x) = −σ2e−
1

2σ2 (x−µ)2 とする。

指数分布の平均と分散： 指数分布：

f(x) =

{
λe−λx, 0 < x のとき

0, その他のとき

E(X) =
1
λ

, V(X) =
1
λ2

証明：

平均：

E(X) =
∫ ∞

−∞
xf(x)dx

=
∫ ∞

0

xλe−λxdx

=
∫ ∞

0

x
d(−e−λx)

dx
dx

=
[
x(−e−λx)

]∞
0

+
∫ ∞

0

e−λxdx

=
1
λ

∫ ∞

0

λe−λxdx

=
1
λ

確率密度関数の性質から，∫ ∞

−∞
f(x)dx =

∫ ∞

0

λe−λxdx

= [−e−λx]∞0

= 1

に注意。

分散：

V(X) = E(X2)− µ2 により，E(X2) を求める。

E(X2) =
∫ ∞

−∞
x2f(x)dx

=
∫ ∞

0

x2λe−λxdx

=
∫ ∞

0

x2 d(−e−λx)
dx

dx

=
[
x2(−e−λx)

]∞
0

+ 2
∫ ∞

0

xe−λxdx

=
2
λ

∫ ∞

0

xλe−λxdx

=
2
λ

E(X)

=
2
λ2

V(X) = E(X2)− µ2

=
2
λ2
− 1

λ2

=
1
λ2

一様分布の平均と分散： 一様分布：

f(x) =





1
b− a

, a < x < b のとき

0, その他のとき

E(X) =
b− a

2
, V(X) =

(b− a)2

12
証明：

平均：

E(X) =
∫ ∞

−∞
xf(x)dx

=
∫ b

a

x
1

b− a
dx

=
1

b− a

[
x2

2

]b

a

=
a + b

2

13



分散：

V(X) = E(X2)− µ2 により，E(X2) を求める。

E(X2) =
∫ ∞

−∞
x2f(x)dx

=
∫ b

a

x2 1
b− a

dx

=
1

b− a

[
x3

3

]b

a

=
a2 + ab + b2

3

V(X) =
a2 + ab + b2

3
−

(a + b

2

)2

=
(b− a)2

12

カイ二乗分布の平均と分散： カイ二乗分布：

f(x) =





1
Γ(n

2 )
2−

n
2 x

n
2−1e−

x
2 , x ≥ 0 のとき

0, x < 0 のとき

E(X) = n, V(X) = 2n

証明：

平均：

E(X) =
∫ ∞

−∞
xf(x)dx

=
∫ ∞

0

x
1

Γ(n
2 )

2−
n
2 x

n
2−1e−

x
2 dx

=
2−

n
2

2−
n+2

2

Γ(n+2
2 )

Γ(n
2 )

×
∫ ∞

0

1
Γ(n+2

2 )
2−

n+2
2 x

n+2
2 −1e−

x
2 dx

= 2
n

2

∫ ∞

0

1
Γ(n′

2 )
2−

n′
2 x

n′
2 −1e−

x
2 dx

= n

Γ(s) =
∫ ∞

0

us−1e−udu =⇒ ガンマ関数 Γ(s + 1) = sΓ(s),

Γ(1) = 1, Γ(
1
2
) =

√
π に注意

また，n′ = n + 2 を使い，確率密度関数の性質から，
∫ ∞

−∞
f(x)dx =

∫ ∞

0

1
Γ(n

2 )
2−

n
2 x

n
2−1e−

x
2 dx = 1

に注意。

分散：

V(X) = E(X2)− µ2 により，E(X2) を求める。

E(X2) =
∫ ∞

−∞
x2f(x)dx

=
∫ ∞

0

x2 1
Γ(n

2 )
2−

n
2 x

n
2−1e−

x
2 dx

=
∫ ∞

0

1
Γ(n

2 )
2−

n
2 x

n+4
2 −1e−

x
2 dx

=
2−

n
2

2−
n+4

2

Γ(n+4
2 )

Γ(n
2 )

×
∫ ∞

0

1
Γ(n+4

2 )
2−

n+4
2 x

n+4
2 −1e−

x
2 dx

= 4(
n + 2

2
n

2
)
∫ ∞

0

1
Γ(n′

2 )
2−

n′
2 x

n′
2 −1e−

x
2 dx

= n(n + 2)

n′ = n + 4 を使う。
V(X) = n(n + 2)− n2 = 2n

4 変数変換と和の分布 (連続型確率変

数の場合のみ)

4.1 一変数の場合

Y = ψ−1(X) の分布： 連続型確率変数 X の確率密度

関数 f(x)
X = ψ(Y ) の一対一変換のとき，
Y の確率密度関数 g(y) は，

g(y) = |ψ′(y)|f(
ψ(y)

)

証明：

確率変数 X の分布関数を F (x)，確率密度関数を f(x) と
する。

(すなわち，F (x) = P (X ≤ x), f(x) = F ′(x) である。)
Y = h(X) とする。
X = ψ(Y ) のとき，Y の分布を求める。

すなわち，h−1(Y ) = ψ(Y ) となる。
Y の分布関数を G(y)，確率密度関数を g(y) とする。
ψ′(X) > 0 の場合：

G(y) = P (Y ≤ y)

= P
(
h(X) ≤ y

)

= P
(
X ≤ h−1(y)

)
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= P
(
X ≤ ψ(y)

)

= F
(
ψ(y)

)

なので，

g(y) = G′(y)

= ψ′(y)F ′
(
ψ(y)

)

= ψ′(y)f
(
ψ(y)

)

を得る。

ψ′(X) < 0 の場合：

G(y) = P (Y ≤ y)

= P
(
h(X) ≤ y

)

= P
(
X ≥ h−1(y)

)

= P
(
X ≥ ψ(y)

)

= 1− P
(
X < ψ(y)

)

= 1− F
(
ψ(y)

)

なので，

g(y) = G′(y)

= −ψ′(y)F ′
(
ψ(y)

)

= −ψ′(y)f
(
ψ(y)

)

を得る。−ψ′(y) > 0 に注意
したがって，まとめると，

g(y) = |ψ′(y)|f
(
ψ(y)

)

を得る。=⇒ 変数変換

Y = X2 の分布について： 確率変数 X の分布関数を

F (x)，確率密度関数を f(x) とする。
確率変数 Y の分布関数を G(y)，確率密度関数を g(y) と
する。

Y = X2 の分布関数 G(y) は，

G(y) = P (Y ≤ y)

= P (X2 ≤ y)

= P (−√y ≤ X ≤ √
y)

= F (
√

y)− F (−√y)

したがって，

g(y) = G′(y)

=
1

2
√

y

(
f(
√

y) + f(−√y)
)

例： χ2(1) 分布： X ∼ N(0, 1) とするとき，Y = X2 ∼
χ2(1) となる。
証明：

X の分布関数とその微分:

F (x) =
∫ x

−∞

1√
2π

exp
(
−1

2
u2

)
du

f(x) = F ′(x) =
1√
2π

exp
(
−1

2
x2

)

Y の確率密度関数 g(y) は，y > 0 について，

g(y) = G′(y)

=
1

2
√

y

(
F ′(

√
y) + F ′(−√y)

)

=
1√

2π
√

y
exp

(
−1

2
y

)

=
1

Γ( 1
2 )2

1
2
y

1
2−1 exp

(
−1

2
y

)

これは Y ∼ χ2(1) を意味する。
Γ( 1

2 ) =
√

π に注意

Y ∼ χ2(n) のとき，Y の確率密度関数は，

f(y) =
1

2
n
2 Γ(n

2 )
y

n
2−1 exp(−y

2
)

に注意

例： N(0, 1) 分布： X ∼ N(µ, σ2) とするとき，Y =
X − µ

σ
∼ N(0, 1) となる。

証明：

X の分布関数:

f(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)

X = ψ(Y ) = σY + µ なので，Y の密度関数は，

g(y) = |ψ′(y)|f
(
ψ(y)

)

= |σ| 1√
2πσ2

exp
(
−1

2
y2

)

=
1√
2π

exp
(
−1

2
y2

)

となる。これは，N(0, 1) に一致する。
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4.2 二変数の場合

X = ψ1(U, V ), Y = ψ2(U, V ) のとき，(U, V ) の分

布： 確率変数 X, Y の結合密度関数 f(x, y) について，
X = ψ1(U, V ), Y = ψ2(U, V ) のとき，確率変数 U , V の

結合密度関数 g(u, v)

g(u, v) =

∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣
f
(
ψ1(u, v), ψ2(u, v)

)

(証明略)

U の周辺密度関数 h(u):

h(u) =
∫

g(u, v)dv

V の周辺密度関数 p(v):

p(v) =
∫

g(u, v)du

例： 正規分布： X, Y は互いに独立な確率変数でそれぞ

れ正規分布 N(µ1, σ
2
1), N(µ2, σ

2
2) に従うとき，X + Y ∼

N(µ1 + µ2, σ
2
1 + σ2

2) となる。
証明：

X, Y の確率密度関数

f(x) =
1√
2πσ2

1

exp
(
− 1

2σ2
1

(x− µ1)2
)

g(y) =
1√
2πσ2

2

exp
(
− 1

2σ2
2

(y − µ2)2
)

X, Y の結合確率密度関数は，X, Y は互いに独立な確率

変数なので，

h(x, y)

= f(x)g(y)

=
1

2πσ1σ2
exp

(
− 1

2σ2
1

(x− µ1)2 − 1
2σ2

2

(y − µ2)2
)

U = X + Y , V = Y として，U , V の結合確率密度関数を

求める。X = U − V , Y = V なので，



∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v


 =

(
1 −1
0 1

)

となるので，U , V の結合確率密度関数 s(u, v) は，変数変
換により，

s(u, v)

= h(u− v, v)
∣∣∣∣
1 −1
0 1

∣∣∣∣

=
1

2πσ1σ2
exp

(
− 1

2σ2
1

(u− v − µ1)2 − 1
2σ2

2

(v − µ2)2
)

U の周辺確率密度関数 p(u) を求める。

p(u)

=
∫

s(u, v)dv

=
∫

1
2πσ1σ2

exp
(
− 1

2σ2
1

(u− v − µ1)2

− 1
2σ2

2

(v − µ2)2
)
dv

=
∫

1
2πσ1σ2

exp

(
− 1

2σ2
1

(
(v − µ2)− (u− µ1 − µ2)

)2

− 1
2σ2

2

(v − µ2)2
)

dv

=
∫

1
2πσ1σ2

exp

(
− 1

2/(1/σ2
1 + 1/σ2

2)
(
(v − µ2)

− σ2
2

σ2
1 + σ2

2

(u− µ1 − µ2)
)2

− 1
2(σ2

1 + σ2
2)

(u− µ1 − µ2)2
)

dv

=
∫

1√
2π/(1/σ2

1 + 1/σ2
2)

× exp

(
− 1

2/(1/σ2
1 + 1/σ2

2)
(
(v − µ2)

− σ2
2

σ2
1 + σ2

2

(u− µ1 − µ2)
)2

)

× 1√
2π(σ2

1 + σ2
2)

exp

(
− 1

2(σ2
1 + σ2

2)
(u− µ1 − µ2)2

)
dv

=
∫

1√
2π/(1/σ2

1 + 1/σ2
2)

× exp

(
− 1

2/(1/σ2
1 + 1/σ2

2)
(
(v − µ2)

− σ2
2

σ2
1 + σ2

2

(u− µ1 − µ2)
)2

)
dv

× 1√
2π(σ2

1 + σ2
2)

exp

(
− 1

2(σ2
1 + σ2

2)
(u− µ1 − µ2)2

)

=
1√

2π(σ2
1 + σ2

2)
exp

(
− 1

2(σ2
1 + σ2

2)
(u− µ1 − µ2)2

)

16



例： χ2 分布： X, Y は互いに独立で，X ∼ χ2(n), Y ∼
χ2(m) とするとき，U = X + Y ∼ χ2(n + m) となる。
証明：

f(x) =
1

2
n
2 Γ(n

2 )
x

n
2−1 exp(−x

2
), x > 0

g(y) =
1

2
m
2 Γ(m

2 )
y

m
2 −1 exp(−y

2
), y > 0

X, Y の結合確率密度関数は，X, Y は互いに独立な確率

変数なので，

h(x, y)

= f(x)g(y)

=
1

2
n
2 Γ(n

2 )
x

n
2−1 exp(−x

2
)

1
2

m
2 Γ(m

2 )
y

m
2 −1 exp(−y

2
)

= Cx
n
2−1y

m
2 −1 exp(−x + y

2
)

ただし，C =
1

2
n+m

2 Γ(n
2 )Γ(m

2 )
とする。

U = X + Y , V = Y として，変数変換を行う。

X = U − V , Y = V なので，



∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v


 =

(
1 −1
0 1

)

となるので，U , V の結合確率密度関数 s(u, v) は，変数変
換により，

s(u, v)

= h(u− v, v)
∣∣∣∣
1 −1
0 1

∣∣∣∣

= C(u− v)
n
2−1v

m
2 −1 exp(−u

2
)

U の周辺確率密度関数は，

p(u)

=
∫

s(u, v)dv

= C exp(−u

2
)
∫ ∞

0

(u− v)
n
2−1v

m
2 −1dv

= C exp(−u

2
)
∫ ∞

0

(u− uw)
n
2−1(uw)

m
2 −1udw

= Cu
n+m

2 −1 exp(−u

2
)
∫ ∞

0

(1− w)
n
2−1w

m
2 −1dw

= CB(
n

2
,
m

2
)u

n+m
2 −1 exp(−u

2
)

=
1

2
n+m

2 Γ(n
2 )Γ(m

2 )

Γ(n
2 )Γ(m

2 )
Γ(n+m

2 )
u

n+m
2 −1 exp(−u

2
)

=
1

2
n+m

2 Γ(n+m
2 )

u
n+m

2 −1 exp(−u

2
)

w =
v

u
，すなわち，v = uw として置換積分 (

dv

dw
= u に

注意)
ベータ関数 B(n,m) は

B(n, m) =
∫ ∞

0

(1− x)n−1xm−1dx

=
Γ(n)Γ(m)
Γ(n + m)

に注意

例： t 分布： X, Y は互いに独立で，X ∼ N(0, 1), Y ∼
χ2(n) とするとき，U =

X√
Y/n

∼ t(n) となる。

U の密度関数 f(u) は，

f(u) =
Γ(n+1

2 )√
πΓ(n

2 )
1√
nπ

(
1 +

u2

n

)−n+1
2

となる。

証明：

f(x) =
1√
2π

exp(−1
2
x2), −∞ < x < ∞

g(y) =
1

2
n
2 Γ(n

2 )
y

n
2−1 exp(−y

2
), y > 0

X, Y の結合確率密度関数は，X, Y は互いに独立な確率

変数なので，

h(x, y)

= f(x)g(y)

=
1√
2π

exp(−1
2
x2)

1
2

n
2 Γ(n

2 )
y

n
2−1 exp(−y

2
)

=
1√
2π

1
2

n
2 Γ(n

2 )
y

n
2−1 exp(−y

2
− 1

2
x2)

U =
X√
Y/n

, V = Y として，変数変換を行う。

X = U

√
V

n
, Y = V なので，




∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v


 =

( √
v

n

u

2
√

nv
0 1

)
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となるので，U , V の結合確率密度関数 s(u, v) は，変数変
換により，

s(u, v)

= h(u
√

v

n
, v)

∣∣∣∣∣

√
v

n

u

2
√

nv
0 1

∣∣∣∣∣

=
1√
2π

exp(−1
2

u2v

n
)

1
2

n
2 Γ(n

2 )
v

n
2−1 exp(−v

2
)
√

v

n

= Cv
n−1

2 exp

(
− v

2
(1 +

u2

n
)

)

ただし，C =
1√
π

1

2
n+1

2 Γ(n
2 )

1√
n
とする。

U の周辺確率密度関数は，

p(u)

=
∫

s(u, v)dv

= C

∫
v

n−1
2 exp

(
− v

2
(1 +

u2

n
)

)
dv

= C

∫ (
w(1 +

u2

n
)−1

)n−1
2

exp(−1
2
w)

(
1 +

u2

n

)−1

dw

= C

(
1 +

u2

n

)−n+1
2 ∫

w
n+1

2 −1 exp(−1
2
w)dw

= C

(
1 +

u2

n

)−n+1
2

2
n+1

2 Γ(
n + 1

2
)

×
∫

1

2
n+1

2 Γ(n+1
2 )

w
n+1

2 −1 exp(−1
2
w)dw

= C

(
1 +

u2

n

)−n+1
2

2
n+1

2 Γ(
n + 1

2
)

=
1√
π

1

2
n+1

2 Γ(n
2 )

1√
n

2
n+1

2 Γ(
n + 1

2
)

(
1 +

u2

n

)−n+1
2

=
Γ(n+1

2 )√
πΓ(n

2 )
1√
nπ

(
1 +

u2

n

)−n+1
2

w = v(1 +
u2

n
) として置換積分。

f(w) =
1

2
n+1

2 Γ(n+1
2 )

w
n+1

2 −1 exp(−1
2
w) は χ2(n + 1) の密

度関数に注意。

例：Cauchy 分布： X, Y は互いに独立で，X ∼ N(0, 1),

Y ∼ N(0, 1) とするとき，U =
X

Y
は Cauchy 分布となる。

U の密度関数 f(u) は，

f(u) =
1

π(1 + u2)

となる。

証明：

f(x) =
1√
2π

exp(−1
2
x2), −∞ < x < ∞

g(y) =
1√
2π

exp(−1
2
y2), −∞ < y < ∞

X, Y の結合確率密度関数は，X, Y は互いに独立な確率

変数なので，

h(x, y)

= f(x)g(y)

=
1√
2π

exp(−1
2
x2)

1√
2π

exp(−1
2
y2)

=
1
2π

exp
(−1

2
(x2 + y2)

)

u =
x

y
, v = y として，変数変換を行う。

x = uv, y = v なので，



∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v


 =

(
v u

0 1

)

となるので，U , V の結合確率密度関数 s(u, v) は，変数変
換により，

s(u, v)

= h(uv, v)
∣∣∣∣
v u

0 1

∣∣∣∣

=
1
2π

exp
(−1

2
v2(1 + u2)

)|v|

U の周辺確率密度関数は，

p(u)

=
∫

s(u, v)dv

=
1
2π

∫ ∞

−∞
|v| exp

(−1
2
v2(1 + u2)

)
dv

=
1
π

∫ ∞

0

v exp
(−1

2
v2(1 + u2)

)
dv
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=
1
π

[
− 1

1 + u2
exp

(−1
2
v2(1 + u2)

)]∞

v=0

=
1

π(1 + u2)

5 積率と積率母関数

5.1 積率母関数 (1 変数)

確率変数 X について，

積率： µ′n = E(Xn) =⇒ 原点のまわりの n 次の積率

積率母関数： φ(θ) = E(eθX)

φ(θ) = E(eθX)

=





∑

i

eθaif(ai), 離散型
∫ ∞

−∞
eθxf(x)dx, 連続型

性質：

1. φ(n)(0) = µ′n ≡ E(Xn)

証明：

φ(θ) を θ = 0 のまわりで，テーラー展開を行う。

φ(θ)

= E
(
1 +

X

1!
θ +

X2

2!
θ2 + · · ·+ Xn

n!
θn + · · ·)

= 1 +
E(X)

1!
θ +

E(X2)
2!

θ2 + · · ·+ E(Xn)
n!

θn + · · ·

= 1 +
µ′1
1!

θ +
µ′2
2!

θ2 + · · ·+ µ′n
n!

θn + · · ·

したがって，

φ(n)(θ) = µ′n +
µ′n+1

1!
θ +

µ′n+2

2!
θ2 + · · ·

より，φ(n)(0) = µ′n ≡ E(Xn)

注)

関数 f(x) の x = x0 の回りでテーラー展開

f(x) ≈
∞∑

k=0

1
k!

f (k)(x0)(x− x0)k

ただし，f (k)(x0) は f(x) の k 回微分を x = x0 で評

価したものとする。

2. 確率変数 X の積率母関数と確率変数 Y の積率母関数

は一致するとき，確率変数 X の分布関数と確率変数

Y の分布関数も一致する。

3. 互いに独立な確率変数X1, X2, · · ·, Xnの積率母関数を

φ1(θ), φ2(θ), · · ·, φn(θ)とするとき，X1+X2+· · ·+Xn

の積率母関数は φ1(θ)φ2(θ) · · ·φn(θ) となる。

証明：

Y = X1 + X2 + · · · + Xn として，Y の積率母関数

φy(θ) は

φy(θ) = E(eθY )

= E(eθ(X1+X2+···+Xn))

= E(eθX1)E(eθX2) · · ·E(eθXn)

= φ1(θ)φ2(θ) · · ·φn(θ)

4. 互いに独立な確率変数 X1, X2, · · ·, Xn が同一の分

布に従い，その積率母関数を φ(θ) とするとき，X1 +
X2 + · · ·+ Xn の積率母関数は

(
φ(θ)

)n

となる。

ベルヌイ分布の積率母関数： φ(θ) = peθ + (1− p)

ベルヌイ分布

f(x) = px(1− p)1−x, x = 0, 1

積率母関数

φ(θ) =
1∑

x=0

eθxf(x)

=
1∑

x=0

eθxpx(1− p)1−x

= eθp + 1− p

1. 平均：

E(X) = φ′(0)

φ(θ) = eθp + 1− p,

φ′(θ) = peθ なので，

E(X) = φ′(0)

= p
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2. 分散：

V(X) = E(X2)− (
E(X)

)2
なので，E(X2) を求める。

E(X2) = φ′′(0)

φ′′(θ) = peθ なので，

V(X) = E(X2)− (
E(X)

)2

= φ′′(0)− (
φ′(0)

)2

= p− p2

= p(1− p)

二項分布の積率母関数： φ(θ) =
(
peθ + (1− p)

)n

二項分布

f(x) = nCxpx(1− p)n−x, x = 0, 1, · · · , n

積率母関数

φ(θ) =
n∑

x=0

eθxf(x)

=
n∑

x=0

eθx
nCxpx(1− p)n−x

=
n∑

x=0

nCx(eθp)x(1− p)n−x

= (eθp + 1− p)n

(二項定理より)

1. 平均：

E(X) = φ′(0)

φ(θ) = (eθp + 1− p)n,

φ′(θ) = npeθ(eθp + 1− p)n−1 なので，

E(X) = φ′(0)

= np

2. 分散：

V(X) = E(X2)− (
E(X)

)2
なので，E(X2) を求める。

E(X2) = φ′′(0)

φ′′(θ) = npeθ(eθp + 1− p)n−1 + n(n− 1)p2e2θ(eθp +
1− p)n−2 なので，

V(X) = E(X2)− (
E(X)

)2

= φ′′(0)− (
φ′(0)

)2

= np + n(n− 1)p2 − (np)2

= np(1− p)

ポアソン分布の積率母関数： φ(θ) = exp
(
λ(eθ − 1)

)

ポアソン分布

f(x) = e−λ λx

x!
, x = 0, 1, · · ·

積率母関数

φ(θ) =
∞∑

x=0

eθxf(x)

=
∞∑

x=0

eθxe−λ λx

x!

