
Chapter 1

Elements of Statistics

In this chapter, the statistical methods used in the proceeding chapters are sum-
marized. Mood, Graybill and Bose (1974), Hogg and Craig (1995) and Stuart and
Ord (1991, 1994) are good references in Sections 1.1 – 1.8, while Judge, Hill,
Griffiths and Lee (1980) and Greene (1993, 1997) are representative textbooks in
Section 1.9.

1.1 Event and Probability

1.1.1 Event

We consider anexperiment whose outcome is not known in advance, which is
sometimes called arandom experiment. The sample spaceof an experiment
is the set of all possible outcomes. Each element of a sample space is called an
elementof the sample space or asample point, which represents each outcome
obtained by the experiment. Anevent is any collection of outcomes contained in
the sample space, or equivalently a subset of the sample space. Asimple event
consists of exactly one element and acompound eventconsists of more than one
element. Sample space is denoted byΩ and sample point is given byω.

Suppose that eventA is a subset of sample spaceΩ. Letω be a sample point
in eventA. Then, we say that a sample pointω is contained in a sample spaceA,
which is denoted byω ∈ A.

A set of the sample points which do not belong to eventA is called thecom-
plementary event, which is denoted byAc. An event which do not have any
sample point is called theempty event, denoted by∅. Conversely, an event which
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includes all possible sample points is called thewhole event, represented byΩ.
Next, consider two eventsA and B. A set consisting of the whole sample

points which belong to either eventA or eventB is called thesum event, which
is denoted byA∩ B. A set consisting of the whole sample points which belong to
both eventA and eventB is called theproduct event, denoted byA ∩ B. When
A∩ B = ∅, we say that eventsA andB aremutually exclusive.

Example 1.1: Consider an experiment of casting a die. We have six sample
points, which are denoted byω1 = {1}, ω2 = {2}, ω3 = {3}, ω4 = {4}, ω5 = {5} and
ω6 = {6}, whereωi represents the sample point that we havei. In this experiment,
the sample space is given byΩ = {ω1, ω2, ω3, ω4, ω5, ω6}. Let A be the event that
we have even numbers andB be the event that we have multiples of three. Then,
we can write asA = {ω2, ω4, ω6} andB = {ω3, ω6}. The complementary event of
A is given byAc = {ω1, ω3, ω5}, which is the event that we have odd numbers. The
sum event ofA andB is written asA ∪ B = {ω2, ω3, ω4, ω6}, while the product
event isA ∩ B = {ω6}. SinceA ∩ Ac = ∅, we have the fact thatA and Ac are
mutually exclusive.

Example 1.2: Consider an experiment that consists in flipping a coin three
times. In this case, we have the following eight sample points:

ω1 = (H,H,H), ω2 = (H,H,T), ω3 = (H,T,H), ω4 = (H,T,T),
ω5 = (T,H,H), ω6 = (T,H,T), ω7 = (T,T,H), ω8 = (T,T,T),

where H represents head whileT indicates tail. For example, (H,T,H) means that
the first flip lands head, the second flip is tail and the third one is head. Therefore,
the sample space of this experiments can be written as:

Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}.

Let A be an event that we have two heads,B be an event that we obtain at least
one tail,C be an event that we have head in the second flip, andD be an event that
we obtain tail in the third flip. Then, the eventsA, B andC are give by:

A = {ω2, ω3, ω5},
B = {ω2, ω3, ω4, ω5, ω6, ω7, ω8},
C = {ω1, ω2, ω5, ω6},
D = {ω2, ω4, ω6, ω8}.
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SinceA is a subset ofB, denoted byA ⊂ B, a sum event isA ∪ B = B, while a
product event isA∩ B = A. Moreover, we obtainC ∩ D = {ω2, ω6} andC ∪ D =

{ω1, ω2, ω4, ω5, ω6, ω8}.

1.1.2 Probability

Let n(A) be the number of sample points inA. We haven(A) ≤ n(B) whenA ⊆ B.
Each sample point is equally likely to occur. In the case of Example 1.1 (Section
1.1.1), each of the six possible outcomes has probability 1/6 and in Example 1.2
(Section 1.1.1), each of the eight possible outcomes has probability 1/8. Thus, the
probability which the eventA occurs is defined as:

P(A) =
n(A)
n(Ω)

.

In Example 1.1,P(A) = 3/6 andP(A∩ B) = 1/6 are obtained, becausen(Ω) = 6,
n(A) = 3 andn(A ∩ B) = 1. Similarly, in Example 1.2, we haveP(C) = 4/8,
P(A∩ B) = P(A) = 3/8 and so on. Note that we obtainP(A) ≤ P(B) whenA ⊆ B.

It is known that we have the following three properties on probability:

0 ≤ P(A) ≤ 1, (1.1)

P(Ω) = 1, (1.2)

P(∅) = 0. (1.3)

∅ ⊆ A ⊆ Ω impliesn(∅) ≤ n(A) ≤ n(Ω). Therefore, we have:

n(∅)
n(Ω)

≤ n(A)
n(Ω)

≤ n(Ω)
n(Ω)

= 1.

Dividing by n(Ω), we obtain:

P(∅) ≤ P(A) ≤ P(Ω) = 1.

Because∅ has no sample point, the number of the sample point is given byn(∅) =

0 and accordingly we haveP(∅) = 0. Therefore, 0≤ P(A) ≤ 1 is obtained as in
(1.1). Thus, (1.1) – (1.3) are obtained.

When eventsA and B are mutually exclusive, i.e., whenA ∩ B = ∅, then
P(A∪ B) = P(A) + P(B) holds. Moreover, sinceA andAc are mutually exclusive,
P(Ac) = 1− P(A) is obtained. Note thatP(A∪ Ac) = 1 holds. Generally, unlessA
andB are not exclusive, we have the following formula:

P(A∪ B) = P(A) + P(B) − P(A∩ B),
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which is known as theaddition rule . In Example 1.1, each probability is given
by P(A ∪ B) = 2/3, P(A) = 1/2, P(B) = 1/3 andP(A ∩ B) = 1/6. Thus, in the
example we can verify that the above addition rule holds.

The probability which eventA occurs, given that eventB has occurred, is
called theconditional probability , i.e.,

P(A|B) =
n(A∩ B)

n(B)
=

P(A∩ B)
P(B)

,

or equivalently,
P(A∩ B) = P(A|B)P(B),

which is called themultiplication rule . When eventA is independentof event
B, we haveP(A∩ B) = P(A)P(B), which implies thatP(A|B) = P(A). Conversely,
P(A∩B) = P(A)P(B) implies thatA is independent ofB. In Example 1.2, because
of P(A∩ C) = 1/4 andP(C) = 1/2, the conditional probabilityP(A|C) = 1/2 is
obtained. FromP(A) = 3/8, we haveP(A∩C) , P(A)P(C). Therefore,A is not
independent ofC. As for C andD, since we haveP(C) = 1/2, P(D) = 1/2 and
P(C ∩ D) = 1/4, we can show thatC is independent ofD.

1.2 Random Variable and Distribution

1.2.1 Univariate Random Variable and Distribution

Therandom variable X is defined as the real value function on sample spaceΩ.
SinceX is a function of a sample pointω, it is written asX = X(ω). Suppose that
X(ω) takes a real value on the intervalI . That is,X depends on a set of the sample
pointω, i.e.,{ω; X(ω) ∈ I }, which is simply written as{X ∈ I }.

In Example 1.1 (Section 1.1.1), suppose thatX is a random variable which
takes the number of spots up on the die. Then,X is a function ofω and takes the
following values:

X(ω1) = 1, X(ω2) = 2, X(ω3) = 3, X(ω4) = 4,
X(ω5) = 5, X(ω6) = 6.

In Example 1.2 (Section 1.1.1), suppose thatX is a random variable which takes
the number of heads. Depending on the sample pointωi, X takes the following
values:

X(ω1) = 3, X(ω2) = 2, X(ω3) = 2, X(ω4) = 1,
X(ω5) = 2, X(ω6) = 1, X(ω7) = 1, X(ω8) = 0.
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Thus, the random variable depends on a sample point.
There are two kinds of random variables. One is adiscrete random variable,

while another is acontinuous random variable.

Discrete random variable and Probability function: Suppose that the discrete
random variableX takesx1, x2, · · ·, wherex1 < x2 < · · · is assumed. Consider the
probability thatX takesxi, i.e.,P(X = xi) = pi, which is a function ofxi. That is,
a function ofxi, say f (xi), is associated withP(X = xi) = pi. The functionf (xi)
represents the probability in the case whereX takesxi. Therefore, we have the
following relation:

P(X = xi) = pi = f (xi), i = 1,2, · · · ,

where f (xi) is called theprobability function of X.
More formally, the functionf (xi) which has the following properties is defined

as the probability function.

f (xi) ≥ 0, i = 1,2, · · · ,∑

i

f (xi) = 1.

Furthermore, for an eventA, we have the following equation:

P(X ∈ A) =
∑

xi∈A
f (xi).

Several functional forms off (xi) are shown in Section 2.4.
In Example 1.2 (Section 1.1.1), all the possible values ofX are 0, 1, 2 and

3. That is,x1 = 0, x2 = 1, x3 = 2 andx4 = 3 are assigned in this case. The
probability thatX takesx1, x2, x3 or x4 is given by:

P(X = 0) = f (0) = P({ω8}) =
1
8
,

P(X = 1) = f (1) = P({ω4, ω6, ω7}) = P({ω4}) + P({ω6}) + P({ω7}) =
3
8
,

P(X = 2) = f (2) = P({ω2, ω3, ω5}) = P({ω2}) + P({ω3}) + P({ω5}) =
3
8
,

P(X = 3) = f (3) = P({ω1}) =
1
8
,
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which can be written as:

P(X = x) = f (x) =
3!

x!(3 − x)!
(
1
2

)3, x = 0,1,2,3.

For P(X = 1) andP(X = 2), note that each sample point is mutually exclusive.
The above probability function is called thebinomial distribution discussed in
Section 2.4.5. Thus, we can checkf (x) ≥ 0 and

∑
x f (x) = 1 in Example 1.2.

Continuous random variable and Probability density function: Whereas a
discrete random variable assumes at most a countable set of possible values, a
continuous random variableX takes any real number within an intervalI . For the
interval I , the probability whichX is contained inA is defined as:

P(X ∈ I ) =

∫

I
f (x)dx.

For example, letI be the interval betweena andb for b > a. Then, we can rewrite
P(X ∈ I ) as follows:

P(a < X < b) =

∫ b

a
f (x)dx,

where f (x) is called theprobability density function of X, or simply thedensity
function of X.

In order for f (x) to be a probability density function,f (x) has to satisfy the
following properties:

f (x) ≥ 0,∫ ∞

−∞
f (x)dx = 1.

Some functional forms off (x) are discussed in Sections 2.1 – 2.3.
For a continuous random variable, note as follows:

P(X = x) =

∫ x

x
f (t)dt = 0.

In the case of discrete random variables,P(X = xi) represents the probability
whichX takesxi, i.e.,pi = f (xi). Thus, the probability functionf (xi) itself implies
probability. However, in the case of continuous random variables,P(a < X < b)
indicates the probability whichX lies on the interval (a,b).
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Example 1.3: As an example, consider the following function:

f (x) =

{
1, for 0 < x < 1,
0, otherwise.

Clearly, sincef (x) ≥ 0 for −∞ < x < ∞ and
∫ ∞
−∞ f (x)dx =

∫ 1

0
f (x)dx = [x]1

0 = 1,
the above function can be a probability density function. In fact, it is called a
uniform distribution . See Section 2.1 for the uniform distribution.

Example 1.4: As another example, consider the following function:

f (x) =
1√
2π

e−
1
2 x2
,

for −∞ < x < ∞. Clearly, we havef (x) ≥ 0 for all x. We check whether∫ ∞
−∞ f (x)dx = 1. DefineI =

∫ ∞
−∞ f (x)dx.

To proveI = 1, we may proveI2 = 1 because off (x) > 0 for all x, which is
shown as follows:

I2 =
(∫ ∞

−∞
f (x)dx

)2
=

(∫ ∞

−∞
f (x)dx

)(∫ ∞

−∞
f (y)dy

)

=
(∫ ∞

−∞

1√
2π

exp(−1
2

x2)dx
)(∫ ∞

−∞

1√
2π

exp(−1
2

y2)dy
)

=
1
2π

∫ ∞

−∞

∫ ∞

−∞
exp

(
−1

2
(x2 + y2)

)
dxdy

=
1
2π

(∫ 2π

0
dθ

)(∫ ∞

0
exp(−1

2
r2)rdr

)

=
1
2π

(∫ 2π

0
dθ

)(∫ ∞

0
exp(−s)ds

)
=

1
2π

2π[−exp(−s)]∞0 = 1.

In the fifth equality, integration by substitution is used. See Appendix 1.1 for the
integration by substitution.x = r cosθ andy = r sinθ are taken for transformation,
which is a one-to-one transformation from (x, y) to (r, θ). Note that 0< r < +∞
and 0< θ < 2π. The Jacobian is given by:

J =

∣∣∣∣∣∣∣∣

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
cosθ −r sinθ
sinθ r cosθ

∣∣∣∣∣ = r.
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Figure 1.1: Probability Functionf (x) and Distribution FunctionF(x)

— Discrete Random Variable —

X
x1 x2 x3 ............. xr x xr+1 .............

•
•

•
•

•............. .............



B
B
BN

f (xr)

︷                                      ︸︸                                      ︷
F(x) =

∑r
i=1 f (xi)©©¼

Note thatr is the integer which satisfiesxr ≤ x < xr+1.

In the second integration of the sixth equality, again, integration by substitution is

utilized, where transformation iss =
1
2

r2.

Thus, we obtain the resultI2 = 1 and accordingly we haveI = 1 because
of f (x) ≥ 0. Therefore,f (x) = e−

1
2 x2
/
√

2π is also taken as a probability density
function, which is called thestandard normal probability density function ,
discussed in Section 2.2.1.

Distribution Function: The distribution function (or thecumulative distri-
bution function ), denoted byF(x), is defined as:

P(X ≤ x) = F(x).

The properties of the distribution functionF(x) are represented by:

F(x1) ≤ F(x2), for x1 < x2,

P(a < X ≤ b) = F(b) − F(a),

F(−∞) = 0, F(+∞) = 1.

The difference between the discrete and continuous random variables is given by:

1. Discrete random variable (Figure 1.1):
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Figure 1.2: Density Functionf (x) and Distribution FunctionF(x)

— Continuous Random Variable —
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F(x) =
∫ x

−∞ f (t)dt
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• F(x) =

r∑

i=1

f (xi) =

r∑

i=1

pi, wherer denotes the integer which satisfies

xr ≤ x < xr+1.

• F(xi) − F(xi − ε) = f (xi) = pi, whereε is a small positive number less
thanxi − xi−1.

2. Continuous random variable (Figure 1.2):

• F(x) =

∫ x

−∞
f (t)dt,

• F′(x) = f (x).

f (x) andF(x) are displayed in Figure 1.1 for a discrete random variable and Figure
1.2 for a continuous random variable.

1.2.2 Multivariate Random Variable and Distribution

We consider two random variablesX andY in this section. It is easy to extend to
more than two random variables.

Discrete Random Variables: Suppose that discrete random variablesX andY
takex1, x2, · · · andy1, y2, · · ·, respectively. The probability which event{ω; X(ω) =
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xi andY(ω) = yj} occurs is given by:

P(X = xi ,Y = y j) = fxy(xi , yj),

wherefxy(xi , y j) represents thejoint probability function of X andY. In order for
fxy(xi , yj) to be a joint probability function,fxy(xi , yj) has to satisfies the following
properties:

fxy(xi , yj) ≥ 0, i, j = 1,2, · · ·∑

i, j

fxy(xi , yj) = 1.

Define fx(xi) and fy(yj) as:

fx(xi) =
∑

j

fxy(xi , yj), i = 1,2, · · · ,

fy(yj) =
∑

i

fxy(xi , yj), j = 1,2, · · · .

Then, fx(xi) and fy(y j) are called themarginal probability functions of X andY.
fx(xi) and fy(yj) also have the properties of the probability functions, i.e.,fx(xi) ≥
0 and

∑
i fx(xi) = 1, and fy(yj) ≥ 0 and

∑
i fy(yj) = 1.

Continuous Random Variables: Consider two continuous random variablesX
andY. For a domainD, the probability which event{ω; (X(ω),Y(ω)) ∈ D} occurs
is given by:

P((X,Y) ∈ D) =

∫∫

D
fxy(x, y)dxdy,

where fxy(x, y) is called thejoint probability density function of X and Y or
the joint density function of X and Y. fxy(x, y) has to satisfy the following
properties:

fxy(x, y) ≥ 0,∫ ∞

−∞

∫ ∞

−∞
fxy(x, y)dxdy = 1.

Define fx(x) and fy(y) as:

fx(x) =

∫ ∞

−∞
fxy(x, y)dy,

fy(y) =

∫ ∞

−∞
fxy(x, y)dx,
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where fx(x) and fy(y) are called themarginal probability density functions of X
andY or themarginal density functionsof X andY.

For example, consider the event{ω; a < X(ω) < b, c < Y(ω) < d}, which is
the specific case of the domainD. Then, the probability that we have the event
{ω; a < X(ω) < b, c < Y(ω) < d} is written as:

P(a < X < b, c < Y < d) =

∫ b

a

∫ d

c
fxy(x, y)dxdy.

The mixture of discrete and continuous random variables is also possible. For
example, LetX be a discrete random variable andY be a continuous random
variable. X takesx1, x2, · · ·. The probability which bothX takesxi andY takes
real numbers within the intervalI is given by:

P(X = xi ,Y ∈ I ) =

∫

I
fxy(xi , y)dy.

Then, we have the following properties:

fxy(xi , y) ≥ 0, i = 1,2, · · · ,
∑

i

∫ ∞

−∞
fxy(xi , y)dy = 1.

The marginal probability function ofX is given by:

fx(xi) =

∫ ∞

−∞
fxy(xi , y)dy.

The marginal probability density function ofY is:

fy(y) =
∑

i

fxy(xi , y).

