Chapter 1

Elements of Statistics

In this chapter, the statistical methods used in the proceeding chapters are sum-
marized. Mood, Graybill and Bose (1974), Hogg and Craig (1995) and Stuart and
Ord (1991, 1994) are good references in Sections 1.1 — 1.8, while Judge, Hill,
Griffiths and Lee (1980) and Greene (1993, 1997) are representative textbooks in
Section 1.9.

1.1 Event and Probability

1.1.1 Event

We consider aexperiment whose outcome is not known in advance, which is
sometimes called eandom experiment The sample spaceof an experiment

is the set of all possible outcomes. Each element of a sample space is called an
elementof the sample space orsample point which represents each outcome
obtained by the experiment. Agventis any collection of outcomes contained in

the sample space, or equivalently a subset of the sample spasieipke event
consists of exactly one element andampound eventconsists of more than one
element. Sample space is denotedbgnd sample point is given hy.

Suppose that everdt is a subset of sample spa@e Let w be a sample point
in eventA. Then, we say that a sample poinis contained in a sample spage
which is denoted bw € A.

A set of the sample points which do not belong to ev&id called thecom-
plementary event which is denoted byA®. An event which do not have any
sample point is called thempty event denoted by. Conversely, an event which
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2 CHAPTER 1. ELEMENTS OF STATISTICS

includes all possible sample points is called Wiele event represented bg.

Next, consider two eventd and B. A set consisting of the whole sample
points which belong to either eveAtor eventB is called thesum event which
is denoted byA N B. A set consisting of the whole sample points which belong to
both eventA and evenB is called theproduct event, denoted byA N B. When
AN B =0, we say that eventd andB aremutually exclusive

Example 1.1: Consider an experiment of casting a die. We have six sample
points, which are denoted lay; = {1}, w, = {2}, w3 = {3}, w4 = {4}, ws = {5} and

we = {6}, wherew; represents the sample point that we hava this experiment,

the sample space is given b= {w1, w,, w3, wa, ws, we}. Let A be the event that
we have even numbers aBdbe the event that we have multiples of three. Then,
we can write a\ = {w,, w4, we} aNdB = {w3, wg}. The complementary event of
Ais given byA°® = {w, w3, ws}, Which is the event that we have odd numbers. The
sum event ofA and B is written asA U B = {wy, w3, w4, wg}, While the product
event iSAN B = {we}. SinceAnNn A° = (), we have the fact thah and A® are
mutually exclusive.

Example 1.2: Consider an experiment that consists in flipping a coin three
times. In this case, we have the following eight sample points:

w1 =HHH), w,=HHT), w3=MHTH), ws=HTT),
wWs = (T!H!H)’ we = (T,H,T), w7 = (T,T,H), wg = (TaT;T),

where H represents head whileindicates tail. For example, (H,T,H) means that
the first flip lands head, the second flip is tail and the third one is head. Therefore,
the sample space of this experiments can be written as:

Q = {w1, w2, W3, Wa, Ws, We, W7, We}.

Let A be an event that we have two heaBsye an event that we obtain at least
one tail,C be an event that we have head in the second flip[ahd an event that
we obtain tail in the third flip. Then, the everAsB andC are give by:

A = {w2, ws, ws},

B = {w2, w3, w4, ws, we, W7, W},
C = {w1, w2, ws, we},

D = {w), wa, we, ws}.
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SinceA is a subset 0B, denoted byA c B, a sum event i U B = B, while a
product event iA N B = A. Moreover, we obtai€ N D = {wy, wg} andC U D =
{w1, w2, w4, ws, We, Ws}.

1.1.2 Probability

Let n(A) be the number of sample pointsAn We haven(A) < n(B) whenA c B.
Each sample point is equally likely to occur. In the case of Example 1.1 (Section
1.1.1), each of the six possible outcomes has probabj@yahd in Example 1.2
(Section 1.1.1), each of the eight possible outcomes has probalfityius, the
probability which the evenA occurs is defined as:
n(A)

P(A) = Q)
In Example 1.1P(A) = 3/6 andP(An B) = 1/6 are obtained, becausf) = 6,
n(A) = 3 andn(An B) = 1. Similarly, in Example 1.2, we have(C) = 4/8,
P(An B) = P(A) = 3/8 and so on. Note that we obtaitA) < P(B) whenA C B.

It is known that we have the following three properties on probability:

0<P(A) <1, (1.1)
P(Q) = 1, (1.2)
P(@) = 0. (1.3)

0 c Ac Qimpliesn(®) < n(A) < n(Q). Therefore, we have:

n0) _ n(A) _n(@) _
n(Q) = (@) = n@) -

Dividing by n(€2), we obtain:
P©) < P(A) < P(Q) = 1.

1

Becausd# has no sample point, the number of the sample point is giver{)y=
0 and accordingly we have(0) = 0. Therefore, O< P(A) < 1 is obtained as in
(1.1). Thus, (1.1) — (1.3) are obtained.

When eventsA and B are mutually exclusive, i.e., wheA n B = 0, then
P(AU B) = P(A) + P(B) holds. Moreover, sinc& andA°® are mutually exclusive,
P(A°%) = 1 - P(A) is obtained. Note tha®(A U A®) = 1 holds. Generally, unlegs
andB are not exclusive, we have the following formula:

P(AU B) = P(A) + P(B) - P(AN B),
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which is known as thaddition rule. In Example 1.1, each probability is given
by P(AuU B) = 2/3, P(A) = 1/2, P(B) = 1/3 andP(An B) = 1/6. Thus, in the
example we can verify that the above addition rule holds.

The probability which evenA occurs, given that ever® has occurred, is
called theconditional probability , i.e.,

n(AnB) P(AnB)

A Te T RE)

or equivalently,
P(An B) = P(AIB)P(B),

which is called themultiplication rule . When event is independentof event
B, we haveP(An B) = P(A)P(B), which implies thaP(A|B) = P(A). Conversely,
P(ANB) = P(A)P(B) implies thatA is independent dB. In Example 1.2, because
of P(AN C) = 1/4 andP(C) = 1/2, the conditional probability?(AIC) = 1/2 is
obtained. FronP(A) = 3/8, we haveP(A N C) # P(A)P(C). Therefore A is not
independent o€. As for C andD, since we havé’(C) = 1/2, P(D) = 1/2 and
P(C n D) = 1/4, we can show that is independent oD.

1.2 Random Variable and Distribution

1.2.1 Univariate Random Variable and Distribution

Therandom variable X is defined as the real value function on sample sggace
SinceX is a function of a sample poim, it is written asX = X(w). Suppose that
X(w) takes a real value on the intentalThat is,X depends on a set of the sample
pointw, i.e.,{w; X(w) € 1}, which is simply written a$X € I}.

In Example 1.1 (Section 1.1.1), suppose tKais a random variable which
takes the number of spots up on the die. Thérs a function ofw and takes the
following values:

X(a)l) = 1, X((Uz) = 2, X(CL)3) = 3, X(a)4) = 4,
X(ws) =5, X(ws) = 6.

In Example 1.2 (Section 1.1.1), suppose tHas a random variable which takes
the number of heads. Depending on the sample poinkK takes the following

values:
X(wl) =3, X(wZ) =2, X(wS) =2, X(w4) =1,
X(ws) =2, X(wg) =1, X(w7) =1, X(wsg)=0.
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Thus, the random variable depends on a sample point.
There are two kinds of random variables. One tBszrete random variable,
while another is @ontinuous random variable.

Discrete random variable and Probability function: Suppose that the discrete
random variableX takesxy, Xo, - - -, wherex; < X, < --- is assumed. Consider the
probability thatX takesx;, i.e.,P(X = %) = p;, which is a function ofx. That is,

a function ofx;, say f(x), is associated witlP(X = x) = p;. The functionf(x)
represents the probability in the case whiréakesx;. Therefore, we have the
following relation:

PX=x)=p=f(x), i=12--,

wheref(x) is called theprobability function of X.
More formally, the functiorf (x) which has the following properties is defined
as the probability function.

f(Xi)ZOa i:laz,”',

2t =1

Furthermore, for an everit, we have the following equation:

P(X € A) = Z f(%).

X €A

Several functional forms of(x;) are shown in Section 2.4.

In Example 1.2 (Section 1.1.1), all the possible valueXdare 0, 1, 2 and
3. Thatis,x; = 0, X% = 1, X3 = 2 andx4 = 3 are assigned in this case. The
probability thatX takesxy, X, X3 Or X4 IS given by:

PX = 0)= 1(0) = P(lws)) = 5,
P(X =1) = (1) = P({ws, ws, w7}) = P({w4}) + P({ws}) + P({w7}) =

b

ol woolw

P(X = 2) = f(2) = P({w2, w3, ws}) = P({w2}) + P({ws}) + P({ws}) =

9

PX = 3)= 1(3) = Pllwr)) = 5,
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which can be written as:

3!

3 —
m ), X—O,1,2,3.

PX = %) = () = G
For P(X = 1) andP(X = 2), note that each sample point is mutually exclusive.
The above probability function is called tiénomial distribution discussed in

Section 2.4.5. Thus, we can chefk) > 0 and};, f(x) = 1 in Example 1.2.

Continuous random variable and Probability density function: Whereas a
discrete random variable assumes at most a countable set of possible values, a
continuous random variabl takes any real number within an intentalFor the
intervall, the probability whichX is contained imA is defined as:

P(Xel):ff(x)dx.
|

For example, let be the interval betweemandb for b > a. Then, we can rewrite
P(X € 1) as follows:

Pla< X<b)= fb f(x)dx,

wheref(x) is called theprobability density function of X, or simply thedensity
function of X.

In order for f(X) to be a probability density functiorf,(x) has to satisfy the
following properties:

—00

Some functional forms of (x) are discussed in Sections 2.1 — 2.3.
For a continuous random variable, note as follows:

P(X = X) = f f(t)dt = 0.