=
∞∑

x=0

e−λ (eθλ)x

x!

= exp(−λ) exp(eθλ)

= exp
(
λ(eθ − 1)

)

∞∑
x=0

λx

x!
= eλ に注意

1. 平均：

E(X) = φ′(0)

φ(θ) = exp
(
λ(eθ − 1)

)
,

φ′(θ) = λeθ exp
(
λ(eθ − 1)

)
なので，

E(X) = φ′(0)

= λ

2. 分散：

V(X) = E(X2)− (
E(X)

)2
なので，E(X2) を求める。

E(X2) = φ′′(0)

φ′′(θ) = (1 + λeθ)λeθ exp
(
λ(eθ − 1)

)
なので，

V(X) = E(X2)− (
E(X)

)2

= φ′′(0)− (
φ′(0)

)2

= (1 + λ)λ− λ2

= λ
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正規分布の積率母関数： φ(θ) = exp
(
µθ +

1
2
σ2θ2

)

正規分布

f(x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2 , −∞ < x < ∞

積率母関数

φ(θ) =
∫ ∞

−∞
eθxf(x)dx

=
∫ ∞

−∞
eθx 1√

2πσ2
e−

1
2σ2 (x−µ)2dx

=
∫ ∞

−∞

1√
2πσ2

e−
1

2σ2 (x−µ)2+θxdx

=
∫ ∞

−∞

1√
2πσ2

e
− 1

2σ2

(
x2−2(µ+σ2θ)x+µ2

)
dx

=
∫ ∞

−∞

1√
2πσ2

e
− 1

2σ2

(
x−(µ+σ2θ)

)2

+(µθ+ 1
2 σ2θ2)

dx

= eµθ+ 1
2 σ2θ2

∫ ∞

−∞

1√
2πσ2

e
− 1

2σ2

(
x−(µ+σ2θ)

)2

dx

= exp
(

µθ +
1
2
σ2θ2

)

積分のところは，N(µ + σ2θ, σ2) の確率密度関数に注意

1. 平均：

E(X) = φ′(0)

φ(θ) = exp
(
µθ +

1
2
σ2θ2

)
,

φ′(θ) = (µ + σ2θ) exp
(
µθ +

1
2
σ2θ2

)
なので，

E(X) = φ′(0)

= µ

2. 分散：

V(X) = E(X2)− (
E(X)

)2
なので，E(X2) を求める。

E(X2) = φ′′(0)

φ′′(θ) = σ2 exp
(
µθ +

1
2
σ2θ2

)
+ (µ + σ2θ)2 exp

(
µθ +

1
2
σ2θ2

)
なので，

V(X) = E(X2)− (
E(X)

)2

= φ′′(0)− (
φ′(0)

)2

= (σ2 + µ2)− µ2

= σ2

一様分布の積率母関数： φ(θ) =
ebθ − eaθ

θ(b− a)
一様分布

f(x) =
1

b− a
, a < x < b

積率母関数

φ(θ) =
∫ ∞

−∞
eθxf(x)dx

=
∫ b

a

eθx 1
b− a

dx

=
[

eθx

θ(b− a)

]b

a

=
eθb − eθa

θ(b− a)

1. 平均：

E(X) = φ′(0)

φ(θ) =
eθb − eθa

θ(b− a)
,

φ′(θ) =
beθb − aeθa

θ(b− a)
− eθb − eθa

θ2(b− a)
なので，

E(X) = φ′(0)

= (a + b)− a + b

2

=
a + b

2

2. 分散：

V(X) = E(X2)− (
E(X)

)2
なので，E(X2) を求める。

E(X2) = φ′′(0)

φ′′(θ) =
b2eθb − a2eθa

θ(b− a)
− 2

beθb − aeθa

θ2(b− a)
+ 2

eθb − eθa

θ3(b− a)
なので，

V(X) = E(X2)− (
E(X)

)2

= φ′′(0)− (
φ′(0)

)2

=
(
(b2 + ab + a2)− 2

b2 + ab + a2

2

+2
b2 + ab + a2

6

)
−

(a + b

2

)2

=
(b− a)2

12
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指数分布の積率母関数： φ(θ) =
λ

λ− θ
指数分布

f(x) = λe−λx, 0 < x

積率母関数

φ(θ) =
∫ ∞

−∞
eθxf(x)dx

=
∫ ∞

0

eθxλe−λxdx

=
λ

λ− θ

∫ ∞

0

(λ− θ)e−(λ−θ)xdx

=
λ

λ− θ

積分のところは，パラメータ λ− θ の指数分布に注意

1. 平均：

E(X) = φ′(0)

φ(θ) =
λ

λ− θ
,

φ′(θ) =
λ

(λ− θ)2
なので，

E(X) = φ′(0)

=
1
λ

2. 分散：

V(X) = E(X2)− (
E(X)

)2
なので，E(X2) を求める。

E(X2) = φ′′(0)

φ′′(θ) = 2
λ

(λ− θ)3
なので，

V(X) = E(X2)− (
E(X)

)2

= φ′′(0)− (
φ′(0)

)2

=
2
λ2
− 1

λ2

=
1
λ2

χ2 分布の積率母関数： φ(θ) =
( 1

1− 2θ

)n
2

χ2(n) 分布

f(x) =
1

2
n
2 Γ(n

2 )
x

n
2−1 exp(−x

2
), 0 < x

積率母関数

φ(θ)

=
∫ ∞

−∞
eθxf(x)dx

=
∫ ∞

0

eθx 1
2

n
2 Γ(n

2 )
x

n
2−1 exp(−x

2
)dx

=
∫ ∞

0

1
2

n
2 Γ(n

2 )
x

n
2−1 exp

(
−1

2
(1− 2θ)x

)
dx

=
∫ ∞

0

1
2

n
2 Γ(n

2 )

(
y

1− 2θ

)n
2−1

exp(−1
2
y)

1
1− 2θ

dy

=
(

1
1− 2θ

)n
2

∫ ∞

0

1
2

n
2 Γ(n

2 )
y

n
2−1 exp(−1

2
y)dy

=
( 1

1− 2θ

)n
2

y = (1− 2θ)x として置換積分 (
dx

dy
= (1− 2θ)−1)

積分のところは，自由度 n の χ2(n) 分布に注意

1. 平均：

E(X) = φ′(0)

φ(θ) = (1− 2θ)−
n
2 ,

φ′(θ) = (−n
2 )(−2)(1− 2θ)−

n
2−1 なので，

E(X) = φ′(0)

= n

2. 分散：

V(X) = E(X2)− (
E(X)

)2
なので，E(X2) を求める。

E(X2) = φ′′(0)

φ′′(θ) = (−n
2 )(−n

2 − 1)(−2)2(1− 2θ)−
n
2−1 なので，

V(X) = E(X2)− (
E(X)

)2

= φ′′(0)− (
φ′(0)

)2

= n(n + 2)− n2

= 2n

例題： ベルヌイ分布の和の分布： X1, X2, · · ·, Xn はそ

れぞれ独立に同一のベルヌイ分布に従うものとする。この

とき，Y = X1 + X2 + · · · + Xn は二項分布 b(y; n, p) に
従う。
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証明：

P (Xi = 1) = p のとき，Xi の積率母関数 φi(θ) は，

φi(θ) = peθ + 1− p

Y の積率母関数 φy(θ) は，

φy(θ) = E(eθY )

= E(eθ(X1+X2+···+Xn))

= E(eθX1)E(eθX2) · · ·E(eθXn)

= φ1(θ)φ2(θ) · · ·φn(θ)

=
(
φ(θ)

)n

= (peθ + 1− p)n

これは，二項分布 b(y;n, p) の積率母関数に一致する。
注)
3つ目の等式は，X1, X2, · · ·, Xn はそれぞれ独立である

ため。

5つ目の等式は，X1, X2, · · ·, Xn は同一の分布に従うため。

例題：正規分布の和の分布： X, Y はたがいに独立な確率

変数で，X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2)とする。このとき，

定数 a, bについて，aX +bY ∼ N(aµ1 +bµ2, a
2σ2

1 +b2σ2
2)

となる。

証明：

X, Y の積率母関数 φx(θ), φy(θ) は，

φx(θ) = exp
(
µ1θ +

1
2
σ2

1θ2
)

φy(θ) = exp
(
µ2θ +

1
2
σ2

2θ2
)

W = aX + bY の積率母関数 φw(θ) は，

φw(θ) = E(eθW )

= E(eθ(aX+bY ))

= E(eaθX)E(ebθY )

= φx(aθ)φy(bθ)

= exp
(
µ1(aθ) +

1
2
σ2

1(aθ)2
)

× exp
(
µ2(bθ) +

1
2
σ2

2(bθ)2
)

= exp
(
(aµ1 + bµ2)θ +

1
2
(a2σ2

1 + b2σ2
2)θ2

)

これは，平均 aµ1 + bµ2，分散 a2σ2 + b2σ2
2 の正規分布の

積率母関数に一致する。

よって，aX + bY ∼ N(aµ1 + bµ2, a
2σ2 + b2σ2

2) となる。

例題： χ2 分布の和の分布 X, Y は互いに独立で，X ∼
χ2(n), Y ∼ χ2(m) とするとき，Z = X + Y ∼ χ2(n + m)
となる。

証明：

X, Y の積率母関数 φx(θ), φy(θ)とする。このとき，φx(θ),
φy(θ) はそれぞれ，

φx(θ) =
( 1

1− 2θ

)n
2
,

φy(θ) =
( 1

1− 2θ

)m
2
,

となる。Z = X + Y の積率母関数 φz(t) は，X, Y は互

いに独立な確率変数なので，

φz(θ) ≡ E(eθZ)

= E(eθ(X+Y ))

= E(eθX)E(eθY )

= φx(θ)φy(θ)

=
( 1

1− 2θ

)n
2
( 1

1− 2θ

)m
2

=
( 1

1− 2θ

)n+m
2

これは，自由度 n + m の χ2 分布の積率母関数に等しい。

したがって，Z ∼ χ2(n + m) となる。

ただし，3 つ目の等号が成り立つ理由は，X と Y は独立

な確率変数であるためである。

5.2 積率母関数 (多変数)

確率変数 X, Y について，

積率母関数： φ(θ1, θ2) = E(eθ1X+θ2Y )

性質：

1. 多変数の積率

∂j+kφ(0, 0)
∂θj

1∂θk
2

= E(XjY k)

2. (X1, Y1)の積率母関数と (X2, Y2)の積率母関数が一致
すれば，(X1, Y1) の分布関数と (X2, Y2) の分布関数も
一致する。

3. (X, Y ) の積率母関数 φ(θ1, θ2),

X の積率母関数 φ1(θ1),
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Y の積率母関数 φ2(θ2) について，

φ1(θ1) = φ(θ1, 0), φ2(θ2) = φ(0, θ2)

4. (X,Y ) の積率母関数 φ(θ1, θ2),

X の積率母関数 φ1(θ1),

Y の積率母関数 φ2(θ2) について，

X と Y が独立であるための条件は，

φ(θ1, θ2) = φ1(θ1)φ2(θ2)

確率変数 X1, X2, · · ·, Xn について，

積率母関数：φ(θ1, θ2, · · · , θn) = E(eθ1X1+θ2X2+···+θnXn)

2 変数正規分布の積率母関数： (X, Y ) の確率密度関数

f(x, y)

=
1

2πσ1σ2

p
1− ρ2

× exp

0@− 1

2(1− ρ2)
(
(x− µ1)

2

σ2
1

−2ρ
(x− µ1)(y − µ2)

σ1σ2

+
(y − µ2)

2

σ2
2

)

1A
=

1

2π

���� σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

����−1

× exp

0@− 1

2

�
x− µ1

y − µ2

�′�
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

�−1 �
x− µ1

y − µ2

�1A
=

1

2π
|Σ|−1 exp(−1

2
x′Σ−1x)

積率母関数

φ(θ1, θ2)

= E(eθ1X+θ2Y )

=
∫ ∞

−∞

∫ ∞

−∞
eθ1x+θ2yf(x, y)dxdy

=
∫∫

eθ1(x−µ1)+θ2(y−µ2)+θ1µ1+θ2µ2f(x, y)dxdy

=
∫∫

exp
((

θ1

θ2

)′(
x− µ1

y − µ2

)
+

(
θ1

θ2

)′(
µ1

µ2

))

×f(x, y)dxdy

=
∫

exp(θ′x + θ′µ)f(x)dx

=
∫

1
2π
|Σ|−1 exp(−1

2
x′Σ−1x + θ′x + θ′µ)dx

=
∫

1
2π
|Σ|−1 exp(−1

2
(x− θ)′Σ−1(x− θ)

+θ′µ +
1
2
θ′Σθ)dx

= exp(θ′µ +
1
2
θ′Σθ)

×
∫

1
2π
|Σ|−1 exp(−1

2
(x− θ)′Σ−1(x− θ))dx

= exp(θ′µ +
1
2
θ′Σθ)

= exp
(
µ1θ1 + µ2θ2 +

1
2
(σ2

1θ2
1 + 2σ1σ2ρθ1θ2 + σ2

2θ2
2)

)

ただし，

f(x) = f(x, y),

θ =
(

θ1

θ2

)
, µ =

(
µ1

µ2

)
, x =

(
x− µ1

y − µ2

)
,

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

とする。

1. E(X) =
∂φ(θ1, θ2)

∂θ1

∣∣∣∣∣
(θ1,θ2)=(0,0)

2. E(Y ) =
∂φ(θ1, θ2)

∂θ2

∣∣∣∣∣
(θ1,θ2)=(0,0)

3. E(X2) =
∂2φ(θ1, θ2)

∂θ2
1

∣∣∣∣∣
(θ1,θ2)=(0,0)

V(X) = E(X2)− (
E(X)

)2

4. E(Y 2) =
∂2φ(θ1, θ2)

∂θ2
2

∣∣∣∣∣
(θ1,θ2)=(0,0)

V(Y ) = E(Y 2)− (
E(Y )

)2

5. E(XY ) =
∂2φ(θ1, θ2)

∂θ1∂θ2

∣∣∣∣∣
(θ1,θ2)=(0,0)

Cov(X,Y ) = E(XY )− E(X)E(Y )
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練習問題と解答 (1 章～ 5 章)

１ 連続型確率変数 X の密度関数が

f(x) =





a− x, 0 < x < a のとき

0, その他

であるとき，次の問に答えよ。

(1) a を求めよ。

(2) X の平均と分散を求めよ。

(3) Y = X2 とするとき，Y の密度関数を求めよ。

[解答]

(1) 密度関数の性質
∫

f(x)dx = 1 から，

∫
f(x)dx =

∫ a

0

(a− x)dx

=
[
ax− 1

2
x2

]a

0

=
1
2
a2

= 1

により，a =
√

2 を得る。(a > 0 なので)

(2) 平均，分散の定義は，E(X) =
∫

xf(x)dx, V(X) =
∫

(x − µ)2f(x)dx (ただし，µ = E(X) とする) であ

る。よって，

E(X) =
∫

xf(x)dx

=
∫ a

0

x(a− x)dx

=
[
1
2
ax2 − 1

3
x3

]a

0

=
1
6
a3

=
√

2
3

←− a =
√

2 を代入する

V(X) =
∫

(x− µ)2f(x)dx

=
∫

x2f(x)dx− µ2

=
∫ a

0

x2(a− x)dx− µ2

=
[
1
3
ax3 − 1

4
x4

]a

0

− µ2

=
1
12

a4 − µ2

=
1
3
−

(√
2

3

)2

=
1
9

(3) X の密度関数を f(x)，分布関数を F (x) とする。ま
た，Y の密度関数を g(y) とし，分布関数を G(y) と
する。Y = X2 なので，

G(y)

= P (Y < y)

= P (X2 < y)

= P (−√y < X <
√

y)

= F (
√

y)− F (−√y)

= F (
√

y) ←− F (−√y) = 0

を得る。さらに，密度関数と分布関数の関係から，

g(y) =
dG(y)

dy

=
dF (

√
y)

dy

=
dF (x)

dx

d
√

y

dy
←− x =

√
y

= F ′(x)
1

2
√

y

= f(x)
1

2
√

y

= f(
√

y)
1

2
√

y

= (
√

2−√y)
1

2
√

y
0 < y < 2 のとき

y の範囲は，

0 < x <
√

2 =⇒ 0 < x2 < 2 =⇒ 0 < y < 2

となる。

２ 連続型確率変数 X の密度関数が

f(x) =
1√
2π

e−
1
2 x2
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であるとき，次の問に答えよ。

(1) X の平均と分散を求めよ。

(2) Y = X2 とするとき，Y の平均と分散を求めよ。

(3) Z = eX とするとき，Z の平均と分散を求めよ。

[解答]

(1) 平均，分散の定義は，E(X) =
∫

xf(x)dx, V(X) =
∫

(x − µ)2f(x)dx (ただし，µ = E(X) とする) であ

る。よって，

E(X) =
∫

xf(x)dx

=
∫ ∞

−∞
x

1√
2π

e−
1
2 x2

dx

= − 1√
2π

[
e−

1
2 x2

]∞
−∞

= 0

3 つ目の等式は，
de−

1
2 x2

dx
= −xe−

1
2 x2
を利用する。

V(X) =
∫

(x− µ)2f(x)dx

=
∫

x2f(x)dx− µ2

=
∫ ∞

−∞
x2 1√

2π
e−

1
2 x2

dx− µ2

=
[
−x

1√
2π

e−
1
2 x2

]∞

−∞

+
∫ ∞

−∞

1√
2π

e−
1
2 x2

dx− µ2

= 1

4つ目の等式では，部分積分を利用

∫ b

a

h′(x)g(x)dx

= [h(x)g(x)]ba −
∫ b

a

h(x)g′(x)dx

g(x) = x, h′(x) = x 1√
2π

e−
1
2 x2
とおく。

また，4つ目の等式の第 1項では，

lim
x→±∞

x
1√
2π

e−
1
2 x2

= 0

を利用する。

4つ目の等式の第 2項では，密度関数の積分が 1にな
ることを利用。

(2) Y = X2 とするとき，Y の平均と分散を求める。

E(Y ) = E(X2)

= V(X)− µ2
x

= 1

(1) より，V(X) = 1, µx = E(X) = 0 に注意。

V(Y )

= E(Y − µy)2 ←− µy = E(Y ) = 1

= E(Y 2)− µ2
y

= E(X4)− µ2
y

=
∫ ∞

−∞
x4 1√

2π
e−

1
2 x2

dx− µ2
y

=
∫ ∞

−∞
x3 · x 1√

2π
e−

1
2 x2

dx− µ2
y

=
[
−x3 1√

2π
e−

1
2 x2

]∞

−∞

+ 3
∫ ∞

−∞
x2 1√

2π
e−

1
2 x2

dx− µ2
y

= 3E(X2)− µ2
y ←− E(X2) = 1, µy = 1

= 2

6つ目の等式では，部分積分を利用

∫ b

a

h′(x)g(x)dx

= [h(x)g(x)]ba −
∫ b

a

h(x)g′(x)dx

g(x) = x3, h′(x) = x 1√
2π

e−
1
2 x2
とおく。

また，6つ目の等式の第 1項では，

lim
x→±∞

x3 1√
2π

e−
1
2 x2

= 0

を利用する。

(3) Z = eX とするとき，Z の平均と分散を求める。

E(Z) = E(eX)
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=
∫ ∞

−∞
ex 1√

2π
e−

1
2 x2

dx

=
∫ ∞

−∞

1√
2π

e−
1
2 (x2−2x)dx

=
∫ ∞

−∞

1√
2π

e−
1
2 (x−1)2+ 1

2 dx

= e
1
2

∫ ∞

−∞

1√
2π

e−
1
2 (x−1)2dx

= e
1
2

6 つ目の等式は，
1√
2π

e−
1
2 (x−1)2 が，平均 1，分散 1

の正規分布となり，その積分値は 1となることによる。

V(Z) = E(Z − µz)2 ←− µz = E(Z) = e
1
2

= E(Z2)− µ2
z

= E(e2X)− µ2
z

=
∫ ∞

−∞
e2x 1√

2π
e−

1
2 x2

dx− µ2
z

=
∫ ∞

−∞

1√
2π

e−
1
2 (x2−4x)dx− µ2

z

=
∫ ∞

−∞

1√
2π

e−
1
2 (x−2)2+2dx− µ2

z

= e2

∫ ∞

−∞

1√
2π

e−
1
2 (x−2)2dx− µ2

z

= e2 − e

8 つ目の等式は，
1√
2π

e−
1
2 (x−2)2 が，平均 2，分散 1

の正規分布となり，その積分値は 1となることによる。

３ 連続型確率変数 X の密度関数が

f(x) =





1
λ

e−
x
λ , 0 < x のとき

0, その他

であるとき，次の問に答えよ。

(1) X の平均と分散を求めよ。

(2) X の積率母関数を求めよ。

(3) X1, X2, · · ·, Xn を互いに独立で上に示された分布に従

うものとする。λ = 2のとき，Y = X1+X2+ · · ·+Xn

の密度関数は，自由度 2n のカイ二乗分布となること

を示せ。ただし，自由度 n のカイ二乗分布とは ５

の確率変数 X の密度関数である。

[解答]

(1) X の平均と分散を求める。

E(X) =
∫

xf(x)dx

=
∫ ∞

0

x
1
λ

e−
x
λ dx

=
[−xe−

x
λ

]∞
0

+
∫ ∞

0

e−
x
λ dx

=
[−λe−

x
λ

]∞
0

= λ

3つ目の等式では，部分積分を利用

∫ b

a

h′(x)g(x)dx

= [h(x)g(x)]ba −
∫ b

a

h(x)g′(x)dx

g(x) = x, h′(x) =
1
λ

e−
x
λ とおく。

また，

lim
x→∞

xe−
x
λ = 0

lim
x→∞

e−
x
λ = 0

を利用

V(X)