1.2.3 Conditional Distribution

Discrete Random Variable: Theconditional probability function of X given
Y = y j is represented as:

P(X = xi |Y = yj) = fx|y(xi |yj) =
fxy(xi , yj)

fy(y j)
=

fxy(xi , yj)∑
i fxy(xi , yj)

.
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The second equality indicates the definition of the conditional probability, which
is shown in Section 1.1.2. The features of the conditional probability function
fx|y(xi |yj) are:

fx|y(xi |yj) ≥ 0, i = 1,2, · · · ,∑

i

fx|y(xi |yj) = 1, for any j.

Continuous Random Variable: Theconditional probability density function
of X givenY = y (or theconditional density function of X givenY = y) is:

fx|y(x|y) =
fxy(x, y)

fy(y)
=

fxy(x, y)∫ ∞
−∞ fxy(x, y)dx

.

The properties of the conditional probability density functionfx|y(x|y) are given
by:

fx|y(x|y) ≥ 0,∫ ∞

−∞
fx|y(x|y)dx = 1, for anyY = y.

Independence of Random Variables: For discrete random variablesX andY,
we say thatX is independent(or stochastically independent) of Y if and only if
fxy(xi , yj) = fx(xi) fy(yj). Similarly, for continuous random variablesX andY, we
say thatX is independent ofY if and only if fxy(x, y) = fx(x) fy(y).

WhenX andY are stochastically independent,g(X) andh(Y) are also stochas-
tically independent, whereg(X) andh(Y) are functions ofX andY.

1.3 Mathematical Expectation

1.3.1 Univariate Random Variable

Definition of Mathematical Expectation: Let g(X) be a function of random
variableX. The mathematical expectation ofg(X), denoted by E(g(X)), is defined
as follows:

E(g(X)) =



∑

i

g(xi)pi =
∑

i

g(xi) f (xi), (Discrete Random Variable),

∫ ∞

−∞
g(x) f (x)dx, (Continuous Random Variable).
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The following three functional forms ofg(X) are important.

1. g(X) = X.

The expectation ofX, E(X), is known asmeanof random variableX.

E(X) =



∑

i

xi f (xi), (Discrete Random Variable),

∫ ∞

−∞
x f(x)dx, (Continuous Random Variable),

= µ, (or µx).

When a distribution ofX is symmetric, mean indicates the center of the
distribution.

2. g(X) = (X − µ)2.

The expectation of (X − µ)2 is known asvariance of random variableX,
which is denoted by V(X).

V(X) = E((X − µ)2)

=



∑

i

(xi − µ)2 f (xi), (Discrete Random Variable),

∫ ∞

−∞
(x− µ)2 f (x)dx, (Continuous Random Variable),

= σ2, (orσ2
x).

If X is broadly distributed,σ2 = V(X) becomes large. Conversely, if the
distribution is concentrated on the center,σ2 becomes small. Note that
σ =

√
V(X) is called thestandard deviation.

3. g(X) = eθX.

The expectation ofeθX is called themoment-generating function, which is
denoted byφ(θ).

φ(θ) = E(eθX)

=



∑

i

eθxi f (xi), (Discrete Random Variable),

∫ ∞

−∞
eθx f (x)dx, (Continuous Random Variable).
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Note that the definition ofe is given by:

e = lim
x→0

(1 + x)
1
x = lim

h→∞

(
1 +

1
h

)h

= 2.71828182845905.

The moment-generating function plays an important roll in statistics, which
is discussed in Section 1.5.

In Examples 1.5 – 1.8, mean, variance and the moment-generating function
are computed.

Example 1.5: In Example 1.2 of flipping a coin three times (Section 1.1.1),
we see in Section 1.2.1 that the probability function is written as the following
binomial distribution:

P(X = x) = f (x) =
n!

x!(n− x)!
px(1− p)n−x, for x = 0,1,2, · · · ,n,

wheren = 3 andp = 1/2. WhenX has the binomial distribution above, we obtain
E(X), V(X) andφ(θ) as follows.

First, E(X) is computed as:

µ = E(X) =
∑

x

x f(x) =
∑

x

x
n!

x!(n− x)!
px(1− p)n−x

=
∑

x

n!
(x− 1)!(n− x)!

px(1− p)n−x = np
∑

x

(n− 1)!
(x− 1)!(n− x)!

px−1(1− p)n−x

= np
∑

x′

n′!
x′!(n′ − x′)!

px′(1− p)n′−x′ = np,

wheren′ = n− 1 andx′ = x− 1 are set.
Second, in order to obtain V(X), we rewrite V(X) as:

σ2 = V(X) = E(X2) − µ2 = E(X(X − 1)) + µ − µ2.

E(X(X − 1)) is given by:

E(X(X − 1)) =
∑

x

x(x− 1) f (x) =
∑

x

x(x− 1)
n!

x!(n− x)!
px(1− p)n−x
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=
∑

x

n!
(x− 2)!(n− x)!

px(1− p)n−x

= n(n− 1)p2
∑

x

(n− 2)!
(x− 2)!(n− x)!

px−2(1− p)n−x

= n(n− 1)p2
∑

x′

n′!
x′!(n′ − x′)!

px′(1− p)n′−x′ = n(n− 1)p2,

wheren′ = n− 2 andx′ = x− 2 are re-defined. Therefore, V(X) is obtained as:

σ2 = V(X) = E(X(X − 1)) + µ − µ2

= n(n− 1)p2 + np− n2p2 = −np2 + np = np(1− p).

Finally, the moment-generating functionφ(θ) is represented as:

φ(θ) = E(eθX) =
∑

x

eθx n!
x!(n− x)!

px(1− p)n−p

=
∑

x

n!
x!(n− x)!

(peθ)x(1− p)n−p = (peθ + 1− p)n.

In the last equality, we utilize the following formula:

(a + b)n =

n∑

x=0

n!
x!(n− x)!

axbn−x,

which is called thebinomial theorem.

Example 1.6: As an example of continuous random variables, in Section 1.2.1
the uniform distribution is introduced, which is given by:

f (x) =

{
1, for 0 < x < 1,
0, otherwise.

WhenX has the uniform distribution above, E(X), V(X) andφ(θ) are computed as
follows:

µ = E(X) =

∫ ∞

−∞
x f(x)dx =

∫ 1

0
xdx = [

1
2

x2]1
0 =

1
2
,

σ2 = V(X) = E(X2) − µ2

=

∫ ∞

−∞
x2 f (x)dx− µ2 =

∫ 1

0
x2dx− µ2 = [

1
3

x3]1
0 − (

1
2

)2 =
1
12
,
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φ(θ) = E(eθX) =

∫ ∞

−∞
eθx f (x)dx =

∫ 1

0
eθxdx = [

1
θ

eθx]1
0 =

1
θ

(eθ − 1).

Example 1.7: As another example of continuous random variables, we take the
standard normal distribution:

f (x) =
1√
2π

e−
1
2 x2
, for −∞ < x < ∞,

which is discussed in Section 2.2.1. WhenX has a standard normal distribution,
i.e., whenX ∼ N(0,1), E(X), V(X) andφ(θ) are as follows.

E(X) is obtained as:

E(X) =

∫ ∞

−∞
x f(x)dx =

1√
2π

∫ ∞

−∞
xe−

1
2 x2

dx =
1√
2π

[
−e−

1
2 x2]∞

−∞ = 0,

because lim
x→±∞

−e−
1
2 x2

= 0.

V(X) is computed as follows:

V(X) = E(X2) =

∫ ∞

−∞
x2 f (x)dx =

∫ ∞

−∞
x2 1√

2π
e−

1
2 x2

dx =
1√
2π

∫ ∞

−∞
x
d(−e−

1
2 x2

)
dx

dx

=
1√
2π

[
x(−e−

1
2 x2

)
]∞
−∞ +

1√
2π

∫ ∞

−∞
e−

1
2 x2

dx =

∫ ∞

−∞

1√
2π

e−
1
2 x2

dx = 1.

The first equality holds because of E(X) = 0. In the fifth equality, use the follow-
ing integration formula, called theintegration by parts:

∫ b

a
h(x)g′(x)dx =

[
h(x)g(x)

]b

a
−

∫ b

a
h′(x)g(x)dx,

where we takeh(x) = x andg(x) = −e−
1
2 x2

in this case. See Appendix 1.2 for
the integration by parts. In the sixth equality, lim

x→±∞
−xe−

1
2 x2

= 0 is utilized. The

last equality is because the integration of the standard normal probability density
function is equal to one (see p.7 in Section 1.2.1 for the integration of the standard
normal probability density function).

φ(θ) is derived as follows:

φ(θ) =

∫ ∞

−∞
eθx f (x)dx =

∫ ∞

−∞
eθx 1√

2π
e−

1
2 x2

dx =

∫ ∞

−∞

1√
2π

e−
1
2 x2+θxdx

=

∫ ∞

−∞

1√
2π

e−
1
2((x−θ)2−θ2)dx = e

1
2θ

2

∫ ∞

−∞

1√
2π

e−
1
2 (x−θ)2

dx = e
1
2θ

2
.
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The last equality holds because the integration indicates the normal density with
meanθ and variance one. See Section 2.2.2 for the normal density.

Example 1.8: When the moment-generating function ofX is given byφx(θ) =

e
1
2θ

2
(i.e., X has a standard normal distribution), we want to obtain the moment-

generating function ofY = µ + σX.
Let φx(θ) andφy(θ) be the moment-generating functions ofX andY, respec-

tively. Then, the moment-generating function ofY is obtained as follows:

φy(θ) = E(eθY) = E(eθ(µ+σX)) = eθµE(eθσX) = eθµφx(θσ) = eθµe
1
2σ

2θ2

= exp(µθ +
1
2
σ2θ2).

Some Formulas of Mean and Variance:

1. Theorem: E(aX + b) = aE(X) + b, wherea andb are constant.

Proof:

WhenX is a discrete random variable,

E(aX + b) =
∑

i

(axi + b) f (xi) = a
∑

i

xi f (xi) + b
∑

i

f (xi)

= aE(X) + b.

Note that we have
∑

i

xi f (xi) = E(X) from the definition of mean and
∑

i

f (xi) = 1 becausef (xi) is a probability function.

If X is a continuous random variable,

E(aX + b) =

∫ ∞

−∞
(ax+ b) f (x)dx = a

∫ ∞

−∞
x f(x)dx + b

∫ ∞

−∞
f (x)dx

= aE(X) + b

Similarly, we have
∫ ∞

−∞
x f(x)dx = E(X) from the definition of mean and

∫ ∞

−∞
f (x)dx = 1 becausef (x) is a probability density function.
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2. Theorem: V(X) = E(X2) − µ2, whereµ = E(X).

Proof:

V(X) is rewritten as follows:

V(X) = E((X − µ)2) = E(X2 − 2µX − µ2)

= E(X2) − 2µE(X) + µ2 = E(X2) − µ2.

The first equality is due to the definition of variance.

3. Theorem: V(aX + b) = a2V(X), wherea andb are constant.

Proof:

From the definition of the mathematical expectation, V(aX + b) is repre-
sented as:

V(aX + b) = E
(
((aX + b) − E(aX + b))2

)
= E

(
(aX− aµ)2

)

= E(a2(X − µ)2) = a2E((X − µ)2) = a2V(X)

The first and the fifth equalities are from the definition of variance. We use
E(aX + b) = aµ + b in the second equality.

4. Theorem: The random variableX is assumed to be distributed with mean

E(X) = µ and variance V(X) = σ2. DefineZ =
X − µ
σ

. Then, we have

E(Z) = 0 and V(Z) = 1.

Proof:

E(X) and V(X) are obtained as:

E(Z) = E
(X − µ

σ

)
=

E(X) − µ
σ

= 0,

V(Z) = V
( 1
σ

X − µ

σ

)
=

1
σ2

V(X) = 1.

The transformation fromX to Z is known as normalization or standardiza-
tion.
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1.3.2 Bivariate Random Variable

Definition: Let g(X,Y) be a function of random variablesX andY. The mathe-
matical expectation ofg(X,Y), denoted by E(g(X,Y)), is defined as:

E(g(X,Y)) =



∑

i

∑

j

g(xi , yj) f (xi , yj), (Discrete Random Variables),

∫ ∞

−∞

∫ ∞

−∞
g(x, y) f (x, y)dxdy, (Continuous Random Variables).

The following four functional forms are important, i.e., mean, variance, covari-
ance and the moment-generating function.

1. g(X,Y) = X:

The expectation of random variableX, i.e., E(X), is given by:

E(X) =



∑

i

∑

j

xi f (xi , yj), (Discrete Random Variables),

∫ ∞

−∞

∫ ∞

−∞
x f(x, y)dxdy, (Continuous Random Variables),

= µx.

The case ofg(X,Y) = Y is exactly the same formulation as above, i.e.,
E(Y) = µy.

2. g(X,Y) = (X − µx)2:

The expectation of (X − µx)2 is known as variance of random variableX,
which is denoted by V(X) and represented as follows:

V(X) = E((X − µx)
2)

=



∑

i

∑

j

(xi − µx)
2 f (xi , yj), (Discrete Cases),

∫ ∞

−∞

∫ ∞

−∞
(x− µx)

2 f (x, y)dxdy, (Continuous Cases),

= σ2
x.

The variance ofY is also obtained in the same fashion, i.e., V(Y) = σ2
y.

3. g(X,Y) = (X − µx)(Y − µy):
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The expectation of (X − µx)(Y − µy) is known ascovarianceof X andY,
which is denoted by Cov(X,Y) and written as:

Cov(X,Y) = E((X − µx)(Y− µy))

=



∑

i

∑

j

(xi − µx)(yj − µy) f (xi , yj), (Discrete Cases),

∫ ∞

−∞

∫ ∞

−∞
(x− µx)(y− µy) f (x, y)dxdy, (Continuous Cases).

Thus, covariance is defined in the case of bivariate random variables.

4. g(X,Y) = eθ1X+θ2Y:

The mathematical expectation ofeθ1X+θ2Y is called the moment-generating
function, which is denoted byφ(θ1, θ2) and written as:

φ(θ1, θ2) = E(eθ1X+θ2Y)

=



∑

i

∑

j

eθ1xi+θ2y j f (xi , y j), (Discrete Cases),

∫ ∞

−∞

∫ ∞

−∞
eθ1x+θ2y f (x, y)dxdy, (Continuous Cases).

In Section 1.5, the moment-generating function in the multivariate cases is
discussed in more detail.

Some Formulas of Mean and Variance: We consider two random variablesX
andY.

1. Theorem: E(X + Y) = E(X) + E(Y).

Proof:

For discrete random variablesX andY, it is shown as follows:

E(X + Y) =
∑

i

∑

j

(xi + y j) fxy(xi , yj)

=
∑

i

∑

j

xi fxy(xi , yj) +
∑

i

∑

j

yj fxy(xi , yj)

= E(X) + E(Y).
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For continuous random variablesX andY, we can show:

E(X + Y) =

∫ ∞

−∞

∫ ∞

−∞
(x + y) fxy(x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
x fxy(x, y)dxdy +

∫ ∞

−∞

∫ ∞

−∞
y fxy(x, y)dxdy

= E(X) + E(Y).

2. Theorem: E(XY) = E(X)E(Y), whenX is independent ofY.

Proof:

For discrete random variablesX andY,

E(XY) =
∑

i

∑

j

xiyj fxy(xi , yj) =
∑

i

∑

j

xiyj fx(xi) fy(y j)

=
(∑

i

xi fx(xi)
)(∑

j

yj fy(y j)
)

= E(X)E(Y).

For continuous random variablesX andY,

E(XY) =

∫ ∞

−∞

∫ ∞

−∞
xy fxy(x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
xy fx(x) fy(y)dxdy

=
(∫ ∞

−∞
x fx(x)dx

)(∫ ∞

−∞
y fy(y)dy

)
= E(X)E(Y)

3. Theorem: Cov(X,Y) = E(XY) − E(X)E(Y).

Proof:

For both discrete and continuous random variables, we can rewrite as fol-
lows:

Cov(X,Y) = E((X − µx)(Y− µy)) = E(XY− µxY− µyX + µxµy)

= E(XY) − E(µxY) − E(µyX) + µxµy

= E(XY) − µxE(Y) − µyE(X) + µxµy

= E(XY) − µxµy − µyµx + µxµy = E(XY) − µxµy

= E(XY) − E(X)E(Y).

In the fourth equality, the theorem in Section 1.3.1 is used.
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4. Theorem: Cov(X,Y) = 0, whenX is independent ofY.

Proof:

From the above two theorems, we have E(XY) = E(X)E(Y) whenX is inde-
pendent ofY and Cov(X,Y) = E(XY)−E(X)E(Y). Therefore, Cov(X,Y) = 0
is obtained whenX is independent ofY.

5. Definition: Thecorrelation coefficient betweenX andY, denoted byρxy,
is defined as:

ρxy =
Cov(X,Y)√
V(X)

√
V(Y)

=
Cov(X,Y)
σxσy

.

Whenρxy > 0, we say that there is apositive correlation betweenX and
Y. As ρxy approaches 1, we say that there is astrong positive correlation
betweenX andY. Whenρxy < 0, we say that there is anegative correlation
betweenX and Y. As ρxy approaches−1, we say that there is astrong
negative correlationbetweenX andY.

6. Theorem: ρxy = 0, whenX is independent ofY.

Proof:

WhenX is independent ofY, we have Cov(X,Y) = 0. Therefore, we can

obtain the resultρxy =
Cov(X,Y)√
V(X)

√
V(Y)

= 0. However, note thatρxy = 0 does

not mean the independence betweenX andY.

7. Theorem: V(X ± Y) = V(X) ± 2Cov(X,Y) + V(Y).

Proof:

For both discrete and continuous random variables, V(X±Y) is rewritten as
follow:

V(X ± Y) = E
(
((X ± Y) − E(X ± Y))2

)
= E

(
((X − µx) ± (Y− µy))

2
)

= E((X − µx)
2 ± 2(X − µx)(Y− µy) + (Y− µy)

2)

= E((X − µx)
2) ± 2E((X − µx)(Y− µy)) + E((Y− µy)

2)

= V(X) ± 2Cov(X,Y) + V(Y).

8. Theorem: −1 ≤ ρxy ≤ 1.

Proof:
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Consider the following function oft: f (t) = V(Xt − Y), which is greater
than zero because of the definition of variance. Therefore, for allt, we have
f (t) ≥ 0. f (t) is rewritten as follows:

f (t) = V(Xt− Y) = V(Xt) − 2Cov(Xt,Y) + V(Y)

= t2V(X) − 2tCov(X,Y) + V(Y)

= V(X)
(
t − Cov(X,Y)

V(X)

)2
+ V(Y) − (Cov(X,Y))2

V(X)
.