In the case of discrete random variabl®X = x) represents the probability
which X takesx;, i.e.,p; = f(X). Thus, the probability functio(x) itself implies
probability. However, in the case of continuous random varialités,< X < b)
indicates the probability whicK lies on the intervald, b).



1.2. RANDOM VARIABLE AND DISTRIBUTION 7

Example 1.3: As an example, consider the following function:

F(x) = 1, forO<x<1,
0, otherwise.

Clearly, sincef(x) > 0 for —co < X < o0 andf:o f(x)dx = fol f(x)dx = [x]3 = 1,
the above function can be a probability density function. In fact, it is called a
uniform distribution . See Section 2.1 for the uniform distribution.

Example 1.4: As another example, consider the following function:

1.2

f(x) = \/%e‘ix ,

for —oo < X < 0. Clearly, we havef(x) > O for all x. We check whether
[ f(9dx = 1. Definel = [~ f(X)dx.

To provel = 1, we may provd? = 1 because of (x) > 0 for all x, which is
shown as follows:

12 = (fo f(x)dx) = (fo f(x)dx)(Iw f(y)cly)
=([ ezt | —=ewezi)

:ZI f exp(—i(x +y2))dxdy
21 00
- %(fo de)(fo exp(—%rz)rdr)

21 )
= %(fo‘ de)(fo exp(-9)ds) = %Zn[— exp9)]y = 1.

In the fifth equality, integration by substitution is used. See Appendix 1.1 for the
integration by substitutionx = r cosé andy = r sing are taken for transformation,
which is a one-to-one transformation from Y) to (r,#). Note that O< r < +o0

and O< 6 < 2r. The Jacobian is given by:

0X OX
J= o 0o _‘cos@ —-rsing| _
|9y dy| |sind rcosd |

or 06
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Figure 1.1: Probability Functioh(x) and Distribution Functiork(x)
— Discrete Random Variable —

F(9 = i 1(6)

Note thatr is the integer which satisfieg < X < X,;.

In the second integration of the sixth equality, again, integration by substitution is

utilized, where transformation s= Erz.

Thus, we obtain the resulf = 1 and accordingly we have = 1 because
of f(x) > 0. Therefore,f(x) = e 2¥/2r is also taken as a probability density
function, which is called thestandard normal probability density function,
discussed in Section 2.2.1.

Distribution Function:  The distribution function (or thecumulative distri-
bution function), denoted byF(x), is defined as:

P(X < x) = F(X).
The properties of the distribution functidt(x) are represented by:

F(x1) < F(x2), for x; < Xo,
P(a< X <b)=F(b) - F(@),
F(—) =0, F(+c)=1

The diference between the discrete and continuous random variables is given by:

1. Discrete random variable (Figure 1.1):
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Figure 1.2: Density Functiof(x) and Distribution Functiori(x)
— Continuous Random Variable —

F() = [ f()dt f(X)

X
X
r r
o F(X) = Z f(x) = pi, wherer denotes the integer which satisfies
i=1 i=1
X < X< Xrlrl- |

e F(x)— F(x —€) = f(x) = pi, wheree is a small positive number less
thanx — X_.

2. Continuous random variable (Figure 1.2):
o F(x) = fx f(t)dt,
o F/(X) = f_(o;).
f(x) andF(x) are displayed in Figure 1.1 for a discrete random variable and Figure

1.2 for a continuous random variable.

1.2.2 Multivariate Random Variable and Distribution
We consider two random variablésandY in this section. It is easy to extend to

more than two random variables.

Discrete Random Variables: Suppose that discrete random variabteandY
takexy, X, - - - andys, Yo, - - -, respectively. The probability which eveja; X(w) =
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x; andY(w) = y;} occurs is given by:
P(X = XhY = yj) = fxy(Xi»Yj)’

wheref,y(Xi, y;) represents thint probability function of X andY. In order for
fu(Xi, y;) to be a joint probability functionf,y(x;, y;) has to satisfies the following
properties:

fy(%,y;) =0, i,j=12,--
Z ny(Xl’ yj) = 1.
i

Define f(x) and fy(y;) as:
() = D g6y, i=12,
j

) = Y fy(y). j=12
i

Then, fy(x) and fy(y;) are called thenarginal probability functions of X andY.
fx(x) and f,(y;) also have the properties of the probability functions, igx;) >
0 and;; fx(x) = 1, andfy(y;) = 0 and}; f(y;) = 1.

Continuous Random Variables: Consider two continuous random variabks
andY. For a domairD, the probability which eventw; (X(w), Y(w)) € D} occurs
is given by:

P((X.Y) € D) = f f £y (x, y)clxcly.

where f,y(X,y) is called thejoint probability density function of X andY or
the joint density function of X andY. f,/(X,y) has to satisfy the following
properties:

ny(X’ y) Z O,

f f foy(X, y)dxdy = 1.

fx(X) = [ ) fuy(X, y)ay,
600 = [ fotxyix

Define f(x) and f,(y) as:



1.2. RANDOM VARIABLE AND DISTRIBUTION 11

wheref,(x) and fy(y) are called thenarginal probability density functions of X
andY or themarginal density functionsof X andY.

For example, consider the eveat; a < X(w) < b, ¢ < Y(w) < d}, which is
the specific case of the domah Then, the probability that we have the event
{w;a< X(w) < b, ¢c< Y(w) < d}is written as:

b ~d
P(a<X<b,c<Y<d):ff fuy(X, y)dxdy.
aJc

The mixture of discrete and continuous random variables is also possible. For
example, LetX be a discrete random variable aidbe a continuous random
variable. X takesxy, Xz, - --. The probability which botlX takesx andY takes
real numbers within the intervalis given by:

P(X =X,Y€ |) = ffxy(Xi,y)dy.
|
Then, we have the following properties:

fxy(xi’y)zoa i:1’2a""

Y[ totsndy=1

The marginal probability function of is given by:

600 = [ oty
The marginal probability density function §fis:

) = D Fy%.y).

1.2.3 Conditional Distribution

Discrete Random Variable: Theconditional probability function of X given
Y =yjis represented as:

fxy(xi,yj) _ fxy(xi,yj)

P(X = xlY =y;) = fiy(Xly;) = fy) i fe(XoY))
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The second equality indicates the definition of the conditional probability, which
is shown in Section 1.1.2. The features of the conditional probability function

fuy(Xily;) are:
fay(Xily;) =0, i=12---,
Z fuy(Xily;) =1, foranyj.

Continuous Random Variable: Theconditional probability density function
of X givenY =y (or theconditional density function of X givenY =y) is:
fxy(x’ y) — fxy(x» y)

BOY) [T fxy)dx

The properties of the conditional probability density functig(xly) are given
by:

fxly(x|y) =

f fuy(Xly)dx =1, foranyY =y.

Independence of Random Variables: For discrete random variablegandy,
we say thak is independent(or stochastically independenxof Y if and only if
fuy(Xi, ) = fx(X) fy(y;). Similarly, for continuous random variablésandY, we
say thatX is independent of if and only if f,y(X,y) = fx(X) fy(y).

WhenX andY are stochastically independeg(X) andh(Y) are also stochas-
tically independent, wherg(X) andh(Y) are functions oX andY.

1.3 Mathematical Expectation

1.3.1 Univariate Random Variable

Definition of Mathematical Expectation: Let g(X) be a function of random
variableX. The mathematical expectationg(iX), denoted by Eg(X)), is defined
as follows:

Z ax)pi = Z g(x)f(x%), (Discrete Random Variable),

E(Q)) =1
f g(x) f (x)dx, (Continuous Random Variable).
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The following three functional forms @j(X) are important.

1. g(X) = X.
The expectation oK, E(X), is known asmeanof random variableX.

Z xi F(%), (Discrete Random Variable),
EX) =1 oo
f xf(x)dx, (Continuous Random Variable),
=, (Or py).

When a distribution ofX is symmetric, mean indicates the center of the
distribution.

2. g(X) = (X = p?
The expectation ofX — u)? is known asvariance of random variableX,
which is denoted by \X).
V(X) = E((X - u)?)
Z(X‘ — 1)?f (%), (Discrete Random Variable),

f (x—p)?f(X)dx, (Continuous Random Variable),

=%, (orc?).

If X is broadly distributedg?® = V(X) becomes large. Conversely, if the
distribution is concentrated on the centef. becomes small. Note that
o = VYV(X) is called thestandard deviation.
3. g(X) = &%,
The expectation of’* is called themoment-generating function which is
denoted bys(6).
$(6) = EE€™)
Z &% f(x), (Discrete Random Variable),
i

f e¢*f(x)dx, (Continuous Random Variable).
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Note that the definition o#is given by:

. PR 1.\h
e= LlLr(]J(1+ X)x = M;lo(1+ ﬁ)
= 2.71828182845905

The moment-generating function plays an important roll in statistics, which
is discussed in Section 1.5.

In Examples 1.5 — 1.8, mean, variance and the moment-generating function
are computed.

Example 1.5: In Example 1.2 of flipping a coin three times (Section 1.1.1),
we see in Section 1.2.1 that the probability function is written as the following
binomial distribution:

P(X=x) = f(x) = pP*A-p)"*, forx=0,1,2---,n,

xI(n - x)!
wheren = 3 andp = 1/2. WhenX has the binomial distribution above, we obtain
E(X), V(X) andg(#) as follows.
First, E(X) is computed as:
_ _ _ n! X _ n—x
p=B09 = D XM00 = ) X P =)

— nl X n-x __ (n_ 1)! X— n-x
) Z CETCET LA anX: =D —xiP P

n,! ’ /N
= npz X (v — x)! pP*(L-pP" 7 =np
X/

wheren’ = n—1 andx = x— 1 are set.
Second, in order to obtain ¥X{, we rewrite V(X) as:

0% = V(X) = E() — 4% = E(X(X — 1)) + pt — 1.