=
∫

(x− µ)2f(x)dx

=
∫

x2f(x)dx− µ2 ←− µ = E(X) = λ

=
∫ ∞

0

x2 1
λ

e−
x
λ dx− µ2

=
[−x2e−

x
λ

]∞
0

+ 2
∫ ∞

0

xe−
x
λ dx− µ2

=
[−x2e−

x
λ

]∞
0

+ 2λ

∫ ∞

0

x
1
λ

e−
x
λ dx− µ2

= 2λE(X)− µ2 ←− µ = E(X) = λ

= 2λ2 − λ2

= λ2
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3つ目の等式では，部分積分を利用

∫ b

a

h′(x)g(x)dx

= [h(x)g(x)]ba −
∫ b

a

h(x)g′(x)dx

g(x) = x2, h′(x) =
1
λ

e−
x
λ とおく。

6つ目の等式では，

lim
x→∞

x2e−
x
λ = 0

µ = E(X) =
∫ ∞

0

xe−
x
λ dx

を利用。

(2) X の積率母関数を求める。

φ(θ) = E(eθX)

=
∫

eθxf(x)dx

=
∫ ∞

0

eθx 1
λ

e−
x
λ dx

=
∫ ∞

0

1
λ

e−( 1
λ−θ)xdx

=

1
λ

1
λ
− θ

∫ ∞

0

(
1
λ
− θ)e−( 1

λ−θ)xdx

=
1

1− λθ

最後の等式では，(
1
λ
− θ)e−( 1

λ−θ)x は密度関数である

ので，その積分値は 1であることによる。f(x) の λ

を
1
λ
− θ で置き換えたものとなっている。

(3) Y の積率母関数と自由度 2n のカイ二乗分布の積率母

関数が一致することを示す。

X1, X2, · · ·, Xn を互いに独立で上に示された分布に

従うので，Xi の積率母関数 φi(θ)は，(2)より，λ = 2
のとき，

φi(θ) =
1

1− 2θ
= φ(θ)

となる。

λ = 2 のとき，Y = X1 + X2 + · · ·+ Xn の積率母関

数 φy(θ) は，

φy(θ) = E(eθY )

= E(eθ(X1+X2+···+Xn))

= E(eθX1)E(eθX2) · · ·E(eθXn)

= φ1(θ)φ2(θ) · · ·φn(θ)

=
(
φ(θ)

)n

=
( 1

1− 2θ

)n

=
( 1

1− 2θ

) 2n
2

したがって，Y の積率母関数は，

φy(θ) =
( 1

1− 2θ

) 2n
2

となる。

一方，自由度 m のカイ二乗分布は，

f(x) =
1

2
m
2 Γ(m

2 )
x

m
2 −1e−

x
2 x > 0 のとき

なので，その積率母関数 φχ2(θ) は，

φχ2(θ)

= E(eθX)

=
∫ ∞

0

eθx 1
2

m
2 Γ(m

2 )
x

m
2 −1e−

x
2 dx

=
∫ ∞

0

1
2

m
2 Γ(m

2 )
x

m
2 −1e−

1
2 (1−2θ)xdx

=
∫ ∞

0

1
2

m
2 Γ(m

2 )

(
y

1− 2θ

)m
2 −1

e−
1
2 y 1

1− 2θ
dx

=
(

1
1− 2θ

)m
2 −1 1

1− 2θ

×
∫ ∞

0

1
2

m
2 Γ(m

2 )
y

m
2 −1e−

1
2 ydx

=
(

1
1− 2θ

)m
2

4つ目の等式で，y = (1 − 2θ)x として，置換積分を
利用。

1
2

m
2 Γ(m

2 )
y

m
2 −1e−

1
2 y は，自由度 m の χ2 分布となっ

ているので，その積分値は 1となる。
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φy(θ) は，φχ2(θ) で，m = 2n に対応する。

すなわち，φy(θ) は自由度 2n の χ2 分布の積率母関

数となっている。

したがって，Y ∼ χ2(2n) となる。

４ 連続型確率変数 X の密度関数が

f(x) =





1, 0 < x < 1 のとき

0, その他

であるとき，次の問に答えよ。

(1) X の平均と分散を求めよ。

(2) Y = −2 log X とするとき，Y の積率母関数を求め

よ。ただし，log は自然対数とする。(y = −2 log x は

x = e−
1
2 y を意味する)

(3) Y1 と Y2 を (2) で求められた密度関数に従う確率変
数であるとする。しかも，Y1 と Y2 は独立であるとす

る。Z = Y1 +Y2 としたとき，Z の密度関数を求めよ。

[解答]

(1) X の平均と分散を求める。

E(X) =
∫

xf(x)dx

=
∫ 1

0

xdx

=
[
1
2
x2

]1

0

=
1
2

V(X)

=
∫

(x− µ)2f(x)dx

=
∫

x2f(x)dx− µ2 ←− µ = E(X) =
1
2

=
∫ 1

0

x2dx− µ2

=
[
1
3
x3

]1

0

− µ2

=
1
3
−

(1
2

)2

=
1
12

(2) Y = −2 log X とするとき，Y の積率母関数 φy(θ) を
求める。

φy(θ) = E(eθY )

= E(e−2θ log X)

= E(X−2θ)

=
∫

x−2θf(x)dx

=
∫ 1

0

x−2θdx

=
[

1
1− 2θ

x1−2θ

]1

0

=
1

1− 2θ

(3) Y1 と Y2 を (2) で求められた密度関数に従う確率変
数であるとする。しかも，Y1 と Y2 は独立であるとす

る。Z = Y1 +Y2 としたとき，Z の密度関数を求める。

Z の積率母関数 φz(θ) を求める。

φz(θ) = E(eθZ)

= E(eθ(Y1+Y2))

= E(eθY1)E(eθY2)

=
(
φy(θ)

)2

=
( 1

1− 2θ

)2

=
( 1

1− 2θ

) 4
2

これは，自由度 4 のカイ自乗分布の積率母関数に一致
する。

よって，Z ∼ χ2(4) となる。

ただし，自由度 n のカイ自乗分布の密度関数は，

f(x) =





1
2

n
2 Γ(n

2 )
x

n
2−1e−

x
2 , x > 0 のとき

0, その他

として表され，その積率母関数 φ(θ) は，

φ(θ) =
( 1

1− 2θ

)n
2

となることに注意。
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５ 連続型確率変数 X の密度関数が

f(x) =





1
2

n
2 Γ(n

2 )
x

n
2−1e−

x
2 , x > 0 のとき

0, その他

であるとき，次の問に答えよ。ただし，Γ(a) はガンマ関数
であり，

Γ(a) =
∫ ∞

0

xa−1e−xdx

と定義される。

(1) X の平均と分散を求めよ。

(2) X の積率母関数を求めよ。

[解答]

(1) X の平均と分散を求める。

平均について：

E(X) =
∫ ∞

−∞
xf(x)dx

=
∫ ∞

0

x
1

Γ(n
2 )

2−
n
2 x

n
2−1e−

x
2 dx

=
2−

n
2

2−
n+2

2

Γ(n+2
2 )

Γ(n
2 )

×
∫ ∞

0

1
Γ(n+2

2 )
2−

n+2
2 x

n+2
2 −1e−

x
2 dx

= 2
n

2

∫ ∞

0

1
Γ(n′

2 )
2−

n′
2 x

n′
2 −1e−

x
2 dx

= n

Γ(s) =
∫ ∞

0

us−1e−udu =⇒ ガンマ関数 Γ(s + 1) =

sΓ(s), Γ(1) = 1, Γ(
1
2
) =

√
π に注意

また，n′ = n + 2 を使い，確率密度関数の性質から，

∫ ∞

−∞
f(x)dx =

∫ ∞

0

1
Γ(n

2 )
2−

n
2 x

n
2−1e−

x
2 dx = 1

に注意。

分散について：

V(X) = E(X2)− µ2 により，E(X2) を求める。

E(X2)

=
∫ ∞

−∞
x2f(x)dx

=
∫ ∞

0

x2 1
Γ(n

2 )
2−

n
2 x

n
2−1e−

x
2 dx

=
∫ ∞

0

1
Γ(n

2 )
2−

n
2 x

n+4
2 −1e−

x
2 dx

=
2−

n
2

2−
n+4

2

Γ(n+4
2 )

Γ(n
2 )

×
∫ ∞

0

1
Γ(n+4

2 )
2−

n+4
2 x

n+4
2 −1e−

x
2 dx

= 4(
n + 2

2
n

2
)
∫ ∞

0

1
Γ(n′

2 )
2−

n′
2 x

n′
2 −1e−

x
2 dx

= n(n + 2)

n′ = n + 4 を使う。

V(X) = n(n + 2)− n2 = 2n

(2) X の積率母関数を求める。

φ(θ)

= E(eθX)

=
∫ ∞

−∞
eθxf(x)dx

=
∫ ∞

0

eθx 1
2

n
2 Γ(n

2 )
x

n
2−1 exp(−x

2
)dx

=
∫ ∞

0

1
2

n
2 Γ(n

2 )
x

n
2−1 exp

(
−1

2
(1− 2θ)x

)
dx

=
∫ ∞

0

1
2

n
2 Γ(n

2 )

(
y

1− 2θ

)n
2−1

exp(−1
2
y)

1
1− 2θ

dy

=
(

1
1− 2θ

)n
2

∫ ∞

0

1
2

n
2 Γ(n

2 )
y

n
2−1 exp(−1

2
y)dy

=
( 1

1− 2θ

)n
2

y = (1− 2θ)x として置換積分 (
dx

dy
= (1− 2θ)−1)

積分のところは，自由度 n の χ2(n) 分布に注意

６ 連続型確率変数 X, Y は互いに独立で，X ∼ N(0, 1),

Y ∼ N(0, 1) とする。U =
X

Y
とするとき，次の問に答え

よ。ただし，X ∼ N(0, 1) のとき，X の密度関数は

f(x) =
1√
2π

e−
1
2 x2
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と書き表される。

(1) U の密度関数を求めよ。

(2) U の 1 次の積率は存在しないということを証明せよ。

[解答]

(1) U の密度関数を求める。

X, Y の密度関数は，それぞれ，

f(x) =
1√
2π

exp(−1
2
x2), −∞ < x < ∞

g(y) =
1√
2π

exp(−1
2
y2), −∞ < y < ∞

となる。

X, Y の結合確率密度関数は，X, Y は互いに独立な

確率変数なので，

h(x, y)

= f(x)g(y)

=
1√
2π

exp(−1
2
x2)

1√
2π

exp(−1
2
y2)

=
1
2π

exp
(−1

2
(x2 + y2)

)

u =
x

y
, v = y として，変数変換を行う。

x = uv, y = v なので，



∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v


 =

(
v u

0 1

)

となるので，U , V の結合確率密度関数 s(u, v) は，変
数変換により，

s(u, v)

= h(uv, v)
∣∣∣∣
v u

0 1

∣∣∣∣

=
1
2π

exp
(−1

2
v2(1 + u2)

)|v|

U の周辺確率密度関数は，

p(u)

=
∫

s(u, v)dv

=
1
2π

∫ ∞

−∞
|v| exp

(−1
2
v2(1 + u2)

)
dv

=
1
π

∫ ∞

0

v exp
(−1

2
v2(1 + u2)

)
dv

=
1
π

[
− 1

1 + u2
exp

(−1
2
v2(1 + u2)

)]∞

v=0

=
1

π(1 + u2)

これは，コーシー分布の密度関数である。

(2) U の 1 次の積率 (すなわち，平均) は存在しないとい
うことを証明する。

E(U)

=
∫

uf(u)du

=
∫ ∞

−∞
u

1
π(1 + u2)

du

=
∫ ∞

1

1
2π

1
x

dx ←− x = 1 + u2 で置換積分

=
[

1
2π

log x

]∞

1

←− d log x

dx
=

1
x

= ∞

−∞ < u < ∞ のとき，x = 1+u2 の範囲は，1 < x <

∞ となる。

７ 連続型確率変数 X, Y の同時密度関数が

f(x, y) =





x + y, 0 < x < 1, 0 < y < 1 のとき

0, その他

であるとき，次の問に答えよ。

(1) XY の期待値を求めよ。

(2) X と Y の相関係数を求めよ。

(3) X の周辺密度関数を求めよ。

[解答]

(1) XY の期待値を求める。

E(XY ) =
∫ 1

0

∫ 1

0

xyf(x, y)dxdy

=
∫ 1

0

∫ 1

0

xy(x + y)dxdy
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=
∫ 1

0

[
1
3
yx3 +

1
2
y2x2

]1

0

dy

=
∫ 1

0

(
1
3
y +

1
2
y2)dy

=
[
1
6
y2 +

1
6
y3

]1

0

=
1
3

(2) X と Y の相関係数 ρ =
Cov(X, Y )√
V(X)V(Y )

を求める。

E(X) =
∫ 1

0

∫ 1

0

xf(x, y)dxdy

=
∫ 1

0

∫ 1

0

x(x + y)dxdy

=
∫ 1

0

[
1
3
x3 +

1
2
yx2

]1

0

dy

=
∫ 1

0

(
1
3

+
1
2
y)dy

=
[
1
3
y +

1
4
y2

]1

0

=
7
12

f(x, y) の形は，x と y を入れ替えても同じ形なので，

E(Y ) = E(X) =
7
12

となる。

V(X)

= E
(
(X − µ)2

)
←− µ = E(X) =

7
12

= E(X2)− µ2

=
∫ 1

0

∫ 1

0

x2f(x, y)dxdy − µ2

=
∫ 1

0

∫ 1

0

x2(x + y)dxdy − µ2

=
∫ 1

0

[
1
4
x4 +

1
3
yx3

]1

0

dy − µ2

=
∫ 1

0

(
1
4

+
1
3
y)dy − µ2

=
[
1
4
y +

1
6
y2

]1

0

− µ2

=
5
12
−

( 7
12

)2

=
11
144

同様に，

V(Y ) = V(X) =
11
144

となる。

Cov(X,Y ) = E
(
(X − µx)(Y − µy)

)

= E(XY )− µxµy

=
1
3
− 7

12
7
12

= − 1
144

ただし，

µx = E(X) =
7
12

, µy = E(Y ) =
7
12

よって，

ρ =
Cov(X,Y )√
V(X)V(Y )

=
− 1

144√
11
144

11
144

= − 1
11

(3) X の周辺密度関数 fx(x) を求める。

fx(x) =
∫

f(x, y)dy

=
∫ 1

0

(x + y)dy

=
[
xy +

1
2
y2)

]1

y=0

= x +
1
2

８ 離散型確率変数 X の密度関数が

f(x) =
e−λλx

x!
, x = 0, 1, 2, · · · ,

であるとき，次の問に答えよ。
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(1)
∞∑

x=0

f(x) = 1 となることを証明せよ。

(2) X の積率母関数を求めよ。

(3) 積率母関数をもとにして，X の平均と分散を求めよ。

[解答]

(1)
∞∑

x=0

f(x) = 1 となることを証明する。

∞∑
x=0

f(x) =
∞∑

x=0

e−λ λx

x!

= e−λ
∞∑

x=0

λx

x!

= e−λeλ

= 1

ex =
∞∑

k=0

xk

k!
に注意。

なぜなら，f(x) = ex としたとき，f (k)(x) = ex と

なる。

テーラー展開の公式は，

f(x) =
∞∑

k=0

1
k!

f (k)(x0)(x− x0)k

なので，x0 = 0 として，x = 0 の回りでテーラー展開
すると，

f(x) =
∞∑

k=0

1
k!

f (k)(0)xk

=
∞∑

k=0

1
k!

xk

=
∞∑

k=0

xk

k!

を得る。

x を λ，k を x で置き換える。

(2) X の積率母関数を求める。

φ(θ) = E(eθX)

=
∞∑

x=0

eθxf(x)

=
∞∑

x=0

eθxe−λ λx

x!

=
∞∑

x=0

e−λ (eθλ)x

x!

= e−λ exp(eθλ)
∞∑

x=0

exp(−eθλ)
(eθλ)x

x!

= e−λ exp(eθλ)
∞∑

x=0

e−λ′ λ
′x

x!

= exp(−λ) exp(eθλ)

= exp
(
λ(eθ − 1)

)

ただし，λ′ = eθλ に注意

(3) 積率母関数をもとにして，X の平均と分散を求める。

平均について：

E(X) = φ′(0)

φ(θ) = exp
(
λ(eθ − 1)

)
,

φ′(θ) = λeθ exp
(
λ(eθ − 1)

)
なので，

E(X) = φ′(0)

= λ

分散について：

V(X) = E(X2)− (
E(X)

)2
なので，E(X2) を求める。

E(X2) = φ′′(0)

φ′′(θ) = (1 + λeθ)λeθ exp
(
λ(eθ − 1)

)
なので，

V(X) = E(X2)− (
E(X)

)2

= φ′′(0)− (
φ′(0)

)2

= (1 + λ)λ− λ2

= λ

6 大数の法則と中心極限定理

6.1 Chebyshev の不等式

g(x) ≥ 0 について，

P
(
g(X) ≥ k

) ≤ E
(
g(X)

)

k
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となる。ただし，k は正の定数とする。

証明：

g(X) ≥ k のとき U = 1，g(X) < k のとき U = 0 となる
離散型確率変数 U を導入する。

離散型確率変数 U は 0か 1の値を取り，その確率関数 f(u)
は次のように与えられる。

f(u) = P (U = u)

ただし，

P (U = 1) = P
(
g(X) ≥ k

)

P (U = 0) = P
(
g(X) < k

)

となる。

このとき，常に，以下の式が成り立つ。

g(X) ≥ kU

よって，両辺に期待値を取ると，

E
(
g(X)

) ≥ kE(U)

となる。E(U) を求める。

E(U) =
1∑

u=0

uP (U = u)

= 1× P (U = 1) + 0× P (U = 0)

= 1× P
(
g(X) ≥ k

)
+ 0× P

(
g(X) < k

)

= P
(
g(X) ≥ k

)

したがって，

E
(
g(X)

) ≥ kP
(
g(X) ≥ k

)

から，

P
(
g(X) ≥ k

) ≤ E
(
g(X)

)

k

を得る。

代表的な例： E(X) = µ, V(X) = σ2, λ > 1 を任意の定
数とする。このとき，

P (|X − µ| ≥ λσ) ≤ 1
λ2

P (|X − µ| < λσ) ≥ 1− 1
λ2

となる。

証明：

g(X) = (X − µ)2, k = λ2σ2 とすると，

P
(
g(X) ≥ k

) ≤ E
(
g(X)

)

k

から，

P
(
(X − µ)2 ≥ λ2σ2

) ≤ σ2

λ2σ2

P
(|X − µ| ≥ λσ

) ≤ 1
λ2

を得る。

さらに，ε = λσ とすると，

P (|X − µ| > ε) ≤ σ2

ε2

とも書き表される。

6.2 大数の (弱)法則 (Convergence in prob-

ability)

X1, X2, · · ·, Xn が互いに独立な確率変数ですべて同じ分

布に従うとし，すべての i について E(Xi) = µ とする。こ

のとき任意の正数 ε について，n −→∞ のとき，
P (|Xn − µ| > ε) −→ 0

が成り立つ。ただし，

Xn =
1
n

n∑

i=1

Xi

とする。

このとき，Xn は µ に確率収束するという。

証明：

E(Xn) = µ，V(Xn) =
σ2

n
なので，

P (|Xn − µ| > ε) ≤ σ2

nε2

が成り立つ。したがって，n −→∞ のとき，

P (|Xn − µ| > ε) ≤ σ2

nε2
−→ 0

となる。すなわち，Xn −→ µ が得られる。

系：また，X1, X2, · · ·, Xn が同じ分布に従わなくても，独

立性もなくても，

mn = E(
n∑

i=1

Xi),
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Vn = V(
n∑

i=1

Xi),

が存在し，n −→∞ のとき，
Vn

n2
−→ 0

が成り立てば，
∑n

i=1 Xi −mn

n
−→ 0

が成り立つ。(証明略)
2 つとも，大数の (弱) 法則と呼ばれる。

6.3 中心極限定理

X1, X2, · · ·, Xn が互いに独立な確率変数ですべて同じ分布

に従うとし，すべての i について E(Xi) = µ，V(Xi) = σ2

とする。以上の仮定のもとで，n −→∞ のとき，

P

(
Xn − µ

σ/
√

n
< x

)
−→

∫ x

−∞

1√
2π

e−
1
2 u2

du

が成り立つ。=⇒ 中心極限定理
証明：

Yi =
Xi − µ

σ
と Yi を定義する。

Xn − µ

σ/
√

n
=

1√
n

n∑

i=1

Xi − µ

σ

=
1√
n

n∑

i=1

Yi

一方，E(Yi) = 0, V(Yi) = 1 を利用して，Yi の積率母関

数は，

φ(θ) ≡ E(eYiθ)

= E
(

1 + Yiθ +
1
2
Y 2

i θ2 +
1
3!