In order to havef (t) ≥ 0 for all t, we need the following condition:

V(Y) − (Cov(X,Y))2

V(X)
≥ 0,

which implies:
(Cov(X,Y))2

V(X)V(Y)
≤ 1.

Therefore, we have:

−1 ≤ Cov(X,Y)√
V(X)

√
V(Y)

≤ 1.

From the definition of correlation coefficient, i.e.,ρxy =
Cov(X,Y)√
V(X)

√
V(Y)

, we

obtain the result:−1 ≤ ρxy ≤ 1.

9. Theorem: V(X ± Y) = V(X) + V(Y), whenX is independent ofY.

Proof:

From the theorem above, V(X ± Y) = V(X) ± 2Cov(X,Y) + V(Y) gener-
ally holds. When random variablesX and Y are independent, we have
Cov(X,Y) = 0. Therefore, V(X + Y) = V(X) + V(Y) holds, whenX is
independent ofY.

10. Theorem: For n random variablesX1, X2, · · ·, Xn,

E(
∑

i

aiXi) =
∑

i

aiµi ,

V(
∑

i

aiXi) =
∑

i

∑

j

aiajCov(Xi ,Xj),
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where E(Xi) = µi andai is a constant value. Especially, whenX1, X2, · · ·, Xn

are mutually independent, we have the following:

V(
∑

i

aiXi) =
∑

i

a2
i V(Xi).

Proof:

For mean of
∑

i aiXi, the following representation is obtained.

E(
∑

i

aiXi) =
∑

i

aiE(Xi) =
∑

i

aiµi .

For variance of
∑

i aiXi, we can rewrite as follows:

V(
∑

i

aiXi) = E
(∑

i

ai(Xi − µi)
)2

= E
(∑

i

ai(Xi − µi)
)(∑

j

aj(Xj − µ j)
)

= E
(∑

i

∑

j

aiaj(Xi − µi)(Xj − µ j)
)

=
∑

i

∑

j

aiajE
(
(Xi − µi)(Xj − µ j)

)
=

∑

i

∑

j

aiajCov(Xi ,Xj).

WhenX1, X2, · · ·, Xn are mutually independent, we obtain Cov(Xi ,Xj) = 0
for i , j from the previous theorem. Therefore, we obtain:

V(
∑

i

aiXi) =
∑

i

a2
i V(Xi).

Note that Cov(Xi ,Xi) = E((Xi − µ)2) = V(Xi).

11. Theorem: n random variablesX1, X2, · · ·, Xn are mutually independently
and identically distributed with meanµ and varianceσ2. That is, for all
i = 1,2, · · · ,n, E(Xi) = µ and V(Xi) = σ2 are assumed. Consider arithmetic
averageX = (1/n)

∑n
i=1 Xi. Then, we have:

E(X) = µ, V(X) =
σ2

n
.

Proof:

The mathematical expectation ofX is given by:

E(X) = E(
1
n

n∑

i=1

Xi) =
1
n

E(
n∑

i=1

Xi) =
1
n

n∑

i=1

E(Xi) =
1
n

n∑

i=1

µ =
1
n

nµ = µ.
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E(aX) = aE(X) in the second equality and E(X + Y) = E(X) + E(Y) in the
third equality are utilized, whereX andY are random variables anda is a
constant value. For these formulas, see p.17 in Section 1.3.1 and p.20 in
this section.

The variance ofX is computed as follows:

V(X) = V(
1
n

n∑

i=1

Xi) =
1
n2

V(
n∑

i=1

Xi) =
1
n2

n∑

i=1

V(Xi) =
1
n2

n∑

i=1

σ2 =
1
n2

nσ2

=
σ2

n
.

We use V(aX) = a2V(X) in the second equality and V(X+Y) = V(X)+V(Y)
for X independent ofY in the third equality, whereX andY denote random
variables anda is a constant value. For these formulas, see p.18 in Section
1.3.1 and p.23 in this section.

1.4 Transformation of Variables

Transformation of variables is used in the case of continuous random variables.
Based on a distribution of a random variable, a distribution of the transformed
random variable is derived. In other words, when a distribution ofX is known,
we can find a distribution ofY using the transformation of variables, whereY is a
function ofX.

1.4.1 Univariate Cases

Distribution of Y = ψ−1(X): Let fx(x) be the probability density function of
continuous random variableX and X = ψ(Y) be a one-to-one transformation.
Then, the probability density function ofY, i.e., fy(y), is given by:

fy(y) = |ψ′(y)| fx(ψ(y)).

We can derive the above transformation of variables fromX to Y as follows.
Let fx(x) andFx(x) be the probability density function and the distribution func-
tion of X, respectively. Note thatFx(x) = P(X ≤ x) and fx(x) = F′x(x).

Suppose thatX = ψ(Y) implies Y = h(X). That is, we haveh−1(Y) = ψ(Y).
WhenX = ψ(Y), we want to obtain the probability density function ofY. Let fy(y)
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andFy(y) be the probability density function and the distribution function ofY,
respectively.

In the case ofψ′(X) > 0, the distribution function ofY, Fy(y), is rewritten as
follows:

Fy(y) = P(Y ≤ y) = P
(
h(X) ≤ y

)
= P

(
X ≤ h−1(y)

)
= P

(
X ≤ ψ(y)

)
= Fx

(
ψ(y)

)
.

Therefore, differentiatingFy(y) with respect toy, we can obtain the following
expression:

fy(y) = F′y(y) = ψ′(y)F′x
(
ψ(y)

)
= ψ′(y) fx

(
ψ(y)

)
. (1.4)

Next, in the case ofψ′(X) < 0, the distribution function ofY, Fy(y), is rewritten
as follows:

Fy(y) = P(Y ≤ y) = P
(
h(X) ≤ y

)
= P

(
X ≥ h−1(y)

)
= P

(
X ≥ ψ(y)

)

= 1− P
(
X < ψ(y)

)
= 1− Fx

(
ψ(y)

)
.

Thus, in the case ofψ′(X) < 0, pay attention to the third equality. Differentiating
Fy(y) with respect toy, we obtain the following result:

fy(y) = F′y(y) = −ψ′(y)F′x
(
ψ(y)

)
= −ψ′(y) fx

(
ψ(y)

)
. (1.5)

Note that−ψ′(y) > 0.
Thus, summarizing the above two cases, i.e.,ψ′(X) > 0 andψ′(X) < 0, equa-

tions (1.4) and (1.5) indicate the following result:

fy(y) = |ψ′(y)| fx

(
ψ(y)

)
,

which is called thetransformation of variables.

Example 1.9: WhenX has a standard normal density function, i.e., whenX ∼
N(0,1), we derive the probability density function ofY, whereY = µ + σX.

Since we have:

X = ψ(Y) =
Y− µ
σ

,

ψ′(y) = 1/σ is obtained. Therefore, the density function ofY, fy(y), is given by:

fy(y) = |ψ′(y)| fx

(
ψ(y)

)
=

1

σ
√

2π
exp

(
− 1

2σ2
(y− µ)2

)
,

which indicates the normal distribution with meanµ and varianceσ2, denoted by
N(µ, σ2).
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On Distribution of Y = X2: As an example, when we know the distribution
function of X as Fx(x), we want to obtain the distribution function ofY, Fy(y),
whereY = X2. UsingFx(x), Fy(y) is rewritten as follows:

Fy(y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤ √y)

= Fx(
√

y) − Fx(−√y).

Therefore, when we havefx(x) andY = X2, the probability density function ofY
is obtained as follows:

fy(y) = F′y(y) =
1

2
√

y

(
fx(
√

y) + fx(−√y)
)
.

1.4.2 Multivariate Cases

Bivariate Case: Let fxy(x, y) be a joint probability density function ofX andY.
Let X = ψ1(U,V) andY = ψ2(U,V) be a one-to-one transformation from (X,Y) to
(U,V). Then, we obtain a joint probability density function ofU andV, denoted
by fuv(u, v), as follows:

fuv(u, v) = |J| fxy(ψ1(u, v), ψ2(u, v)),

whereJ is called theJacobianof the transformation, which is defined as:

J =

∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣
.

Multivariate Case: Let fx(x1, x2, · · · , xn) be a joint probability density function
of X1, X2, · · · Xn. Suppose that the one-to-one transformation from (X1,X2, · · · ,Xn)
to (Y1,Y2, · · · ,Yn) is given by:

X1 = ψ1(Y1,Y2, · · · ,Yn),

X2 = ψ2(Y1,Y2, · · · ,Yn),
...

Xn = ψn(Y1,Y2, · · · ,Yn).

Then, we obtain a joint probability density function ofY1, Y2, · · ·, Yn, denoted by
fy(y1, y2, · · · , yn), as follows:

fy(y1, y2, · · · , yn) = |J| fx

(
ψ1(y1, · · · , yn), ψ2(y1, · · · , yn), · · · , ψn(y1, · · · , yn)

)
,



28 CHAPTER 1. ELEMENTS OF STATISTICS

whereJ is called the Jacobian of the transformation, which is defined as:

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂y1

∂x1

∂y2
· · · ∂x1

∂yn
∂x2

∂y1

∂x2

∂y2
· · · ∂x2

∂yn
...

...
. . .

...
∂xn

∂y1

∂xn

∂y2
· · · ∂xn

∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

1.5 Moment-Generating Function

1.5.1 Univariate Cases

As discussed in Section 1.3.1, the moment-generating function is defined asφ(θ) =

E(eθX). In this section, the important theorems and remarks of the moment-
generating function are summarized.

For a random variableX, µ′n ≡ E(Xn) is called then-th moment of X. Then,
we have the following first theorem.

1. Theorem: φ(n)(0) = µ′n ≡ E(Xn).

Proof:

First, from the definition of the moment-generating function,φ(θ) is written
as:

φ(θ) = E(eθX) =

∫ ∞

−∞
eθx f (x)dx.

Then-th derivative ofφ(θ), denoted byφ(n)(θ), is:

φ(n)(θ) =

∫ ∞

−∞
xneθx f (x)dx.

Evaluatingφ(n)(θ) at θ = 0, we obtain:

φ(n)(0) =

∫ ∞

−∞
xn f (x)dx = E(Xn) ≡ µ′n,

where the second equality comes from the definition of the mathematical
expectation.
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2. Remark: Consider two random variablesX andY. When the moment-
generating function ofX is equivalent to that ofY, we have the fact thatX
has the same distribution asY.

3. Theorem: Let φ(θ) be the moment-generating function ofX. Then, the
moment-generating function ofY, whereY = aX + b, is given byebθφ(aθ).

Proof:

Let φy(θ) be the moment-generating function ofY. Then,φy(θ) is rewritten
as follows:

φy(θ) = E(eθY) = E(eθ(aX+b)) = ebθE(eaθX) = ebθφ(aθ).

4. Theorem: Let φ1(θ), φ2(θ), · · ·, φn(θ) be the moment-generating functions
of X1, X2, · · ·, Xn, which are mutually independently distributed random
variables. DefineY = X1 + X2 + · · · + Xn. Then, the moment-generating
function ofY is given byφ1(θ)φ2(θ) · · · φn(θ), i.e.,

φy(θ) = E(eθY) = φ1(θ)φ2(θ) · · · φn(θ),

whereφy(θ) represents the moment-generating function ofY.

Proof:

The moment-generating function ofY, i.e.,φy(θ), is:

φy(θ) = E(eθY) = E(eθ(X1+X2+···+Xn)) = E(eθX1)E(eθX2) · · ·E(eθXn)

= φ1(θ)φ2(θ) · · · φn(θ).

The third equality holds becauseX1, X2, · · ·, Xn are mutually independently
distributed random variables.

5. Theorem: WhenX1, X2, · · ·, Xn are mutually independently and identically
distributed and the moment-generating function ofXi is given byφ(θ) for
all i, the moment-generating function ofY is represented by

(
φ(θ)

)n
, where

Y = X1 + X2 + · · · + Xn.

Proof:

Using the above theorem, we have the following:

φy(θ) = φ1(θ)φ2(θ) · · · φn(θ) = φ(θ)φ(θ) · · · φ(θ) =
(
φ(θ)

)n
.

Note thatφi(θ) = φ(θ) for all i.
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6. Theorem: WhenX1, X2, · · ·, Xn are mutually independently and identically
distributed and the moment-generating function ofXi is given byφ(θ) for

all i, the moment-generating function ofX is represented by
(
φ(
θ

n
)
)n

, where

X = (1/n)
∑n

i=1 Xi.

Proof:

Let φx(θ) be the moment-generating function ofX.

φx(θ) = E(eθX) = E(e
θ
n
∑n

i=1 Xi ) =

n∏

i=1

E(e
θ
n Xi ) =

n∏

i=1

φ(
θ

n
) =

(
φ(
θ

n
)
)n

Example 1.10: For the binomial random variable, the moment-generating func-
tion φ(θ) is shown as:

φ(θ) = (peθ + 1− p)n,

which is discussed in Example 1.5 (Section 1.3.1). Using the moment-generating
function, we check whether E(X) = np and V(X) = np(1− p) are obtained when
X is a binomial random variable.

The first- and the second-derivatives with respect toθ are given by:

φ′(θ) = npeθ(peθ + 1− p)n−1,

φ′′(θ) = npeθ(peθ + 1− p)n−1 + n(n− 1)p2e2θ(peθ + 1− p)n−2.

Evaluating atθ = 0, we have:

E(X) = φ′(0) = np, E(X2) = φ′′(0) = np+ n(n− 1)p2.

Therefore, V(X) = E(X2) − (E(X))2
= np(1 − p) can be derived. Thus, we can

make sure that E(X) and V(X) are obtained fromφ(θ).

1.5.2 Multivariate Cases

Bivariate Case: As discussed in Section 1.3.2, for two random variablesX and
Y, the moment-generating function is defined asφ(θ1, θ2) = E(eθ1X+θ2Y). Some
useful and important theorems and remarks are shown as follows.
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1. Theorem: Consider two random variablesX andY. Let φ(θ1, θ2) be the
moment-generating function ofX andY. Then, we have the following re-
sult:

∂ j+kφ(0,0)

∂θ
j
1∂θ

k
2

= E(X jYk).

Proof:

Let fxy(x, y) be the probability density function ofX andY. From the defi-
nition, φ(θ1, θ2) is written as:

φ(θ1, θ2) = E(eθ1X+θ2Y) =

∫ ∞

−∞

∫ ∞

−∞
eθ1x+θ2y fxy(x, y)dxdy.

Taking thej-th derivative ofφ(θ1, θ2) with respect toθ1 and at the same time
thek-th derivative with respect toθ2, we have the following expression:

∂ j+kφ(θ1, θ2)

∂θ
j
1∂θ

k
2

=

∫ ∞

−∞

∫ ∞

−∞
x jykeθ1x+θ2y fxy(x, y)dxdy.

Evaluating the above equation at (θ1, θ2) = (0,0), we can easily obtain:

∂ j+kφ(0,0)

∂θ
j
1∂θ

k
2

=

∫ ∞

−∞

∫ ∞

−∞
x jyk fxy(x, y)dxdy ≡ E(X jYk).

2. Remark: Let (Xi ,Yi) be a pair of random variables. Suppose that the
moment-generating function of (X1,Y1) is equivalent to that of (X2,Y2).
Then, (X1,Y1) has the same distribution function as (X2,Y2).

3. Theorem: Let φ(θ1, θ2) be the moment-generating function of (X,Y). The
moment-generating function ofX is given byφ1(θ1) and that ofY is φ2(θ2).
Then, we have the following facts:

φ1(θ1) = φ(θ1,0), φ2(θ2) = φ(0, θ2).

Proof:

Again, the definition of the moment-generating function ofX andY is rep-
resented as:

φ(θ1, θ2) = E(eθ1X+θ2Y) =

∫ ∞

−∞

∫ ∞

−∞
eθ1x+θ2y fxy(x, y)dxdy.
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Whenφ(θ1, θ2) is evaluated atθ2 = 0, φ(θ1,0) is rewritten as follows:

φ(θ1,0) = E(eθ1X) =

∫ ∞

−∞

∫ ∞

−∞
eθ1x fxy(x, y)dxdy

=

∫ ∞

−∞
eθ1x

(∫ ∞

−∞
fxy(x, y)dy

)
dx

=

∫ ∞

−∞
eθ1x fx(x)dx = E(eθ1X) = φ1(θ1).

Thus, we obtain the result:φ(θ1,0) = φ1(θ1). Similarly, φ(0, θ2) = φ2(θ2)
can be derived.

4. Theorem: The moment-generating function of (X,Y) is given byφ(θ1, θ2).
Let φ1(θ1) andφ2(θ2) be the moment-generating functions ofX andY, re-
spectively. IfX is independent ofY, we have:

φ(θ1, θ2) = φ1(θ1)φ2(θ2).

Proof:

From the definition ofφ(θ1, θ2), the moment-generating function ofX andY
is rewritten as follows:

φ(θ1, θ2) = E(eθ1X+θ2Y) = E(eθ1X)E(eθ2Y) = φ1(θ1)φ2(θ2).

The second equality holds becauseX is independent ofY.

Multivariate Case: For multivariate random variablesX1, X2, · · ·, Xn, the
moment-generating function is defined as:

φ(θ1, θ2, · · · , θn) = E(eθ1X1+θ2X2+···+θnXn).

1. Theorem: If the multivariate random variablesX1, X2, · · ·, Xn are mutually
independent, the moment-generating function ofX1, X2, · · ·, Xn, denoted by
φ(θ1, θ2, · · · , θn), is given by:

φ(θ1, θ2, · · · , θn) = φ1(θ1)φ2(θ2) · · · φn(θn),

whereφi(θ) = E(eθXi ).

Proof:
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From the definition of the moment-generating function in the multivariate
cases, we obtain the following:

φ(θ1, θ2, · · · , θn) = E(eθ1X1+θ2X2+···+θnXn)

= E(eθ1X1)E(eθ2X2) · · ·E(eθnXn)

= φ1(θ1)φ2(θ2) · · · φn(θn).