E(X(X — 1)) is given by:

xI(n — X)! pi(L - p)™

E(X(X - 1)) = Z X(x — 1)f(X) = Z X(x — 1)

X X
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n! X n—x
B Z = 2n-0iP =P

=n(n-1p* Z (x (2)!(? TS

4

= n(n - 1)p? Zﬁp (1-p"™ =n(n- 1)p?,

wheren’ = n— 2 andx = x— 2 are re-defined. Therefore, X) is obtained as:
o =V(X) = E(X(X - 1)) + ,1 u?
=n(n-1)p? + np-n?p?> = —np? + np=np(1 - p).

Finally, the moment-generating functi@(ﬂ) is represented as:

9(6) = E@”) = Z &=L - )"

x'(n X)!
i Z X'(n x)! A1 P =P P = (e + 1~ p)"

In the last equality, we utilize the following formula:

n

n!
n _ X/N—X
(a+b)" = Z—X!(n_x)!a b,
x=0
which is called thédinomial theorem.

Example 1.6: As an example of continuous random variables, in Section 1.2.1
the uniform distribution is introduced, which is given by:

F(x) = 1, forO<x<1,
~ 10, otherwise.

WhenX has the uniform distribution above, X)X, V(X) and¢(6) are computed as

follows:
1

p=€0 = [ xtadx= [ k= (2= 5

o? = V(X) = E(X?) - u?
°° ! 1 1 1
= [ Rt0o0x-u = [ Xax-u = [0 - G = 2
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00 1 1 1
#(0) = E(€) = f & f(x)dx = f &*dx = [éeex]é = 5(e9 -1).
—00 0
Example 1.7: As another example of continuous random variables, we take the
standard normal distribution:
F() = ——e P, for —oo < x < oo,
\2r
which is discussed in Section 2.2.1. Wh¥rhas a standard normal distribution,

i.e., whenX ~ N(0, 1), E(X), V(X) and¢(0) are as follows.
E(X) is obtained as:

E(X) = I xf(x)dx = —f xe 2 dx = \/—_ [— ‘?Xz]: =0,

because lim-e2¥ = 0.

X—+00

V(X) is computed as follows:

~ © 51 e 1~ d-e?)
V(X) = E(X? :f x2fxdx:f X¥——e 2¥dx = f X dx
(X) = E(X9) N (X) N o = | Ix
1 1,21 1 foo 12 foo 1 __2
= —|x(-e ¥ + — e 2¢dx = —e 2dx =1
\/27r[( )]_‘x’ V2 J-eo —co \/27r

The first equality holds because ofPg(= 0. In the fifth equality, use the follow-
ing integration formula, called thategration by parts:

b b b
| o9 09ex = [no9a] - | o9aae

where we také(x) = x andg(x) = —e 2% in this case. See Appendix 1.2 for
the integration by parts. In the sixth equality, limxe 2’ = 0 is utilized. The

X—+00

last equality is because the integration of the standard normal probability density
function is equal to one (see p.7 in Section 1.2.1 for the integration of the standard
normal probability density function).

¢(0) is derived as follows:

00 = [ etwon= [“eLettos [T et
\/_
_— ((X—H) —62) _ AP f 1 -3 (x-0) 142
ez dx = e2 dx = ez?
% Tl
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The last equality holds because the integration indicates the normal density with
meand and variance one. See Section 2.2.2 for the normal density.

Example 1.8: When the moment-generating functionXfis given by¢,(0) =
ez (i.e., X has a standard normal distribution), we want to obtain the moment-
generating function of = u + o X.

Let ¢,(0) and¢y(6) be the moment-generating functionsXfandY, respec-
tively. Then, the moment-generating functionYofs obtained as follows:

8y(6) = E(€") = E@¥*7) = *E(E) = &¥4,(00) = ¥

1
= expud + 50202).

Some Formulas of Mean and Variance:

1. Theorem: E(aX+ b) = aE(X) + b, wherea andb are constant.
Proof:

WhenX is a discrete random variable,
E@X+b)= Y @x +b)f(x) =a ), xf(x) +b) f(x)
= a;E(X) +b. | |
Note that we haveZ X f(x) = E(X) from the definition of mean and

|
Z f(x) = 1 becausd (x) is a probability function.

If X is a continuous random variable,

E@X+Dhb) = foo(ax+ b) f (x)dx = afwxf(x)dx+ bfm f(x)dx

(o)

- aE(X) + b

00

Similarly, we havef xf(x)dx = E(X) from the definition of mean and

—00

f f(X)dx = 1 becausd (X) is a probability density function.
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2. Theorem: V(X) = E(X?) — u?, whereu = E(X).
Proof:
V(X) is rewritten as follows:

V(X) = E(X - p)?) = E(X* - 2uX — %)
= E(X?) - uE(X) + p* = E(X®) — 1%

The first equality is due to the definition of variance.

3. Theorem: V(aX+ b) = a?V(X), wherea andb are constant.
Proof:
From the definition of the mathematical expectationaX ¢ b) is repre-
sented as:
V(aX+b) = E(((aX + b) - E@X + b))?) = E((aX - au)?)
= E@(X — p)?) = @E((X - p)?) = aV(X)

The first and the fifth equalities are from the definition of variance. We use
E(@X+ b) = au + bin the second equality.

4. Theorem: The random variablX is assumed to be distributed with mean
E(X) = u and variance ) = o2. DefineZ = ARty Then, we have
o
E(Z) =0and V) = 1.
Proof:

E(X) and V(X) are obtained as:

E@) = E(X;“) _EX

g

1 1

V(2)=V(=X-E) = v =1
(oa o o

The transformation fronX to Z is known as normalization or standardiza-

tion.
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1.3.2 Bivariate Random Variable

Definition: Let g(X,Y) be a function of random variable€andY. The mathe-
matical expectation af(X, Y), denoted by Ey(X, Y)), is defined as:

EQXY) =1 e’ oo
f f a(x, y)f(x, y)dxdy, (Continuous Random Variables).

Z Z a(x. y;) f (%, yj)s (Discrete Random Variables),
j

The following four functional forms are important, i.e., mean, variance, covari-
ance and the moment-generating function.

1. g(XY) = X:
The expectation of random variab¥ i.e., E(X), is given by:

Z Z X £(%,Yj) (Discrete Random Variables),
EX) =1 v’ w
f f xf(x,y)dxdy, (Continuous Random Variables),

= Uy.

The case of(X,Y) = Y is exactly the same formulation as above, i.e.,
E(Y) = wy.
2. g(X,Y) = (X = o)
The expectation ofX — u,)? is known as variance of random variabte
which is denoted by i) and represented as follows:
V(X) = E((X - ux)?)
2.2 —m’f(6.y;).,  (Discrete Cases),
j

f f (X — 1) f(x, y)dxdy, (Continuous Cases),
= o2,

The variance of is also obtained in the same fashion, i.e.YV¢€ o7.

3. 9%, Y) = (X = (Y = py):
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The expectation ofX — u)(Y — uy) is known ascovarianceof X andY,
which is denoted by Cow, Y) and written as:

Cov(X,Y) = E((X — ux)(Y = uy))
Z Z(Xi — 1)y — my) F (%, 5), (Discrete Cases),
i

foo fm(x—yx)(y—py)f(x, y)dxdy, (Continuous Cases).

Thus, covariance is defined in the case of bivariate random variables.

4. g(X,Y) = erx+Y;
The mathematical expectation éf*+%Y is called the moment-generating
function, which is denoted by(6,, 6,) and written as:
$(61, 62) = EE@*%)
Z Z Y £ (%, Y)), (Discrete Cases),
i

_ i
f f Y f(x, y)dxdy, (Continuous Cases).

In Section 1.5, the moment-generating function in the multivariate cases is
discussed in more detail.

Some Formulas of Mean and Variance: We consider two random variabl&s
andy.
1. Theorem: E(X+Y) = E(X) + E(Y).
Proof:

For discrete random variablésandy, it is shown as follows:

E(X+Y) = > > (6 +Y)) X, ¥)
j

= Z Z % Ty (X, Vi) + Z Z Vi fxy(% ¥i)
i j [ J

= E(X) + E(Y).
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For continuous random variabl&sandY, we can show:

e+ = [ [ e ntyeyanay
= j: : I : X fyy(X, y)dxdy + I : I :yfxy(x, y)dxdy
= E(X) + E(Y).

2. Theorem: E(XY) = E(X)E(Y), whenX is independent oY
Proof:
For discrete random variablésandY,

EXY) = > > %y yi) = D > %y f06) i)
i j i j

= (D %K)y fyyy) = EIE(Y).
i j

For continuous random variablsandy,

f f Xy fy(X, y)dxdy

- [ [ vreonay

= f ) xfx(x)dx)( f wyfy(y)dy) = E(X)E(Y)

E(XY)

3. Theorem: Cov(X,Y) = E(XY) — E(X)E(Y).
Proof:

For both discrete and continuous random variables, we can rewrite as fol-
lows:

Cov(X,Y) = E((X = (Y — 1y)) = E(XY = pxY = py X + paxpty)
= E(XY) — E(uxY) — E(uyX) + uxity
= E(XY) — uxE(Y) — uyE(X) + pxpy
= B(XY) — uxty — pypix + pxity = E(XY) — pgy
= E(XY) — E(X)E(Y).

In the fourth equality, the theorem in Section 1.3.1 is used.
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4. Theorem: Cov(X Y) = 0, whenX is independent oY.

Proof:

From the above two theorems, we hav&XF) = E(X)E(Y) whenX is inde-
pendent ofY and Covi, Y) = E(XY)—-E(X)E(Y). Therefore, Cou, Y) = 0
is obtained wheiX is independent oY.

. Definition: The correlation coefficient betweenX andY, denoted byyy,

is defined as:
_ Cov(X,Y) _ Cov(X,Y)
PYTNROWTY) | oxoy

Whenp,, > 0, we say that there is jgositive correlation betweenX and
Y. As p,, approaches 1, we say that there isti@ng positive correlation
betweernX andY. Whenp,, < 0, we say that there isreegative correlation
betweenX andY. As p,, approaches-1, we say that there is strong
negative correlationbetweenX andY.

. Theorem: p,, = 0, whenXis independent of.