Y 3
i θ3 · · ·

)

= 1 +
1
2
θ2 + O(θ3)

となる。(Yi = 0 の回りで，eYiθ をテーラー展開する。)

Z =
1√
n

n∑

i=1

Yi の積率母関数 Φ(θ) は，

Φ(θ) = E(eZθ)

= E
(
e

θ√
n

Pn
i=1 Yi

)

=
n∏

i=1

E
(
e

θ√
n

Yi

)

=
n∏

i=1

φi

(
θ√
n

)

=
(

φ

(
θ√
n

))n

=
(

1 +
1
2

θ2

n
+ O(

θ3

n
3
2
)
)n

=
(

1 +
1
2

θ2

n
+ O(n−

3
2 )

)n

注)
Y1, Y2, · · ·, Yn はそれぞれ独立で，同じ分布関数を持つの

で，積率母関数は同じになる。すなわち，

φ1(θ) = φ2(θ) = · · · = φn(θ) = φ(θ)

となる。

さらに，x =
1
2

θ2

n
+ O(n−

3
2 ) とおき，

n

x
を両辺に掛けて，

n =
1
x

(1
2
θ2 + O(n−

1
2 )

)
を代入する。

Φ(θ) =
(

1 +
1
2

θ2

n
+ O(n−

3
2 )

)n

= (1 + x)
1
x ( θ2

2 +O(n−
1
2 ))

=
(
(1 + x)

1
x

) θ2
2 +O(n−

1
2 )

−→ e
θ2
2

n −→∞ のとき，x −→ 0 となる。
注)
e の定義について，

e = lim
x→0

(1 + x)
1
x = lim

h→∞

(
1 +

1
h

)h

= 2.71828182845905

に注意。

e
θ2
2 は標準正規分布 N(0, 1) の積率母関数であるので，

P

(
Xn − µ

σ/
√

n
< x

)
−→

∫ x

−∞

1√
2π

e−
1
2 u2

du

が成り立つ。

系： X1, X2, · · ·, Xn が同じ分布に従わなくても，独立性

もなくても，n −→∞ のとき，

P

(∑n
i=1 Xi − E(

∑n
i=1 Xi)√

V(
∑n

i=1 Xi)
< x

)

−→
∫ x

−∞

1√
2π

e−
1
2 u2

du

が成り立つ。(証明略)
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7 大数の強法則 (Almost sure con-

vergence)

大数の強法則 (その 1)： X1, X2, · · ·, Xn が互いに独立

な確率変数ですべて同じ分布に従うとし，すべての i につ

いて E(Xi) = µ とする。このとき，

P
(

lim
n→∞

Xn = µ
)

= 1

ただし，Xn =
1
n

n∑

i=1

Xi とする。

大数の強法則 (その 2)： X1, X2, · · ·, Xn が互いに独立

な確率変数で，平均と分散が存在するものとする (同一の
分布に従わなくてもよい)。V(Xi) = σ2

i , Sn =
∑n

i=1 Xn,

mn = E(Sn) とする。
∑∞

i=1

σ2
i

i2
< ∞ のとき，

P

(
lim

n→∞
Sn −mn

n
= 0

)
= 1

が成り立つ。

8 統計的推定

8.1 推定法と標本平均および標本分散の性質

8.1.1 推定法

点推定： 母集団の分布型は既知，その分布のある特性値

θ (母数) は未知とする。

その母集団の分布は f(x; θ) で与えられている。

このとき，標本の実現値 (x1, x2, · · ·, xn) から適当な値
θ̂n(x1, x2, · · ·, xn) を計算する。

θ̂n(x1, x2, · · ·, xn) を θ の推定値とする。=⇒ 点推定
例：

母平均 µ の点推定値 (＝標本平均 x)

µ̂n(x1, x2, · · · , xn) ≡ x =
1
n

n∑

i=1

xi

母分散 σ2 の点推定値 (＝標本不偏分散 s2)

σ̂2
n(x1, x2, · · · , xn) ≡ s2 =

1
n

n∑

i=1

(xi − x)2

区間推定： 母集団の分布の未知母数 θ を推定するとき，

実現値 (x1, x2, · · ·, xn) より θ̂L(x1, x2, · · ·, xn) と θ̂U (x1,
x2, · · ·, xn) を作り，区間 (θ̂L,θ̂U ) の中に θ は 1− α の確

率で入っていることを示す推定法を区間推定法という。

区間 (θ̂L,θ̂U ) は信頼係数 1− α の θ の信頼区間である。

θ̂L =⇒ 信頼下限
θ̂U =⇒ 信頼上限
信頼区間の幅はなるべく狭くなるように θ̂L, θ̂U を選ぶ。

8.1.2 標本，統計量，推定量

母集団の分布型は既知，その分布のある特性値 θ (母数) は
未知とする。

その母集団の分布は f(x; θ) で与えられている。

標本： X1, X2, · · · , Xn =⇒ 母集団の部分集合
実現値： x1, x2, · · · , xn

母数 θ の推定量： θ̂(X1, X2, · · ·, Xn)

母数 θ の推定値： θ̂(x1, x2, · · ·, xn)

例： θ = (µ, σ2) とする。

µ の推定量： X =
1
n

n∑

i=1

Xi

µ の推定値： x =
1
n

n∑

i=1

xi

σ2 の推定量： S2 =
1

n− 1

n∑

i=1

(Xi −X)2

σ2 の推定値： s2 =
1

n− 1

n∑

i=1

(xi − x)2

注)

確率変数の関数 =⇒ 統計量
母数の推定のために使われる統計量 =⇒ 推定量

8.1.3 母平均，母分散の推定

X1, X2, · · ·, Xn は互いに独立で，すべて同一の分布 (すな
わち，平均 µ, 分散 σ2 ですべて同一の分布) に従うものと
する。

1. 母平均 µ の推定量：

X =
1
n

n∑

i=1

Xi
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2. 母分散 σ2 の推定量：

• 母平均 µ が既知のとき： S∗2 =
1
n

n∑

i=1

(Xi − µ)2

• 母平均 µ が未知のとき： S2 =
1

n− 1

n∑

i=1

(Xi−X)2

X の性質：

E(X) = E(
1
n

n∑

i=1

Xi)

=
1
n

E(
n∑

i=1

Xi)

=
1
n

n∑

i=1

E(Xi)

=
1
n

n∑

i=1

µ

=
1
n

nµ

= µ

V(X) = V(
1
n

n∑

i=1

Xi)

=
1
n2

V(
n∑

i=1

Xi)

=
1
n2

n∑

i=1

V(Xi)

=
1
n2

n∑

i=1

σ2

=
1
n2

nσ2

=
σ2

n

必要な公式：

E(aX) = aE(X)
V(aX) = a2V(X)
E(X + Y ) = E(X) + E(Y )
V(X + Y ) = V(X) + V(Y ) ⇐= X と Y は独立のとき

S∗2, S2 の性質：

E(S∗2) = E
( 1

n

n∑

i=1

(Xi − µ)2
)

=
1
n

E
( n∑

i=1

(Xi − µ)2
)

=
1
n

n∑

i=1

E
(
(Xi − µ)2

)

=
1
n

n∑

i=1

V(Xi)

=
1
n

n∑

i=1

σ2

=
1
n

nσ2

= σ2

E(S2) = E
( 1

n− 1

n∑

i=1

(Xi −X)2
)

=
1

n− 1
E

( n∑

i=1

(Xi −X)2
)

=
1

n− 1
E

( n∑

i=1

(
(Xi − µ)− (X − µ)

)2
)

=
1

n− 1
E

( n∑

i=1

(
(Xi − µ)2

−2(Xi − µ)(X − µ)

+(X − µ)2
))

=
1

n− 1
E

( n∑

i=1

(Xi − µ)2

−2(X − µ)
n∑

i=1

(Xi − µ)

+n(X − µ)2
)

=
1

n− 1
E

( n∑

i=1

(Xi − µ)2

−2n(X − µ)2 + n(X − µ)2
)

=
1

n− 1
E

( n∑

i=1

(Xi − µ)2 − n(X − µ)2
)

=
1

n− 1
E

( n∑

i=1

(Xi − µ)2
)

− 1
n− 1

E
(
n(X − µ)2

)

=
1

n− 1

n∑

i=1

E
(
(Xi − µ)2

)
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− n

n− 1
E

(
(X − µ)2

)

=
1

n− 1

n∑

i=1

V(Xi)− n

n− 1
V(X)

=
1

n− 1

n∑

i=1

σ2 − n

n− 1
σ2

n

=
1

n− 1
nσ2 − 1

n− 1
σ2

= σ2

必要な公式：

E(Xi − µ)2 = V(Xi) = σ2

E(X − µ)2 = V(X) =
σ2

n
n∑

i=1

(Xi − µ) = n(X − µ)

したがって，S∗∗2 =
1
n

n∑

i=1

(Xi −X)2 とすると，

E(S∗∗2) = E
( 1

n

n∑

i=1

(Xi −X)2
)

= E
(n− 1

n

1
n− 1

n∑

i=1

(Xi −X)2
)

= E
(n− 1

n
S2

)

=
n− 1

n
E(S2)

=
n− 1

n
σ2

8.2 点推定法： 最適性

母数： θ

推定値： θ̂n(x1, x2, · · · , xn)
推定量： θ̂n(X1, X2, · · · , Xn)

θ̂n(X1, X2, · · · , Xn) を θ̂n と書く。

θ̂n の望ましい性質：不偏性，有効性，十分性，一致性

=⇒ 最適性
=⇒ 最適推定量

不偏性： E(θ̂n) = θ

=⇒ θ を中心にして θ̂n は分布している。

θ̂n は θ の不偏推定量であるという。

E(θ̂n)− θ をバイアス (bias) と呼ぶ。

X1, X2, · · ·, Xn は互いに独立で，すべて同一の分布 (すな
わち，平均 µ, 分散 σ2 ですべて同一の分布) に従うものと
する。

1. 母平均 µ の推定量：

X =
1
n

n∑

i=1

Xi

2. 母分散 σ2 の推定量：

S2 =
1

n− 1

n∑

i=1

(Xi −X)2

E(X) = µ, E(S2) = σ2 なので，X, S2 は µ, σ2 の不偏推

定量である。

有効性： 2 つの不偏推定量 θ̂n，θ̃n を考える。

すなわち，E(θ̂n) = θ, E(θ̃n) = θ

V(θ̂n) < V(θ̃n) のとき，θ̂n が θ̃n より有効であるという。

=⇒ バラツキの小さい推定量の方が望まれる。

クラメール・ラオの不等式 (Cramer-Rao Inequality): 任意
の不偏推定量 θ̂n について，

V(θ̂n) ≥ σ2

n

が成り立つ。ただし，

σ2 = σ2(θ)

=
1

E

[(
∂ log f(X; θ)

∂θ

)2
]

= − 1

E
(

∂2 log f(X; θ)
∂θ2

)

とする。

等号が成り立つ θ̂n が存在するとき，θ̂n は最小分散の不偏

推定量である。

=⇒ 有効推定量

クラメール・ラオの不等式の証明：

まず，準備として，尤度関数 l(θ; x) = l(θ; x1, x2, · · · , xn)
は (X1, X2, · · · , Xn) の結合密度関数なので，その積分値は
1となる。
尤度関数については，後述。
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すなわち，

1 =
∫

l(θ; x)dx

を得る。

ただし，l(θ;x) =
n∏

i=1

f(xi; θ) とする。
∫
· · · dx は n 重積分を意味するものとする。

両辺を θ で微分して整理する。

0 =
∫

∂l(θ; x)
∂θ

dx

=
∫

1
l(θ; x)

∂l(θ; x)
∂θ

l(θ; x)dx

=
∫

∂ log l(θ; x)
∂θ

l(θ; x)dx

= E
[
∂ log l(θ; X)

∂θ

]

これは
∂ log l(θ; X)

∂θ
の期待値はゼロを意味する。

3行目では，
d log x

dx
=

1
x
に注意。

今，θ の推定量を θ̂n とおく。

E(θ̂n) =
∫

θ̂nl(θ; x)dx

θ について微分

∂E(θ̂n)
∂θ

=
∫

θ̂n
∂l(θ; x)

∂θ
dx

=
∫

θ̂n
∂ log l(θ;x)

∂θ
l(θ;x)dx

=
∫ (

θ̂n − E(θ̂n)
)(∂ log l(θ;x)

∂θ
− E(

∂ log l(θ; x)
∂θ

)
)

×l(θ; x)dx

= Cov
(

θ̂n,
∂ log l(θ;X)

∂θ

)

簡単化のために，θ̂n，θ をスカラーとする。

このとき，
(

∂E(θ̂n)
∂θ

)2

=
[
Cov

(
θ̂n,

∂ log l(θ; X)
∂θ

)]2

= ρ2V
(
θ̂n

)
V

(
∂ log l(θ; X)

∂θ

)

≤ V
(
θ̂n

)
V

(
∂ log l(θ; X)

∂θ

)

ただし，ρ は θ̂n と
∂ log l(θ;X)

∂θ
との相関係数とする。す

なわち，−1 ≤ ρ ≤ 1 で，その定義は，

ρ =
Cov

(
θ̂n,

∂ log l(θ; X)
∂θ

)

√
V

(
θ̂n

)√
V

(
∂ log l(θ; X)

∂θ

)

となる。よって，
(

∂E(θ̂n)
∂θ

)2

≤ V(θ̂n) V
(

∂ log l(θ;X)
∂θ

)

すなわち，

V(θ̂n) ≥

(
∂E(θ̂n)

∂θ

)2

V
(

∂ log l(θ; X)
∂θ

)

E(θ̂n) = θ のとき，

V(θ̂n) ≥

(
∂E(θ̂n)

∂θ

)2

V
(

∂ log l(θ;X)
∂θ

)

=
1

E

[(
∂ log l(θ;X)

∂θ

)2
]

さらに，

E

[(
∂ log l(θ;X)

∂θ

)2
]

= E




(
n∑

i=1

∂ log f(Xi; θ)
∂θ

)2



= E

[
n∑

i=1

(
∂ log f(Xi; θ)

∂θ

)2
]

=
n∑

i=1

E

[(
∂ log f(Xi; θ)

∂θ

)2
]

(同一の分布により)

=
n∑

i=1

E

[(
∂ log f(X; θ)

∂θ

)2
]
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= nE

[(
∂ log f(X; θ)

∂θ

)2
]

= n

∫ ∞

−∞

(
∂ log f(x; θ)

∂θ

)2

f(x; θ)dx

Xi, i = 1, 2, · · · , n, は互いに独立なので，2 つ目の等号が
成り立つ。

したがって，

V(θ̂n) ≥ 1

nE

[(
∂ log f(X; θ)

∂θ

)2
] =

σ2(θ)
n

となる。

次に，

− E
(

∂2 log f(X; θ)
∂θ2

)

= E

[(
∂ log f(X; θ)

∂θ

)2
]

= V
(

∂ log f(X; θ)
∂θ

)

を証明する。∫
f(x; θ)dx = 1

θ について微分
∫

∂f(x; θ)
∂θ

dx = 0

(x の範囲は θ に依存しないもの，微分 ∂f(x; θ)/∂θ が存

在するものと仮定される)
上式の変形により

∫
∂ log f(x; θ)

∂θ
f(x; θ)dx = 0

すなわち，

E
(

∂ log f(x; θ)
∂θ

)
= 0

さらに，θ について微分
∫

∂2 log f(x; θ)
∂θ2

f(x; θ)dx

+
∫

∂ log f(x; θ)
∂θ

∂f(x; θ)
∂θ

dx

=
∫

∂2 log f(x; θ)
∂θ2

f(x; θ)dx

+
∫ (

∂ log f(x; θ)
∂θ

)2

f(x; θ)dx

よって，

− E
(

∂2 log f(X; θ)
∂θ∂θ′

)

= E

[(
∂ log f(X; θ)

∂θ

)2
]

= V
(

∂ log f(X; θ)
∂θ

)

を得る。

したがって，

σ2(θ) =
1

E

[(
∂ log f(X; θ)

∂θ

)2
]

= − 1

E
(

∂2 log f(X; θ)
∂θ2

)

となる。

例： X1, X2, · · ·, Xn は互いに独立で，すべて同一の正

規分布 (すなわち，平均 µ, 分散 σ2 ですべて同一の分布)
に従うものとする。ただし，σ2 は既知とする。このとき，

µ の推定量 X は有効推定量である。

証明：

V(X) は分布形にかかわらず，σ2 < ∞ のとき，
σ2

n
とな

る。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A)

一方，

f(x; µ) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)

なので，クラメール・ラオの不等式は，この場合，

V(X) ≥ 1

nE

[(
∂ log f(X; µ)

∂µ

)2
]

となる。

log f(X;µ) = −1
2

log(2πσ2)− 1
2σ2

(X − µ)2

なので，

∂ log f(X; µ)
∂µ

=
1
σ2

(X − µ)

となる。
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したがって，

V(X) ≥ 1

nE

[(
1
σ2

(X − µ)
)2

]

=
1

n
1
σ4

E[(X − µ)2]

=
σ2

n

となる。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (B)

(A) と (B) より，V(X) =
σ2

n
(クラメール・ラオの不等式

の下限)が成り立つので，X は有効推定量であると言える。

十分性 (充分性，充足性)： X1, X2, · · · , Xn の同時密度

関数が，

f(x1, x2, · · · , xn; θ)

= h(x1, x2, · · · , xn)g
(
θ̂n(x1, x2, · · · , xn); θ

)

と分解できるとき，θ̂n ≡ θ̂n(X1, X2, · · · , Xn) は θ の十分

推定量であるという。

すなわち，

h(x1, x2, · · · , xn; θ) = h(x1, x2, · · · , xn)
が成り立つとき (θ̂n を与えたときの X1, X2, · · ·, Xn の条

件付き分布が母数 θ に依存しないとき)，θ̂n ≡ θ̂n(X1, X2,
· · ·, Xn) は θ の十分推定量となる。

=⇒ 標本 X1, X2, · · ·, Xn に含まれている θ に関する情報

は，すべて θ̂n に含まれている。

X1, X2, · · ·, Xn は互いに独立で，すべて同一の正規分布

(すなわち，平均 µ, 分散 σ2 ですべて同一の分布) に従う
ものとする。ただし，σ2 は既知とする。このとき，X は

十分推定量である。

証明：

f(x1, x2, · · · , xn; µ)

=
n∏

i=1

f(xi;µ)

=
(

1√
2πσ2

)n

exp

(
− 1

2σ2

n∑

i=1

(xi − µ)2
)

=
(

1√
2πσ2

)n

× exp

(
− 1

2σ2

( n∑

i=1

(xi − x)2 + n(x− µ)2
))

=
1√

n(
√

2πσ2)n−1
exp

(
− 1

2σ2

n∑

i=1

(xi − x)2
)

× 1√
2πσ2/n

exp
(
− 1

2σ2/n
(x− µ)2

)

= h(x1, x2, · · · , xn)g(x;µ)

以上のように，分解可能である。

したがって，X は十分推定量である。

十分推定量の補足

Rao-Blackwell の定理：
t を θ の十分統計量，θ̂n を θ の不偏推定量とする。この

とき，E(θ̂n|t) は θ の不偏推定量で，しかも，θ̂n よりも分

散は小さい。

=⇒ 任意の不偏推定量 θ̂n について，θ̂n = v(t) でない限り
(不偏推定量 θ̂n が tだけの関数でない限り)，v(t) = E(θ̂n|t)
を作ることにより改善される。

どの θ̂n に対しても，同じ v(t) が一意に決まれば，それ以
上の改善は出来ないので，v(t) は θ のあらゆる不偏推定量

の中で最小な分散を持つことになる。

=⇒ v(t) は有効推定量

一致性： n が大きくなるにつれて，任意の ε > 0 につ
いて，

P (|θ̂n − θ| > ε) −→ 0, n −→ ∞

となるとき，θ̂n は θ の一致推定量であるという。

X1, X2, · · ·, Xn は互いに独立で，すべて同一の正規分布

(すなわち，平均 µ, 分散 σ2 ですべて同一の分布) に従う
ものとする。ただし，σ2 は既知とする。このとき，X は

一致推定量である。

証明：

チェビシェフの不等式：

P (|X − µ| > ε) ≤ σ2

ε2

ただし，E(X) = µ, V(X) = σ2 とする。

ここで，X を X にして，E(X), V(X) を求める。

E(X) = µ, V(X) =
σ2

n

を得る。
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したがって，n −→ ∞ のとき，

P (|X − µ| > ε) ≤ σ2

nε2
−→ 0

となる。

よって，X は µ の一致推定量である。

定理

lim
n→∞

E(θ̂n) = θ (漸近的不偏)

かつ

lim
n→∞

V(θ̂n) = 0

のとき，θ̂n は θ の一致推定量となる。

8.3 推定量の求め方： 最尤法, 積率法, 最小二
乗法

8.3.1 最尤法

標本 X1, X2, · · ·, Xn の密度関数：

f(x1, x2, · · · , xn; θ) =
n∏

i=1

f(xi; θ)

θ は未知母数 =⇒ θ̂n(x1, x2, · · · , xn) によって推定

l(θ) = l(θ; x) = l(θ; x1, x2, · · · , xn) =
n∏

i=1

f(xi; θ)

のように，θ の関数として考える。

l(θ)： 尤度関数
尤度関数を最大にする θ を θ̂n とする。

θ̂n ≡ θ̂n(X1, X2, · · · , Xn) =⇒ 最尤推定量
θ̂n(x1, x2, · · · , xn) =⇒ 最尤推定値
すなわち，

∂l(θ)
∂θ

= 0

を解くことによって，最尤推定量 θ̂n ≡ θ̂n(X1, X2, · · · , Xn)
が得られる。

最尤推定量の性質：

小標本について (n が小さいとき)：

• 一般に，最尤推定量は不偏性を持っていないが，適当
な変換によって，不偏推定量を作ることが出来る場合

が多い。

• 有効推定量が存在すれば (すなわち，クラメール・ラ
オの不等式の等号を満たすような推定量が存在するな

らば)，最尤推定量は有効推定量に一致する。

• 十分統計量が存在すれば，最尤推定量は十分統計量の
関数となる。

大標本について (n が大きいとき)：
n −→ ∞ のとき，

√
n(θ̂n − θ) −→ N

(
0, σ2

)

となる。=⇒ 一致性，漸近的正規性，漸近的有効性
ただし，

σ2 = σ2(θ) =
1

E

[(
∂ log f(X; θ)

∂θ

)2
]

すなわち，n −→ ∞ のとき，
√

n(θ̂n − θ)
σ(θ)

=
θ̂n − θ

σ(θ)/
√

n
−→ N(0, 1)

となる。

したがって，厳密ではないが，n が大きいとき，

θ̂n ∼ N

(
θ,

σ2(θ)
n

)

と近似できる。

すなわち，n −→ ∞ のとき，θ̂n の分散はクラメール・ラ

オの不等式の下限
σ2(θ)

n
に近づくことを意味する。

=⇒ 漸近的に有効推定量
さらに，分母の θを最尤推定量 θ̂nで置き換えて，n −→ ∞
のとき，

θ̂n − θ

σ(θ̂n)/
√

n
−→ N(0, 1)

となる。

実際には，n が大きいとき，

θ̂n ∼ N

(
θ,

σ2(θ̂n)
n

)

と近似して用いる。

例：

X1, X2, · · ·, Xn は互いに独立で，すべて同一の正規分布

(すなわち，平均 µ, 分散 σ2 ですべて同一の分布) に従う
ものとする。µ, σ2 の最尤推定量を求める。
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f(x1, x2, · · · , xn; µ, σ2)

=
n∏

i=1

f(xi;µ, σ2)

=
n∏

i=1

1√
2πσ2

exp
(
− 1

2σ2
(xi − µ)2

)

= (2πσ2)−n/2 exp

(
− 1

2σ2

n∑

i=1

(xi − µ)2
)

= l(µ, σ2)

対数をとる。(最大化しやすくなる場合が多い)

log l(µ, σ2) = −n

2
log(2π)− n

2
log(σ2)

− 1
2σ2

n∑

i=1

(xi − µ)2

対数尤度関数 log l(µ, σ2)を µと σ2 について微分して，ゼ

ロと置く。

∂ log l(µ, σ2)
∂µ

=
1
σ2

n∑

i=1

(xi − µ)

= 0
∂ log l(µ, σ2)

∂σ2
= −n

2
1
σ2

+
1

2σ4

n∑

i=1

(xi − µ)2

= 0

この 2 つの連立方程式を解く。

µ =
1
n

n∑

i=1

xi = x

σ2 =
1
n

n∑

i=1

(xi − µ)2 =
1
n

n∑

i=1

(xi − x)2

µ, σ2 の最尤推定量は，

X, S∗∗2 =
1
n

n∑

i=1

(Xi −X)2

となる。

E(X) = µなので，µの最尤推定量 X は不偏推定量である。

E(S∗∗2) =
n− 1

n
σ2 6= σ2 なので，σ2 の最尤推定量 S∗∗2

は不偏推定量でない。

例：

X1, X2, · · ·, Xn は互いに独立で，すべて同一のベルヌイ分

布ですべて同一の分布)に従うものとする。すなわち，X の

確率関数は P (X = x) = f(x; p) = px(1− p)1−p, x = 0, 1,
となる。p の最尤推定量を求める。

f(x1, x2, · · · , xn; p)

=
n∏

i=1

f(xi; p)

=
n∏

i=1

pxi(1− p)1−xi

= p
P

i xi(1− p)n−Pi xi

= l(p)

対数をとる。

log l(p) = (
∑

i

xi) log(p) + (n−
∑

i

xi) log(1− p)

対数尤度関数 log l(p)を pについて微分して，ゼロと置く。

∂ log l(p)
∂p

=
∑

i xi

p
− n−∑

i xi

1− p

=
∑

i xi − np

p(1− p)
= 0

この方程式を解く。

p =
1
n

n∑

i=1

xi = x

p の最尤推定量は，

p̂ =
1
n

n∑

i=1

Xi = X

となる。

E(X) = pなので，pの最尤推定量 X は不偏推定量である。

X がベルヌイ分布 f(x; p) のとき，E(X) = p に注意。

例：

X1, X2, · · ·, Xn は互いに独立で，すべて同一のポアソン

分布 (すなわち，平均 λ ですべて同一の分布) に従うもの
とする。λ の最尤推定量を求める。

ポアソン分布の確率関数は，

P (X = x) = f(x; λ) =
λxe−λ

x!
, x = 0, 1, 2, · · ·
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なので，尤度関数は，

l(λ) =
n∏

i=1

f(xi; λ)

=
n∏

i=1

λxie−λ

xi!