2. Theorem: Suppose that the multivariate random variablesX1, X2, · · ·,
Xn are mutually independently and identically distributed.Xi has a normal
distribution with meanµ and varianceσ2, i.e.,Xi ∼ N(µ, σ2). Let us define
µ̂ =

∑n
i=1 aiXi, whereai, i = 1,2, · · · ,n, are assumed to be known. Then, ˆµ

has a normal distribution with meanµ
∑n

i=1 ai and varianceσ2 ∑n
i=1 a2

i , i.e.,
µ̂ ∼ N(µ

∑n
i=1 ai , σ

2 ∑n
i=1 a2

i ).

Proof:

From Example 1.8 (p.17) and Example 1.9 (p.26), it is shown that the
moment-generating function ofX is given by: φx(θ) = exp(µθ + 1

2σ
2θ2),

whenX is normally distributed asX ∼ N(µ, σ2).

Let φµ̂ be the moment-generating function of ˆµ.

φµ̂(θ) = E(eθµ̂) = E(eθ
∑n

i=1 ai Xi ) =

n∏

i=1

E(eθai Xi ) =

n∏

i=1

φx(aiθ)

=

n∏

i=1

exp(µaiθ +
1
2
σ2a2

i θ
2) = exp(µ

n∑

i=1

aiθ +
1
2
σ2

n∑

i=1

a2
i θ

2)

which is equivalent to the moment-generating function of the normal distri-
bution with meanµ

∑n
i=1 ai and varianceσ2 ∑n

i=1 a2
i , whereµ andσ2 in φx(θ)

is simply replaced byµ
∑n

i=1 ai andσ2 ∑n
i=1 a2

i in φµ̂(θ), respectively.

Moreover, note as follows. Whenai = 1/n is taken for alli = 1,2, · · · ,n,
i.e., when ˆµ = X is taken, ˆµ = X is normally distributed as:X ∼ N(µ, σ2/n).
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1.6 Law of Large Numbers and Central Limit The-
orem

1.6.1 Chebyshev’s Inequality

In this section, we introduce Chebyshev’s inequality, which enables us to find
upper and lower bounds given a certain probability.

Theorem: Let g(X) be a nonnegative function of the random variableX, i.e.,
g(X) ≥ 0. If E(g(X)) exists, then we have:

P(g(X) ≥ k) ≤ E(g(X))
k

,

for a positive constant valuek.

Proof:
We define the discrete random variableU as follows:

U =

{
1, if g(X) ≥ k,
0, if g(X) < k.

Thus, the discrete random variableU takes 0 or 1. Suppose that the probability
function ofU is given by:

f (u) = P(U = u),

whereP(U = u) is represented as:

P(U = 1) = P(g(X) ≥ k),

P(U = 0) = P(g(X) < k).

Then, in spite of the value whichU takes, the following equation always holds:

g(X) ≥ kU.

Therefore, taking the expectation on both sides, we obtain:

E(g(X)) ≥ kE(U), (1.6)

where E(U) is given by:

E(U) =

1∑

u=0

uP(U = u) = 1× P(U = 1) + 0× P(U = 0) = P(U = 1)

= P(g(X) ≥ k). (1.7)
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Accordingly, substituting equation (1.7) into equation (1.6), we have the following
inequality:

P(g(X) ≥ k) ≤ E(g(X))
k

.

Chebyshev’s Inequality: Assume that E(X) = µ, V(X) = σ2, andλ is a positive
constant value. Then, we have the following inequality:

P(|X − µ| ≥ λσ) ≤ 1
λ2
,

or equivalently,

P(|X − µ| < λσ) ≥ 1− 1
λ2
,

which is calledChebyshev’s inequality.

Proof:
Takeg(X) = (X − µ)2 andk = λ2σ2. Then, we have:

P((X − µ)2 ≥ λ2σ2) ≤ E(X − µ)2

λ2σ2
,

which implies

P(|X − µ| ≥ λσ) ≤ 1
λ2
.

Note that E(X − µ)2 = V(X) = σ2.
Since we haveP(|X − µ| ≥ λσ) + P(|X − µ| < λσ) = 1, we can derive the

following inequality:

P(|X − µ| < λσ) ≥ 1− 1
λ2
. (1.8)

An Interpretation of Chebyshev’s inequality: The number 1/λ2 is an upper
bound for the probabilityP(|X − µ| ≥ λσ). Equation (1.8) is rewritten as:

P(µ − λσ < X < µ + λσ) ≥ 1− 1
λ2
.

That is, the probability thatX falls within λσ units ofµ is greater than or equal
to 1− 1/λ2. Taking an example ofλ = 2, the probability thatX falls within two
standard deviations of its mean is at least 0.75.
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Finally, note as follows. Takingε = λσ, we obtain as follows:

P(|X − µ| ≥ ε) ≤ σ2

ε2
,

i.e.,

P(|X − E(X)| ≥ ε) ≤ V(X)
ε2

, (1.9)

which inequality is used in the next section.

1.6.2 Law of Large Numbers (Convergence in probability)

Law of Large Numbers: Assume thatX1, X2, · · ·, Xn are mutually indepen-
dently and identically distributed with mean E(Xi) = µ and variance V(Xi) = σ2 <
∞ for all i. Then, for any positive valueε, asn −→ ∞, we have the following
result:

P(|Xn − µ| > ε) −→ 0,

whereXn = (1/n)
∑n

i=1 Xi. We say thatXn converges toµ in probability.

Proof:
Using (1.9), Chebyshev’s inequality represents as follows:

P(|Xn − E(Xn)| > ε) ≤ V(Xn)
ε2

,

whereX in (1.9) is replaced byXn. As in Section 1.3.2 (p.24), we have E(Xn) = µ
and V(Xn) = σ2/n, which are substituted into the above inequality. Then, we
obtain:

P(|Xn − µ| > ε) ≤ σ2

nε2
.

Accordingly, whenn −→ ∞, the following equation holds:

P(|Xn − µ| > ε) ≤ σ2

nε2
−→ 0.

That is,Xn −→ µ is obtained asn −→ ∞, which is written as: plimXn = µ. This
theorem is called thelaw of large numbers.

The conditionP(|Xn − µ| > ε) −→ 0 or equivalentlyP(|Xn − µ| < ε) −→ 1 is
used as the definition ofconvergence in probability. In this case, we say thatXn

converges toµ in probability.
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Theorem: In the case whereX1, X2, · · ·, Xn are not identically distributed and
they are not mutually independently distributed, we assume that

mn = E(
n∑

i=1

Xi) < ∞,

Vn = V(
n∑

i=1

Xi) < ∞,

Vn

n2
−→ 0, asn −→ ∞.

Then, we obtain the following result:

∑n
i=1 Xi −mn

n
−→ 0.

That is,Xn converges tomn/n in probability. This theorem is also called the law
of large numbers.

1.6.3 Central Limit Theorem

Central Limit Theorem: X1, X2, · · ·, Xn are mutually independently and identi-
cally distributed with E(Xi) = µ and V(Xi) = σ2 for all i. Bothµ andσ2 are finite.
Under the above assumptions, whenn −→ ∞, we have:

P
(Xn − µ
σ/
√

n
< x

)
−→

∫ x

−∞

1√
2π

e−
1
2u2

du,

which is called thecentral limit theorem .

Proof:

DefineYi =
Xi − µ
σ

. We can rewrite as follows:

Xn − µ
σ/
√

n
=

1√
n

n∑

i=1

Xi − µ
σ

=
1√
n

n∑

i=1

Yi .

SinceY1, Y2, · · ·, Yn are mutually independently and identically distributed, the
moment-generating function ofYi is identical for alli, which is denoted byφ(θ).
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Using E(Yi) = 0 and V(Yi) = 1, the moment-generating function ofYi, φ(θ), is
rewritten as:

φ(θ) = E(eYiθ) = E
(
1 + Yiθ +

1
2

Y2
i θ

2 +
1
3!

Y3
i θ

3 · · ·
)

= 1 +
1
2
θ2 + O(θ3).

In the second equality,eYiθ is approximated by the Taylor series expansion around
Yi = 0. See Appendix 1.3 for the Taylor series expansion.

DefineZ as:

Z =
1√
n

n∑

i=1

Yi .

Then, the moment-generating function ofZ, i.e.,φz(θ), is given by:

φz(θ) = E(eZθ) = E
(
e

θ√
n

∑n
i=1 Yi

)
=

n∏

i=1

E
(
e

θ√
n
Yi
)

=
(
φ(

θ√
n

)
)n

=
(
1 +

1
2
θ2

n
+ O(

θ3

n
3
2

)
)n

=
(
1 +

1
2
θ2

n
+ O(n−

3
2 )
)n
.

Moreover, setx =
1
2
θ2

n
+ O(n−

3
2 ). Multiply n/x on both sides. Substitute

n =
1
x

(1
2
θ2 + O(n−

1
2 )
)

into the moment-generating function ofZ, i.e.,φz(θ). Then,

we obtain:

φz(θ) =
(
1 +

1
2
θ2

n
+ O(n−

3
2 )
)n

= (1 + x)
1
x ( θ

2
2 +O(n−

1
2 ))

=
(
(1 + x)

1
x

) θ2
2 +O(n−

1
2 ) −→ e

θ2
2 .

Note thatx −→ 0 whenn −→ ∞ and that lim
x→0

(1 + x)1/x = e as in Section 1.2.3

(p.14).

Sinceφz(θ) = e
θ2
2 is the moment-generating function of the standard normal

distribution (see p.16 in Section 1.3.1 for the moment-generating function of the
standard normal probability density), we have:

P
(Xn − µ
σ/
√

n
< x

)
−→

∫ x

−∞

1√
2π

e−
1
2u2

du,
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or equivalently,
Xn − µ
σ/
√

n
−→ N(0,1).

The following expression is also possible:
√

n(Xn − µ) −→ N(0, σ2). (1.10)

Corollary 1: When E(Xi) = µ, V(Xi) = σ2 andXn = (1/n)
∑n

i=1 Xi, note that

Xn − E(Xn)√
V(Xn)

=
Xn − µ
σ/
√

n
.

Therefore, we can rewrite the above theorem as:

P
(Xn − E(Xn)√

V(Xn)
< x

)
−→

∫ x

−∞

1√
2π

e−
1
2u2

du.

Corollary 2: Consider the case whereX1, X2, · · ·, Xn are not identically dis-
tributed and they are not mutually independently distributed. Assume that

lim
n→∞

nV(Xn) = σ2 < ∞,

whereXn = (1/n)
∑n

i=1 Xi. Then, whenn −→ ∞, we have:

P
(Xn − E(Xn)√

V(Xn)
< x

)
= P

(∑n
i=1 Xi − E(

∑n
i=1 Xi)√

V(
∑n

i=1 Xi)
< x

)
−→

∫ x

−∞

1√
2π

e−
1
2u2

du.

1.7 Statistical Inference

1.7.1 Point Estimation

Suppose that the functional form of the underlying distribution on population is
known but the parameterθ included in the distribution is not known. The distribu-
tion function of population is given byf (x; θ). Let x1, x2, · · ·, xn be then observed
data drawn from population. Consider estimating the parameterθ using then ob-
served data. Let̂θn(x1, x2, · · ·, xn) be a function of the observed datax1, x2, · · ·, xn.
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Suppose that̂θn(x1, x2, · · ·, xn) is constructed from the purpose of estimating the
parameterθ. That is,θ̂n(x1, x2, · · ·, xn) takes a certain value given then observed
data. In this case,̂θn(x1, x2, · · ·, xn) is called thepoint estimateof θ, or simply the
estimateof θ.

Example 1.11: Consider the case ofθ = (µ, σ2), where the unknown parame-
ters contained in population is given by mean and variance. A point estimate of
population meanµ is given by:

µ̂n(x1, x2, · · · , xn) ≡ x =
1
n

n∑

i=1

xi .

A point estimate of population varianceσ2 is:

σ̂2
n(x1, x2, · · · , xn) ≡ s2 =

1
n− 1

n∑

i=1

(xi − x)2.

An alternative point estimate of population varianceσ2 is:

σ̃2
n(x1, x2, · · · , xn) ≡ s∗∗2 =

1
n

n∑

i=1

(xi − x)2.

1.7.2 Statistic, Estimate and Estimator

The underlying distribution of population is assumed to be known, but the parame-
terθ, which characterizes the underlying distribution, is unknown. The probability
density function of population is given byf (x; θ). Let X1, X2, · · ·, Xn be a subset
of population, which are regarded as the random variables and are assumed to be
mutually independent.x1, x2, · · ·, xn are taken as the experimental values of the
random variablesX1, X2, · · ·, Xn. In statistics, we consider thatn-variate random
variablesX1, X2, · · ·, Xn takes the experiments valuesx1, x2, · · ·, xn by chance.
There, the experiments values and the actually observed data series are used in the
same meaning.

As discussed in Section 1.7.1,θ̂n(x1, x2, · · ·, xn) denotes the point estimate of
θ. In the case where the observed datax1, x2, · · ·, xn are replaced by the corre-
sponding random variablesX1, X2, · · ·, Xn, a function ofX1, X2, · · ·, Xn, i.e., θ̂(X1,
X2, · · ·, Xn), is called theestimator of θ, which should be distinguished from the
estimateof θ, i.e., θ̂(x1, x2, · · ·, xn).
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Example 1.12: Let X1, X2, · · ·, Xn denote a random sample ofn from a given
distribution f (x; θ). Consider the case ofθ = (µ, σ2).

The estimator ofµ is given byX = (1/n)
∑n

i=1 Xi, while the estimate ofµ is
x = (1/n)

∑n
i=1 xi. The estimator ofσ2 is S2 =

∑n
i=1(Xi − X)2/(n − 1) and the

estimate ofσ2 is s2 =
∑n

i=1(xi − x)2/(n− 1).

There are numerous estimators and estimates ofθ. All of (1/n)
∑n

i=1 Xi, (X1 +

Xn)/2, median of (X1, X2, · · ·, Xn) and so on are taken as the estimators ofµ.
Of course, they are called the estimates ofθ whenXi is replaced byxi for all i.
Similarly, bothS2 =

∑n
i=1(Xi − X)2/(n − 1) andS∗2 =

∑2
i=1(Xi − X)2/n are the

estimators ofσ2. We need to choose one out of the numerous estimators ofθ.
The problem of choosing an optimal estimator out of the numerous estimators is
discussed in Sections 1.7.4 and 1.7.5.

Finally, note as follows. A function of random variables is called astatistic.
The statistic for estimation of the parameter is called an estimator. Therefore, an
estimator is a family of a statistic.

1.7.3 Estimation of Mean and Variance

Suppose that the population distribution is given byf (x; θ). The random sample
X1, X2, · · ·, Xn are assumed to be drawn from the population distributionf (x; θ),
whereθ = (µ, σ2). Therefore, we can assume thatX1, X2, · · ·, Xn are mutually
independently and identically distributed, where “identically” implies E(Xi) = µ
and V(Xi) = σ2 for all i.

Consider the estimators ofθ = (µ, σ2) as follows.

1. The estimator of population meanµ is:

• X =
1
n

n∑

i=1

Xi.

2. The estimators of population varianceσ2 are:

• S∗2 =
1
n

n∑

i=1

(Xi − µ)2, whenµ is known,

• S2 =
1

n− 1

n∑

i=1

(Xi − X)2,

• S∗∗2 =
1
n

n∑

i=1

(Xi − X)2,
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Properties of X: From Theorem on p.24, mean and variance ofX are obtained
as follows:

E(X) = µ, V(X) =
σ2

n
.

Properties ofS∗2, S2 and S∗∗2: The expectation ofS∗2 is:

E(S∗2) = E
(1
n

n∑

i=1

(Xi − µ)2
)

=
1
n

E
( n∑

i=1

(Xi − µ)2
)

=
1
n

n∑

i=1

E
(
(Xi − µ)2

)

=
1
n

n∑

i=1

V(Xi) =
1
n

n∑

i=1

σ2 =
1
n

nσ2 = σ2,

where E((Xi − µ)2) = V(Xi) = σ2 is used in the fourth and the fifth equalities.
Next, the expectation ofS2 is given by:

E(S2) = E
( 1
n− 1

n∑

i=1

(Xi − X)2
)

=
1

n− 1
E
( n∑

i=1

(Xi − X)2
)

=
1

n− 1
E
( n∑

i=1

((Xi − µ) − (X − µ))2
)

=
1

n− 1
E
( n∑

i=1

((Xi − µ)2 − 2(Xi − µ)(X − µ) + (X − µ)2)
)

=
1

n− 1
E
( n∑

i=1

(Xi − µ)2 − 2(X − µ)
n∑

i=1

(Xi − µ) + n(X − µ)2
)

=
1

n− 1
E
( n∑

i=1

(Xi − µ)2 − n(X − µ)2
)

=
n

n− 1
E
(1
n

n∑

i=1

(Xi − µ)2
)
− n

n− 1
E((X − µ)2)

=
n

n− 1
σ2 − n

n− 1
σ2

n
= σ2.

∑n
i=1(Xi − µ) = n(X − µ) is used in the sixth equality. E

(
(1/n)

∑n
i=1(Xi − µ)2

)
=

E(S∗2) = σ2 and E((X − µ)2) = V(X) = σ2/n are required in the eighth equality.
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Finally, the mathematical expectation ofS∗∗2 is represented by:

E(S∗∗2) = E
(1
n

n∑

i=1

(Xi − X)2
)

= E
(n− 1

n
1

n− 1

n∑

i=1

(Xi − X)2
)

= E
(n− 1

n
S2

)
=

n− 1
n

E(S2) =
n− 1

n
σ2 , σ2.

Summarizing the above results, we obtain as follows:

E(S∗2) = σ2, E(S2) = σ2, E(S∗∗2) =
n− 1

n
σ2 , σ2.

1.7.4 Point Estimation: Optimality

As mentioned in the previous sections,θ denotes the parameter to be estimated.
θ̂n(X1, X2, · · ·, Xn) represents the estimator ofθ, while θ̂n(x1, x2, · · ·, xn) indicates
the estimate ofθ. Hereafter, in the case of no confusion,θ̂n(X1, X2, · · ·, Xn) is
simply written aŝθn.

As discussed above, there are numerous candidates of the estimatorθ̂n. The
desired properties whicĥθn have to satisfy include unbiasedness, efficiency and
consistency.