Proof:
When X is independent o¥, we have CouX, Y) = 0. Therefore, we can
. Cov(X,Y)
obtain the resulp,, = ————— = 0. However, note th = 0does
P = X W) Fho

not mean the independence betweeandy.

. Theorem: V(X zY) =V(X)+2Cov(X,Y) + V(Y).

Proof:
For both discrete and continuous random variableX YY) is rewritten as
follow:

V(X2 Y) = E((X£ V) - EX £ Y))*) = E(((X = ) £ (Y - y)?)

= E((X — )% £ 2(X = (Y = ay) + (Y = 11,)%)
= E((X — 11)?) = 2E((X — i)(Y — 1)) + E((Y — p1y)?)
= V(X) + 2Cov(X, Y) + V(Y).

. Theorem: -1 < p,, < 1.

Proof:
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Consider the following function of. f(t) = V(Xt - ), which is greater
than zero because of the definition of variance. Therefore, forat have
f(t) > 0. f(t) is rewritten as follows:

f(t) = V(Xt—=Y) = V(Xt) - 2Cov(Xt, Y) + V(Y)
= t2V(X) — 2tCov(X, Y) + V(Y)
Cov(X,Y)
V(X)

(Cov(X, Y))?

2
)"+ V(Y) - S

= V(X)(t-

In order to havef (t) > O for all t, we need the following condition:

(Covex )

VO - e 2

0,

which implies:

(Cov(X, Y))? -

VX)V(Y) —
Therefore, we have:

-1< COV—(X’Y) <1.
VV(IX) W(Y)
Cov(X,Y) we

W) WYY

From the definition of correlation céicient, i.e.,oxy =
obtain the result=1 < p,y < 1.
9. Theorem: V(X zY) = V(X)+ V(Y), whenX is independent of.

Proof:

From the theorem above, ¥(z Y) = V(X) = 2Cov(X,Y) + V(Y) gener-
ally holds. When random variables and Y are independent, we have
Cov(X,Y) = 0. Therefore, VK +Y) = V(X) + V(Y) holds, whenX is
independent oY.

10. Theorem: For n random variableX;, Xo, - - -, X,
EQ aX) = ), am
i i
V(Z aX) = Z Z ga;Cov(X;, X)),
i i
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where EK;) = y; anda; is a constant value. Especially, wh¥p X, - - -, X,
are mutually independent, we have the following:

V(D @) = ) av(X).

Proof:
For mean of}}; X, the following representation is obtained.

EQ ax) = > aE(X) = > au.
i i i
For variance o, a X;, we can rewrite as follows:

VO ax) =E(Y a0 - m) = (Y a0k - m)(Y &t - )
i i i i
= E(Z Z aay (X — )X — 1))
P
= Z Z aiajE((Xi — )X _:“J')) = Z Z aa;Cov(X;, X;).
i j i j

WhenXy, X;, - -+, X, are mutually independent, we obtain Cxy(X;) = 0
fori # j from the previous theorem. Therefore, we obtain:

V(D aX) = ) av(X).

Note that Covk;, Xi) = E((X — 1)?) = V(X).

Theorem: nrandom variableX;, Xy, -- -, X, are mutually independently
and identically distributed with meam and variancer?. That is, for all
i=12---,n EX) = uand V() = o2 are assumed. Consider arithmetic
averageX = (1/n) X, X;. Then, we have:

0_2

EQ) =p,  V(X)= -
Proof:
The mathematical expectation ¥fis given by:

EG)=EC Y X) = 2B X) =1 S EX) =1 > u= =y
i=1 i=1 i=1 i=1
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E(@X) = aE(X) in the second equality and K& Y) = E(X) + E(Y) in the

third equality are utilized, wher® andY are random variables aralis a
constant value. For these formulas, see p.17 in Section 1.3.1 and p.20 in
this section.

The variance oK is computed as follows:

VX) =V 3% év(; X) = %;wxo _ n_lzzﬁfz RE

(o

n

We use VaX) = a?V(X) in the second equality and X¢Y) = V(X)+V(Y)

for X independent oY in the third equality, wher&X andY denote random
variables ana is a constant value. For these formulas, see p.18 in Section
1.3.1 and p.23 in this section.

1.4 Transformation of Variables

Transformation of variables is used in the case of continuous random variables.
Based on a distribution of a random variable, a distribution of the transformed
random variable is derived. In other words, when a distributioX @ known,

we can find a distribution of using the transformation of variables, whatés a
function of X.

1.4.1 Univariate Cases

Distribution of Y = ¢y~1(X):  Let f(X) be the probability density function of
continuous random variabl¥ and X = y¢(Y) be a one-to-one transformation.
Then, the probability density function &f i.e., f,(y), is given by:

fy(y) = ' (W) Fx ().

We can derive the above transformation of variables f0mo Y as follows.
Let fy(x) andF,(x) be the probability density function and the distribution func-
tion of X, respectively. Note thadt(x) = P(X < x) and fy(x) = F(X).

Suppose thak = y(Y) impliesY = h(X). That is, we havér1(Y) = y(Y).
WhenX = y(Y), we want to obtain the probability density functionYofLet f,(y)
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andFy(y) be the probability density function and the distribution functiornyof
respectively.

In the case ofy’(X) > 0, the distribution function o¥, F(y), is rewritten as
follows:

Fy(y) = P(Y <y) = P(h(X) < y) = P(X < h™(y)) = P(X < u(y)) = F(w(¥)).

Therefore, diferentiatingF,(y) with respect toy, we can obtain the following
expression:

fyy) = Fyy) = o MF(u ) = ' 0) (¥ (y))- (1.4)

Next, in the case af’(X) < 0, the distribution function of, Fy(y), is rewritten
as follows:

Fy(y) = P(Y <y) = P(h(X) < y) = P(X 2 h7'(y)) = P(X > y(y))
=1-P(X < y(y)) = 1- Fy(u(y)).

Thus, in the case af’(X) < 0, pay attention to the third equality. ferentiating
Fy(y) with respect toy, we obtain the following result:

fy(y) = Fy(y) = ¢’ O)F (v ) = o' 0) (v (). (1.5)

Note that—y’(y) > O.
Thus, summarizing the above two cases, i&X) > 0 andy’(X) < 0, equa-
tions (1.4) and (1.5) indicate the following result:

fy(y) = I/ W) (v ().
which is called theéransformation of variables.

Example 1.9: WhenX has a standard normal density function, i.e., wiker
N(O, 1), we derive the probability density function ¥f whereY = u + o X.
Since we have:

Y_
X = y(Y) = —F,

yY'(y) = 1/o is obtained. Therefore, the density functionYoffy(y), is given by:

) = 0 DI E(w)) x5 5y~ ).

1
CoV2n
which indicates the normal distribution with meamnd variancer?, denoted by

N(u, o2).
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On Distribution of Y = X2 As an example, when we know the distribution
function of X asF(x), we want to obtain the distribution function 8F F(y),
whereY = X2. UsingF«(x), Fy(y) is rewritten as follows:

Fy(y) = P(Y <y) = P(X* <y) = P(- ¥ < X < fy)
= Fx(m - FX(_ W)

Therefore, when we havig(x) andY = X2, the probability density function of

is obtained as follows:
, 1
fu(y) = Fy(y) = 5—

Zw(fx(\/@ + fx(_ ‘/@)

1.4.2 Multivariate Cases

Bivariate Case: Let fy,(X,y) be a joint probability density function of andY.
Let X = y1(U, V) andY = (U, V) be a one-to-one transformation froi ) to
(U, V). Then, we obtain a joint probability density functionldfandV, denoted
by fu.(u, v), as follows:

fuv(uv V) = |J| fxy('wbl(u’ V)’ '7[’2(u’ V))’

wherel is called thelacobianof the transformation, which is defined as:
OX OX
au  ov
ay 9y
au v

J=

Multivariate Case: Let fy (X1, %o, - - -, Xn) be a joint probability density function
of Xy, X5, - - - X,,. Suppose that the one-to-one transformation fri&mXo, - - -, Xp)
to (Y1, Yo, ---,Yy) is given by:

X1 =¢1(Y1, Yo, - -+, Yn),
Xo = 2(Y1, Yo, -+, ),

Xn = lﬁn(Yl’ Y27 Y Yn)-

Then, we obtain a joint probability density functiondf, Y», - - -, Y,, denoted by
fy(yla y2’ T, Yn), as fOHOWS

fy(yl, y2’ Y yn) = |J| fX(Wl(yla Tty Yn), wZ(yla Tty yn), Tty lﬁn(}/l, Y Yn)),
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wherel is called the Jacobian of the transformation, which is defined as:

0Xy 0% 00X,
M, O
00X, 0% 0Xo
J=|dys % OVl
M O 0%
N O

1.5 Moment-Generating Function

1.5.1 Univariate Cases

As discussed in Section 1.3.1, the moment-generating function is defigé) as
E©™). In this section, the important theorems and remarks of the moment-
generating function are summarized.
For a random variabl¥, u;, = E(X") is called then-th moment of X. Then,
we have the following first theorem.
1. Theorem: ¢™(0) = u/, = E(XM).
Proof:

First, from the definition of the moment-generating functiof) is written
as:

#(6) = E() = f " @ f(x)dx
Then-th derivative of¢(6), denoted by (6), is:

o (6) = Im X"ePX £ (X)dx.

(o)

Evaluatings®(6) at@ = 0, we obtain:

»™(0) = [m X" (x)dx = E(X") = ).,

where the second equality comes from the definition of the mathematical
expectation.
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2. Remark: Consider two random variables andY. When the moment-
generating function oX is equivalent to that o¥, we have the fact thaX
has the same distribution &s

3. Theorem: Let ¢(#) be the moment-generating function X¥f Then, the
moment-generating function of whereY = aX + b, is given bye”¢(af).
Proof:

Let ¢y(6) be the moment-generating functionof Then,¢,(6) is rewritten
as follows:

¢,(0) = EE") = EE*Y) = ’E(€”) = ”¢(af).