=
λ
Pn

i=1 xie−nλ

∏n
i=1 xi!

対数尤度関数は，

log l(λ) = log(λ)
n∑

i=1

xi − nλ− log(
n∏

i=1

xi!)

となる。

∂ log l(λ)
∂λ

=
1
λ

n∑

i=1

xi − n

= 0

これを解いて，λ の最尤推定量 λ̂ は，

λ̂ =
1
n

n∑

i=1

Xi = X

となる。

λ̂ は，λ の不偏推定量，有効推定量，十分推定量，一致推

定量である。

証明：

X がパラメータ λ のポアソン分布に従うとき，

E(X) = V(X) = λ

となる。

不偏性：

E(λ̂) = E(
1
n

n∑

i=1

Xi)

=
1
n

n∑

i=1

E(Xi)

=
1
n

n∑

i=1

λ

= λ

有効性：

V(λ̂) = V(
1
n

n∑

i=1

Xi)

=
1
n2

n∑

i=1

V(Xi)

=
1
n2

n∑

i=1

λ

=
λ

n

1

nE

[(
∂ log f(X; λ)

∂λ

)2
]

=
1

nE

[(
∂(X log λ− λ− log X!)

∂λ

)2
]

=
1

nE

[(
X

λ
− 1

)2
]

=
λ2

nE[(X − λ)2]

=
λ2

nV(X)

=
λ2

nλ

=
λ

n

したがって，

V(λ̂) =
1

nE

[(
∂ log f(X; λ)

∂λ

)2
]

となり，V(λ̂)は，クラメール・ラオの下限に一致する。よっ
て，λ̂ は有効推定量である。

十分性：

n∏

i=1

f(xi; λ) =
λ
Pn

i=1 xie−nλ

∏n
i=1 xi!

=
λnxe−nλ

(nx)!
(nx)!∏n
i=1 xi!

= g(x;λ) h(x1, x2, · · · , xn)

と分解できる。

一致性：

E(X) = λ, V(X) =
λ

n
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なので，チェビシェフの不等式に当てはめる。

P (|X − λ| > ε) <
λ

nε2
−→ ∞

したがって，一致性も成り立つ。

8.3.2 積率法 (モーメント法)

ν 次の原点の回りの積率： E(Xν) ≡ µ′ν = µ′ν(θ)

E(Xν) の推定量を
1
n

n∑

i=1

Xν
i とする。

1
n

n∑

i=1

Xν
i = µ′ν(θ̂1, θ̂2, · · · , θ̂k)

ν = 1, 2, · · · , k として，k 個の連立方程式を θ̂1, θ̂2, · · · , θ̂k

について解く。

その解：

θ̂1(X1, X2, · · · , Xn),

θ̂2(X1, X2, · · · , Xn),
...

θ̂k(X1, X2, · · · , Xn)

=⇒ 積率法 (モーメント法) による推定量

例：

X1, X2, · · ·, Xn は互いに独立で，すべて同一の分布 (すな
わち，平均 µ, 分散 σ2 ですべて同一の分布) に従うものと
する。µ, σ2 の積率法による推定値を求める。

E(X) = µ =⇒ 1
n

n∑

i=1

Xi = µ̂

E(X2) = σ2 + µ2 =⇒ 1
n

n∑

i=1

X2
i = σ̂2 + µ̂2

連立方程式を解いて，

µ̂ = X =
1
n

n∑

i=1

Xi

σ̂2 =
1
n

n∑

i=1

X2
i −X

2
=

1
n

n∑

i=1

(Xi −X)2

を得る。この場合，最尤推定量に一致する。

8.3.3 最小二乗法

Xi と µ の差 Xi − µ を考える。

Xi − µ の二乗和を最小にする µ を求める。

すなわち，

min
µ

n∑

i=1

(Xi − µ)2

を最小にする µ を求める。=⇒

dS(µ)
dµ

= 0

の解を求める。ただし，

S(µ) =
n∑

i=1

(Xi − µ)2

とする。

dS(µ)
dµ

= −2
n∑

i=1

(Xi − µ) = 0

を満たす µ を µ̂ とする。=⇒

µ̂ =
1
n

n∑

i=1

Xi

を得る。=⇒ 最小二乗推定量

9 標本分布

9.1 正規母集団の場合 (標本平均，標本不偏分
散の標本分布)

大きさ n の無作為標本 {X1, X2, · · ·, Xn}。
すべての i = 1, 2, · · · , n について，Xi ∼ N(µ, σ2) とする。

X =
1
n

n∑

i=1

Xi, S2 =
1

n− 1

n∑

i=1

(Xi −X)2

9.1.1 正規分布： 標本平均 X の標本分布

X ∼ N(µ,
σ2

n
)

証明：
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積率母関数を利用する。X ∼ N(µ, σ2) のとき，X の積率

母関数 φ(θ) は，

φ(θ) ≡ E(eθX)

=
∫ ∞

−∞
eθxf(x)dx

=
∫ ∞

−∞
eθx 1√

2πσ2
e−

1
2σ2 (x−µ)2dx

=
∫ ∞

−∞

1√
2πσ2

e−
1

2σ2 (x−µ)2+θxdx

=
∫ ∞

−∞

1√
2πσ2

e
− 1

2σ2

(
x2−2(µ+σ2θ)x+µ2

)
dx

=
∫ ∞

−∞

1√
2πσ2

e
− 1

2σ2

(
x−(µ+σ2θ)

)2

+(µθ+ 1
2 σ2θ2)

dx

= eµθ+ 1
2 σ2θ2

∫ ∞

−∞

1√
2πσ2

e
− 1

2σ2

(
x−(µ+σ2θ)

)2

dx

= exp
(

µθ +
1
2
σ2θ2

)

と計算される。積分のところは，N(µ + σ2θ, σ2) の確率密
度関数に注意

よって，Xi ∼ N(µ, σ2) のとき，Xi の積率母関数 φi(θ)
は，

φi(θ) = exp
(

µθ +
1
2
σ2θ2

)

となる。

今，X の積率母関数 φx(θ) を考える。

φx(θ) ≡ E(eθX)

= E(eθ 1
n

Pn
i=1 Xi)

= E(
n∏

i=1

e
θ
n Xi)

=
n∏

i=1

E(e
θ
n Xi)

=
n∏

i=1

φi(
θ

n
)

=
n∏

i=1

exp
(

µ
θ

n
+

1
2
σ2

( θ

n

)2
)

= exp
(

µθ +
1
2
σ2 θ2

n

)

= exp
(

µθ +
1
2

σ2

n
θ2

)

となり，これは，平均 µ，分散 σ2/n の正規分布の積率母

関数に一致する。

さらに，標準化によって，

X − µ

σ/
√

n
∼ N(0, 1)

を得る。これも，同様に，積率母関数で証明できる。

9.1.2 χ2 (カイ自乗) 分布： 標本不偏分散 S2 の標本

分布
∑n

i=1(Xi − µ)2

σ2
∼ χ2(n)

証明：

Xi − µ

σ
∼ N(0, 1)

なので，
(

Xi − µ

σ

)2

∼ χ2(1)

Xi − µ

σ
, i = 1, 2, · · · , n は互いに独立なので，

n∑

i=1

(
Xi − µ

σ

)2

∼ χ2(n)

となる。(積率母関数によって証明可)

µ を X で置き換えることによって，
∑n

i=1(Xi −X)2

σ2
=

(n− 1)S2

σ2
∼ χ2(n− 1)

を得る。(証明略)

9.1.3 t 分布： 標本平均 X の標本分布

Z ∼ N(0, 1), U ∼ χ2(m), Z と U は独立のとき，

Z√
U/m

∼ t(m)

となる。

これを利用して，X の標本分布を求める。

X − µ

σ/
√

n
∼ N(0, 1)
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(n− 1)S2

σ2
∼ χ2(n− 1)

X − µ

σ/
√

n
と

(n− 1)S2

σ2
は独立なので (後述)，

X − µ

σ/
√

n√
(n− 1)S2

σ2

/
(n− 1)

=
X − µ

S/
√

n
∼ t(n− 1)

を得る。

(*)
X − µ

σ/
√

n
と

(n− 1)S2

σ2
の独立性

証明：

X1, X2, · · ·, Xn は互いに独立に正規分布に従うので，

E
(
(X − µ)S2

)
= 0 を証明すればよい。

X − µ =
1
n

n∑

i=1

(Xi − µ)

S2 =
1

n− 1

n∑

i=1

(Xi −X)2

=
1

n− 1

n∑

i=1

(
(Xi − µ)− (X − µ)

)2

=
1

n− 1

( n∑

i=1

(Xi − µ)2 − n(X − µ)2
)

E
(
(X − µ)S2

)

=
1

n− 1
E

(
(X − µ)

n∑

i=1

(Xi − µ)2 − n(X − µ)3
)

=
n

n− 1
E

( n∑

j=1

(Xj − µ)
n∑

i=1

(Xi − µ)2
)

− n

n− 1
E

(
(X − µ)3

)

=
n

n− 1
E

( n∑

i=1

n∑

j=1

(Xi − µ)2(Xj − µ)
)

− n

n− 1
E

(
(X − µ)3

)

=
n

n− 1

n∑

i=1

n∑

j=1

E
(
(Xi − µ)2(Xj − µ)

)

− n

n− 1
E

(
(X − µ)3

)

=
n

n− 1

n∑

i=1

E
(
(Xi − µ)3

)

− n

n− 1
E

(
(X − µ)3

)

= 0

Z ∼ N(µz, σ
2
z) のとき，E

(
(Z−µz)2k−1

)
= 0, k = 1, 2, · · ·

となる。(積率母関数より証明可)
したがって，E

(
(Xi − µ)3

)
= E

(
(X − µ)3

)
= 0 となる。

よって，

E
(
(X − µ)S2

)
= 0

を得る。

9.1.4 F 分布

U ∼ χ2(n), V ∼ χ2(m), U と V は独立のとき，

U/n

V/m
∼ F (n,m)

となる。

公式：

t(m)2 = F (1, m)
F (n,m) = 1/F (m,n)

9.2 その他の母集団の場合：標本平均 X の標
本分布

中心極限定理を利用する。

中心極限定理： 大きさ n の無作為標本 X1, X2, · · ·, Xn

すべての i について，E(Xi) = µ, V(Xi) = σ2 とする。

標本平均 X =
1
n

∑

i=1nXi

の分布を考える。

n −→ ∞ のとき，
X − E(X)√

V(X)
=

X − µ√
σ2/n

=
X − µ

σ/
√

n
−→ N(0, 1)

が成り立つ。

さらに，分母の σ をその標本不偏分散 S で置き換えても，

X − µ

S/
√

n
−→ N(0, 1)

が成り立つ。(証明略)
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例題： 母比率の推定量の標本分布： 離散型確率変数 X

の取りうる値は 0, 1 のどちらかで，その確率分布は，

P (X = x) = f(x) = px(1− p)1−x x = 0, 1

となる。すなわち，

P (X = 1) = p

P (X = 0) = 1− p

となる。

何等かの実験を行い，成功すればX = 1，失敗すればX = 0
として，確率変数 X に数値を割り当てる。

または，アンケート調査によって，Yes と答えれば X = 1，
No と答えれば X = 0 として，確率変数 X に数値を割り

当てる。

このとき，X = 1 となる確率 P (X = 1) = p を推定する

ことを考える。

E(X), V(X) を求めておく。

E(X) =
∑

x

xf(x)

=
1∑

x=0

xpx(1− p)1−x

= p

µ = E(X) のとき，V(X) = E(X2) − µ2 により，まず，

E(X2) を求める。

E(X2) =
∑

x

x2f(x)

=
1∑

x=0

x2px(1− p)1−x

= p2

よって，

V(X) = E(X2)− µ2

= p− p2

= p(1− p)

n 個の無作為標本 X1, X2, · · ·, Xn を考える。

X1, X2, · · ·, Xn はそれぞれ独立に，しかも上記のように，

同一のベルヌイ分布に従うものとする。

このときの母比率 p の推定量を P̂ =
1
n

n∑

i=1

Xi とする。

すなわち，P̂ は n 人の中で成功した回数 (または，Yes と
答えた人数) を表し，標本平均である。
中心極限定理を当てはめる。n −→ ∞ のとき，

P̂ − E(P̂ )√
V(P̂ )

=
P̂ − p√

p(1− p)/n
−→ N(0, 1)

が成り立つ。E(P̂ ), V(P̂ ) は

E(P̂ ) = E(
1
n

n∑

i=1

Xi)

=
1
n

E(
n∑

i=1

Xi)

=
1
n

n∑

i=1

E(Xi)

=
1
n

n∑

i=1

p

= p

V(P̂ ) = V(
1
n

n∑

i=1

Xi)

=
1
n2

V(
n∑

i=1

Xi)

=
1
n2

n∑

i=1

V(Xi) ←− 互いに独立

=
1
n2

n∑

i=1

p(1− p)

=
p(1− p)

n

となることに注意。E(Xi) = p, V(Xi) = p(1 − p) を途中
で利用する。

さらに，分母の p をその推定量 P̂ で置き換えても，

P̂ − p√
P̂ (1− P̂ )/n

−→ N(0, 1)

が成り立つ。(証明略)

9.3 その他の母集団の場合： 母数の推定量 θ̂n

の標本分布 (一般化)

母集団の分布： f(x; θ)
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より一般的に，母数 θ の推定量の標本分布を求める。

最尤推定量の性質を利用する。

すなわち，母数 θ の最尤推定量 θ̂n の標本分布について：

n −→ ∞ のとき，
√

n(θ̂n − θ) −→ N
(
0, σ2

)

となる。ただし，

σ2 = σ2(θ) =
(
E

[(
∂ log f(X; θ)

∂θ

)2
])−1

となる。

標準化 (基準化) によって，n −→ ∞ のとき，
√

n(θ̂n − θ)
σ(θ)

=
θ̂n − θ

σ(θ)/
√

n
−→ N (0, 1)

となる。

さらに，分母の θ を最尤推定量 θ̂n で置き換えても，n −→
∞ のとき，

θ̂n − θ

σ(θ̂n)/
√

n
−→ N (0, 1)

が成り立つ。(証明略)

10 区間推定法

母集団の分布が f(x; θ) で表されているとき，この母集団
からの標本 X1, X2, · · ·, Xn を使って，θ に依存しない 2
つの統計量 θ̂U (X1, X2, · · ·, Xn), θ̂L(X1, X2, · · ·, Xn) を
作り，

P
(
θ̂L(X1, X2, · · · , Xn) < θ < θ̂U (X1, X2, · · · , Xn)

)

= 1− α

と表すことが出来たとき，

区間
(
θ̂L(x1, x2, · · · , xn), θ̂U (x1, x2, · · · , xn)

)

を信頼係数 1−α (または，有意水準 α)の信頼区間と呼ぶ。

θ̂L(x1, x2, · · · , xn), θ̂U (x1, x2, · · · , xn)をそれぞれ信頼下限，
信頼上限という。

一般に，

信頼区間の幅 θ̂U (X1, X2, · · · , Xn)− θ̂L(X1, X2, · · · , Xn)

が最小になることが望ましい。

10.1 母平均 µ の区間推定

10.1.1 正規母集団の場合 (小標本，大標本共に)

大きさ n の無作為標本 {X1, X2, · · ·, Xn}。すべての i =
1, 2, · · · , n について，Xi ∼ N(µ, σ2) とする。

母分散 σ2 が既知のとき：

X − µ

σ/
√

n
∼ N(0, 1),

P
(∣∣∣∣

X − µ

σ/
√

n

∣∣∣∣ < zα/2

)
= 1− α

zα/2 は 100× α

2
% 点で，確率 α が与えられると，正規分

布表から得られる。

したがって，P
(
X−zα/2

σ√
n

< µ < X +zα/2
σ√
n

)
= 1−α

X を x で置き換えて，信頼係数 1− α の µ の信頼区間：

=⇒
(
x− zα/2

σ√
n

, x + zα/2
σ√
n

)

母分散 σ2 が未知のとき：

X − µ

S/
√

n
∼ t(n− 1),

P
(∣∣∣∣

X − µ

S/
√

n

∣∣∣∣ < tα/2(n− 1)
)

= 1− α

tα/2(n− 1) は 100× α

2
% 点で，確率 α と自由度 n− 1 が

与えられると，t 分布表から得られる。

したがって，P
(
X − tα/2(n− 1)

S√
n

< µ < X + tα/2(n−

1)
S√
n

)
= 1− α

X, S2 を x, s2 で置き換えて，信頼係数 1 − α の µ の信

頼区間：=⇒
(
x− tα/2(n− 1)

s√
n

, x + tα/2(n− 1)
s√
n

)

10.1.2 その他の母集団の場合：大標本 (n が大きいとき)

大きさ n の無作為標本 {X1, X2, · · ·, Xn}
すべての i = 1, 2, · · · , n について，Xi ∼ (µ, σ2) とする
(正規分布を仮定する必要ない)。
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母分散 σ2 が既知のとき： n が大きいとき，中心極限定

理により，以下が成り立つ。

X − µ

σ/
√

n
∼ N(0, 1),

P
(∣∣∣∣

X − µ

σ/
√

n

∣∣∣∣ < zα/2

)
≈ 1− α

したがって，P
(
X−zα/2

σ√
n

< µ < X +zα/2
σ√
n

)
≈ 1−α

X を x で置き換えて，信頼係数 1− α の µ の信頼区間：

=⇒
(
x− zα/2

σ√
n

, x + zα/2
σ√
n

)

母分散 σ2 が未知のとき： さらに，分母の σ2 を標本不

偏分散 S2 で置き換えて，近似する。

X − µ

σ/
√

n
∼ N(0, 1),

X − µ

S/
√

n
∼ N(0, 1),

P
(∣∣∣∣

X − µ

S/
√

n

∣∣∣∣ < zα/2

)
≈ 1− α

したがって，P
(
X−zα/2

S√
n

< µ < X +zα/2
S√
n

)
≈ 1−α

X, S2 を x, s2 で置き換えて，信頼係数 1 − α の µ の信

頼区間：=⇒
(
x− zα/2

s√
n

, x + zα/2
s√
n

)

10.2 母分散 σ2 の区間推定 (正規母集団)

大きさ n の無作為標本 {X1, X2, · · ·, Xn}
すべての i = 1, 2, · · · , n について，Xi ∼ N(µ, σ2) とする

∑n
i=1(Xi − µ)2

σ2
∼ χ2(n)

µ をその推定量 X で置き換えると，

U =
n∑

i=1

(
Xi −X

σ
)2 =

(n− 1)S2

σ2
∼ χ2(n− 1)

ただし，S2 =
1

n− 1

n∑

i=1

(Xi−X)2 (標本不偏分散)とする。

1. 自由度 n− 1 のカイ 2乗分布の下側確率，上側確率が
α/2となる点を，それぞれχ2

1−α/2(n−1)，χ2
α/2(n−1)

とする。

2. χ2
1−α/2(n− 1)

=⇒ 下側確率が α/2 となる点

=⇒ 上側確率が 1− α/2 となる点

3. P
(
χ2

1−α/2(n− 1) < U < χ2
α/2(n− 1)

)
= 1− α

P
(
χ2

1−α/2(n−1) <
(n− 1)S2

σ2
< χ2

α/2(n−1)
)

= 1−α

P
( (n− 1)S2

χ2
α/2(n− 1)

< σ2 <
(n− 1)S2

χ2
1−α/2(n− 1)

)
= 1− α

4. 推定量 S2 をその推定値 s2 で置き換えて，

信頼係数 1− α の σ2 の信頼区間は，

( (n− 1)s2

χ2
α/2(n− 1)

,
(n− 1)s2

χ2
1−α/2(n− 1)

)

となる。

ただし，s2 =
1

n− 1

n∑

i=1

(xi − x)2 とする。

10.3 母比率 p の区間推定 (ベルヌイ試行)

p は次の確率を表す。

P (X = 1) = p

P (X = 0) = 1− p

すなわち，何等かの実験を行い，成功すれば X = 1，失敗
すれば X = 0 として，確率変数 X に数値を割り当てる。

または，アンケート調査によって，Yes と答えれば X = 1，
No と答えれば X = 0 として，確率変数 X に数値を割り

当てる。

このとき，X = 1 となる確率 P (X = 1) = p を推定する

ことを考える。

n 個の無作為標本 X1, X2, · · ·, Xn を考える。

X1, X2, · · ·, Xn はそれぞれ独立に，しかも上記のように，

同一のベルヌイ分布に従うものとする。

母比率 p の推定量は P̂ =
1
n

n∑

i=1

Xi とする。

すなわち，P̂ は n 人の中で成功した回数 (または，Yes と
答えた人数) を表し，標本平均である。
E(P̂ ) = p, V(P̂ ) = p(1− p)/n を用いて，中心極限定理に