Unbiasedness: One of the desirable features that the estimator of the parameter
should have is given by:

E(θ̂n) = θ, (1.11)

which implies that̂θn is distributed aroundθ. When the condition (1.11) holds,θ̂n

is called theunbiased estimatorof θ. E(θ̂n) − θ is defined asbias.
As an example of unbiasedness, consider the case ofθ = (µ, σ2). Suppose that

X1, X2, · · ·, Xn are mutually independently and identically distributed with meanµ
and varianceσ2. Consider the following estimators ofµ andσ2.

1. The estimator ofµ is:

• X =
1
n

n∑

i=1

Xi.

2. The estimators ofσ2 are:

• S2 =
1

n− 1

n∑

i=1

(Xi − X)2,



44 CHAPTER 1. ELEMENTS OF STATISTICS

• S∗∗2 =
1
n

n∑

i=1

(Xi − X)2.

Since we have obtained E(X) = µ and E(S2) = σ2 in Section 1.7.3,X andS2 are
unbiased estimators ofµ andσ2. However, we have obtained the result E(S∗∗2) ,
σ2 in Section 1.7.3 and thereforeS∗∗2 is not an unbiased estimator ofσ2. Thus,
according to the criterion of unbiasedness,S2 is preferred toS∗∗2 for estimation
of σ2.

Efficiency: Consider two estimators, i.e.,θ̂n and θ̃n. Both are assumed to be
unbiased. That is, we have the following condition: E(θ̂n) = θ and E(̃θn) = θ.
When V(̂θn) < V(θ̃n), we say that̂θn is more efficient thañθn. The estimator which
is widely distributed is not preferred.

Consider as many unbiased estimators as possible. The unbiased estimator
with the least variance is known as the efficient estimator. We have the case where
anefficient estimatordoes not exist.

In order to obtain the efficient estimator, we utilize Cramer-Rao inequality.
Suppose thatXi has the probability density functionf (xi; θ) for all i, i.e., X1, X2,
· · ·, Xn are mutually independently and identically distributed. For any unbiased
estimator ofθ, denoted bŷθn, it is known that we have the following inequality:

V(θ̂n) ≥ σ
2(θ)
n

, (1.12)

where

σ2(θ) =
1

E

((∂ log f (X; θ)
∂θ

)2
) =

1

V

((∂ log f (X; θ)
∂θ

)) = − 1

E
(∂2 log f (X; θ)

∂θ2

) , (1.13)

which is known as theCramer-Rao inequality. See Appendix 1.4 for proof of
the Cramer-Rao inequality.

When there exists the unbiased estimatorθ̂n such that the equality in (1.12)
holds, θ̂n becomes the unbiased estimator with minimum variance, which is the
efficient estimator.σ2(θ)/n is called theCramer-Rao lower bound.

Example 1.13 (Efficient Estimator): Suppose thatX1, X2, · · ·, Xn are mutually
independently, identically and normally distributed with meanµ and varianceσ2.
Then, we show thatX is an efficient estimator ofµ.
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Whenσ2 < ∞, from Theorem on p.24, V(X) is given byσ2/n in spite of the
distribution ofXi, i = 1,2, · · · ,n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A)

On the other hand, because we assume thatXi is normally distributed with
meanµ and varianceσ2, the probability density function ofXi is given by:

f (x; µ) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
.

The Cramer-Rao inequality is represented as:

V(X) ≥ 1

nE

((∂ log f (X; µ)
∂µ

)2
) ,

where the logarithm off (X; µ) is written as:

log f (X; µ) = −1
2

log(2πσ2) − 1
2σ2

(X − µ)2.

Therefore, the partial derivative off (X; µ) with respect toµ is:

∂ log f (X; µ)
∂µ

=
1
σ2

(X − µ).

Accordingly, the Cramer-Rao inequality in this case is written as:

V(X) ≥ 1

nE

(( 1
σ2

(X − µ)
)2
) =

1

n
1
σ4

E((X − µ)2)
=
σ2

n
. . . . . . . . . . . . . . (B)

From (A) and (B), The variance ofX is equal to the lower bound of Cramer-

Rao inequality, i.e., V(X) =
σ2

n
, which implies that the equality included in the

Cramer-Rao inequality holds. Therefore, we can conclude that the sample mean
X is an efficient estimator ofµ.

Example 1.14 (Linear Unbiased Minimum Variance Estimator): Suppose
that X1, X2, · · ·, Xn are mutually independently and identically distributed with
meanµ and varianceσ2 ( note that the normality assumption is excluded from
Example 1.13). Consider the following linear estimator: ˆµ =

∑n
i=1 aiXi. Then, we
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want to show ˆµ (i.e., X) is a linear unbiased minimum variance estimator if
ai = 1/n for all i, i.e., if µ̂ = X.

Utilizing Theorem on p.23, when E(Xi) = µ and V(Xi) = σ2 for all i, we have:
E(µ̂) = µ

∑n
i=1 ai and V(µ̂) = σ2 ∑n

i=1 a2
i .

Sinceµ̂ is linear inXi, µ̂ is called alinear estimator of µ. In order forµ̂ to be
unbiased, we need to have the condition: E(ˆµ) = µ

∑n
i=1 ai = µ. That is, if

∑n
i=1 ai =

1 is satisfied, ˆµ gives us alinear unbiased estimator. Thus, as mentioned in
Example 1.12 of Section 1.7.2, there are numerous unbiased estimators.

The variance of ˆµ is given byσ2 ∑n
i=1 a2

i . We obtain the value ofai which min-
imizes

∑n
i=1 a2

i with the constraint
∑n

i=1 ai = 1. Construct the Lagrange function as
follows:

L =
1
2

n∑

i=1

a2
i + λ(1−

n∑

i=1

ai),

whereλ denotes the Lagrange multiplier. The1
2 in front of the first term appears

to make life easier later on and does not affect the outcome. To determine the
optimum values, we set the partial derivatives ofL with respect toai andλ equal
to zero, i.e.,

∂L
∂ai

= ai − λ = 0, i = 1,2, · · · ,n,
∂L
∂λ

= 1−
n∑

i=1

ai = 0.

Solving the above equations,ai = λ = 1/n is obtained. Therefore, whenai = 1/n
for all i, µ̂ has minimum variance in a class of linear unbiased estimators. That is,
X is a linear unbiased minimum variance estimator.

The linear unbiased minimum variance estimator should be distinguished from
the efficient estimator discussed in Example 1.13. The former does not requires
the assumption on the underlying distribution. The latter gives us the unbiased
estimator which variance is equal to the Cramer-Rao lower bound, which is not
restricted to a class of the linear unbiased estimators. Under the assumption of
normal population, the linear unbiased minimum variance estimator leads to the
efficient estimator. However, both are different in general. In addition, note that
the efficient estimator does not necessarily exist.
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Consistency: Let θ̂n be an estimator ofθ. Suppose that for anyε > 0 we have
the following:

P(|θ̂n − θ| > ε) −→ 0, as n −→ ∞,
which implies thatθ̂ −→ θ asn −→ ∞. Then, we say that̂θn is a consistent
estimator of θ. That is, the estimator which approaches the true parameter value
as the sample size is large is called the consistent estimator of the parameter.

Example 1.15: Suppose thatX1, X2, · · ·, Xn are mutually independently and
identically distributed with meanµ and varianceσ2. Assume thatσ2 is known.
Then, it is shown thatX is a consistent estimator ofµ.

From (1.9), Chebyshev’s inequality is given by:

P(|X − E(X)| > ε) ≤ V(X)
ε2

,

for a random variableX. Here, replacingX by X, we obtain E(X) and V(X) as
follows:

E(X) = µ, V(X) =
σ2

n
,

because E(Xi) = µ and V(Xi) = σ2 < ∞ are assumed for alli.
Then, whenn −→ ∞, we obtain the following result:

P(|X − µ| > ε) ≤ σ2

nε2
−→ 0,

which implies thatX −→ µ asn −→ ∞. Therefore, we can conclude thatX is a
consistent estimator ofµ.

Summarizing the results up to now,X is an unbiased, minimum variance and
consistent estimator of population meanµ. When the distribution ofXi is assumed
to be normal for alli, X leads to an unbiased, efficient and consistent estimator of
µ.

1.7.5 Maximum Likelihood Estimator

In Section 1.7.4, the properties of the estimatorsX andS2 are discussed. It is
shown thatX is an unbiased, efficient and consistent estimator ofµ under normal-
ity assumption and thatS2 is an unbiased estimator ofσ2. Note thatS2 is not
efficient but consistent (we do not check these features ofS2 in this book).
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The population parameterθ depends on a functional form of the population
distribution f (x; θ). It corresponds to (µ, σ2) in the case of the normal distribution
andβ in the case of the exponential distribution (Section 2.2.4). Now, in more
general cases, we want to consider how to estimateθ. The maximum likelihood
estimator gives us one of the solutions.

Let X1, X2, · · ·, Xn be mutually independently and identically distributed ran-
dom samples.Xi has the probability density functionf (x; θ). Under these assump-
tions, the joint density function ofX1, X2, · · ·, Xn is given by:

f (x1, x2, · · · , xn; θ) =

n∏

i=1

f (xi; θ),

whereθ denotes the unknown parameter.
Given the actually observed data (x1, x2, · · ·, xn), the joint densityf (x1, x2, · · ·,

xn; θ) is regarded as a function ofθ, i.e.,

l(θ) = l(θ; x) = l(θ; x1, x2, · · · , xn) =

n∏

i=1

f (xi; θ).

l(θ) is called thelikelihood function .
Let θ̂n be theθ which maximizes the likelihood function. Replacingx1, x2, · · ·,

xn by X1, X2, · · ·, Xn, θ̂n = θ̂n(X1, X2, · · ·, Xn) is called themaximum likelihood
estimator, while θ̂n(x1, x2, · · ·, xn) is called themaximum likelihood estimate.

That is, solving the following equation:

∂l(θ)
∂θ

= 0,

the maximum likelihood estimator̂θn ≡ θ̂n(X1,X2, · · · ,Xn) is obtained.

Example 1.16: Suppose thatX1, X2, · · ·, Xn are mutually independently, iden-
tically and normally distributed with meanµ and varianceσ2. We derive the
maximum likelihood estimators ofµ andσ2. The joint density (or the likelihood
function) ofX1, X2, · · ·, Xn is written as:

f (x1, x2, · · · , xn; µ, σ
2) =

n∏

i=1

f (xi; µ, σ
2) =

n∏

i=1

1√
2πσ2

exp
(
− 1

2σ2
(xi − µ)2

)

= (2πσ2)−n/2 exp
(
− 1

2σ2

n∑

i=1

(xi − µ)2
)

= l(µ, σ2).



1.7. STATISTICAL INFERENCE 49

The logarithm of the likelihood function is given by:

log l(µ, σ2) = −n
2

log(2π) − n
2

log(σ2) − 1
2σ2

n∑

i=1

(xi − µ)2,

which is called thelog-likelihood function. For maximization of the likelihood
function, differentiating the log-likelihood function logl(µ, σ2) with respect toµ
andσ2, the first derivatives should be equal to zero, i.e.,

∂ log l(µ, σ2)
∂µ

=
1
σ2

n∑

i=1

(xi − µ) = 0,

∂ log l(µ, σ2)
∂σ2

= −n
2

1
σ2

+
1

2σ4

n∑

i=1

(xi − µ)2 = 0.

Let µ̂ andσ̂2 be the solution which satisfies the above two equations. Solving the
two equations, we obtain the maximum likelihood estimates as follows:

µ̂ =
1
n

n∑

i=1

xi = x,

σ̂2 =
1
n

n∑

i=1

(xi − µ̂)2 =
1
n

n∑

i=1

(xi − x)2 = s∗∗2.

Replacingxi by Xi for i = 1,2, · · · ,n, the maximum likelihood estimators ofµ
andσ2 are given byX andS∗∗2, respectively. Since E(X) = µ, the maximum
likelihood estimator ofµ, X, is an unbiased estimator. However, because of

E(S∗∗2) =
n− 1

n
σ2 , σ2 as shown in Section 1.7.3, the maximum likelihood

estimator ofσ2, S∗∗2, is not an unbiased estimator.

Properties of Maximum Likelihood Estimator: For small sample, the maxi-
mum likelihood estimator has the following properties.

• The maximum likelihood estimator is not unbiased in general, but we often
have the case where we can construct the unbiased estimator by an appro-
priate transformation.

For instance, in Example 1.16, we find that the maximum likelihood

estimator ofσ2, S∗∗2, is not unbiased. However,
n

n− 1
S∗∗2 is an unbiased

estimator ofσ2.
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• If the efficient estimator exists, i.e., if there exists the estimator which sat-
isfies the equality in the Cramer-Rao inequality, the maximum likelihood
estimator is efficient.

For large sample, asn −→ ∞, the maximum likelihood estimator ofθ, θ̂n, has
the following property:

√
n(θ̂n − θ) −→ N(0, σ2(θ)), (1.14)

where

σ2(θ) =
1

E

((∂ log f (X; θ)
∂θ

)2
) .

(1.14) indicates that the maximum likelihood estimator has consistency, asymp-
totic unbiasedness, asymptotic efficiency and asymptotic normality. Asymptotic
normality of the maximum likelihood estimator comes from the central limit the-
orem discussed in Section 1.6.3. Even though the underlying distribution is not
normal, i.e., even thoughf (x; θ) is not normal, the maximum likelihood estimator
is asymptotically normally distributed. Note that the properties ofn −→ ∞ are
called the asymptotic properties, which include consistency, asymptotic normality
and so on.

That is, by normalizing, asn −→ ∞, we obtain as follows:
√

n(θ̂n − θ)
σ(θ)

=
θ̂n − θ

σ(θ)/
√

n
−→ N(0,1).

As another representation, whenn is large, we can approximate as follows:

θ̂n ∼ N(θ,
σ2(θ)

n
).

This implies that whenn −→ ∞, θ̂n approaches the lower bound of Cramer-Rao

inequality:
σ2(θ)

n
, which property is called an asymptotic efficiency.

Moreover, replacingθ in varianceσ2(θ) by θ̂n, whenn −→ ∞, we have the
following property:

θ̂n − θ
σ(θ̂n)/

√
n
−→ N(0,1), (1.15)

which also comes from the central limit theorem.
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Practically, whenn is large, we approximately use as follows:

θ̂n ∼ N(θ,
σ2(θ̂n)

n
). (1.16)

Proof of (1.14): By the central limit theorem (1.10),

1√
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

−→ N(0,
1

σ2(θ)
), (1.17)

whereσ2(θ) is defined in (1.13), i.e., V(∂ log f (Xi; θ)/∂θ) = 1/σ2(θ). As shown
in (1.45) of Appendix 1.4, note that E(∂ log f (Xi; θ)/∂θ) = 0. We can apply the
central limit theorem, taking∂ log f (Xi; θ)/∂θ as thei-th random variable.

By performing the first-order Taylor series expansion aroundθ̂n = θ, we have
the following approximation:

0 =
1√
n

n∑

i=1

∂ log f (Xi; θ̂n)
∂θ

=
1√
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

+
1√
n

n∑

i=1

∂2 log f (Xi; θ)
∂θ2

(θ̂n − θ) + · · · .

Therefore, the following approximation also holds:

1√
n

n∑

i=1

∂ log f (Xi; θ)
∂θ

≈ − 1√
n

n∑

i=1

∂2 log f (Xi; θ)
∂θ2

(θ̂n − θ).

From (1.17) and the above equation, we obtain:

−1
n

n∑

i=1

∂2 log f (Xi; θ)
∂θ2

√
n(θ̂n − θ) −→ N(0,

1
σ2(θ)

).

The law of large numbers indicates as follows:

−1
n

n∑

i=1

∂2 log f (Xi; θ)
∂θ2

−→ −E
(∂2 log f (Xi; θ)

∂θ2

)
=

1
σ2(θ)

,

where the last equality is from (1.13). Thus, we have the following relation:

−1
n

n∑

i=1

∂2 log f (Xi; θ)
∂θ2

√
n(θ̂n − θ) −→ 1

σ2(θ)

√
n(θ̂n − θ) −→ N(0,

1
σ2(θ)

)
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Therefore, the asymptotic normality of the maximum likelihood estimator is ob-
tained as follows: √

n(θ̂n − θ) −→ N(0, σ2(θ)).

Thus, (1.14) is obtained.

1.7.6 Interval Estimation

In Sections 1.7.1 – 1.7.5, the point estimation is discussed. It is important to know
where the true parameter value ofθ is likely to lie.

Suppose that the population distribution is given byf (x; θ). Using the random
sampleX1, X2, · · ·, Xn drawn from the population distribution, we construct the
two statistics, say,̂θU(X1, X2, · · ·, Xn; θ∗) andθ̂L(X1, X2, · · ·, Xn; θ∗∗), whereθ∗ and
θ∗∗ denote the constant values which satisfy:

P
(
θ∗ < θ̂n < θ

∗∗) = 1− α, (1.18)

for θ∗∗ > θ∗. Note thatθ̂n depends onX1, X2, · · ·, Xn as well asθ, i.e., θ̂n ≡ θ̂n(X1,
X2, · · ·, Xn; θ). Now we assume that we can solve (1.18) with respect toθ, which
is rewritten as follows:

P
(
θ̂L(X1,X2, · · · ,Xn; θ

∗) < θ < θ̂U(X1,X2, · · · ,Xn; θ
∗∗)

)
= 1− α. (1.19)

(1.19) implies thatθ lies on the interval
(
θ̂L(X1, X2, · · ·, Xn; θ∗), θ̂U(X1, X2, · · ·,

Xn; θ∗∗)
)

with probability 1− α. Depending on a functional form ofθ̂n(X1, X2, · · ·,
Xn; θ), we possibly have the situation thatθ∗ andθ∗∗ are switched with each other.

Now, we replace the random variablesX1, X2, · · ·, Xn by the experimental
valuesx1, x2, · · ·, xn. Then, we say that the interval:

(
θ̂L(x1, x2, · · · , xn; θ

∗), θ̂U(x1, x2, · · · , xn; θ
∗∗)

)

is called the 100× (1 − α)% confidence intervalof θ. Thus, estimating the in-
terval is known as theinterval estimation, which is distinguished from the point
estimation. In the interval,̂θL(x1, x2, · · ·, xn; θ∗) is known as thelower bound of
the confidence interval, whilêθU(x1, x2, · · ·, xn; θ∗∗) is theupper bound of the
confidence interval.