4. Theorem: Let ¢1(0), ¢2(0), - - -, on(6) be the moment-generating functions
of Xy, Xy, -+, X, which are mutually independently distributed random
variables. Defin&/ = X; + X5 + --- + X,,. Then, the moment-generating
function ofY is given byg,(0)¢.(0) - - - ¢n(6), i.€.,

¢y(6) = EE™) = ¢1(6)¢2(6) - - $n(6),
whereg,(0) represents the moment-generating functioly of
Proof:
The moment-generating function ¥f i.e., ¢,(0), is:
By(0) = E€) = @) = E@4)EE) - EE)
= ¢1(6)$2(6) - - - pn(0).

The third equality holds becau3g, X,, - - -, X, are mutually independently
distributed random variables.

5. Theorem: WhenXy, X;, - - -, X, are mutually independently and identically
distributed and the moment-generating functionXpfs given by¢(6) for

all i, the moment-generating function ¥fis represented b@tp(@))n, where
Y=Xi+Xo+ -+ X

Proof:
Using the above theorem, we have the following:

$y(6) = $1(6)02(6) -~ 6n(6) = B(E)H(6) - $(6) = (4(6)) -
Note thatg; () = ¢(0) for all i.
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6. Theorem: WhenXg, Xy, - - -, X, are mutually independently and identically
distributed and the moment-generating functionXpfs given by¢(6) for

all i, the moment-generating function Xfis represented b&;ﬁ(%))n, where
X =(1/n) Ty X
Proof:

Let ¢x(6) be the moment-generating functionXf
— 050wy Tl ey txn T .0 6.\
ox(6) = E@€) = E@E 2) = | [ E™) = [ [4() = (¢(0))
i=1 i=1

Example 1.10: For the binomial random variable, the moment-generating func-
tion ¢(0) is shown as:

¢(6) = (p€ + 1~ p)",

which is discussed in Example 1.5 (Section 1.3.1). Using the moment-generating
function, we check whether Kj = npand V(X) = np(1 — p) are obtained when
X'is a binomial random variable.

The first- and the second-derivatives with respeétoe given by:

¢'(0) = npé(pe + 1 - p)"*,
¢"(0) = npé(pd + 1 - p)" !+ n(n-1)p?e?(pd + 1 - p)" =2

Evaluating abv = 0, we have:
E(X) =¢'(0)=np, E() =¢"(0) = np+n(n-1)p’.
Therefore, VK) = E(X?) — (E(X))* = np(1 — p) can be derived. Thus, we can

make sure that &) and V(X) are obtained frong(6).

1.5.2 Multivariate Cases

Bivariate Case: As discussed in Section 1.3.2, for two random variablesd
Y, the moment-generating function is defined¢#8,, 6,) = E(€”**%Y). Some
useful and important theorems and remarks are shown as follows.
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1. Theorem: Consider two random variable§andY. Let ¢(6,,6,) be the
moment-generating function &f andY. Then, we have the following re-

sult: 1500

L = E(Xij).
90,004
Proof:

Let f,y(X, y) be the probability density function of andY. From the defi-
nition, ¢(64, 6,) is written as:

o610 = E@* ) = [ [ ey yaxy

Taking thej-th derivative ofp(6,, 6,) with respect t@, and at the same time
thek-th derivative with respect té,, we have the following expression:

9" p(61, 6>) f f
MERA XK £ (% y)dxd
5100 Y y(X, y)dxdy.
Evaluating the above equation &t,[,) = (0, 0), we can easily obtain:
d+$(0, 0) f‘” f"" - -
- XV fo (X, y)dxdy = E(XIYK).
eyl BN Y fuy(x y)dxdy = E(X'YY)
2. Remark: Let (X;,Y;) be a pair of random variables. Suppose that the

moment-generating function ofX(, Y;) is equivalent to that of X, Y>).
Then, (X1, Y1) has the same distribution function a6(Y>).

3. Theorem: Let ¢(64,6,) be the moment-generating function & Y). The
moment-generating function &fis given by¢,(61) and that ofY is ¢,(6,).
Then, we have the following facts:

$1(61) = #(61,0),  ¢2(62) = ¢(0, 62).

Proof:

Again, the definition of the moment-generating functiorXodndY is rep-
resented as:

o610 = E@* ) = [ [ ey
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Wheng(64, 8,) is evaluated afl, = 0, ¢(64, 0) is rewritten as follows:

6(61,0) = EE) = f f &,y (x, y)dxdly

_ [ : & I : fy(X, y)dy)dx

= f ) & Xf (x)dx = E(@) = ¢1(6,).

Thus, we obtain the resulty(6,,0) = ¢1(61). Similarly, ¢(0,62) = ¢2(62)
can be derived.

4. Theorem: The moment-generating function of,(Y) is given by¢(61, 65).
Let ¢1(61) and¢,(62) be the moment-generating functionsXfandy, re-
spectively. IfX is independent of, we have:

$(61,62) = ¢1(61)¢2(62).

Proof:

From the definition o#(64, 6>), the moment-generating function fandY
is rewritten as follows:

¢(01, 62) = EE@%") = E(E@)E(E?) = ¢1(61)p2(62).

The second equality holds becauées independent oY.

Multivariate Case: For multivariate random variableX;, X,, ---, X,, the
moment-generating function is defined as:

¢(91, 6s,---, Hn) = E(891X1+62X2+...+9nxn).

1. Theorem: If the multivariate random variable§, X,, - - -, X, are mutually
independent, the moment-generating functioXgfXx,, - - -, X,, denoted by
#(01,60,,---,06,), 1s given by:

$(01, 62, - -, 6n) = ¢1(61)92(62) - - - n(6h),

whereg;(0) = E(€).
Proof:
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From the definition of the moment-generating function in the multivariate
cases, we obtain the following:

#(01, 05, - - -, 6,) = E(71r02%er+tXn)
= E(@)E(E??) - - E(@)
= ¢1(61)$2(62) - - - $n(0n).

2. Theorem: Suppose that the multivariate random variabigs X,, - -,
X, are mutually independently and identically distributég has a normal
distribution with mean: and variancer?, i.e., X; ~ N(u, o). Let us define
a =3 aX, wherea, i =1,2---,n, are assumed to be known. Then, ~
has a normal distribution with meany;; & and variancer? /', &2, i.e.,
i~ N@SL a, 0?5, 8).

Proof:
From Example 1.8 (p.17) and Example 1.9 (p.26), it is shown that the
moment-generating function of is given by: ¢,(6) = expé + 3026?),

whenX is normally distributed aX ~ N(u, o).

Let ¢, be the moment-generating function.of ~

#(6) = E@") = E@ %) = | [E@*) = | | ou(a0)

n n n
_ ) 1,50 _ ; 1, 22
= |i:1| expuad + 57 arg°) = expu él a0 + 57 él aco”)

which is equivalent to the moment-generating function of the normal distri-
bution with mean: 31" ; & and variance? Y ; a2, whereu ando? in ¢x(6)
is simply replaced by i, a ando? ¥/, a2 in ¢;(6), respectively.

Moreover, note as follows. Xth; = 1/nis taken for aI_Ii =12---,n,
i.e., whenu'= Xis takeny = X is normally distributed asX ~ N(u, o2/n).
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1.6 Law of Large Numbers and Central Limit The-
orem

1.6.1 Chebyshev’s Inequality

In this section, we introduce Chebyshev’s inequality, which enables us to find
upper and lower bounds given a certain probability.

Theorem: Let g(X) be a nonnegative function of the random variaKlei.e.,
g(X) > 0. If E(g(X)) exists, then we have:

PO 2 k) < SO

for a positive constant value

Proof:
We define the discrete random variables follows:

oo fL g =k
=10, if giX) <k

Thus, the discrete random varialiletakes 0 or 1. Suppose that the probability
function ofU is given by:
f(u) = P(U = u),

whereP(U = u) is represented as:

P(U = 1) = P(g(X) = k),
P(U = 0) = P(g(X) <K).

Then, in spite of the value whidd takes, the following equation always holds:
g(X) > kU.
Therefore, taking the expectation on both sides, we obtain:
E(9(X)) = kE(U), (1.6)
where EU) is given by:
EU) = leuP(U =u)=1xPU =1)+0xP(U =0)=P(U = 1)

u=0

= P(g(X) > k). (1.7)
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Accordingly, substituting equation (1.7) into equation (1.6), we have the following

inequality: E(g(X))
g

P(9(X) > k) < K

Chebyshev’s Inequality: Assume that EX) = u, V(X) = 02, andA is a positive
constant value. Then, we have the following inequality:

1
P(X —ul 2 A0) < 2
or equivalently,
1
P(lX—,ul </10') >1- ﬁ’

which is calledChebyshev’s inequality

Proof:
Takeg(X) = (X — u)? andk = 2202 Then, we have:

E(X - p)?

P((X — p)? > 2°0%) < o2

b

which implies
1
Note that EX — u)? = V(X) = o2

Since we haveP(IX — u| > Ao) + P(IX — u| < A0) = 1, we can derive the
following inequality:

1
P(IX—pul<A0) >1- = (1.8)

An Interpretation of Chebyshev’s inequality: The number 112 is an upper
bound for the probability?(|X — u| > A0). Equation (1.8) is rewritten as:

1
P(,u—/la'<X<u+/la')Zl—ﬁ.
That is, the probability thaX falls within Ao~ units of u is greater than or equal

to 1- 1/42. Taking an example of = 2, the probability thaX falls within two
standard deviations of its mean is at least 0.75.
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Finally, note as follows. Taking = 1o, we obtain as follows:

0_2

P(IX—ul>e€) < 2

i.e.,
V(X)

e’

P(X-E(X)[2¢) <

(1.9)

which inequality is used in the next section.

1.6.2 Law of Large Numbers (Convergence in probability)

Law of Large Numbers: Assume thatX;, X;, ---, X, are mutually indepen-
dently and identically distributed with meang) = x and variance i) = o0 <
oo for all i. Then, for any positive value, asn — oo, we have the following
result:

P(Xn—ul >€) — 0,

whereX, = (1/n) 3, X;. We say thak,, converges tq in probability.