より，n が大きいとき，近似的に，

P̂ − p√
p(1− p)/n

∼ N(0, 1)
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を得る。

さらに，分母の pをその推定量 P̂ で置き換えて，近似する。

P̂ − p√
P̂ (1− P̂ )/n

∼ N(0, 1),

P
(
∣∣∣∣∣∣

P̂ − p√
P̂ (1− P̂ )/n

∣∣∣∣∣∣
< zα/2

)
≈ 1− α

したがって，

P
(
P̂ − zα/2

√
P̂ (1− P̂ )

n
< p < P̂ + zα/2

√
P̂ (1− P̂ )

n

)
≈

1− α

P̂ を p̂ で置き換えて，信頼係数 1 − α の p の信頼区間：

=⇒
(
p̂− zα/2

√
p̂(1− p̂)

n
, p̂ + zα/2

√
p̂(1− p̂)

n

)

11 統計的検定 I

11.1 仮説検定の考え方

仮説検定：母集団の分布 f(x; θ) が与えられているときに，
母数 θ についての仮説 θ = θ0 が正しいかどうかを，標

本 (X1, X2, · · ·, Xn) の実現値 (x1, x2, · · ·, xn) から判断
する。

帰無仮説 H0 : θ = θ0

2種類の誤り: 検定しようとする仮説 =⇒ 帰無仮説 H0

帰無仮説が正しくないときに成り立つ仮説 =⇒ 対立仮説

H1

H0 は正しい H0 は正しくない

H0 採択 正しい判定 第 2種の誤り
(確率 β)

H0 棄却 第 1種の誤り 正しい判定

(確率 α = 有意水準) (1− β = 検出力)

検定の手続き

1. 母数について帰無仮説 H0 を立てる。

2. ある適当な統計量を考えて，H0 が正しいときにこの

統計量が従う分布を導く。

ある適当な統計量 =⇒ 検定統計量

3. 実際の標本 (データ) からこの統計量の値 (統計値) を
計算する。

4. 統計量の分布と統計値とを比較する。

この統計値が分布の端にあれば，H0 は起こりにくい

と判定され，H0 を棄却する。

起こりにくいとして H0 を棄却する領域 =⇒ 棄却域 R

(reject の意味)
起こり得るとしてH0を採択する領域 =⇒採択域 A (accept
の意味)

検定統計量 T = f(X1, X2, · · · , Xn)
第 1種の誤りの確率 = 有意水準 α (H0 が正しいにもかか

わらず，H0 を棄却する確率)

P
(
f(X1, X2, · · · , Xn) ∈ R|H0 が正しい

)
= α

第 2種の誤りの確率 = β (H0 が正しくないにもかかわら

ず，H0 を採択する確率)

P
(
f(X1, X2, · · · , Xn) ∈ A|H0 が正しくない

)
= β

検出力 = 1 − β (H0 が正しくないとき，H0 を棄却する

確率)

P
(
f(X1, X2, · · · , Xn) ∈ R|H0 が正しくない

)
= 1− β

有意水準： α = 0.05, 0.01 を選ぶ。

検出力の導出方法：正規母集団で，分散が既知の場合: X1,
X2, · · ·, Xn の n 個の確率変数は，それぞれ独立に，平均

µ，分散 σ2 の正規分布をするものとする。ただし，分散

σ2 は既知とする。

帰無仮説 H0 : µ = µ0，対立仮説 H1 : µ = µ1 の検定を

考える。µ1 > µ0 とする。

検出力を求める。

検出力とは，対立仮説のもとで，帰無仮説を棄却する確率

である。

標本平均 X ∼ N(µ,
σ2

n
) から，

X − µ

σ/
√

n
∼ N(0, 1)

で，帰無仮説 H0 : µ = µ0 のもとで，

X − µ0

σ/
√

n
∼ N(0, 1)
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となる。

よって，帰無仮説 H0 : µ = µ0 のもとで，帰無仮説を棄

却する棄却域は，P
(X − µ0

σ/
√

n
> zα

)
= α なので，

X > µ0 + zασ/
√

n となる。

対立仮説 H1 : µ = µ1 のもとで，帰無仮説を棄却する確

率 (検出力) を求める。

すなわち，対立仮説 H1 : µ = µ1 のもとで，

P
(
X > µ0 + zασ/

√
n
)
の確率を求めればよい。

対立仮説 H1 : µ = µ1 のもとで，
X − µ1

σ/
√

n
∼ N(0, 1) となるので，

P
(X − µ1

σ/
√

n
>

µ0 − µ1

σ/
√

n
+ zα

)

となる確率が検出力となる。(
µ0 − µ1

σ/
√

n
+ zα に対応する確

率を標準正規分布表で調べる。)

検定の種類:

1. 母平均 µ の検定

(a) 正規母集団の場合 (小標本，大標本共に)

i. 母分散 σ2 は既知 =⇒ N(0, 1)

ii. 母分散 σ2 は未知 =⇒ t(n− 1)

(b) その他の母集団の場合： 大標本 (n が大きいと
き) =⇒ N(0, 1)

2. 2つの標本の母平均の差 (H0 : µ1 = µ2) の検定

(a) 小標本 (n1, n2 が小さいとき)

i. σ2
1 と σ2

2 は既知で，正規母集団の場合 =⇒
N(0, 1)

ii. σ2
1 と σ2

2 は未知 (一般的に)=⇒ 検定不可能
(検定統計量の分布を導出できないため)

(b) その他の母集団： 大標本 (n1, n2 が大きいとき)
=⇒ N(0, 1)

3. 母分散 σ2 の検定で，正規母集団の場合 =⇒ χ2(n−1)

4. 2つの標本の母分散が等しいかどうか (H0 : σ2
1 = σ2

2)
の検定で，正規母集団の場合 =⇒ F (n1 − 1, n2 − 1)

5. 母比率 p の検定 (ベルヌイ試行) =⇒ N(0, 1)

11.2 母平均 µ の検定

11.2.1 正規母集団の場合 (小標本，大標本共に)

大きさ n の無作為標本 {X1, X2, · · ·, Xn}。i = 1, 2, · · · , n
について，Xi ∼ N(µ, σ2) とする。

母分散σ2は既知のとき： Xの分布は，
X − µ

σ/
√

n
∼ N(0, 1)

なので，帰無仮説 H0 : µ = µ0 が正しいもとで，

X − µ0

σ/
√

n
∼ N(0, 1) となる (µ を µ0 で置き換える)。こ

のとき，検定統計量
X − µ0

σ/
√

n
。検定統計量の値

x− µ0

σ/
√

n
。

1. 対立仮説 H1 : µ < µ0 (片側検定)

P
(X − µ0

σ/
√

n
< −zα

)
= α なので，

x− µ0

σ/
√

n
< −zα の

とき，有意水準 α で帰無仮説 H0 : µ = µ0 を棄却

する。

2. 対立仮説 H1 : µ > µ0 (片側検定)

P
(X − µ0

σ/
√

n
> zα

)
= α なので，

x− µ0

σ/
√

n
> zα のとき，

有意水準 α で帰無仮説 H0 : µ = µ0 を棄却する。

3. 対立仮説 H1 : µ 6= µ0 (両側検定)

P
(∣∣∣∣

X − µ0

σ/
√

n

∣∣∣∣ > zα/2

)
= α なので，

∣∣∣∣
x− µ0

σ/
√

n

∣∣∣∣ > zα/2

のとき，有意水準 α で帰無仮説 H0 : µ = µ0 を棄却

する。

母分散 σ2 は未知のとき： X の分布は，
X − µ

S/
√

n
∼ t(n−1)

なので，帰無仮説 H0 : µ = µ0 が正しいもとで，

X − µ0

S/
√

n
∼ t(n− 1) となる (µ を µ0 で置き換える)。こ

のとき，検定統計量
X − µ0

S/
√

n
。検定統計量の値

x− µ0

s/
√

n
。

1. 対立仮説 H1 : µ < µ0 (片側検定)

P
(X − µ0

S/
√

n
< −tα(n − 1)

)
= α なので，

x− µ0

s/
√

n
<

−tα(n− 1) のとき，有意水準 α で H0 : µ = µ0 を棄

却する。

2. 対立仮説 H1 : µ > µ0 (片側検定)
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P
(X − µ0

S/
√

n
> tα(n − 1)

)
= α なので，

x− µ0

s/
√

n
>

tα(n − 1) のとき，有意水準 α で H0 : µ = µ0 を棄

却する。

3. 対立仮説 H1 : µ 6= µ0 (両側検定)

P
(∣∣∣∣

X − µ0

S/
√

n

∣∣∣∣ > tα/2(n−1)
)

= α なので，
∣∣∣∣
x− µ0

s/
√

n

∣∣∣∣ >

tα/2(n− 1) のとき，有意水準 α で H0 : µ = µ0 を棄

却する。

11.2.2 その他の母集団の場合：大標本 (n が大きいとき)

大きさ n の無作為標本 {X1, X2, · · ·, Xn}。i = 1, 2, · · · , n
について，Xi ∼ (µ, σ2)とする (正規分布の仮定は不必要)。

母分散 σ2 は既知のとき： 近似的に
X − µ

σ/
√

n
∼ N(0, 1)

が成り立つので，帰無仮説 H0 : µ = µ0 が正しいもとで，

X − µ0

σ/
√

n
∼ N(0, 1) となる (µ を µ0 で置き換える)。こ

のとき，検定統計量
X − µ0

σ/
√

n
。検定統計量の値

x− µ0

σ/
√

n
。

1. 対立仮説 H1 : µ < µ0 (片側検定)

P
(X − µ0

σ/
√

n
< −zα

)
≈ α なので，

x− µ0

σ/
√

n
< −zα の

とき，有意水準 α で帰無仮説 H0 : µ = µ0 を棄却

する。

2. 対立仮説 H1 : µ > µ0 (片側検定)

P
(X − µ0

σ/
√

n
> zα

)
≈ α なので，

x− µ0

σ/
√

n
> zα のとき，

有意水準 α で帰無仮説 H0 : µ = µ0 を棄却する。

3. 対立仮説 H1 : µ 6= µ0 (両側検定)

P
(∣∣∣∣

X − µ0

σ/
√

n

∣∣∣∣ > zα/2

)
≈ α なので，

∣∣∣∣
x− µ0

σ/
√

n

∣∣∣∣ > zα/2

のとき，有意水準 α で帰無仮説 H0 : µ = µ0 を棄却

する。

母分散 σ2 は未知のとき： 近似的に，
X − µ

S/
√

n
∼ N(0, 1)

が成り立つので，帰無仮説 H0 : µ = µ0 が正しいもとで，

X − µ0

S/
√

n
∼ N(0, 1) となる (µ を µ0 で置き換える)。こ

のとき，検定統計量
X − µ0

S/
√

n
。検定統計量の値

x− µ0

s/
√

n
。

1. 対立仮説 H1 : µ < µ0 (片側検定)

P
(X − µ0

S/
√

n
< −zα

)
≈ α なので，

x− µ0

s/
√

n
< −zα の

とき，有意水準 α で帰無仮説 H0 : µ = µ0 を棄却

する。

2. 対立仮説 H1 : µ > µ0 (片側検定)

P
(X − µ0

S/
√

n
> zα

)
≈ α なので，

x− µ0

s/
√

n
> zα のとき，

有意水準 α で帰無仮説 H0 : µ = µ0 を棄却する。

3. 対立仮説 H1 : µ 6= µ0 (両側検定)

P
(∣∣∣∣

X − µ0

S/
√

n

∣∣∣∣ > zα/2

)
≈ α なので，

∣∣∣∣
x− µ0

s/
√

n

∣∣∣∣ > zα/2

のとき，有意水準 α で帰無仮説 H0 : µ = µ0 を棄却

する。

11.3 2つの標本の母平均の差の検定

H0 : µ1 = µ2 の検定

11.3.1 小標本 (n1, n2 が小さいとき)

・第 1グループ：大きさ n1 の無作為標本。i = 1, 2, · · · , n
について，X1i ∼ N(µ1, σ

2
1) とする。

・第 2グループ：大きさ n2 の無作為標本。i = 1, 2, · · · , n
について，X2i ∼ N(µ2, σ

2
2) とする。

σ2
1 と σ2

2 は既知で，正規母集団の場合： 母平均の差を

検定したいので，統計量 X1 −X2 の分布を考える。

E(X1 −X2) = µ1 − µ2，

また，V(X1 −X2) =
σ2

1

n1
+

σ2
2

n2
を得る。

したがって，X1−X2 ∼ N(µ1−µ2,
σ2

1

n1
+

σ2
2

n2
)が成り立つ (証

明略)。さらに，標準化によって，
(X1 −X2)− (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

∼

N(0, 1) を得るので，帰無仮説 H0 : µ1 = µ2 が正しいも

とで，
X1 −X2√

σ2
1/n1 + σ2

2/n2

∼ N(0, 1) となる (µ1−µ2 = 0

を代入する)。このとき，検定統計量
X1 −X2√

σ2
1/n1 + σ2

2/n2

。検

定統計量の値
x1 − x2√

σ2
1/n1 + σ2

2/n2

。
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1. 対立仮説 H1 : µ1 < µ2 (片側検定)

P
( X1 −X2√

σ2
1/n1 + σ2

2/n2

< −zα

)
≈ α なので，

x1 − x2√
σ2

1/n1 + σ2
2/n2

< −zα のとき，有意水準 α で H0

を棄却する。

2. 対立仮説 H1 : µ1 > µ2 (片側検定)

P
( X1 −X2√

σ2
1/n1 + σ2

2/n2

> zα

)
≈ α なので，

x1 − x2√
σ2

1/n1 + σ2
2/n2

> zα のとき，有意水準 α で H0 を

棄却する。

3. 対立仮説 H1 : µ1 6= µ2 (両側検定)

P
(
∣∣∣∣∣∣

X1 −X2√
σ2

1/n1 + σ2
2/n2

∣∣∣∣∣∣
> zα/2

)
≈ α なので，

∣∣∣∣∣∣
x1 − x2√

σ2
1/n1 + σ2

2/n2

∣∣∣∣∣∣
> zα/2 のとき，有意水準 αで H0

を棄却する。

σ2
1 と σ2

2 は未知のとき： 検定統計量の分布を導出でき

ないため，検定不可能 (正規分布や t 分布にはならない)

11.3.2 その他の母集団： 大標本 (n1, n2 が共に大きい

とき)

・第 1グループ：大きさ n1 の無作為標本。i = 1, 2, · · · , nに
ついて，X1i ∼ (µ1, σ

2
1)とする (正規分布の仮定は不必要)。

・第 2グループ：大きさ n2 の無作為標本。i = 1, 2, · · · , nに
ついて，X2i ∼ (µ2, σ

2
2)とする (正規分布の仮定は不必要)。

σ2
1 と σ2

2 は既知のとき： 近似的に，
(X1 −X2)− (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

∼ N(0, 1) を得るので，

帰無仮説 H0 : µ1 = µ2 が正しいもとで，

X1 −X2√
σ2

1/n1 + σ2
2/n2

∼ N(0, 1) となる (µ1 − µ2 = 0 を代

入する)。

このとき，検定統計量
X1 −X2√

σ2
1/n1 + σ2

2/n2

。検定統計量の値

x1 − x2√
σ2

1/n1 + σ2
2/n2

。

1. 対立仮説 H1 : µ1 < µ2 (片側検定)

P
( X1 −X2√

σ2
1/n1 + σ2

2/n2

< −zα

)
≈ α なので，

x1 − x2√
σ2

1/n1 + σ2
2/n2

< −zα のとき，有意水準 α で H0

を棄却する。

2. 対立仮説 H1 : µ1 > µ2 (片側検定)

P
( X1 −X2√

σ2
1/n1 + σ2

2/n2

> zα

)
≈ α なので，

x1 − x2√
σ2

1/n1 + σ2
2/n2

> zα のとき，有意水準 α で H0 を

棄却する。

3. 対立仮説 H1 : µ1 6= µ2 (両側検定)

P
(
∣∣∣∣∣∣

X1 −X2√
σ2

1/n1 + σ2
2/n2

∣∣∣∣∣∣
> zα/2

)
≈ α なので，

∣∣∣∣∣∣
x1 − x2√

σ2
1/n1 + σ2

2/n2

∣∣∣∣∣∣
> zα/2 のとき，有意水準 αで H0

を棄却する。

σ2
1 と σ2

2 は未知のとき： 近似的に，
(X1 −X2)− (µ1 − µ2)√

S2
1/n1 + S2

2/n2

∼ N(0, 1) を得るので，

帰無仮説 H0 : µ1 = µ2 が正しいもとで，

X1 −X2√
S2

1/n1 + S2
2/n2

∼ N(0, 1) となる (µ1 − µ2 = 0 を代

入する)。

このとき，検定統計量
X1 −X2√

S2
1/n1 + S2

2/n2

。検定統計量の値

x1 − x2√
s2
1/n1 + s2

2/n2

。

1. 対立仮説 H1 : µ1 < µ2 (片側検定)
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P
( X1 −X2√

S2
1/n1 + S2

2/n2

< −zα

)
≈ α なので，

x1 − x2√
s2
1/n1 + s2

2/n2

< −zα のとき，有意水準 α で H0

を棄却する。

2. 対立仮説 H1 : µ1 > µ2 (片側検定)

P
( X1 −X2√

S2
1/n1 + S2

2/n2

> zα

)
≈ α なので，

x1 − x2√
s2
1/n1 + s2

2/n2

> zα のとき，有意水準 α で H0 を

棄却する。

3. 対立仮説 H1 : µ1 6= µ2 (両側検定)

P
(
∣∣∣∣∣∣

X1 −X2√
S2

1/n1 + S2
2/n2

∣∣∣∣∣∣
> zα/2

)
≈ α なので，

∣∣∣∣∣∣
x1 − x2√

s2
1/n1 + s2

2/n2

∣∣∣∣∣∣
> zα/2 のとき，有意水準 α で H0

を棄却する。

11.4 母分散 σ2 の検定で，正規母集団の場合

(n− 1)S2

σ2
∼ χ2(n−1)を得るので，帰無仮説H0 : σ2 = σ2

0

が正しいもとで，
(n− 1)S2

σ2
0

∼ χ2(n− 1) となる (σ2 を

σ2
0 で置き換える)。このとき，検定統計量

(n− 1)S2

σ2
0

。検

定統計量の値
(n− 1)s2

σ2
0

。

1. 対立仮説 H1 : σ2 < σ2
0 (片側検定)

P
( (n− 1)S2

σ2
0

< χ2
1−α(n− 1)

)
= α なので，

(n− 1)s2

σ2
0

< χ2
1−α(n−1) のとき，有意水準 α で H0 :

σ2 = σ2
0 を棄却する。

2. 対立仮説 H1 : σ2 > σ2
0 (片側検定)

P
( (n− 1)S2

σ2
0

> χ2
α(n− 1)

)
= α なので，

(n− 1)s2

σ2
0

> χ2
α(n − 1) のとき，有意水準 α で H0 :

σ2 = σ2
0 を棄却する。

3. 対立仮説 H1 : σ2 6= σ2
0 (両側検定)

P
(
χ2

1−α/2(n − 1) <
(n− 1)S2

σ2
0

< χ2
α/2(n − 1)

)
= α

なので，

χ2
1−α/2(n− 1) <

(n− 1)s2

σ2
0

< χ2
α/2(n− 1) のとき，有

意水準 α で H0 を棄却する。

11.5 2つの標本の母分散が等しいかどうかの検
定で，正規母集団の場合

H0 : σ2
1 = σ2

2 の検定

・第 1グループ：大きさ n1 の無作為標本。i = 1, 2, · · · , n
について，X1i ∼ N(µ1, σ

2
1) とする。

・第 2グループ：大きさ n2 の無作為標本。i = 1, 2, · · · , n
について，X2i ∼ N(µ2, σ

2
2) とする。

j = 1, 2 について，

Sj =
1

nj − 1

nj∑

i=1

(Xji −Xj)2, Xj =
1
nj

nj∑

i=1

Xji

を定義する。
S2

1/σ2
1

S2
2/σ2

2

∼ F (n1 − 1, n2 − 1) を得るので，帰無仮説 H0 :

σ2
1 = σ2

2 が正しいもとで，
S2

1

S2
2

∼ F (n1 − 1, n2 − 1) とな

る。このとき，検定統計量
S2

1

S2
2

。検定統計量の値
s2
1

s2
2

。

1. 対立仮説 H1 : σ2
1 < σ2

2 (片側検定)

P
(S2

1

S2
2

< F1−α(n1 − 1, n2 − 1)
)

= α なので，

s2
1

s2
2

< F1−α(n1 − 1, n2 − 1) のとき，有意水準 α で

H0 : σ2
1 = σ2

2 を棄却する。

2. 対立仮説 H1 : σ2
1 > σ2

2 (片側検定)

P
(S2

1

S2
2

> Fα(n1 − 1, n2 − 1)
)

= α なので，

s2
1

s2
2

> Fα(n1 − 1, n2 − 1) のとき，有意水準 α で H0 :

σ2
1 = σ2

2 を棄却する。

3. 対立仮説 H1 : σ2 6= σ2
0 (両側検定)
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P
(
F1−α/2(n1 − 1, n2 − 1) <

S2
1

S2
2

< Fα/2(n1 − 1, n2 −

1)
)

= α なので，

F1−α/2(n1 − 1, n2 − 1) <
s2
1

s2
2

< Fα/2(n1 − 1, n2 − 1)

のとき，有意水準 α で H0 を棄却する。

F1−α(n,m) =
1

Fα(m,n)
に注意

11.6 母比率 p の検定 (ベルヌイ試行)

中心極限定理により，近似的に，
P̂ − p√

p(1− p)/n
∼ N(0, 1)

を得るので，帰無仮説 H0 : p = p0 が正しいもとで，

P̂ − p0√
p0(1− p0)/n

∼ N(0, 1) となる (p を p0 で置き換え

る)。このとき，検定統計量
P̂ − p0√

p0(1− p0)/n
。検定統計量

の値
p̂− p0√

p0(1− p0)/n
。

1. 対立仮説 H1 : µ < µ0 (片側検定)

P
( P̂ − p0√

p0(1− p0)/n
< −zα

)
≈ α なので，

p̂− p0√
p0(1− p0)/n

< −zα のとき，有意水準 α で H0 :