Given probabilityα, the θ̂L(X1, X2, · · ·, Xn; θ∗) and θ̂U(X1, X2, · · ·, Xn; θ∗∗)
which satisfies equation (1.19) are not unique. For estimation of the unknown
parameterθ, it is more optimal to minimize the width of the confidence interval.
Therefore, we should chooseθ∗ andθ∗∗ which minimizes the widtĥθU(X1, X2, · · ·,
Xn; θ∗∗) − θ̂L(X1, X2, · · ·, Xn; θ∗).
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Interval Estimation of X: Let X1, X2, · · ·, Xn be mutually independently and
identically distributed random variables.Xi has a distribution with meanµ and
varianceσ2. From the central limit theorem,

X − µ
σ/
√

n
−→ N(0,1).

Replacingσ2 by its estimatorS2 (or S∗∗2),

X − µ
S/
√

n
−→ N(0,1).

Therefore, whenn is large enough,

P(z∗ <
X − µ
S/
√

n
< z∗∗) = 1− α,

wherez∗ andz∗∗ (z∗ < z∗∗) are percent points from the standard normal density
function. Solving the inequality above with respect toµ, the following expression
is obtained.

P(X − z∗∗
S√
n
< µ < X − z∗

S√
n

) = 1− α,

whereθ̂L andθ̂U correspond toX − z∗∗S/
√

n andX − z∗S/
√

n, respectively.
The length of the confidence interval is given by:

θ̂U − θ̂L =
S√
n

(z∗∗ − z∗),

which should be minimized subject to:

∫ z∗∗

z∗
f (x)dx = 1− α,

i.e.,
F(z∗∗) − F(z∗) = 1− α,

whereF(·) denotes the standard normal cumulative distribution function.
Solving the minimization problem above, we can obtain the conditions that

f (z∗) = f (z∗∗) for z∗ < z∗∗ and thatf (x) is symmetric. Therefore, we have:

−z∗ = z∗∗ = zα/2,
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wherezα/2 denotes the 100× α/2 percent point from the standard normal density
function.

Accordingly, replacing the estimatorsX andS2 by their estimatesx ands2, the
100× (1− α)% confidence interval ofµ is approximately represented as:

(
x− zα/2

s√
n
, x + zα/2

s√
n

)
,

for largen.
For now, we do not impose any assumptions on the distribution ofXi. If we

assume thatXi is normal,
√

n(X − µ)/S has at distribution withn− 1 degrees of
freedom for anyn. Therefore, 100× (1−α)% confidence interval ofµ is given by:

(
x− tα/2(n− 1)

s√
n
, x + tα/2(n− 1)

s√
n

)
,

wheretα/2(n − 1) denotes the 100× α/2 percent points of thet distribution with
n− 1 degrees of freedom. See Section 2.2.10 for thet distribution.

Interval Estimation of θ̂n: Let X1, X2, · · ·, Xn be mutually independently and
identically distributed random variables.Xi has the probability density function
f (xi; θ). Suppose that̂θn represents the maximum likelihood estimator ofθ.

From (1.16), we can approximate the 100× (1− α)% confidence interval ofθ
as follows:

(
θ̂n − zα/2

σ(θ̂n)√
n
, θ̂n + zα/2

σ(θ̂n)√
n

)
.

1.8 Testing Hypothesis

1.8.1 Basic Concepts in Testing Hypothesis

Given the population distributionf (x; θ), we want to judge from the observed
values (x1, x2, · · ·, xn) whether the hypothesis on the parameterθ, e.g. θ = θ0, is
correct or not. The hypothesis that we want to test is called thenull hypothesis,
which is denoted byH0 : θ = θ0. The hypothesis against the null hypothesis, e.g.
θ , θ0, is called thealternative hypothesis, which is denoted byH1 : θ , θ0.
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Table 1.1: Type I and Type II Errors

H0 is true. H0 is false.
Acceptance ofH0 Correct judgment Type II Error

(Probabilityβ)
Rejection ofH0 Type I Error Correct judgment

(Probabilityα (1− β = Power)
= Significance Level)

Type I and Type II Errors: When we test the null hypothesisH0, as shown in
Table 1.1 we have four cases, i.e., (i) we acceptH0 whenH0 is true, (ii) we reject
H0 whenH0 is true, (iii) we acceptH0 whenH0 is false, and (iv) we rejectH0 when
H0 is false. (i) and (iv) are correct judgments while (ii) and (iii) are not correct.
(ii) is called atype I error . and (iii) is called atype II error . The probability
of committing a type I error is called thesignificance level, which is denoted by
α, and the probability of committing a type II error is denoted byβ. Probability
of (iv) is called thepower or thepower function, because it is a function of the
parameterθ.

Testing Procedures: The testing procedure is summarized as follows.

1. Construct the null hypothesis (H0) on the parameter.

2. Consider an appropriate statistic, which is called atest statistic. Derive a
distribution function of the test statistic whenH0 is true.

3. From the observed data, compute the observed value of the test statistic.

4. Compare the distribution and the observed value of the test statistic. The ob-
served value of the test statistic is in the tails of the distribution, we consider
thatH0 is not likely to occur and we rejectH0.

The region thatH0 is unlikely to occur and accordinglyH0 is rejected is called
therejection region or thecritical region , denoted byR. Conversely, the region
thatH0 is likely to occur and accordinglyH0 is accepted is called theacceptance
region, denoted byA.

Using the rejection regionR and the acceptance regionA, the type I and II
errors and the power are formulated as follows. Suppose that the test statistic is
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give byT = T(X1,X2, · · · ,Xn). The probability of committing a type I error, i.e.,
the significance levelα is given by:

P(T(X1,X2, · · · ,Xn) ∈ R|H0 is true) = α,

which is the probability that rejectsH0 whenH0 is true. Conventionally, the sig-
nificance levelα = 0.1,0.05,0.001 is chosen in practice. The probability of com-
mitting a type II error, i.e.,β is represented as:

P(T(X1,X2, · · · ,Xn) ∈ A|H0 is not true) = β,

which corresponds to the probability that acceptsH0 when H0 is not true. The
power is defined as 1− β, i.e.,

P(T(X1,X2, · · · ,Xn) ∈ R|H0 is not true) = 1− β,

which is the probability that rejectsH0 whenH0 is not true.

1.8.2 Power Function

Let X1, X2, · · ·, Xn be mutually independently, identically and normally distributed
with meanµ and varianceσ2. Assume thatσ2 is known.

In Figure 1.3, we consider the hypothesis on the population meanµ, i.e., the
null hypothesisH0 : µ = µ0 against the alternative hypothesisH1 : µ = µ1,
whereµ1 > µ0 is taken. The dark shadow area corresponds to the probability
of committing a type I error, i.e., the significance level, while the light shadow
area indicates the probability of committing a type II error. The probability of the
right-hand side off ∗ in the distribution underH1 represents the power of the test,
i.e., 1− β.

In the case of normal population, the distribution of sample meanX is given
by:

X ∼ N(µ,
σ2

n
).

For the distribution ofX, see the moment-generating function ofX in Theorem on
p.33. By normalization, we have:

X − µ
σ/
√

n
∼ N(0,1).
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Figure 1.3: Type I Error (α) and Type II Error (β)
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Therefore, under the null hypothesisH0 : µ = µ0, we obtain:

X − µ0

σ/
√

n
∼ N(0,1),

whereµ is replaced byµ0. Since the significance levelα is the probability which
rejectsH0 whenH0 is true, it is given by:

α = P(X > µ0 + zα
σ√
n

),

wherezα denotes 100× α percent points of the standard normal density function.
Therefore, the rejection region is given by:X > µ0 + zασ/

√
n.

Since the power 1− β is the probability which rejectsH0 whenH1 is true, it is
given by:

1− β = P(X > µ0 + zα
σ√
n

) = P(
X − µ1

σ/
√

n
>
µ0 − µ1

σ/
√

n
+ zα)

= 1− P(
X − µ1

σ/
√

n
<
µ0 − µ1

σ/
√

n
+ zα) = 1− F(

µ0 − µ1

σ/
√

n
+ zα),

whereF(·) represents the standard normal cumulative distribution function, i.e.,
F(x) =

∫ x

−∞(2π)−1/2 exp(−1
2t2)dt. The power function is a function ofµ1, givenµ0

andα.
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1.8.3 Testing Hypothesis on Population Mean

Let X1, X2, · · ·, Xn be mutually independently, identically and normally distributed
with meanµ and varianceσ2. Assume thatσ2 is known.

Consider testing the null hypothesisH0 : µ = µ0. When the null hypothesis
H0 is true, the distribution ofX is given by:

X − µ0

σ/
√

n
∼ N(0,1).

Therefore, the test statistic is given by:
√

n(X−µ0)/σ, while the test statistic value
is:
√

n(x− µ0)/σ, where the sample meanX is replaced by the observed valuex.
Depending on the alternative hypothesis, we have the following three cases.

1. The alternative hypothesisH1 : µ < µ0 (one-sided test):

We have:P
(X − µ0

σ/
√

n
< −zα

)
= α. Therefore, when

x− µ0

σ/
√

n
< −zα, we reject

the null hypothesisH0 : µ = µ0 at the significance levelα.

2. The alternative hypothesisH1 : µ > µ0 (one-sided test):

We have:P
(X − µ0

σ/
√

n
> zα

)
= α. Therefore, when

x− µ0

σ/
√

n
> zα, we reject the

null hypothesisH0 : µ = µ0 at the significance levelα.

3. The alternative hypothesisH1 : µ , µ0 (two-sided test):

We have: P
(∣∣∣∣∣∣

X − µ0

σ/
√

n

∣∣∣∣∣∣ > zα/2
)

= α. Therefore, when

∣∣∣∣∣∣
x− µ0

σ/
√

n

∣∣∣∣∣∣ > zα/2, we

reject the null hypothesisH0 : µ = µ0 at the significance levelα.

When the sample sizen is large enough, the testing procedure above can be ap-
plied to the cases: (i) the distribution ofXi is not known and (ii)σ2 is replaced by
its estimatorS2 (in the case whereσ2 is not known).

1.8.4 Wald Test

From (1.15), under the null hypothesisH0 : θ = θ0, asn −→ ∞, the maximum
likelihood estimator̂θn is distributed as follows:

θ̂n − θ0

σ(θ̂n)/
√

n
∼ N(0,1).
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For H0 : θ = θ0 andH1 : θ , θ0, replacingX1, X2, · · ·, Xn in θ̂n by the observed
valuesx1, x2, · · ·, xn, we obtain the following testing procedure:

1. If we have: ∣∣∣∣∣∣
θ̂n − θ0

σ(θ̂n)/
√

n

∣∣∣∣∣∣ > zα/2,

we reject the null hypothesisH0 at the significance levelα, because the
probability whichH0 occurs is small enough.

2. As forH0 : θ = θ0 andH1 : θ > θ0, if we have:

θ̂n − θ0

σ(θ̂n)/
√

n
> zα,

we rejectH0 at the significance levelα.

3. ForH0 : θ = θ0 andH1 : θ < θ0, when we have the following:

θ̂n − θ0

σ(θ̂n)/
√

n
< −zα,

we rejectH0 at the significance levelα.

The testing procedure introduced here is called theWald test.

Example 1.17: X1, X2, · · ·, Xn are mutually independently, identically and ex-
ponentially distributed. Consider the following exponential probability density
function:

f (x; γ) = γe−γx,

for 0 < x < ∞.
Using the Wald test, we want to test the null hypothesisH0 : γ = γ0 against

the alternative hypothesisH1 : γ , γ0.
Generally, asn −→ ∞, the distribution of the maximum likelihood estimator

of the parameterγ, γ̂n, is asymptotically represented as:

γ̂n − γ
σ(γ̂n)/

√
n
∼ N(0,1),

where

σ2(γ) =

(
E

((d log f (X; γ)
dγ

)2
))−1

= −
(
E
(d2 log f (X; γ)

dγ2

))−1

.
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See (1.13) and (1.15) for the above properties on the maximum likelihood estima-
tor.

Therefore, under the null hypothesisH0 : γ = γ0, whenn is large enough, we
have the following distribution:

γ̂n − γ0

σ(γ̂n)/
√

n
∼ N(0,1).

As for the null hypothesisH0 : γ = γ0 against the alternative hypothesis
H1 : γ , γ0, if we have: ∣∣∣∣∣∣

γ̂n − γ0

σ(γ̂n)/
√

n

∣∣∣∣∣∣ > zα/2,

we can rejectH0 at the significance levelα.
We need to deriveσ2(γ) andγ̂n to perform the testing procedure. First,σ2(γ)

is given by:

σ2(γ) = −
(
E
(d2 log f (X; γ)

dγ2

))−1

= γ2.

Note that the first- and the second-derivatives of logf (X; γ) with respect toγ are
given by:

d log f (X; γ)
dγ

=
1
γ
− X,

d2 log f (X; γ)
dγ2

= − 1
γ2
.

Next, the maximum likelihood estimator ofγ, i.e., γ̂n, is obtained as follows.
SinceX1, X2 · · ·, Xn are mutually independently and identically distributed, the
likelihood functionl(γ) is given by:

l(γ) =

n∏

i=1

f (xi; γ) =

n∏

i=1

γe−γxi = γne−γ
∑

xi .

Therefore, the log-likelihood function is written as:

log l(γ) = n log(γ) − γ
n∑

i=1

xi .

We obtain the value ofγ which maximizes logl(γ). Solving the following equa-
tion:

d logl(γ)
dγ

=
n
γ
−

n∑

i=1

xi = 0,
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the maximum likelihood estimator ofγ, i.e., γ̂n is represented as:

γ̂n =
n∑n

i=1 Xi
=

1

X
.

Then, we have the following:

γ̂n − γ
σ(γ̂n)/

√
n

=
γ̂n − γ
γ̂n/
√

n
−→ N(0,1),

whereγ̂n is given by 1/X.
For H0 : γ = γ0 andH1 : γ , γ0, if we have:

∣∣∣∣∣∣
γ̂n − γ0

γ̂n/
√

n

∣∣∣∣∣∣ > zα/2,

we rejectH0 at the significance levelα.

1.8.5 Likelihood Ratio Test

Suppose that the population distribution is given byf (x; θ), whereθ = (θ1, θ2).
Consider testing the null hypothesisθ1 = θ∗1 against the alternative hypothesis
H1 : θ1 , θ∗1, using the observed values (x1, x2, · · ·, xn) corresponding to the
random sample (X1, X2, · · ·, Xn).

Let θ1 andθ2 be 1× k1 and 1× k2 vectors, respectively. Therefore,θ = (θ1, θ2)
denotes a 1× (k1 + k2) vector. Since we take the null hypothesis asH0 : θ1 = θ∗1,
the number of restrictions is given byk1, which is equal to the dimension ofθ1.

The likelihood function is written as:

l(θ1, θ2) =

n∏

i=1

f (xi; θ1, θ2).

Let (̃θ1, θ̃2) be the maximum likelihood estimator of (θ1, θ2). That is, (̃θ1, θ̃2)
indicates the solution of (θ1, θ2), obtained from the following equations:

∂l(θ1, θ2)
∂θ1

= 0,
∂l(θ1, θ2)
∂θ2

= 0.

The solution (̃θ1, θ̃2) is called theunconstrained maximum likelihood estimator,
because the null hypothesisH0 : θ1 = θ∗1 is not taken into account.
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Let θ̂2 be the maximum likelihood estimator ofθ2 under the null hypothesis
H0 : θ1 = θ∗1. That is,θ̂2 is a solution of the following equation:

∂l(θ∗1, θ2)

∂θ2
= 0.

The solutionθ̂2 is called theconstrained maximum likelihood estimatorof θ2,
because the likelihood function is maximized with respect toθ2 subject to the
constraintθ1 = θ∗1.

Defineλ as follows:

λ =
l(θ∗1, θ̂2)

l (̃θ1, θ̃2)
,

which is called thelikelihood ratio .
As n goes to infinity, it is known that we have:

−2 log(λ) ∼ χ2(k1),

wherek1 denotes the number of the constraints.
Let χ2

α(k1) be theα percent point from the chi-square distribution withk1

degrees of freedom. When−2 log(λ) > χ2
α(k1), we reject the null hypothesis

H0 : θ1 = θ∗1 at the significance levelα. If −2 log(λ) is close to zero, we accept
the null hypothesis. When (θ∗1, θ̂2) is close to (̃θ1, θ̃2), −2 log(λ) approaches zero.

The likelihood ratio test is useful in the case where it is not easy to derive the
distribution of (̃θ1, θ̃2).

Example 1.18: X1, X2, · · ·, Xn are mutually independently, identically and ex-
ponentially distributed. Consider the following exponential probability density
function:

f (x; γ) = γe−γx,

for 0 < x < ∞.
Using the likelihood ratio test, we want to test the null hypothesisH0 : γ = γ0

against the alternative hypothesisH1 : γ , γ0. Remember that in Example 1.17
we test the hypothesis with the Wald test.

In this case, the likelihood ratio is given by:

λ =
l(γ0)
l(γ̂n)

,
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whereγ̂n is derived in Example 1.17, i.e.,

γ̂n =
n∑n

i=1 Xi
=

1

X
.

Since the number of the constraint is equal to one, as the sample sizen goes to
infinity we have the following asymptotic distribution:

−2 logλ −→ χ2(1).

The likelihood ratio is computed as follows:

λ =
l(γ0)
l(γ̂n)

=
γn

0e
−γ0

∑
Xi

γ̂n
ne−n

.

If −2 logλ > χ2
α(1), we reject the null hypothesisH0 : µ = µ0 at the sig-

nificance levelα. Note thatχ2
α(1) denotes the 100× α percent point from the

chi-square distribution with one degree of freedom.

Example 1.19: Suppose thatX1, X2, · · ·, Xn are mutually independently, identi-
cally and normally distributed with mean zero and varianceσ2.

The normal probability density function with meanµ and varianceσ2 is given
by:

f (x; µ, σ2) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

.