Proof:
Using (1.9), Chebyshev’s inequality represents as follows:

P(%y — E(Ry) > o) < YO0,
€

whereX in (1.9) is replaced b¥,. As in Section 1.3.2 (p.24), we haveX&] = u
and V(X,) = o2/n, which are substituted into the above inequality. Then, we

obtain:
2

- (oa
P( X, — < —.

(l n /'tl > E) — nEZ

Accordingly, whemn — oo, the following equation holds:

P(Xn—pul>€) <— — 0.
Ne
That is,X, — u is obtained a; — o, which is written as: plinX, = . This
theorem is called thaw of large numbers
The conditionP(|X,, — u| > €) — 0 or equivalentlyP(|X,, — u| < €) — 1is
used as the definition @onvergence in probability. In this case, we say tha,
converges ta in probability.
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Theorem: In the case wher&y, X,, ---, X, are not identically distributed and
they are not mutually independently distributed, we assume that

M, = E(an X;) < oo,
=

n

Vo= V(D X) < o0,
i=1

\

— — 0, asn— oo.
n2

Then, we obtain the following result:

Zinzl Xi—m,
n

— 0.

That is, X,, converges tan,/n in probability. This theorem is also called the law
of large numbers.

1.6.3 Central Limit Theorem

Central Limit Theorem: Xy, Xy, - - -, X, are mutually independently and identi-
cally distributed with EX;) =  and V(X;) = o for all i. Bothu ando? are finite.
Under the above assumptions, whrea— oo, we have:

<) — [ e

which is called theentral limit theorem.

Proof:
M

. Xi — .
DefineY; = ——=. We can rewrite as follows:
o

0/\/_ \/—Z v

=1

SinceYy, Yo, - - -, Y, are mutually independently and identically distributed, the
moment-generating function &f is identical for alli, which is denoted bw(6).
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Using E(Y;) = 0 and V(Y;) = 1, the moment-generating function %f, ¢(0), is
rewritten as:

. 1 1
o(6) = EE") = E(1+ Yo + E\(Fe? + 5\4393 )

=1+ %02 + O(6°).

In the second equalitg"’ is approximated by the Taylor series expansion around
Y; = 0. See Appendix 1.3 for the Taylor series expansion.
DefineZ as:

1 n
z=—Y'v.

Then, the moment-generating functiongfi.e., ¢,(0), is given by:

n

9 R A A 6 \n
¢(0) = E(€”) = E(evi>Y) = H E(evi") = (¢(%))

2 3 2
= (1+ %9— + O(%))n = (1 + %% + O(n‘%))

n
n .

16° : : .
Moreover, setx = > + O(n‘%). Multiply n/x on both sides. Substitute

1,1 . . : ,
n= ;((502 + O(n‘%)) into the moment-generating function ofi.e., ¢,(6). Then,
we obtain:

2

16 2 1
¢2(0) = (1 oot O(n—%))n = (1 + )i(z+002)

Z+om2)
= ([ +x)

o2
2 .

—> e

Note thatx — 0 whenn — co and that lim(1 + X)/* = eas in Section 1.2.3
X—

(p.14).

Sinceg,(0) = e% is the moment-generating function of the standard normal
distribution (see p.16 in Section 1.3.1 for the moment-generating function of the
standard normal probability density), we have:

Xn — fx 1 1.
Pl—— < x)] — ——e 2" du,
(o-/\/ﬁ ) e V21
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or equivalently,

Xn — i
o/vn

The following expression is also possible:

— N(O,1).

Vn(X, — ) — N(O, ). (1.10)

Corollary 1:  When EK) = i, V(X)) = 0% andX, = (1/n) X1, X;, note that
Xn - E(Xn) — Xn _/l
Wy o
Therefore, we can rewrite the above theorem as:
P( Xn - E(Xn) <

X) — fx ie_%“Zdu,
W) — V2

Corollary 2: Consider the case whedg, X,, -+, X, are not identically dis-
tributed and they are not mutually independently distributed. Assume that

lim nV(X,) = 02 < oo,

N—oo

whereX, = (1/n) 3, Xi. Then, whem — oo, we have:

Yn— E(Yn) Zinzl X — E(Zinzl Xi) 1 e
Pl — =P —
( /V(Yn) ) X) ( VV(ZiL X) ) X) ‘[

1.7 Statistical Inference

1.7.1 Point Estimation

Suppose that the functional form of the underlying distribution on population is
known but the paramet@érincluded in the distribution is not known. The distribu-
tion function of population is given b¥(x; 6). Let xq, X, - - -, X, be then observed
data drawn from population. Consider estimating the paramaising then ob-
served data. Le&q(xl, X2, + - +, Xn) be a function of the observed datg x,, - - -, Xn.
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Suppose thah (X1, X, - - -, Xn) is constructed from the purpose of estimating the
parametep. That is,én(xl, X2, -+ -, Xn) takes a certain value given tneobserved
data. In this cas@,(x1, Xz, - - -, X») is called thepoint estimateof 6, or simply the
estimateof 6.

Example 1.11: Consider the case @f = (u, ), where the unknown parame-
ters contained in population is given by mean and variance. A point estimate of
population meap is given by:

n

~ _ 1
(X1, X2, X)) EX== ) X
n 4
i=1
A point estimate of population variane€ is:
1 n
&ﬁ(xl’XZ"“’Xn)Eszzm (X|_)_()2

An alternative point estimate of population variances:
1 n
X1, X2,y Xn) = S :—E i — X)°.
(X1, X2 Xn) n L (X =%

1.7.2 Statistic, Estimate and Estimator

The underlying distribution of population is assumed to be known, but the parame-
terd, which characterizes the underlying distribution, is unknown. The probability
density function of population is given bi(x; ). Let Xy, Xy, - - -, X, be a subset

of population, which are regarded as the random variables and are assumed to be

mutually independentxy, X, - -, X, are taken as the experimental values of the
random variableXi, Xo, - -+, X,. In statistics, we consider thatvariate random
variablesXy, X, - -+, X, takes the experiments valugs X, - --, X, by chance.

There, the experiments values and the actually observed data series are used in the
same meaning.

As discussed in Section 1.7511,(x1, X2, -+, Xn) denotes the point estimate of
6. In the case where the observed deatax,, - - -, X, are replaced by the corre-
sponding random variableg, X,, - - -, X, a function ofXy, X, - - -, X, i.e.,é(xl,
Xz, -+, Xpn), Is called theestimator of 8, which should be distinguished from the
estimateof 6, i.e.,d(xq, Xo, - - -, Xn).
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Example 1.12: Let Xy, X, -+, X, denote a random sample nffrom a given
distribution f (x; #). Consider the case éf= (u, o?).

The estimator of: is given byX = (1/n) 3, X;, while the estimate of: is
X = (1/n) 2", . The estimator ofr? is S2 = Y. (X — X)?/(n — 1) and the
estimate ofr?is & = ' (% — X)?/(n - 1).

There are numerous estimators and estimat@s Afl of (1/n) XL, X, (X; +
Xn)/2, median of Xy, X,, ---, X,) and so on are taken as the estimatorg:.of
Of course, they are called the estimate® efhen X; is replaced by for all i.
Similarly, bothS? = Y, (X; — X)?/(n — 1) andS*2 = Y2 (X — X)?/n are the
estimators ofr2. We need to choose one out of the numerous estimatofis of
The problem of choosing an optimal estimator out of the numerous estimators is
discussed in Sections 1.7.4 and 1.7.5.

Finally, note as follows. A function of random variables is callestatistic.
The statistic for estimation of the parameter is called an estimator. Therefore, an
estimator is a family of a statistic.

1.7.3 Estimation of Mean and Variance

Suppose that the population distribution is givenfi§y; ). The random sample
X1, X, - -+, X, are assumed to be drawn from the population distribufipg6),
wheref = (u,0?). Therefore, we can assume thét X,, ---, X, are mutually
independently and identically distributed, where “identically” implieXEE u
and V(X)) = o2 for all i.

Consider the estimators 6f= (u, 02) as follows.

1. The estimator of population means:
1<
« X=X,
n=

2. The estimators of population variancéare:
n

1 .
o S? = = Z(X‘ — u)?, wheny is known,

i=1

1 < -
e S2=———% (X —X)%

1y -
° S**Z — ﬁ Z(X' _ X)Z,
i=1
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Properties of X: From Theorem on p.24, mean and varianc&afre obtained

as follows:

02

EX)=u, V(X)) = -

Properties of S*2, S and S**2:  The expectation 05*? is:

n n n
1

E(S) = E( D04~ 7) = E(D 0~ ) = | D E(K )

i=1 i=1 i=1
1< 1< 1
= — V X = — 2 = —N 2 = 2’

where E(X — 1)?) = V(X)) = o is used in the fourth and the fifth equalities.
Next, the expectation &2 is given by:

E(S?) = E(rll Z(x - X)) = rllE(ian:(xi -X)?)
- rllE(Z«xi — )= (X= )Y
= rllE(Z((xi — 1) = 20X — ) (X = ) + (X = )?))
- nTllE(Z(Xi — 1) = 2(X - p) Z(Xi — ) +n(X - w)?)
,

=B 06 = = n(X - ?)

i=1

e D06 =) = B =)

2
= o - — =0 .
n-1 n-1n

Tia(X — ) = n(X — p) is used in the sixth equality. (B1/n) TiL;(X — 1)?) =
E(S*?) = o? and H(X — )?) = V(X) = o?/n are required in the eighth equality.
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Finally, the mathematical expectation®f? is represented by:

n11”
nnl

- E(”—lsz) n- E(SZ) _ ”—nla 402

E(S™?) = E( Z(x X)?) (xi—i)z)

Summarizing the above results, we obtain as follows:

n122

E(S?) =0% EB?)=0¢% ES™)= #+0°.