µ = µ0 を棄却する。

2. 対立仮説 H1 : µ > µ0 (片側検定)

P
( P̂ − p0√

p0(1− p0)/n
> zα

)
≈ α なので，

p̂− p0√
p0(1− p0)/n

> zα のとき，有意水準 α で H0 :

µ = µ0 を棄却する。

3. 対立仮説 H1 : µ 6= µ0 (両側検定)

P
(∣∣∣∣∣

P̂ − p0√
p0(1− p0)/n

∣∣∣∣∣ > zα/2

)
≈ α なので，

∣∣∣∣∣
p̂− p0√

p0(1− p0)/n

∣∣∣∣∣ > zα/2 のとき，有意水準 α で H0

を棄却する。

12 統計的検定 II： 大標本検定

12.1 ワルド (Wald) 検定

最尤推定量の性質を利用

母集団の分布： f(x; θ)
母数 θ の最尤推定量 θ̂n の標本分布について：

n −→ ∞ のとき，
√

n(θ̂n − θ) −→ N(0, σ2)

ただし，

σ2 = σ2(θ)

=
(
E

[(
∂ log f(X; θ)

∂θ

)2
])−1

= −
(
E

(
∂2 log f(X; θ)

∂θ2

))−1

となる。
σ2

n
はクラメール・ラオの下限に一致することに注意。

(復習) クラメール・ラオの不等式：

母数 θ の不偏推定量 θ̂n について，

V(θ̂n) ≥ σ2

n

が成り立つ。σ2 は上で定義されたものとなる。

言い換えると，

θ̂n − θ

σ/
√

n
−→ N(0, 1)

を得る。

さらに，分母の θ を最尤推定量 θ̂n で置き換えても，n −→
∞ のとき，近似的に，

θ̂n − θ

σ(θ̂n)/
√

n
∼ N (0, 1)

が成り立つ。

したがって，H0 : θ = θ0 が正しいもとで，n −→ ∞ の
とき，近似的に，

θ̂n − θ0

σ(θ̂n)/
√

n
∼ N (0, 1)
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が成り立つ。

よって，H0 : θ = θ0 とH1 : θ 6= θ0 について，

θ̂n を実現値で置き換えて，
∣∣∣∣∣

θ̂n − θ0

σ(θ̂n)/
√

n

∣∣∣∣∣ > zα/2 のとき，H0 を棄却する。

(*) 検定を行う段階では，θ̂n を最尤推定値とみなしている

ことに注意。すなわち，θ̂n はもともと最尤推定量で X1,
X2, · · ·, Xn の関数である。しかし，検定を行う段階では，

X1, X2, · · ·, Xn を x1, x2, · · ·, xn で置き換えて，θ̂n を最

尤推定値とみなしている。

また，H0 : θ = θ0 とH1 : θ > θ0 について，

θ̂n を実現値で置き換えて，

θ̂n − θ0

σ(θ̂n)/
√

n
> zα のとき，H0 を棄却する。

最後に，H0 : θ = θ0 とH1 : θ < θ0 について，

θ̂n を実現値で置き換えて，

θ̂n − θ0

σ(θ̂n)/
√

n
< −zα のとき，H0 を棄却する。

例題： 指数分布から生成された n 個の互いに独立な確率

変数 X1, X2, · · ·, Xn を考える。指数分布は，

f(x; γ) = γe−γx x > 0

である。

帰無仮説 H0 : γ = γ0，対立仮説 H1 : γ 6= γ0 を，ワルド

検定によって，検定する。

一般的に，母数 γ の最尤推定量 γ̂n の標本分布について，

n −→ ∞ のとき，近似的に，
γ̂n − γ

σ(γ̂n)/
√

n
∼ N (0, 1)

が成り立つ。ただし，

σ2 = σ2(γ)

=
(
E

[(
d log f(X; γ)

dγ

)2
])−1

= −
(
E

(
d2 log f(X; γ)

dγ2

))−1

となる。

したがって，H0 : γ = γ0 が正しいもとで，n −→ ∞ の
とき，近似的に，

γ̂n − γ0

σ(γ̂n)/
√

n
∼ N (0, 1)

が成り立つ。

よって，H0 : γ = γ0 とH1 : γ 6= γ0 について，

γ̂n を実現値で置き換えて，∣∣∣∣
γ̂n − γ0

σ(γ̂n)/
√

n

∣∣∣∣ > zα/2 のとき，H0 を棄却する。

まず，σ2(γ) を求める。

σ2 = σ2(γ)

= −
(
E

(
d2 log f(X; γ)

dγ2

))−1

= γ2

log f(X; γ) の 2回微分は，

d log f(X; γ)
dγ

=
1
γ
−X

d2 log f(X; γ)
dγ2

= − 1
γ2

に注意。

次に，γ の最尤推定量 γ̂n を求める。

X1, · · · , Xn は互いに独立で、指数分布 f(x; γ)に従うので，
尤度関数 l(γ) は

l(γ) =
n∏

i=1

f(xi; γ)

=
n∏

i=1

γe−γxi

= γne−γ
P

xi

対数尤度関数は

log l(γ) = n log(γ)− γ

n∑

i=1

xi

log l(γ) を最大にするような γ を求める。

d log l(γ)
dγ

=
n

γ
−

n∑

i=1

xi = 0

を解いて，xi を Xi で置き換えて，γ の最尤推定量 γ̂n は，

γ̂n =
n∑n

i=1 Xi
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となる。

したがって，n −→ ∞ のとき，近似的に，
γ̂n − γ

σ(γ̂n)/
√

n
=

γ̂n − γ

γ̂n/
√

n

が成り立つ。

よって，H0 : γ = γ0 とH1 : γ 6= γ0 について，

γ̂n を実現値で置き換えて，
∣∣∣∣
γ̂n − γ0

γ̂n/
√

n

∣∣∣∣ > zα/2 のとき，H0 を棄却する。

ただし，γ の最尤推定値 γ̂n は，

γ̂n =
n∑n

i=1 xi

となる。

12.2 尤度比検定

仮説検定：母集団の分布 f(x; θ) が与えられているときに，
母数 θ = (θ1, θ2) についての仮説 θ1 = θ∗1 が正しいかどう

かを，標本 (X1, X2, · · ·, Xn) の実現値 (x1, x2, · · ·, xn)
から判断する。

θ1: 1× k1 ベクトル

θ2: 1× k2 ベクトル

θ = (θ1, θ2): 1× (k1 + k2) ベクトル
帰無仮説 H0 : θ1 = θ∗1 =⇒ 制約の数は k1 個

尤度関数

l(θ1, θ2) =
n∏

i=1

f(xi; θ1, θ2)

(θ̃1, θ̃2) を (θ1, θ2) の最尤推定量とする。
すなわち，(θ̃1, θ̃2) は，

∂l(θ1, θ2)
∂θ1

= 0,
∂l(θ1, θ2)

∂θ2
= 0

の連立方程式を，(θ1, θ2) について解いた解である。
=⇒ 制約なし最尤推定量

θ̂2 を，帰無仮説 H0 : θ1 = θ∗1 が正しいという条件のもと

で，θ2 の最尤推定量とする。

すなわち，θ̂2) は，

∂l(θ∗1 , θ2)
∂θ2

= 0

を，θ2 について解いた解である。=⇒ 制約付き最尤推定量
(θ1 = θ∗1 という制約)

尤度比： λ =
l(θ∗1 , θ̂2)

l(θ̃1, θ̃2)

n が大きいとき，近似的に，

−2 log(λ) ∼ χ2(k1)

となる。「k1 = 制約の数」に注意。
−2 log(λ) > χ2

α(k1) のとき，有意水準 α で，帰無仮説

H0 : θ1 = θ∗1 を棄却する。

−2 log(λ) がゼロに近ければ，帰無仮説を採択する。
=⇒ (θ∗1 , θ̂2) が (θ̃1, θ̃2) に近い値であれば，−2 log(λ) はゼ
ロに近くなる。

母数の推定量 (θ̃1, θ̃2) の分布が求めることが出来ない場合
に，尤度比検定は有効である。

例題： 指数分布から生成された n 個の互いに独立な確率

変数 X1, X2, · · ·, Xn を考える。指数分布は，

f(x) = γe−γx x > 0

である。

帰無仮説 H0 : γ = γ0 を，尤度比検定によって，検定する。

尤度比

λ =
l(γ0)

max
γ

l(γ)
=

l(γ0)
l(γ̂)

について，制約の数は 1 なので，

−2 log λ −→ χ2(1)

となる。

X1, · · · , Xn は互いに独立で、指数分布 f(x) に従うので，
尤度関数 l(γ) は

l(γ) =
n∏

i=1

f(xi)

=
n∏

i=1

γe−γxi

= γne−γ
P

xi

分子について：
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l(γ0) = γn
0 e−γ0

P
Xi

分母について：

対数尤度関数は

log l(γ) = n log(γ)− γ

n∑

i=1

xi

log l(γ) を最大にするような γ を求める。

d log l(γ)
dγ

=
n

γ
−

n∑

i=1

xi = 0

を解いて，xi を Xi で置き換えて，γ の最尤推定量 γ̂ は

γ̂ =
n∑n

i=1 Xi

となる。

l(γ̂) = γ̂ne−n

したがって，尤度比

λ =
l(γ0)
l(γ̂)

=
γn
0 e−γ0

P
Xi

γ̂ne−n

を得る。

よって，近似的に，

−2 log λ ∼ χ2(1)

となる。

−2 log λ > χ2
α(1) のとき，有意水準 α で，帰無仮説 H0 :

µ = µ0 を棄却する。χ2
α(1) は自由度 1 のカイ二乗分布の

100× α % 点とする。

例題： X1, X2, · · ·, Xn の n 個の確率変数は，それぞれ

独立に，平均 µ，分散 σ2 の分布をするものとする。

平均 µ，分散 σ2 の正規分布の密度関数は

f(x; µ, σ2) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

で与えられる。

帰無仮説 H0 : µ = µ0 を，尤度比検定によって，検定する。

尤度比

λ =
max

σ2
l(µ0, σ

2)

max
µ,σ2

l(µ, σ2)
=

l(µ0, σ̃
2)

l(µ̂, σ̂2)

について，制約の数は 1 なので，

−2 log λ −→ χ2(1)

となる。

ここで，l(µ, σ2) は，

l(µ, σ2)

= f(x1, x2, · · · , xn; µ, σ2)

=
n∏

i=1

f(xi;µ, σ2)

=
n∏

i=1

1√
2πσ2

exp
(
− 1

2σ2
(xi − µ)2

)

= (2πσ2)−n/2 exp

(
− 1

2σ2

n∑

i=1

(xi − µ)2
)

であり，log l(µ, σ2) は，

log l(µ, σ2) = −n

2
log(2π)− n

2
log(σ2)

− 1
2σ2

n∑

i=1

(xi − µ)2

である。

分子について：

µ = µ0 のもとで，log l(µ0, σ
2)を σ2 について最大化する。

∂ log l(µ0, σ
2)

∂σ2
= −n

2
1
σ2

+
1

2σ4

n∑

i=1

(xi − µ0)2 = 0

この解が σ̃2 である。したがって，

σ̃2 =
1
n

n∑

i=1

(xi − µ0)2

を得る。よって，l(µ0, σ̃
2) は，

l(µ0, σ̃
2)

= (2πσ̃2)−n/2 exp

(
− 1

2σ̃2

n∑

i=1

(xi − µ0)2
)

= (2πσ̃2)−n/2 exp
(
−n

2

)
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となる。

分母について：

µ̂ =
1
n

n∑

i=1

xi

σ̂2 =
1
n

n∑

i=1

(xi − µ̂)2

を得る。よって，l(µ̂, σ̂2) は，

l(µ̂, σ̂2)

= (2πσ̂2)−n/2 exp

(
− 1

2σ̂2

n∑

i=1

(xi − µ̂)2
)

= (2πσ̂2)−n/2 exp
(
−n

2

)

となる。

したがって，

λ =
max

σ2
l(µ0, σ

2)

max
µ,σ2

l(µ, σ2)

=
l(µ0, σ̃

2)
l(µ̂, σ̂2)

=
(2πσ̃2)−n/2 exp

(
−n

2

)

(2πσ̂2)−n/2 exp
(
−n

2

)

=
(

σ̃2

σ̂2

)−n/2

よって，近似的に，

−2 log λ = n(log σ̃2 − log σ̂2) ∼ χ2(1)

となる。

−2 log λ > χ2
α(1) のとき，有意水準 α で，帰無仮説 H0 :

µ = µ0 を棄却する。χ2
α(1) は自由度 1 のカイ二乗分布の

100× α % 点とする。

練習問題と解答 (6 章～ 12 章)

１ 平均 µ，分散 σ2 の正規分布の密度関数は

f(x; µ, σ2) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

で与えられる。X1, X2, · · ·, Xn は互いに独立で，しかも，

それぞれは平均 µ，分散 σ2 の正規分布に従うものとする。

このとき，次の問に答えよ。

(1) 平均 µ，分散 σ2 の最尤推定量を求めよ。

(2) σ2 の最尤推定量は不偏推定量であるかどうかを調べ

よ。もし，σ2 の最尤推定量が不偏推定量でないとき

は，不偏推定量を求めよ (最尤推定量をもとにして考
えればよい)。

(3) 帰無仮説 H0 : µ = µ0 を，尤度比検定によって，検

定したい。どのようにすればよいかを説明せよ。

[解答]

(1) 平均 µ，分散 σ2 の最尤推定量を求める。

f(x1, x2, · · · , xn; µ, σ2)

=
n∏

i=1

f(xi; µ, σ2)

=
n∏

i=1

1√
2πσ2

exp
(
− 1

2σ2
(xi − µ)2

)

= (2πσ2)−n/2 exp

(
− 1

2σ2

n∑

i=1

(xi − µ)2
)

= l(µ, σ2)

対数をとる。(最大化しやすくなる場合が多い)

log l(µ, σ2) = −n

2
log(2π)− n

2
log(σ2)

− 1
2σ2

n∑

i=1

(xi − µ)2

対数尤度関数 log l(µ, σ2) を µ と σ2 について微分し

て，ゼロと置く。

∂ log l(µ, σ2)
∂µ

=
1
σ2

n∑

i=1

(xi − µ)

= 0
∂ log l(µ, σ2)

∂σ2
= −n

2
1
σ2

+
1

2σ4

n∑

i=1

(xi − µ)2

= 0

この 2 つの連立方程式を解く。

µ =
1
n

n∑

i=1

xi = x
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σ2 =
1
n

n∑

i=1

(xi − µ)2 =
1
n

n∑

i=1

(xi − x)2

µ, σ2 の最尤推定量は，

X, S∗∗2 =
1
n

n∑

i=1

(Xi −X)2

となる。

(2) σ2 の最尤推定量 S∗∗2 は不偏推定量であるかどうかを

調べる。

E(S∗∗2) = E
( 1

n

n∑

i=1

(Xi −X)2
)

=
1
n

E
( n∑

i=1

(Xi −X)2
)

=
1
n

E
( n∑

i=1

(
(Xi − µ)− (X − µ)

)2
)

=
1
n

E
( n∑

i=1

(
(Xi − µ)2

−2(Xi − µ)(X − µ)

+(X − µ)2
))

=
1
n

E
( n∑

i=1

(Xi − µ)2

−2(X − µ)
n∑

i=1

(Xi − µ)

+n(X − µ)2
)

=
1
n

E
( n∑

i=1

(Xi − µ)2

−2n(X − µ)2 + n(X − µ)2
)

=
1
n

E
( n∑

i=1

(Xi − µ)2 − n(X − µ)2
)

=
1
n

E
( n∑

i=1

(Xi − µ)2
)

− 1
n

E
(
n(X − µ)2

)

=
1
n

n∑

i=1

E
(
(Xi − µ)2

)

−E
(
(X − µ)2

)

=
1
n

n∑

i=1

V(Xi)−V(X)

=
1
n

n∑

i=1

σ2 − σ2

n

= σ2 − 1
n

σ2

=
n− 1

n
σ2

6= σ2

なので，S∗∗2 は σ2 の不偏推定量ではない。

S∗∗2 をもとにして，σ2 の不偏推定量を求める。

E(S∗∗2) =
n− 1

n
σ2

なので，両辺に
n

n− 1
をかけて，

n

n− 1
E(S∗∗2) = σ2

を得る。

よって，

n

n− 1
S∗∗2 =

1
n− 1

n∑

i=1

(Xi −X)2 = S2

が σ2 の不偏推定量となる。

(3) 帰無仮説 H0 : µ = µ0 を，尤度比検定によって，検

定する。

尤度比

λ =
max

σ2
l(µ0, σ

2)

max
µ,σ2

l(µ, σ2)
=

l(µ0, σ̃
2)

l(µ̂, σ̂2)

について，制約の数は 1 なので，

−2 log λ −→ χ2(1)

となる。

ここで，l(µ, σ2) は，

l(µ, σ2) = (2πσ2)−n/2 exp

(
− 1

2σ2

n∑

i=1

(xi − µ)2
)
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であり，log l(µ, σ2) は，

log l(µ, σ2) = −n

2
log(2π)− n

2
log(σ2)

− 1
2σ2

n∑

i=1

(xi − µ)2

である。

分子について：

µ = µ0 のもとで，log l(µ0, σ
2) を σ2 について最大化

する。

∂ log l(µ0, σ
2)

∂σ2
= −n

2
1
σ2

+
1

2σ4

n∑

i=1

(xi − µ0)2 = 0

この解が σ̃2 である。したがって，

σ̃2 =
1
n

n∑

i=1

(xi − µ0)2

を得る。よって，l(µ0, σ̃
2) は，

l(µ0, σ̃
2)

= (2πσ̃2)−n/2 exp

(
− 1

2σ̃2

n∑

i=1

(xi − µ0)2
)

= (2πσ̃2)−n/2 exp
(
−n

2

)

となる。

分母について：

問 (1) より，

µ̂ =
1
n

n∑

i=1

xi

σ̂2 =
1
n

n∑

i=1

(xi − µ̂)2

を得る。よって，l(µ̂, σ̂2) は，

l(µ̂, σ̂2)

= (2πσ̂2)−n/2 exp

(
− 1

2σ̂2

n∑

i=1

(xi − µ̂)2
)

= (2πσ̂2)−n/2 exp
(
−n

2

)

となる。

したがって，

λ =
max

σ2
l(µ0, σ

2)

max
µ,σ2

l(µ, σ2)

=
l(µ0, σ̃

2)
l(µ̂, σ̂2)

=
(2πσ̃2)−n/2 exp

(
−n

2

)

(2πσ̂2)−n/2 exp
(
−n

2

)

=
(

σ̃2

σ̂2

)−n/2

よって，近似的に，

−2 log λ = n(log σ̃2 − log σ̂2) ∼ χ2(1)

となる。

−2 log λ > χ2
α(1) のとき，有意水準 α で，帰無仮説

H0 : µ = µ0 を棄却する。χ2
α(1) は自由度 1 のカイ二

乗分布の 100× α % 点とする。

２ 次の問に答えよ。

(1) 離散型確率変数 X がベルヌイ分布に従うとき，その

確率関数は次の式で表される。

f(x) = px(1− p)1−x x = 0, 1

このベルヌイ分布から抽出された大きさ n の無作為

標本を X1, X2, · · · ,Xn とするとき，p の最尤推定量

を求めなさい。

(2) Y を二項分布 f(y) に従う確率変数とする。このとき，
Y

n
は，n が大きくなると，p に近づくことを証明せ

よ。ただし，二項分布は

f(y) = nCypy(1− p)n−y y = 0, 1, 2, · · · , n

で与えられる。

(3) 問 (2) の確率変数 Y について，確率変数 Zn ≡
Y − np√
np(1− p)

を定義する。このとき，nが大きくなるに

つれて，Zn は標準正規分布に近づくことを証明せよ。
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(4) 連続型確率変数 X の密度関数が

f(x) =





1
2

n
2 Γ(n

2 )
x

n
2−1e−

x
2 , x > 0 のとき

0, その他

とする。
X

n
は，n −→ ∞ のとき，1 に近づくこと

を示せ。ただし，Γ(a) はガンマ関数であり，

Γ(a) =
∫ ∞

0

xa−1e−xdx

と定義される。

[解答]

(1) 離散型確率変数 X がベルヌイ分布に従うとき，その

確率関数は次の式で表される。

f(x; p) = px(1− p)1−x x = 0, 1

このベルヌイ分布から抽出された大きさ n の無作為

標本を X1, X2, · · · ,Xn とするとき，p の最尤推定量

を求める。

f(x1, x2, · · · , xn; p)

=
n∏

i=1

f(xi; p)

=
n∏

i=1

pxi(1− p)1−xi

= p
P

i xi(1− p)n−Pi xi

= l(p)

対数をとる。

log l(p)

= (
∑

i

xi) log(p) + (n−
∑

i

xi) log(1− p)

対数尤度関数 log l(p) を p について微分して，ゼロと

置く。

d log l(p)
dp

=
∑

i xi

p
− n−∑

i xi

1− p

=
∑

i xi − np

p(1− p)
= 0

この方程式を解く。

p =
1
n

n∑

i=1

xi = x

p の最尤推定量は，

p̂ =
1
n

n∑

i=1

Xi = X

となる。

(2) Y を二項分布 f(y)に従う確率変数とするとき，
Y

n
は，

n が大きくなると，p に近づくことを証明する。

Y の平均，分散は，

E(Y ) = np, V(Y ) = np(1− p)

なので，

E(
Y

n
) =

1
n

E(Y ) = p

V(
Y

n
) =

1
n2

V(Y ) =
p(1− p)

n

となる。

チェビシェフの不等式：

確率変数 X と g(x) ≥ 0 について，

P
(
g(X) ≥ k

) ≤ E
(
g(X)

)

k

となる。k > 0 とする。

ここで，g(X) =
(
X − E(X)

)2, k = ε2 とすると，

P
(|X − E(X)| ≥ ε

) ≤ V(X)
ε2

を得る。ε > 0 とする。

X を
Y

n
に置き換えて，そのままチェビシェフの不等

式を当てはめると，

P
(|Y

n
− E(

Y

n
)| ≥ ε

) ≤ V(Y
n )

ε2

すなわち，n −→ ∞ のとき，

P
(|Y

n
− p| ≥ ε

) ≤ p(1− p)
nε2

−→ 0
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となる。したがって，

Y

n
−→ p

を得る。

(3) n 個の無作為標本 X1, X2, · · ·, Xn はそれぞれ独立

に，同一のベルヌイ分布に従うものとする。ただし，

P (Xi = x) = px(1− p)1−x, x = 0, 1 とする。

Y = X1 +X2 + · · · +Xn を定義すると，Y は二項分

布に従うので，
Y

n
は標本平均とみなすことが出来る。

すなわち，
Y

n
=

1
n

n∑

i=1

Xi

よって，E(
Y

n
) = p, V(

Y

n
) = p(1−p)/n を用いて，中

心極限定理により，n −→ ∞ のとき，
Y

n
− p

√
p(1− p)/n

−→ N(0, 1)