By the likelihood ratio test, we want to test the null hypothesisH0 : µ = µ0

against the alternative hypothesisH1 : µ , µ0.
The likelihood ratio is given by:

λ =
l(µ0, σ̃

2)
l(µ̂, σ̂2)

,

whereσ̃2 is the constrained maximum likelihood estimator with the constraint
µ = µ0, while (µ̂, σ̂2) denotes the unconstrained maximum likelihood estimator.
In this case, since the number of the constraint is one, the asymptotic distribution
is as follows:

−2 logλ −→ χ2(1).
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Now, we derivel(µ0, σ̃
2) andl(µ̂, σ̂2). l(µ, σ2) is written as:

l(µ, σ2) = f (x1, x2, · · · , xn; µ, σ
2) =

n∏

i=1

f (xi; µ, σ
2)

=

n∏

i=1

1√
2πσ2

exp
(
− 1

2σ2
(xi − µ)2

)

= (2πσ2)−n/2 exp
(
− 1

2σ2

n∑

i=1

(xi − µ)2
)
.

The log-likelihood function logl(µ, σ2) is represented as:

log l(µ, σ2) = −n
2

log(2π) − n
2

log(σ2) − 1
2σ2

n∑

i=1

(xi − µ)2.

For the numerator of the likelihood ratio, under the constraintµ = µ0, maxi-
mize logl(µ0, σ

2) with respect toσ2. Since we obtain the first-derivative:

∂ log l(µ0, σ
2)

∂σ2
= −n

2
1
σ2

+
1

2σ4

n∑

i=1

(xi − µ0)
2 = 0,

the constrained maximum likelihood estimatorσ̃2 is given by:

σ̃2 =
1
n

n∑

i=1

(xi − µ0)
2.

Therefore, replacingσ2 by σ̃2, l(µ0, σ̃
2) is written as:

l(µ0, σ̃
2) = (2πσ̃2)−n/2 exp

(
− 1

2σ̃2

n∑

i=1

(xi − µ0)
2
)

= (2πσ̃2)−n/2 exp
(
−n

2

)
.

For the denominator of the likelihood ratio, because the unconstrained maxi-
mum likelihood estimators are obtained as:

µ̂ =
1
n

n∑

i=1

xi , σ̂2 =
1
n

n∑

i=1

(xi − µ̂)2,

l(µ̂, σ̂2) is written as:

l(µ̂, σ̂2) = (2πσ̂2)−n/2 exp
(
− 1

2σ̂2

n∑

i=1

(xi − µ̂)2
)

= (2πσ̂2)−n/2 exp
(
−n

2

)
.
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Thus, the likelihood ratio is given by:

λ =
l(µ0, σ̃

2)
l(µ̂, σ̂2)

=

(2πσ̃2)−n/2 exp
(
−n

2

)

(2πσ̂2)−n/2 exp
(
−n

2

) =
(σ̃2

σ̂2

)−n/2
.

Asymptotically, we have:

−2 logλ = n(log σ̃2 − log σ̂2) ∼ χ2(1).

When−2 logλ > χ2
α(1), we reject the null hypothesisH0 : µ = µ0 at the signifi-

cance levelα.

1.9 Regression Analysis

1.9.1 Setup of the Model

When (X1,Y1), (X2,Y2), · · ·, (Xn,Yn) are available, suppose that there is a linear
relationship betweenY andX, i.e.,

Yi = β1 + β2Xi + ui , (1.20)

for i = 1,2, · · · ,n.
Xi andYi denote thei-th observations.Yi is called thedependent variableor

theunexplanatory variable, while Xi is known as theindependent variableor
the explanatory variable. β1 andβ2 are unknownparameters to be estimated.
ui is the unobservederror term assumed to be a random variable with mean zero
and varianceσ2. β1 andβ2 are called theregression coefficients.

Xi is assumed to be nonstochastic, butYi is stochastic becauseYi depends on
the errorui. The error termsu1, u2, · · ·, un are assumed to be mutually indepen-
dently and identically distributed. it is assumed thatui has a distribution with
mean zero, i.e., E(ui) = 0 is assumed. Taking the expectation on both sides of
equation (1.20), the expectation ofYi is represented as:

E(Yi) = E(β1 + β2Xi + ui) = β1 + β2Xi + E(ui)

= β1 + β2Xi , (1.21)

for i = 1,2, · · · ,n. Using E(Yi) we can rewrite (1.20) asYi = E(Yi) + ui. Equation
(1.21) represents the true regression line.
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Figure 1.4: True and Estimated Regression Lines
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Let β̂1 andβ̂2 be estimators ofβ1 andβ2. Replacing (β1, β2) by (β̂1, β̂2), equa-
tion (1.21) turns out to be:

Yi = β̂1 + β̂2Xi + ei , (1.22)

for i = 1,2, · · · ,n, whereei is called theresidual. The residualei is taken as the
experimental value ofui.

We defineŶi as follows:
Ŷi = β̂1 + β̂2Xi , (1.23)

for i = 1,2, · · · ,n, which is interpreted as the predicted value ofYi. Equation
(1.23) indicates the estimated regression line, which is different from equation
(1.21). Moreover, usinĝYi we can rewrite (1.22) asYi = Ŷi + ei.

Equations (1.21) and (1.23) are displayed in Figure 1.4. Consider the case of
n = 6 for simplicity.× indicates the observed data series. The true regression line
(1.21) is represented by the solid line, while the estimated regression line (1.23)
is drawn with the dotted line. Based on the observed data,β1 andβ2 are estimated
as: β̂1 andβ̂2.

In the next section, we consider how to obtain the estimates ofβ1 andβ2, i.e.,
β̂1 andβ̂2.
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1.9.2 Ordinary Least Squares Estimation

Suppose that (X1,Y1), (X2,Y2), · · ·, (Xn,Yn) are available. For the regression model
(1.20), we consider estimatingβ1, β2 andσ2. Replacingβ1 andβ2 by their esti-
matesβ̂1 andβ̂2, remember that the residualei is given by:

ei = Yi − Ŷi = Yi − β̂1 − β̂2Xi .

The sum of squared residuals is defined as follows:

S(β̂1, β̂2) =

n∑

i=1

e2
i =

n∑

i=1

(Yi − β̂1 − β̂2Xi)
2.

It might be plausible to choose theβ̂1 andβ̂2 which minimize the sum of squared
residuals, i.e.,S(β̂1, β̂2). This method is called theordinary least squares (OLS)
estimation. To minimizeS(β̂1, β̂2) with respect toβ̂1 and β̂2, we set the partial
derivatives equal to zero:

∂S(β̂1, β̂2)

∂β̂1

= −2
n∑

i=1

(Yi − β̂1 − β̂2Xi) = 0,

∂S(β̂1, β̂2)

∂β̂2

= −2
n∑

i=1

Xi(Yi − β̂1 − β̂2Xi) = 0,

which yields the following two equations:

Y = β̂1 + β̂2X, (1.24)
n∑

i=1

XiYi = nXβ̂1 + β̂2

n∑

i=1

X2
i , (1.25)

whereY = (1/n)
∑n

i=1 Yi and X = (1/n)
∑n

i=1 Xi. Multiplying (1.24) bynX and
subtracting (1.25), we can deriveβ̂2 as follows:

β̂2 =

∑n
i=1 XiYi − nXY

∑n
i=1 X2

i − nX
2

=

∑n
i=1(Xi − X)(Yi − Y)
∑n

i=1(Xi − X)2
. (1.26)

From equation (1.24),̂β1 is directly obtained as follows:

β̂1 = Y− β̂2X. (1.27)
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When the observed values are taken forYi andXi for i = 1,2, · · · ,n, we say that
β̂1 and β̂2 are called theordinary least squares estimates (or simply theleast
squares estimates) of β1 andβ2. WhenYi for i = 1,2, · · · ,n are regarded as
the random sample, we say thatβ̂1 andβ̂2 are called theordinary least squares
estimators (or theleast squares estimators) ofβ1 andβ2.

1.9.3 Properties of Least Squares Estimator

Equation (1.26) is rewritten as:

β̂2 =

∑n
i=1(Xi − X)(Yi − Y)
∑n

i=1(Xi − X)2
=

∑n
i=1(Xi − X)Yi∑n
i=1(Xi − X)2

− Y
∑n

i=1(Xi − X)
∑n

i=1(Xi − X)2

=

n∑

i=1

Xi − X
∑n

i=1(Xi − X)2
Yi =

n∑

i=1

ωiYi . (1.28)

In the third equality,
∑n

i=1(Xi − X) = 0 is utilized because ofX = (1/n)
∑n

i=1 Xi. In
the fourth equality,ωi is defined as:

ωi =
Xi − X

∑n
i=1(Xi − X)2

.

ωi is nonstochastic becauseXi is assumed to be nonstochastic.ωi has the following
properties:

n∑

i=1

ωi =

n∑

i=1

Xi − X
∑n

i=1(Xi − X)2
=

∑n
i=1(Xi − X)

∑n
i=1(Xi − X)2

= 0, (1.29)

n∑

i=1

ωiXi =

n∑

i=1

ωi(Xi − X) =

∑n
i=1(Xi − X)2

∑n
i=1(Xi − X)2

= 1, (1.30)

n∑

i=1

ω2
i =

n∑

i=1

(
Xi − X

∑n
i=1(Xi − X)2

)2

=

∑n
i=1(Xi − X)2

(∑n
i=1(Xi − X)2

)2

=
1

∑n
i=1(Xi − X)2

. (1.31)

The first equality of equation (1.30) comes from equation (1.29).
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From now on, we focus only on̂β2, because usuallyβ2 is more important than
β1 in the regression model (1.20). In order to obtain the properties of the least
squares estimator̂β2, we rewrite equation (1.28) as:

β̂2 =

n∑

i=1

ωiYi =

n∑

i=1

ωi(β1 + β2Xi + ui)

= β1

n∑

i=1

ωi + β2

n∑

i=1

ωiXi +

n∑

i=1

ωiui

= β2 +

n∑

i=1

ωiui . (1.32)

In the fourth equality of (1.32), equations (1.29) and (1.30) are utilized.

Mean and Variance of β̂2: u1, u2, · · ·, un are assumed to be mutually indepen-
dently and identically distributed with mean zero and varianceσ2, but they are
not necessarily normal. Remember that we do not need normality assumption
to obtain mean and variance but the normality assumption is required to test a
hypothesis.

From equation (1.32), the expectation ofβ̂2 is derived as follows:

E(β̂2) = E(β2 +

n∑

i=1

ωiui) = β2 + E(
n∑

i=1

ωiui)

= β2 +

n∑

i=1

ωiE(ui) = β2. (1.33)

It is shown from (1.33) that the ordinary least squares estimatorβ̂2 are the unbiased
estimator ofβ2.

From (1.32), the variance ofβ̂2 is computed as:

V(β̂2) = V(β2 +

n∑

i=1

ωiui) = V(
n∑

i=1

ωiui) =

n∑

i=1

V(ωiui) =

n∑

i=1

ω2
i V(ui)

= σ2
n∑

i=1

ω2
i =

σ2

∑n
i=1(Xi − X)2

. (1.34)

From Theorem on p.18, the second and the fourth equalities hold. The third equal-
ity holds becauseu1, u2, · · ·, un are mutually independent (see the theorem on
p.23). The last equality comes from equation (1.31).

Thus, E(̂β2) and V(̂β2) are given by (1.33) and (1.34).
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Gauss-Markov Theorem: It has been discussed above thatβ̂2 is represented
as (1.28), which implies that̂β2 is a linear estimator, i.e., linear inYi. In addi-
tion, (1.33) indicates that̂β2 is an unbiased estimator. Therefore, summarizing
these two facts, it is shown thatβ̂2 is a linear unbiased estimator. Furthermore,
here we show that̂β2 has minimum variance within a class of the linear unbiased
estimators.

Consider the alternative linear unbiased estimatorβ̃2 as follows:

β̃2 =

n∑

i=1

ciYi =

n∑

i=1

(ωi + di)Yi ,

whereci = ωi + di is defined anddi is nonstochastic. Then,̃β2 is transformed into:

β̃2 =

n∑

i=1

ciYi =

n∑

i=1

(ωi + di)(β1 + β2Xi + ui)

= β1

n∑

i=1

ωi + β2

n∑

i=1

ωiXi +

n∑

i=1

ωiui + β1

n∑

i=1

di + β2

n∑

i=1

diXi +

n∑

i=1

diui

= β2 + β1

n∑

i=1

di + β2

n∑

i=1

diXi +

n∑

i=1

ωiui +

n∑

i=1

diui .

Equations (1.29) and (1.30) are used in the forth equality. Taking the expectation
on both sides of the above equation, we obtain:

E(̃β2) = β2 + β1

n∑

i=1

di + β2

n∑

i=1

diXi +

n∑

i=1

ωiE(ui) +

n∑

i=1

diE(ui)

= β2 + β1

n∑

i=1

di + β2

n∑

i=1

diXi .

Note thatdi is not a random variable and that E(ui) = 0. Sincẽβ2 is assumed to be
unbiased, we need the following conditions:

n∑

i=1

di = 0,
n∑

i=1

diXi = 0.

When these conditions hold, we can rewriteβ̃2 as:

β̃2 = β2 +

n∑

i=1

(ωi + di)ui .
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The variance of̃β2 is derived as:

V(β̃2) = V
(
β2 +

n∑

i=1

(ωi + di)ui

)
= V

( n∑

i=1

(ωi + di)ui

)
=

n∑

i=1

V
(
(ωi + di)ui

)

=

n∑

i=1

(ωi + di)
2V(ui) = σ2(

n∑

i=1

ω2
i + 2

n∑

i=1

ωidi +

n∑

i=1

d2
i )

= σ2(
n∑

i=1

ω2
i +

n∑

i=1

d2
i ).

From unbiasedness of̃β2, using
∑n

i=1 di = 0 and
∑n

i=1 diXi = 0, we obtain:

n∑

i=1

ωidi =

∑n
i=1(Xi − X)di∑n
i=1(Xi − X)2

=

∑n
i=1 Xidi − X

∑n
i=1 di∑n

i=1(Xi − X)2
= 0,

which is utilized to obtain the variance of̃β2. From (1.34), the variance of̂β2 is
given by: V(̂β2) = σ2 ∑n

i=1ω
2
i . Therefore, we have:

V(β̃2) ≥ V(β̂2),

because
∑n

i=1 d2
i ≥ 0. When

∑n
i=1 d2

i = 0, i.e., whend1 = d2 = · · · = dn = 0, we
have the equality: V(̃β2) = V(β̂2). In the case ofd1 = d2 = · · · = dn = 0, β̂2 is
equivalent tõβ2.

Thus, the least squares estimatorβ̂2 gives us thelinear unbiased minimum
variance estimator, or equivalently thebest linear unbiased estimator (BLUE),
which is called theGauss-Markov theorem.

Asymptotic Properties of β̂2: We assume that asn goes to infinity we have the
following:

1
n

n∑

i=1

(Xi − X)2 −→ M < ∞,

whereM is a constant value. From (1.31), we obtain:

n
n∑

i=1

ω2
i =

1

(1/n)
∑n

i=1(Xi − X)
−→ 1

M
.

Note thatf (xn) −→ f (m) whenxn −→ m, wherem is a constant value andf (·) is
a function.
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Here, we show both consistency ofβ̂2 and asymptotic normality of
√

n(β̂2−β2).
First, we prove that̂β2 is a consistent estimator ofβ2. As in (1.9), Chebyshev’s
inequality is given by:

P(|X − µ| > ε) ≤ σ2

ε2
,

whereµ = E(X) andσ2 = V(X). Here, we replaceX, E(X) and V(X) by β̂2,

E(β̂2) = β2, V(β̂2) = σ2
n∑

i=1

ω2
i =

σ2

∑n
i=1(Xi − X)

,

respectively. Then, whenn −→ ∞, we obtain the following result:

P(|β̂2 − β2| > ε) ≤
σ2 ∑n

i=1ω
2
i

ε2
=

σ2

ε2
∑n

i=1(Xi − X)
−→ 0,

where
∑n

i=1ω
2
i −→ 0 becausen

∑n
i=1ω

2
i −→ 1/M from the assumption. Thus, we

obtain the result that̂β2 −→ β2 asn −→ ∞. Therefore, we can conclude thatβ̂2 is
a consistent estimator ofβ2.

Next, we want to show that
√

n(β̂2− β2) is asymptotically normal. Noting that
β̂2 = β2 +

∑n
i=1ωiui as in (1.32) from Corollary 2 on p.39 (central limit theorem),

asymptotic normality is shown as follows:
∑n

i=1ωiui − E(
∑n

i=1ωiui)√
V(

∑n
i=1ωiui)

=

∑n
i=1ωiui

σ
√∑n

i=1ω
2
i

=
β̂2 − β2

σ/

√∑n
i=1(Xi − X)2

−→ N(0,1),

where E(
∑n

i=1ωiui) = 0, V(
∑n

i=1ωiui) = σ2 ∑n
i=1ω

2
i and

∑n
i=1ωiui = β̂2 − β2 are

substituted in the second equality. Moreover, we can rewrite as follows:

β̂2 − β2

σ/

√∑n
i=1(Xi − X)2

=

√
n(β̂2 − β2)

σ/

√
(1/n)

∑n
i=1(Xi − X)2

−→
√

n(β̂2 − β2)

σ/
√

M
−→ N(0,1),

or equivalently,
√

n(β̂2 − β2) −→ N(0,
σ2

M
).

Thus, asymptotic normality of
√

n(β̂2 − β2) is shown.
Finally, replacingσ2 by its consistent estimators2, it is known as follows:

β̂2 − β2

s
√∑n

i=1(Xi − X)2

−→ N(0,1), (1.35)
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wheres2 is defined as:

s2 =
1

n− 2

n∑

i=1

e2
i =

1
n− 2

n∑

i=1

(Yi − β̂1 − β̂2Xi)
2, (1.36)

which is a consistent and unbiased estimator ofσ2.
Thus, using (1.35), in large sample we can construct the confidence interval

discussed in Section (1.7.6) and test the hypothesis discussed in Section 1.8.

Exact Distribution of β̂2: We have shown asymptotic normality of
√

n(β̂2−β2),
which is one of the large sample properties. Now, we discuss the small sample
properties ofβ̂2. In order to obtain the distribution of̂β2 in small sample, the
distribution of the error term has to be assumed. Therefore, the extra assumption
is thatui ∼ N(0, σ2). Writing equation (1.32), again,β̂2 is represented as:

β̂2 = β2 +

n∑

i=1

ωiui .

First, we obtain the distribution of the second term in the above equation. From
Theorem on p.33,

∑n
i=1ωiui is distributed as:

n∑

i=1

ωiui ∼ N(0, σ2
n∑

i=1

ω2
i ).