1.7.4 Point Estimation: Optimality

As mentioned in the previous sectiomsgenotes the parameter to be estimated.
én(xl, Xo, - -+, Xn) represents the estimator @fwhile @n(xl, X, -+ -, Xn) indicates
the estimate of. Hereafter, in the case of no confusicﬁa(xl, Xo, -+, Xp) IS
simply written ag,.

As discussed above, there are numerous candidates of the es%achre
desired properties which, have to satisfy include unbiasednessiceency and
consistency.

Unbiasedness: One of the desirable features that the estimator of the parameter
should have is given by: A
En) = 6. (1.11)

which implies tha#, is distributed around. When the condition (1.11) holdé,
is called theunbiased estimatorof 6. E(@,) — 6 is defined adias.

As an example of unbiasedness, consider the cage-dfi, o?). Suppose that
X1, X3, - -+, X, are mutually independently and identically distributed with megan
and variancer?. Consider the following estimators pfando.

1. The estimator of is:
— 1
e X=- Xi.

n i=1

2. The estimators af? are:

1 < -
e 2= —— % (X - X)?
n—lg
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1% -
° S**Z — ﬁ Z(X' _ X)Z.
i=1

Since we have obtained E( = 1 and EG?) = o2 in Section 1.7.3X andS? are
unbiased estimators pfando?. However, we have obtained the resulBEf) #
o2 in Section 1.7.3 and therefo®&™? is not an unbiased estimator @f. Thus,
according to the criterion of unbiasedneSs,is preferred td5*2 for estimation
of o2.

Efficiency: Consider two estimators, i.ed, andd,. Both are assumed to be
unbiased. That is, we have the following conditionf&(= 6 and E@,) = 6.
When V@,) < V(6,), we say thab, is more dficient tharg,. The estimator which
is widely distributed is not preferred.

Consider as many unbiased estimators as possible. The unbiased estimator
with the least variance is known as thf@@ent estimator. We have the case where
anefficient estimator does not exist.

In order to obtain the fécient estimator, we utilize Cramer-Rao inequality.
Suppose thak; has the probability density functiof(x;; 6) for all i, i.e., X1, X5,

.-+, Xp are mutually independently and identically distributed. For any unbiased
estimator of, denoted by, it is known that we have the following inequality:

V() > ‘Tzrfg), (1.12)
where
1 1 1
a?(6) = = = - , (1.13)
dlog f(X; 6 dlog f(X; 6 0?log f(X; 6
(P0) V(PR S

which is known as th€ramer-Rao inequality. See Appendix 1.4 for proof of
the Cramer-Rao inequality.

When there exists the unbiased estimatpsuch that the equality in (1.12)
holds, 8, becomes the unbiased estimator with minimum variance, which is the
efficient estimatoro?(6)/n is called theCramer-Rao lower bound.

Example 1.13 (Hficient Estimator): Suppose thaX;, X,, - - -, X,, are mutually
independently, identically and normally distributed with mgeand variancer?.
Then, we show thaX is an dficient estimator of.
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Wheno? < oo, from Theorem on p.24, \K) is given byo?/n in spite of the
distribution of X, 1 = 1,2, -+, N, . i (A)

On the other hand, because we assume Xhag normally distributed with
meanu and variancer?, the probability density function of; is given by:

1 1
() = == exil 55 (x—n)’)

The Cramer-Rao inequality is represented as:

1

nE((a Iog;;X;ﬂ) )2)

V(X) >

where the logarithm of (X; u) is written as:

1 1
log f(X; ) = =5 log(2n0®) = 5— (X - p)”.

Therefore, the partial derivative ¢{X; u) with respect tq is:

dlog f(X; 1
y = S (X-p).
L o

Accordingly, the Cramer-Rao inequality in this case is written as:

V(X) > 1 = ! = ‘7—2. ............. (B)

e((S0c-n)) ey "

From (A) and (B), The variance of is equal to the lower bound of Cramer-
2

Rao inequality, i.e., V) = %, which implies that the equality included in the

Cramer-Rao inequality holds. Therefore, we can conclude that the sample mean
X'is an dficient estimator of.

Example 1.14 (Linear Unbiased Minimum Variance Estimator): Suppose
that X1, Xo, ---, X, are mutually independently and identically distributed with
meany and variancer? ( note that the normality assumption is excluded from
Example 1.13). Consider the following linear estimajoe: YL, aX;. Then, we
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want to showu'(i.e., X) is alinear unbiased minimum variance estimator if
a =1/nforalli,ie. ifi=X

Utilizing Theorem on p.23, when K() = u and V(X;) = o for all i, we have:
E(@) = p X0, a and V(i) = o2 57, &2

Sincey is linear inX;, 1 is called dinear estimator of u. In order foru to be
unbiased, we need to have the condition)Ef u >\ ; & = u. Thatis, ifYL, & =
1 is satisfiedu"gives us dinear unbiased estimator Thus, as mentioned in
Example 1.12 of Section 1.7.2, there are numerous unbiased estimators.

The variance of: is given byo? 31! ; a2. We obtain the value af; which min-
imizesY"; a with the constrain} ; & = 1. Construct the Lagrange function as

follows:
1 n n
_ = 2 _ ,
L_Z;a1 + (1 ileau),

whereA denotes the Lagrange multiplier. T%én front of the first term appears
to make life easier later on and does nffeet the outcome. To determine the
optimum values, we set the partial derivatived ofith respect ta, andA equal
to zero, i.e.,

oL

— =a-1=0, i=1,2---,n,
0q &

oL n

—=1- .= 0.

o1 %

i=1

Solving the above equationg,= A = 1/nis obtained. Therefore, whep = 1/n
foralli, 4 has minimum variance in a class of linear unbiased estimators. That is,
X is alinear unbiased minimum variance estimator.

The linear unbiased minimum variance estimator should be distinguished from
the dficient estimator discussed in Example 1.13. The former does not requires
the assumption on the underlying distribution. The latter gives us the unbiased
estimator which variance is equal to the Cramer-Rao lower bound, which is not
restricted to a class of the linear unbiased estimators. Under the assumption of
normal population, the linear unbiased minimum variance estimator leads to the
efficient estimator. However, both areférent in general. In addition, note that
the dhicient estimator does not necessarily exist.
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Consistency: Let 6, be an estimator of. Suppose that for any > 0 we have
the following:
P(6,— 6] >¢€) — O, as n — oo,

which implies that) — 6 asn — oo. Then, we say thaf, is a consistent
estimator of 6. That is, the estimator which approaches the true parameter value
as the sample size is large is called the consistent estimator of the parameter.

Example 1.15: Suppose thaXi, X;, ---, X, are mutually independently and
identically distributed with meap and variancer?. Assume thatr? is known.
Then, it is shown thaX is a consistent estimator pf

From (1.9), Chebyshev’s inequality is given by:

V(X)

e’

P(X-EX)| > ¢€) <

for a random variabléX. Here, replacing< by X, we obtain EX) and V(X) as

follows:

0_2

EX)=pn V(X = P
because EX|) = u and V(X|) = 0® < o are assumed for aill
Then, whem — oo, we obtain the following result:

P(lX—,u|>6)S@ — 0,

which implies thatX — u asn — . Therefore, we can conclude thétis a
consistent estimator @f.

Summarizing the results up to noX,is an unbiased, minimum variance and
consistent estimator of population mgarWhen the distribution oX; is assumed
to be normal for all, X leads to an unbiasedffieient and consistent estimator of

u.

1.7.5 Maximum Likelihood Estimator

In Section 1.7.4, the properties of the estimatgrand S? are discussed. It is
shown thaiX is an unbiased,fBcient and consistent estimatorofinder normal-
ity assumption and th&$? is an unbiased estimator of’. Note thatS? is not
efficient but consistent (we do not check these featur&? af this book).
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The population paramet@rdepends on a functional form of the population
distribution f(x; 6). It corresponds tg4, ) in the case of the normal distribution
andg in the case of the exponential distribution (Section 2.2.4). Now, in more
general cases, we want to consider how to estirfiatEhe maximum likelihood
estimator gives us one of the solutions.

Let Xy, Xp, - -+, X, be mutually independently and identically distributed ran-
dom samplesX; has the probability density functidi(x; 6). Under these assump-
tions, the joint density function ofy, X,, - - -, X, is given by:

n

FOu, X, % 6) = | | 063 0),
i=1
wheref denotes the unknown parameter.
Given the actually observed data (xo, - - -, X,), the joint densityf (X, %o, - - -,
Xn; 0) is regarded as a function 6fi.e.,

n
10) =1(6: %) =106 X X, -+ %) = [ ] F(x:6).
i=1
1(0) is called thdikelihood function.
Let 4, be they which maximizes the likelihood function. Replacirg xo, - - -,
X by X1, Xo, -+, Xy O = 02(Xe, Xo, -+, %) is called themaximum likelihood
estimator, while én(xl, X2, -+ +, Xn) IS called themaximum likelihood estimate
That is, solving the following equation:

ae)
00

the maximum likelihood estimat®k, = 8,(X1, Xo, - - - , Xs) is obtained.

Example 1.16: Suppose thaX;, X, ---, X, are mutually independently, iden-
tically and normally distributed with meam and variances?. We derive the
maximum likelihood estimators ¢@f andc?. The joint density (or the likelihood
function) of Xy, X5, - - -, X, is written as:

f(X1,X2,"',Xn;,u,0'2) = 1_[ f(X;u, o 2) - 1—[

v— x5 5% — )
= (2ro) " exif—5 Zm 1) = (. o).
i=1
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The logarithm of the likelihood function is given by:
2y N Mg -~ % - w2
logl(u %) = ~ l0g(2r) -  log(c”) ZUZ;M uy?

which is called thdog-likelihood function. For maximization of the likelihood
function, diferentiating the log-likelihood function Id¢u, o) with respect tqu
ando?, the first derivatives should be equal to zero, i.e.,

dlogl(u,0?) 1 _ _

dlogl(u, o2 ni 1 <
ool _ 2L L Sk -2 =o.