を得る。

Zn ≡ Y − np√
np(1− p)

=

Y

n
− p

√
p(1− p)/n

なので，

Zn −→ N(0, 1)

を得る。

(4) X ∼ χ2(n) のとき，

E(X) = n, V(X) = 2n となるので，

E(
X

n
) = 1, V(

X

n
) =

2
n
となる。

チェビシェフの不等式を当てはめる。

P
(|X

n
− E(

X

n
)| ≥ ε

) ≤ V(X
n )

ε2

ε > 0 とする。すなわち，n −→ ∞ のとき，

P
(|X

n
− 1| ≥ ε

) ≤ 2
nε2

−→ 0

となる。したがって，

X

n
−→ 1

を得る。

３ 指数分布から生成された n 個の互いに独立な確率変

数 X1, X2, · · ·, Xn を考える。ただし，指数分布とは次の

分布である。

f(x) = λe−λx x > 0

で与えられる。このとき，次の問に答えよ。

(1) λ 最尤推定量を λ̂ とするとき，λ̂ を求めよ。

(2) n が大きいとき，λ̂ の平均，分散を求めよ。

[解答]

(1) X1, · · · , Xn は互いに独立で、指数分布 f(x) に従うの
で，尤度関数 l(λ) は

L(λ) =
n∏

i=1

f(xi)

=
n∏

i=1

λe−λxi

= λne−λ
P

xi

対数尤度関数は

log l(λ) = n log(λ)− λ

n∑

i=1

xi

log l(λ) を最大にするような λ を求める。

d log l(λ)
dλ

=
n

λ
−

n∑

i=1

xi = 0

を解いて，xi を Xi で置き換えて，λ の最尤推定量 λ̂

は

λ̂ =
n∑n

i=1 Xi

となる。

(2) n 個の無作為標本 X1, X2, · · ·, Xn

Xi の密度関数 f(Xi; λ)

母数 λの最尤推定量 λ̂n について，n −→ ∞のとき，
√

n(λ̂n − λ) −→ N
(
0, σ2

)
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となる。ただし，

σ2 = σ2(λ) =
1

E

[(
d log f(X; λ)

dλ

)2
]

とする。

まず，σ2 = σ2(λ) を求める。

E

[(
d log f(X; λ)

dλ

)2
]

= E

[(
1
λ
−X

)2
]

= E
(

1
λ2
− 2

λ
X + X2

)

=
1
λ2
− 2

λ
E(X) + E(X2)

=
1
λ2

E(X), E(X2) は

E(X) =
1
λ

, E(X2) =
2
λ2

となる。

したがって，

σ2 = σ2(λ) =
1

E

[(
d log f(X; λ)

dλ

)2
] = λ2

よって，n が大きいとき，

λ̂n ∼ N

(
λ,

λ2

n

)

と近似して用いる。

４ X1, X2, · · ·, Xn の n 個の確率変数は，それぞれ独

立に，平均 µ，分散 σ2 の分布をするものとする。次のよ

うな 2 つの µ の推定量 X, X̃ を考える。

X =
1
n

n∑

i=1

Xi X̃ =
1
2
(X1 + Xn)

このとき，次の問に答えよ。

(1) X, X̃ は不偏性を持つかどうかを調べよ。

(2) X, X̃ のどちらが有効かを調べよ。

(3) X, X̃ の一致性について調べよ。

[解答]

(1) X, X̃ は不偏性を持つかどうかを調べる。

E(X) = E(
1
n

n∑

i=1

Xi)

=
1
n

E(
n∑

i=1

Xi)

=
1
n

n∑

i=1

E(Xi)

=
1
n

n∑

i=1

µ

= µ

E(X̃) =
1
2

(
E(X1) + E(Xn)

)

=
1
2
(µ + µ)

= µ

よって，両方とも µ の不偏推定量である。

(2) X, X̃ のどちらが有効かを調べる。

V(X) = V(
1
n

n∑

i=1

Xi)

=
1
n2

V(
n∑

i=1

Xi)

=
1
n2

n∑

i=1

V(Xi)

=
1
n2

n∑

i=1

σ2

=
σ2

n

V(X̃) =
1
4

(
V(X1) + V(Xn)

)

=
1
4
(σ2 + σ2)

=
σ2

2

なので，n > 2 のとき，V(X) < V(X̃) となり，X が

X̃ より有効となる。
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(3) X, X̃ の一致性について調べる。

チェビシェフの不等式を当てはめる。X について，

P
(|X − E(X)| ≥ ε

) ≤ V(X)
ε2

ε > 0 とする。すなわち，n −→ ∞ のとき，

P
(|X − µ| ≥ ε

) ≤ σ2

nε2
−→ 0

となる。したがって，

X −→ µ

を得る。

一方，X̃ について，

P
(|X̃ − E(X̃)| ≥ ε

) ≤ V(X̃)
ε2

ε > 0 とする。すなわち，n −→ ∞ のとき，

P
(|X̃ − µ| ≥ ε

) ≤ σ2

2ε2
> 0

となる。

X は µ の一致推定量であるが，X̃ は一致性はない。

５ 正規母集団 N(µ, σ2) から 9個の無作為標本
21　 23　 32　 20　 36　 27　 26　 28　 30

が得らた。このとき、次の各問に答えなさい。

(1) µ と σ2 の不偏推定値を求めよ。

(2) 信頼係数 0.90 および 0.95 の µ の信頼区間を求めよ。

(3) 帰無仮説 H0 : µ = 24 を対立仮説 H1 : µ > 24 に対
して有意水準 0.10 および 0.05 で検定しなさい。

[解答]

(1) µ と σ2 の不偏推定量 X, S2 は

X =
1
n

n∑

i=1

Xi, S2 =
1

n− 1

n∑

i=1

(Xi −X)2

で，不偏推定値は

x =
1
n

n∑

i=1

xi, s2 =
1

n− 1

n∑

i=1

(xi − x)2

である。

x =
1
n

n∑

i=1

xi

=
1
9
(21 + 23 + 32 + 20

+36 + 27 + 26 + 28 + 30)

= 27

s2 =
1

n− 1

n∑

i=1

(xi − x)2

=
1
8

(
(21− 27)2 + (23− 27)2 + (32− 27)2

+(20− 27)2 + (36− 27)2 + (27− 27)2

+(26− 27)2 + (28− 27)2 + (30− 27)2
)

=
1
8
(36 + 16 + 25 + 49

+81 + 0 + 1 + 1 + 9)

= 27.25

(2) µ の信頼区間を求める。

X − µ

S/
√

n
∼ t(n− 1),

を利用する。

P
(∣∣∣∣

X − µ

S/
√

n

∣∣∣∣ < tα/2(n− 1)
)

= 1− α

tα/2(n−1)は 100× α

2
%点で，確率 αと自由度 n−1

が与えられると，t 分布表から得られる。

したがって，

P
(
X − tα/2(n− 1)

S√
n

< µ < X + tα/2(n− 1)
S√
n

)

= 1− α

X, S2 を x, s2 で置き換えて，

信頼係数 1− α の µ の信頼区間：=⇒(
x− tα/2(n− 1)

s√
n

, x + tα/2(n− 1)
s√
n

)

さらに，x = 27, s2 = 27.25, n = 9, t0.05(8) = 1.860,
t0.025(8) = 2.306 なので，

信頼係数 0.90 の µ の信頼区間は,
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(27− 1.860

√
27.25

9
, 27 + 1.860

√
27.25

9
)

= (23.76, 30.24)

となり，信頼係数 0.95 の µ の信頼区間は,

(27− 2.306

√
27.25

9
, 27 + 2.306

√
27.25

9
)

= (22.99, 31.01)

となる。

(3) 帰無仮説 H0 : µ = 24 を対立仮説 H1 : µ > 24 に対
して有意水準 0.10 および 0.05 で検定する。

X の分布は，
X − µ

S/
√

n
∼ t(n − 1) なので，帰無仮説

H0 : µ = µ0 が正しいもとで，
X − µ0

S/
√

n
∼ t(n− 1) と

なる (µ を µ0 で置き換える)。このとき，検定統計量
X − µ0

S/
√

n
。検定統計量の値

x− µ0

s/
√

n
。

対立仮説 H1 : µ > µ0 (片側検定) について：

P
(X − µ0

S/
√

n
> tα(n− 1)

)
= α なので，

x− µ0

s/
√

n
> tα(n− 1) のとき，

有意水準 α で H0 : µ = µ0 を棄却する。

x = 27, s2 = 27.25, µ0 = 24, n = 9, t0.10(8) = 1.397,
t0.05(8) = 1.860 を当てはめると，
x− µ0

s/
√

n
=

27− 24√
27.25/9

= 1.724 > t0.10(8) = 1.397 とな

り，有意水準 0.10 で H0 : µ = 24 を棄却する。
x− µ0

s/
√

n
=

27− 24√
27.25/9

= 1.724 < t0.05(8) = 1.860 とな

り，有意水準 0.05 で H0 : µ = 24 を棄却しない。

６ 平均 µ，分散が既知で σ2 = 22 である正規母集団か

ら 16 個の無作為標本 X1, X2, · · ·, X16 を抽出し，その標

本平均を計算したところ，x = 36 であった。このとき，次
の各問に答えよ。

(1) 平均 µ の信頼係数 0.95 の信頼区間を求めよ。

(2) 帰無仮説 H0 : µ = 35 を対立仮説 H1 : µ = 36.5 に
対して，有意水準 0.05 で検定せよ。

(3) 問 (2) で行った検定の検出力を求めよ。

[解答]

(1) 平均 µ の信頼係数 0.95 の信頼区間を求める。

X の分布は

X − µ

σ/
√

n
∼ N(0, 1),

となる。

P
(∣∣∣∣

X − µ

σ/
√

n

∣∣∣∣ < zα/2

)
= 1− α

zα/2 は 100× α

2
% 点で，確率 α が与えられると，正

規分布表から得られる。

したがって，

P
(
X − zα/2

σ√
n

< µ < X + zα/2
σ√
n

)
= 1− α

X を x で置き換えて，

信頼係数 1− α の µ の信頼区間：=⇒
(
x− zα/2

σ√
n

, x + zα/2
σ√
n

)

x = 36, σ2 = 22, n = 16, z0.025 = 1.960 を代入す
ると，

平均 µ の信頼係数 0.95 の信頼区間は，

(36− 1.960
2√
16

, 36 + 1.960
2√
16

) = (35.02, 36.98)

となる。

(2) 帰無仮説 H0 : µ = 35 を対立仮説 H1 : µ = 36.5 に
対して，有意水準 0.05 で検定する。

Xの分布は，
X − µ

σ/
√

n
∼ N(0, 1)なので，帰無仮説 H0 :

µ = µ0 が正しいもとで，

X − µ0

σ/
√

n
∼ N(0, 1)となる (µを µ0 で置き換える)。こ

のとき，検定統計量
X − µ0

σ/
√

n
。検定統計量の値

x− µ0

σ/
√

n
。

対立仮説 H1 : µ > µ0 (片側検定) について：

P
(X − µ0

σ/
√

n
> zα

)
= α なので，

x− µ0

σ/
√

n
> zα のとき，

有意水準 α で帰無仮説 H0 : µ = µ0 を棄却する。

x = 36, σ2 = 22, n = 16, z0.05 = 1.645 を代入すると，
x− µ0

σ/
√

n
=

36− 35
2/
√

16
= 2 > zα = 1.645 なので，有意水

準 α = 0.05 で帰無仮説 H0 : µ = 35 を棄却する。

67



(3) 問 (2) で行った検定の検出力を求める。

検出力とは，対立仮説のもとで，帰無仮説を棄却する

確率である。

すなわち，帰無仮説 H0 : µ = µ0 のもとで，帰無仮説

を棄却する棄却域は，P
(X − µ0

σ/
√

n
> zα

)
= α なので，

X > µ0 + zασ/
√

n となる。

対立仮説 H1 : µ = µ1 のもとで，帰無仮説を棄却す

る確率を求める。

すなわち，対立仮説 H1 : µ = µ1 のもとで，

P
(
X > µ0 + zασ/

√
n
)
を求める。

対立仮説 H1 : µ = µ1 のもとで，

X − µ1

σ/
√

n
∼ N(0, 1) となるので，

P
(X − µ1

σ/
√

n
>

µ0 − µ1

σ/
√

n
+ zα

)

となる確率を求めればよい。

σ = 2, n = 16, µ0 = 35, µ1 = 36.5, zα = 1.645 を代
入すると，

P
(X − µ1

σ/
√

n
>

35− 36.5
2/
√

16
+ 1.645

)

= P
(X − µ1

σ/
√

n
> −1.355

)

= 1− 0.0877 = 0.9123 を得る。

(z0.0885 = 1.35, z0.0869 = 1.36 に注意)

７ X1, X2, · · ·, Xn は互いに独立で，すべて同一のポア

ソン分布に従うものとする。ただし，ポアソン分布の確率

関数は

P (X = x) = f(x; λ) =
λxe−λ

x!
, x = 0, 1, 2, · · ·

である。

このとき，次の問に答えよ。

(1) λ の最尤推定量 λ̂ を求めよ。

(2) λ̂ は，λ の不偏推定量であることを証明せよ。

(3) λ̂ は，λ の有効推定量であることを証明せよ。

(4) λ̂ は，λ の一致推定量であることを証明せよ。

[解答]

(1) λ の最尤推定量 λ̂ を求める。

ポアソン分布の確率関数は，

P (X = x) = f(x; λ) =
λxe−λ

x!
, x = 0, 1, 2, · · ·

なので，尤度関数は，

l(λ) =
n∏

i=1

f(xi; λ)

=
n∏

i=1

λxie−λ

xi!

=
λ
Pn

i=1 xie−nλ

∏n
i=1 xi!

対数尤度関数は，

log l(λ) = log(λ)
n∑

i=1

xi − nλ− log(
n∏

i=1

xi!)

となる。

∂ log l(λ)
∂λ

=
1
λ

n∑

i=1

xi − n

= 0

これを解いて，λ の最尤推定量 λ̂ は，

λ̂ =
1
n

n∑

i=1

Xi = X

となる。

(2) λ̂ は，λ の不偏推定量であることを証明する。

E(λ̂) = E(
1
n

n∑

i=1

Xi)

=
1
n

n∑

i=1

E(Xi)

=
1
n

n∑

i=1

λ

= λ

(3) λ̂ は，λ の有効推定量であることを証明する。
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クラメール・ラオの不等式の等号が成り立つことを証

明すればよい。

V(λ̂) = V(
1
n

n∑

i=1

Xi)

=
1
n2

n∑

i=1

V(Xi)

=
1
n2

n∑

i=1

λ

=
λ

n

1

nE

[(
∂ log f(X; λ)

∂λ

)2
]

=
1

nE

[(
∂(X log λ− λ− log X!)

∂λ

)2
]

=
1

nE

[(
X

λ
− 1

)2
]

=
λ2

nE[(X − λ)2]

=
λ2

nV(X)

=
λ2

nλ

=
λ

n

したがって，

V(λ̂) =
1

nE

[(
∂ log f(X; λ)

∂λ

)2
]

となり，V(λ̂) は，クラメール・ラオの下限に一致す
る。よって，λ̂ は有効推定量である。

(4) λ̂ は，λ の一致推定量であることを証明する。

E(λ̂) = λ, V(λ̂) =
λ

n

である。チェビシェフの不等式

P
(|λ̂− E(λ̂)| ≥ ε

) ≤ V(λ̂)
ε2

に，E(λ̂), V(λ̂) を代入すると，

P (|λ̂− λ| > ε) <
λ

nε2
−→ 0

が得られる。したがって，一致性も成り立つ。

８ 連続型確率変数 X1, X2, · · ·, Xn は互いに独立に同

一の正規分布に従うものとする。このとき，以下の問に答

えよ。ただし，正規分布の密度関数は

f(x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

で表される。

(1) 標本平均 X =
1
n

n∑

i=1

Xi の分布は，平均 µ，分散
σ2

n

の正規分布に従うことを示せ。

(2) Z =
X − µ

σ/
√

n
を定義する。Z の分布は，平均 0，分散

1 の正規分布に従うことを示せ。

(3) 標本不偏分散 S2 =
1

n− 1

n∑

i=1

(Xi − X)2 を考える。

(n− 1)S2

σ2
の分布は自由度 n− 1 のカイ二乗分布であ

ることが知られている。これを利用して，S2 の平均

と分散を求めよ。

ただし，自由度 m のカイ自乗分布の密度関数は，

f(x) =





1
2

m
2 Γ(m

2 )
x

m
2 −1e−

x
2 , x > 0 のとき

0, その他

として表される。

(4) S2 は σ2 の一致推定量であることを示せ。

[解答]

(1) 標本平均 X =
1
n

n∑

i=1

Xi の分布は，平均 µ，分散
σ2

n

の正規分布に従うことを示す。

積率母関数を利用する。
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X ∼ N(µ, σ2) のとき，X の積率母関数 φ(θ) は，

φ(θ)

≡ E(eθX)

=
∫ ∞

−∞
eθxf(x)dx

=
∫ ∞

−∞
eθx 1√

2πσ2
e−

1
2σ2 (x−µ)2dx

=
∫ ∞

−∞

1√
2πσ2

e−
1

2σ2 (x−µ)2+θxdx

=
∫ ∞

−∞

1√
2πσ2

e
− 1

2σ2

(
x2−2(µ+σ2θ)x+µ2

)
dx

=
∫ ∞

−∞

1√
2πσ2

e
− 1

2σ2

(
x−(µ+σ2θ)

)2

+(µθ+ 1
2 σ2θ2)

dx

= eµθ+ 1
2 σ2θ2

∫ ∞

−∞

1√
2πσ2

e
− 1

2σ2

(
x−(µ+σ2θ)

)2

dx

= exp
(

µθ +
1
2
σ2θ2

)

と計算される。積分のところは，N(µ + σ2θ, σ2) の確
率密度関数に注意

よって，Xi ∼ N(µ, σ2)のとき，Xiの積率母関数 φi(θ)
は，

φi(θ) = exp
(

µθ +
1
2
σ2θ2

)

となる。

今，X の積率母関数 φx(θ) を考える。

φx(θ) ≡ E(eθX)

= E(eθ 1
n

Pn
i=1 Xi)

= E(
n∏

i=1

e
θ
n Xi)

=
n∏

i=1

E(e
θ
n Xi)

=
n∏

i=1

φi(
θ

n
)

=
n∏

i=1

exp
(

µ
θ

n
+

1
2
σ2

( θ

n

)2
)

= exp
(

µθ +
1
2
σ2 θ2

n

)

= exp
(

µθ +
1
2

σ2

n
θ2

)

となり，これは，平均 µ，分散 σ2/n の正規分布の積

率母関数に一致する。

(2) Z =
X − µ

σ/
√

n
の分布は，平均 0，分散 1 の正規分布に

従うことを示す。

X の積率母関数 φx(θ) は，問 (1) より，

φx(θ) ≡ E(eθX)

= exp
(

µθ +
1
2

σ2

n
θ2

)

と計算されることを利用する。

Z の積率母関数 φz(θ) は，

φz(θ) ≡ E(eθZ)

= E
(

exp(θ
X − µ

σ/
√

n
)
)

= exp
(
−θ

µ

σ/
√

n

)
E

(
exp(

θ

σ/
√

n
X)

)

= exp
(
−θ

µ

σ/
√

n

)
φx(

θ

σ/
√

n
)

= exp
(
−θ

µ

σ/
√

n

)

× exp
(

µ
θ

σ/
√

n
+

1
2

σ2

n

( θ

σ/
√

n

)2
)

= exp(
1
2
θ2)

これは，N(0, 1) の積率母関数となっている。

(3) まず，準備として，自由度 m のカイ二乗分布の平均

と分散を計算する。

自由度 m のカイ二乗分布は，

f(x) =
1

2
m
2 Γ(m

2 )
x

m
2 −1e−

x
2 x > 0 のとき

なので，その積率母関数 φχ2(θ) は，

φχ2(θ)

= E(eθX)

=
∫ ∞

0

eθx 1
2

m
2 Γ(m

2 )
x

m
2 −1e−

x
2 dx

=
∫ ∞

0

1
2

m
2 Γ(m

2 )
x

m
2 −1e−

1
2 (1−2θ)xdx

=
∫ ∞

0

1
2

m
2 Γ(m

2 )

(
y

1− 2θ

)m
2 −1

e−
1
2 y 1

1− 2θ
dx
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=
(

1
1− 2θ

)m
2 −1 1

1− 2θ

×
∫ ∞

0

1
2

m
2 Γ(m

2 )
y

m
2 −1e−

1
2 ydx

= (1− 2θ)−
m
2

となる。

4つ目の等式で，y = (1 − 2θ)x として，置換積分を
利用。

1
2

m
2 Γ(m

2 )
y

m
2 −1e−

1
2 y は，自由度 m の χ2 分布となっ

ているので，その積分値は 1となる。

積率母関数を微分して，

φ′χ2(θ) = m(1− 2θ)−
m
2 −1

φ′′χ2(θ) = m(m + 2)(1− 2θ)−
m
2 −2

を用いると，

E(X) = φ′χ2(0) = m

E(X2) = φ′′χ2(0) = m(m + 2)

が得られる。

よって，自由度 m の χ2 分布の平均は m，分散は，

V(X) = E(X2)− (
E(X)

)2

= m(m + 2)−m2

= 2m

となる。
(n− 1)S2

σ2
∼ χ2(n− 1) なので，これを利用すると，

E(
(n− 1)S2

σ2
) = n− 1

V(
(n− 1)S2

σ2
) = 2(n− 1)

となる。よって，

n− 1
σ2

E(S2) = n− 1

(
n− 1
σ2

)2V(S2) = 2(n− 1)

を利用して，S2 の平均と分散は，

E(S2) = σ2

V(S2) =
2σ4

n− 1

となる。

(4) S2 は σ2 の一致推定量であることを示す。

チェビシェフの不等式を用いる。

P
(|S2 − E(S2)| ≥ ε

) ≤ V(S2)
ε2

に，E(S2), V(S2) を代入すると，

P
(|S2 − σ2| ≥ ε

) ≤ 2σ4

(n− 1)ε2
−→ 0

が得られる。したがって，一致性も成り立つ。
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