Therefore, from Example 1.9 on p.26,β̂2 is distributed as:

β̂2 = β2 +

n∑

i=1

ωiui ∼ N(β2, σ
2

n∑

i=1

ω2
i ),

or equivalently,

β̂2 − β2

σ
√∑n

i=1ω
2
i

=
β̂2 − β2

σ/

√∑n
i=1(Xi − X)2

∼ N(0,1),

for anyn.
Moreover, replacingσ2 by its estimators2 defined in (1.36), it is known that

we have:
β̂2 − β2

s/
√∑n

i=1(Xi − X)2

∼ t(n− 2),
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wheret(n− 2) denotest distribution withn− 2 degrees of freedom. See Section
2.2.10 for derivation of thet distribution. Thus, under normality assumption on
the error termui, the t(n − 2) distribution is used for the confidence interval and
the testing hypothesis in small sample.

1.9.4 Multiple Regression Model

In Sections 1.9.1 – 1.9.3, only one independent variable, i.e.,Xi, is taken into the
regression model. In this section, we extend it to more independent variables,
which is called themultiple regression. We consider the following regression
model:

Yi = β1Xi,1 + β2Xi,2 + · · · + βkXi,k + ui

= Xiβ + ui ,

for i = 1,2, · · · ,n, whereXi andβ denote a 1× k vector of the independent vari-
ables and ak × 1 vector of the unknown parameters to be estimated, which are
represented as:

Xi = (Xi,1,Xi,2, · · · ,Xi,k), β =



β1

β2
...
βk


.

Xi, j denotes thei-th observation of thej-th independent variable. The case ofk = 2
andXi,1 = 1 for all i is exactly equivalent to (1.20). Therefore, the matrix form
above is a generalization of (1.20). Writing all the equations fori = 1,2, · · · ,n,
we have:

Y1 = β1X1,1 + β2X1,2 + · · · + βkX1,k + u1,

Y2 = β1X2,1 + β2X2,2 + · · · + βkX2,k + u2,
...

Yn = β1Xn,1 + β2Xn,2 + · · · + βkXn,k + un,

which is rewritten as:


Y1

Y2
...

Yn


=



X1,1 X1,2 · · · X1,k

X2,1 X2,2 · · · X2,k
...

...
. . .

...
Xn,1 Xn,2 · · · Xn,k





β1

β2
...
βk


+



u1

u2
...

uk


.
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Again, the above equation is compactly rewritten as:

Y = Xβ + u. (1.37)

whereY, X andu are denoted by:

Y =



Y1

Y2
...

Yn


, X =



X1,1 X1,2 · · · X1,k

X2,1 X2,2 · · · X2,k
...

...
. . .

...
Xn,1 Xn,2 · · · Xn,k


, u =



u1

u2
...

uk


.

Utilizing the matrix form (1.37), we derive the ordinary least squares estimator
of β, denoted bŷβ. In equation (1.37), replacingβ by β̂, we have the following
equation:

Y = Xβ̂ + e,

wheree denotes a 1× n vector of the residuals. Thei-th element ofe is given by
ei. The sum of squared residuals is written as follows:

S(β̂) =

n∑

i=1

e2
i = e′e = (Y− Xβ̂)′(Y− Xβ̂) = (Y′ − β̂′X′)(Y− Xβ̂)

= Y′Y− Y′Xβ̂ − β̂′X′Y + β̂′X′Xβ̂ = Y′Y− 2Y′Xβ̂ + β̂′X′Xβ̂.

See Appendix 1.5 for the transpose in the fourth equality. In the last equality, note
that β̂′X′Y = Y′Xβ̂ because both are scalars. To minimizeS(β̂) with respect tôβ,
we set the first derivative ofS(β̂) equal to zero, i.e.,

∂S(β̂)

∂β̂
= −2X′Y + 2X′Xβ̂ = 0.

See Appendix 1.5 for the derivatives of matrices. Solving the equation above with
respect tôβ, the ordinary least squares estimator ofβ is given by:

β̂ = (X′X)−1X′Y. (1.38)

See Appendix 1.5 for the inverse of the matrix. Thus, the ordinary least squares
estimator is derived in the matrix form.

Now, in order to obtain the properties ofβ̂ such as mean, variance, distribution
and so on, (1.38) is rewritten as follows:

β̂ = (X′X)−1X′Y = (X′X)−1X′(Xβ + u) = (X′X)−1X′Xβ + (X′X)−1X′u

= β + (X′X)−1X′u. (1.39)
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Taking the expectation on both sides of equation (1.39), we have the following:

E(β̂) = E(β + (X′X)−1X′u) = β + (X′X)−1X′E(u) = β,

because of E(u) = 0 by the assumption of the error termui. Thus, unbiasedness of
β̂ is shown.

The variance of̂β is obtained as:

V(β̂) = E((β̂ − β)(β̂ − β)′) = E
(
(X′X)−1X′u((X′X)−1X′u)′

)

= E((X′X)−1X′uu′X(X′X)−1) = (X′X)−1X′E(uu′)X(X′X)−1

= σ2(X′X)−1X′X(X′X)−1 = σ2(X′X)−1.

The first equality is the definition of variance in the case of vector. In the fifth
equality, E(uu′) = σ2In is used, which implies that E(u2

i ) = σ2 for all i and
E(uiuj) = 0 for i , j. Remember thatu1, u2, · · ·, un are assumed to be mutu-
ally independently and identically distributed with mean zero and varianceσ2.

Under normality assumption on the error termu, it is known that the distribu-
tion of β̂ is given by:

β̂ ∼ N(β, σ2(X′X)−1).

Taking thej-th element of̂β, its distribution is given by:

β̂ j ∼ N(β j , σ
2aj j ), i.e.,

β̂ j − β j

σ
√

a j j
∼ N(0,1),

whereaj j denotes thej-th diagonal element of (X′X)−1.
Replacingσ2 by its estimators2, we have the followingt distribution:

β̂ j − β j

s
√

aj j
∼ t(n− k),

wheret(n− k) denotes thet distribution withn− k degrees of freedom.s2 is taken
as follows:

s2 =
1

n− k

n∑

i=1

e2
i =

1
n− k

e′e =
1

n− k
(Y− Xβ̂)′(Y− Xβ̂),

which leads to an unbiased estimator ofσ2.
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Using the central limit theorem, without normality assumption we can show
that asn −→ ∞, under the condition of (1/n)X′X −→ M we have the following
result:

β̂ j − β j

s
√

aj j
−→ N(0,1),

whereM denotes ak× k constant matrix.
Thus, we can construct the confidence interval and the testing procedure, us-

ing the t distribution under the normality assumption or the normal distribution
without the normality assumption.

Appendix 1.1: Integration by Substitution

Univariate Case: For a function ofx, f (x), we perform integration by substitu-
tion, usingx = ψ(y). Then, it is easy to obtain the following formula:

∫
f (x)dx =

∫
ψ′(y) f (ψ(y))dy,

which formula is called theintegration by substitution.

Proof:
Let F(x) be the integration off (x), i.e.,

F(x) =

∫ x

−∞
f (t)dt,

which implies thatF′(x) = f (x).
DifferentiatingF(x) = F(ψ(y)) with respect toy, we have:

f (x) ≡ dF(ψ(y))
dy

=
dF(x)

dx
dx
dy

= f (x)ψ′(y) = f (ψ(y))ψ′(y).

Bivariate Case: For f (x, y), definex = ψ1(u, v) andy = ψ2(u, v).
∫∫

f (x, y)dxdy =

∫∫
J f(ψ1(u, v), ψ2(u, v))dudv,

whereJ is called theJacobian, which represents the following determinant:

J =

∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣
=
∂x
∂u
∂y
∂v
− ∂x
∂v
∂y
∂u
.
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Appendix 1.2: Integration by Parts

Let h(x) andg(x) be functions ofx. Then, we have the following formula:
∫

h(x)g′(x)dx = h(x)g(x) −
∫

h′(x)g(x)dx,

which is called theintegration by parts.

Proof:
Consider the derivative off (x)g(x) with respect tox, i.e.,

(
f (x)g(x)

)′
= f ′(x)g(x) + f (x)g′(x).

Integrating the above equation on both sides, we have:
∫ (

f (x)g(x)
)′

dx =

∫
f ′(x)g(x)dx +

∫
f (x)g′(x)dx.

Therefore, we obtain:

f (x)g(x) =

∫
f ′(x)g(x)dx +

∫
f (x)g′(x)dx.

Thus, the following result is derived.
∫

f (x)g′(x)dx = f (x)g(x) −
∫

f ′(x)g(x)dx.

When we want to integratef (x)g′(x) within the range betweena andb for a < b,
the above formula is modified as:

∫ b

a
f (x)g′(x)dx =

[
f (x)g(x)

]b

a
−

∫ b

a
f ′(x)g(x)dx.

Appendix 1.3: Taylor Series Expansion

Consider approximatingf (x) aroundx = x0 by the Taylor series expansion. Then,
f (x) is approximated as follows:

f (x) = f (x0) + f ′(x0)(x− x0) +
1
2!

f ′′(x0)(x− x0)
2 +

1
3!

f ′′′(x0)(x− x0)
3 + · · ·

=

∞∑

n=0

1
n!

f (n)(x0)(x− x0)
n,
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where f (n)(x0) denotes then-th derivative of f (x) evaluated atx = x0. Note that
f (0)(x0) = f (x0) and 0!= 1.

In addition, the following approximation is called thek-order Taylor series
expansion:

f (x) ≈
k∑

n=0

1
n!

f (n)(x0)(x− x0)
n.

Appendix 1.4: Cramer-Rao Inequality

As seen in (1.12) and (1.13), the Cramer-Rao inequality is given by:

V(θ̂n) ≥ σ
2(θ)
n

,

where

σ2(θ) =
1

E

((∂ log f (X; θ)
∂θ

)2
) =

1

V

((∂ log f (X; θ)
∂θ

)) = − 1

E

(
∂2 log f (X; θ)

∂θ2

) .

Here, we prove the above inequality and the equalities inσ2(θ).

Proof:
The likelihood functionl(θ; x) = l(θ; x1, x2, · · ·, xn) is a joint density ofX1, X2,

· · ·, Xn. Therefore, the integration ofl(θ; x1, x2, · · ·, xn) with respect tox1, x2, · · ·,
xn is equal to one. See Section 1.7.5 for the likelihood function.

That is, we have the following equation:

1 =

∫
l(θ; x)dx, (1.40)

where the likelihood functionl(θ; x) is given byl(θ; x) =
∏n

i=1 f (xi; θ) and
∫
· · · dx

impliesn-tuple integral.
Differentiating both sides of equation (1.40) with respect toθ, we obtain the

following equation:

0 =

∫
∂l(θ; x)
∂θ

dx =

∫
1

l(θ; x)
∂l(θ; x)
∂θ

l(θ; x)dx

=

∫
∂ log l(θ; x)

∂θ
l(θ; x)dx = E

(∂ log l(θ; X)
∂θ

)
, (1.41)
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which implies that the expectation of∂ log l(θ; X)/∂θ is equal to zero. In the third
equality, note that d logx/dx = 1/x.

Now, let θ̂n be an estimator ofθ. The definition of the mathematical expecta-
tion of the estimator̂θn is represented as:

E(θ̂n) =

∫
θ̂nl(θ; x)dx. (1.42)

Differentiating equation (1.42) with respect toθ on both sides, we can rewrite as
follows:

∂E(θ̂n)
∂θ

=

∫
θ̂n
∂l(θ; x)
∂θ

dx =

∫
θ̂n
∂ log l(θ; x)

∂θ
l(θ; x)dx

=

∫ (
θ̂n − E(θ̂n)

)(∂ log l(θ; x)
∂θ

− E(
∂ log l(θ; x)

∂θ
)
)
l(θ; x)dx

= Cov
(
θ̂n,

∂ log l(θ; X)
∂θ

)
. (1.43)

In the second equality, d logx/dx = 1/x is utilized. The third equality holds
because of E(∂ log l(θ; x)/∂θ) from equation (1.41).

For simplicity of discussion, suppose thatθ is a scalar. Taking the square on
both sides of equation (1.43), we obtain the following expression:

(∂E(θ̂n)
∂θ

)2
=

(
Cov

(
θ̂n,

∂ log l(θ; X)
∂θ

))2

= ρ2V(θ̂n)V
(∂ log l(θ; X)

∂θ

)

≤ V(θ̂n)V

(
∂ log l(θ; X)

∂θ

)
,

whereρ denotes the correlation coefficient between̂θn and∂ log l(θ; X)/∂θ. That
is, we have the definition ofρ is given by:

ρ =

Cov
(
θ̂n,

∂ log l(θ; X)
∂θ

)

√
V(θ̂n)

√
V
(∂ log l(θ; X)

∂θ

) .

Moreover, we have−1 ≤ ρ ≤ 1 (i.e.,ρ2 ≤ 1). Then, the following inequality is
obtained. (∂E(θ̂n)

∂θ

)2 ≤ V(θ̂n) V
(∂ log l(θ; X)

∂θ

)
,
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which is rewritten as:

V(θ̂n) ≥
(∂E(θ̂n)

∂θ

)2

V
(∂ log l(θ; X)

∂θ

) . (1.44)

When E(̂θn) = θ, i.e., whenθ̂n is an unbiased estimator ofθ, the numerator in
the right-hand side of equation (1.44) is equal to one. Therefore, we have the
following inequality:

V(θ̂n) ≥ 1

V
(∂ log l(θ; X)

∂θ

) =
1

E

((∂ log l(θ; X)
∂θ

)2
) .

Note that we have V(∂ log l(θ; X)/∂θ) = E((∂ log l(θ; X)/∂θ)2) in the equality above,
because of E(∂ log l(θ; X)/∂θ) = 0.

Moreover, the denominator in the right-hand side of the above inequality is
rewritten as follows:

E

((∂ log l(θ; X)
∂θ

)2
)

= E

(( n∑

i=1

∂ log f (Xi; θ)
∂θ

)2
)

=

n∑

i=1

E

((∂ log f (Xi; θ)
∂θ

)2
)

= nE

((∂ log f (X; θ)
∂θ

)2
)

= n
∫ ∞

−∞

(∂ log f (x; θ)
∂θ

)2
f (x; θ)dx.

In the first equality, logl(θ; X) =
∑n

i=1 log f (Xi; θ) is utilized. SinceXi, i =

1,2, · · · ,n, are mutually independent, the second equality holds. The third equal-
ity holds becauseX1, X2, · · ·, Xn are identically distributed.

Therefore, we obtain the following inequality:

V(θ̂n) ≥ 1

E

((∂ log l(θ; X)
∂θ

)2
) =

1

nE

((∂ log f (X; θ)
∂θ

)2
) =

σ2(θ)
n

,

which is equivalent to (1.12).

Next, we prove the equalities in (1.13), i.e.,

− E
(∂2 log f (X; θ)

∂θ2

)
= E

((∂ log f (X; θ)
∂θ

)2
)

= V
(∂ log f (X; θ)

∂θ

)
.
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Differentiating
∫

f (x; θ)dx = 1 with respect toθ, we obtain as follows:
∫

∂ f (x; θ)
∂θ

dx = 0.

We assume that the range ofx does not depend on the parameterθ and that
∂ f (x; θ)/∂θ exists. The above equation is rewritten as:∫

∂ log f (x; θ)
∂θ

f (x; θ)dx = 0,

or equivalently,

E
(∂ log f (x; θ)

∂θ

)
= 0. (1.45)

Again, differentiating with respect toθ,
∫

∂2 log f (x; θ)
∂θ2

f (x; θ)dx +

∫
∂ log f (x; θ)

∂θ

∂ f (x; θ)
∂θ

dx = 0,

i.e.,
∫

∂2 log f (x; θ)
∂θ2

f (x; θ)dx +

∫ (∂ log f (x; θ)
∂θ

)2
f (x; θ)dx = 0,

i.e.,

E
(∂2 log f (x; θ)

∂θ2

)
+ E

((∂ log f (x; θ)
∂θ

)2
)

= 0.

Thus, we obtain:

−E
(∂2 log f (x; θ)

∂θ2

)
= E

((∂ log f (x; θ)
∂θ

)2
)
.

Moreover, from equation (1.45), the following equation is derived.

E

((∂ log f (x; θ)
∂θ

)2
)

= V
(∂ log f (x; θ)

∂θ

)
.

Therefore, we have:

− E
(∂2 log f (X; θ)

∂θ2

)
= E

((∂ log f (X; θ)
∂θ

)2
)

= V
(∂ log f (X; θ)

∂θ

)
.

Thus, the Cramer-Rao inequality is derived as:

σ2(θ) =
1

E

((∂ log f (X; θ)
∂θ

)2
) =

1

V

((∂ log f (X; θ)
∂θ

)) = − 1

E
(∂2 log f (X; θ)

∂θ2

) .
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Appendix 1.5: Some Formulas of Matrix Algebra

1. Let A =



a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
al1 al2 · · · alk


= [ai j ], which is a l × k matrix, whereai j

denotesi-th row and j-th column ofA. Thetransposeof A, denoted byA′,
is defined as:

A′ =



a11 a21 · · · al1

a12 a22 · · · al2
...

...
. . .

...
a1k a2k · · · alk


= [aji ],

where thei-th row of A′ is thei-th column ofA.

2. (Ax)′ = x′A′,

whereA andx are al × k matrix and ak× 1 vector, respectively.

3. a′ = a,

wherea denotes a scalar.

4.
∂a′x
∂x

= a,

wherea andx arek× 1 vectors.

5.
∂x′Ax
∂x

= (A + A′)x,

whereA andx are ak× k matrix and ak× 1 vector, respectively.

Especially, whenA is symmetric,

∂x′Ax
∂x

= 2Ax.

6. LetA andB bek× k matrices, andIk be ak× k identity matrix (one in the
diagonal elements and zero in the other elements).

WhenAB = Ik, B is called theinverseof A, denoted byB = A−1.

That is,AA−1 = A−1A = Ik.

7. LetA be ak× k matrix andx be ak× 1 vector.
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If A is apositive definite matrix, for anyx we have:

x′Ax> 0.

If A is apositive semidefinite matrix, for anyx we have:

x′Ax≥ 0.

If A is anegative definite matrix, for anyx we have:

x′Ax< 0.

If A is anegative semidefinite matrix, for anyx we have:

x′Ax≤ 0.
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