0o? 202 204«

Let 1 anda? be the solution which satisfies the above two equations. Solving the
two equations, we obtain the maximum likelihood estimates as follows:

>

1
~2 - = 2 -X 2 **2
0= 5 206 —i = Z(x X7 =
Replacingx by X; fori = 1,2,---,n, the maximum likelihood estimators pf
ando? are given byX and S**?, respectively. Since &) = u, the maximum

likelihood estimator ofu, X, is an unbiased estimator. However, because of

-1
E(S*?) = - ——0? # o as shown in Section 1.7.3, the maximum likelihood

estimator ofr-2, S**2, is not an unbiased estimator.

Properties of Maximum Likelihood Estimator: For small sample, the maxi-
mum likelihood estimator has the following properties.

e The maximum likelihood estimator is not unbiased in general, but we often
have the case where we can construct the unbiased estimator by an appro-
priate transformation.

For instance, in Example 1.16, we find that the maximum likelihood
H 2 w%2 3 H n #%2 1 H
estimator ofo4, S**4, is not unbiased. Howeverlﬁs is an unbiased

estimator ofr2.
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o If the eficient estimator exists, i.e., if there exists the estimator which sat-
isfies the equality in the Cramer-Rao inequality, the maximum likelihood
estimator is #icient.

For large sample, as — oo, the maximum likelihood estimator 6f §,, has
the following property:

V@, — 6) — N(O,52(0)), (1.14)
where 1
a?(0) = )
dlog f(X;0)\2
1%

(1.14) indicates that the maximum likelihood estimator has consistency, asymp-
totic unbiasedness, asymptotifieiency and asymptotic normality. Asymptotic
normality of the maximum likelihood estimator comes from the central limit the-
orem discussed in Section 1.6.3. Even though the underlying distribution is not
normal, i.e., even though(x; 6) is not normal, the maximum likelihood estimator
is asymptotically normally distributed. Note that the propertiea ef> « are
called the asymptotic properties, which include consistency, asymptotic normality
and so on.

That is, by normalizing, as — oo, we obtain as follows:

\/ﬁ(én - 9) _ én -0
o () a(6)/ vn
As another representation, wheis large, we can approximate as follows:

a?(6)
n

— N(O,1).

6n ~ N(6, ).

This implies that whem —s oo, 6, approaches the lower bound of Cramer-Rao
a*(6)
n "
Moreover, replacing in varianceo?(6) by 6,, whenn — oo, we have the
following property:

inequality: , which property is called an asymptotittieiency.

6h— 0
O'(én)/ ‘/ﬁ

which also comes from the central limit theorem.

—s N(0,1), (1.15)
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Practically, whem is large, we approximately use as follows:

o
. 0
3, ~ N(o, Z%0)

). (1.16)

Proof of (1.14): By the central limit theorem (1.10),

Zalogf(x.,e) LN, UZL@ ). (1.17)

whered?(6) is defined in (1.13), i.e., \Klog f(X;; 6)/06) = 1/0%(6). As shown
in (1.45) of Appendix 1.4, note that &log f(X;; 6)/06) = 0. We can apply the
central limit theorem, takinglog f(X; 6)/06 as thei-th random variable.

By performing the first-order Taylor series expansion arofned 6, we have
the following approximation:

Z dlog f(X.,@n)

dlog f(X., 0) 0% log f(X;; 9)
R P 0
Therefore, the following approximation also holds:
dlog f(X., 0) 0%log f(X;; 6)
Z ~ - Z o =2 @, - 6).

From (1.17) and the above equation, we obtain:

1< 0%log f(%;6) —, - 1
_H;Tﬁ(en—e) — N(O, 02(8)).

The law of large numbers indicates as follows:

1 < 8?log f(X;; 6) d%log f(X;; 6) 1
R )-

n £ 962 062 — 02(0)’

where the last equality is from (1.13). Thus, we have the following relation:

0% log f(X;; 6) 1
——Z o V- 6) — Z(H)W (Bn=6) — NO. =)
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Therefore, the asymptotic normality of the maximum likelihood estimator is ob-
tained as follows: A
V(@ - 6) — N(0,a°(9)).

Thus, (1.14) is obtained.

1.7.6 Interval Estimation

In Sections 1.7.1 — 1.7.5, the point estimation is discussed. It is important to know
where the true parameter valuedot likely to lie.

Suppose that the population distribution is givenflfy; 6). Using the random
sampleXy, X, - -+, X, drawn from the population distribution, we construct the
two statistics, sayjy (X1, Xa, - - -, Xn; 67) andd (Xq, Xo, - - -, Xn: 6*), whereg* and
g denote the constant values which satisfy:

P(" <y <07)=1-a, (1.18)

for 6 > 6*. Note thatd, depends ofXy, Xo, - - -, X, as well ag, i.e., 8, = 6,(X4,
Xo, - -+, Xn; 8). Now we assume that we can solve (1.18) with respeét tehich
is rewritten as follows:

P(éL(Xl, X27 Tty Xn1 0*) < 8 < éU (X].’ XZ, Y an 0**)) = 1 — . (119)

(1.19) implies tha® lies on the interva(@L(Xl, Xo, -+, Xn 607, Oy (Xe, X, -+,

Xn; 9**)) with probability 1— . Depending on a functional form 6§(Xy, Xo, - - -,
Xn; 6), we possibly have the situation théitand6** are switched with each other.

Now, we replace the random variabl¥s, X,, ---, X, by the experimental
valuesx, X, - - -, X,. Then, we say that the interval:

(B0 Yo+ %03 0, B (X, Xas -, X0 67)

is called the 10 (1 — @)% confidence intervalof 4. Thus, estimating the in-
terval is known as thaterval estimation, which is distinguished from the point
estimation. In the interval (x4, %o, - - -, %o} 6*) is known as thdower bound of
the confidence interval, whiIéJ(xl, X2, -+, Xn; 67) is theupper bound of the
confidence interval.

Given probabilitye, the 8 (X1, Xo, -+, Xa;6°) and y(Xe, Xo, -+, Xn; )
which satisfies equation (1.19) are not unique. For estimation of the unknown
parametep, it is more optimal to minimize the width of the confidence interval.
Thereforq, we should choogeandg** which minimizes the widtld, (Xq, Xo, -+,

Xny 07) = 6L (X1, Xp, - -+, Xy 67).
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Interval Estimation of X: Let X1, Xp, - -+, X, be mutually independently and
identically distributed random variables; has a distribution with mean and
varianceo?. From the central limit theorem,

X—p
o/+n

Replacings? by its estimatoiS? (or S**?),

— N(O, 1).

X—u
gvﬁ_aN@J)

Therefore, whem is large enough,

X—p .
P(Z < <ZY)V=1-q,
( NG ) @
wherez* andz™* (z* < z*) are percent points from the standard normal density
function. Solving the inequality above with respectitdhe following expression
is obtained.

_ S - .S
PX-Z"—<u<X-7-—)=1-a,
( Nl ‘ﬁ) @

wheref, andéy correspond tX — z*S/ vn andX — zS/ n, respectively.
The length of the confidence interval is given by:

,\ ,\ S
Oy — 6. = %(Z**_Z*),

which should be minimized subject to:

-
f f(x)dx=1-q,
z

FZ)-F@Z)=1-a,

whereF(-) denotes the standard normal cumulative distribution function.
Solving the minimization problem above, we can obtain the conditions that
f(z") = f(z*) for z < z** and thatf (x) is symmetric. Therefore, we have:

i.e.,

~Z =7" =2,
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wherez,,, denotes the 108 «/2 percent point from the standard normal density
function.

Accordingly, replacing the estimatoXsandS? by their estimate® ands?, the
100x (1 — a)% confidence interval gf is approximately represented as:

(7 - Za/zi, X+ Za/Zi)7
Vi Vi
for largen.
For now, we do not impose any assumptions on the distributiox.off we
assume thax; is normal, v/n(X — u)/S has at distribution withn — 1 degrees of
freedom for anyn. Therefore, 10& (1 - @)% confidence interval qi is given by:

S S
(T( - ta,/z(n - 1)—n, X+ ta/z(n - 1)—),

Vi Vi

wheret,,»(n — 1) denotes the 108 «/2 percent points of thedistribution with
n— 1 degrees of freedom. See Section 2.2.10 fot dtistribution.

Interval Estimation of 6,; Let Xy, Xy, -+, X, be mutually independently and
identically distributed random variable¥; has the probability density function
f(x: 6). Suppose that, represents the maximum likelihood estimatopof

From (1.16), we can approximate the 00l — @)% confidence interval of
as follows:

O'(én) ~ O'(én)
W, On + Zy)2 \/ﬁ )

(én —Zy2

1.8 Testing Hypothesis

1.8.1 Basic Concepts in Testing Hypothesis

Given the population distributiori(x; 8), we want to judge from the observed
values &1, Xo, - - -, Xn) Whether the hypothesis on the parameétes.g. 6 = 6o, is
correct or not. The hypothesis that we want to test is callechtiiehypothesis
which is denoted by, : 6 = 6y. The hypothesis against the null hypothesis, e.g.
0 # 0y, is called thealternative hypothesis which is denoted by, : 6 # 6.
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Table 1.1: Type | and Type Il Errors

Ho is true. Hy is false.
Acceptance of, | Correct judgment Type Il Error
(Probabilitys)
Rejection ofHy, | Type | Error Correct judgment
(Probabilitya (1 - B = Power)
= Significance Level)

Type | and Type Il Errors:  When we test the null hypothediy, as shown in
Table 1.1 we have four cases, i.e., (i) we acdgptvhenHy is true, (ii) we reject

Ho whenHy is true, (iii) we accepHy whenHy is false, and (iv) we rejed, when

Hp is false. (i) and (iv) are correct judgments while (ii) and (iii) are not correct.
(ii) is called atype | error. and (iii) is called aype Il error . The probability

of committing a type | error is called tregnificance level which is denoted by

a, and the probability of committing a type Il error is denoteddyProbability

of (iv) is called thepower or thepower function, because it is a function of the
parametep.

Testing Procedures: The testing procedure is summarized as follows.
1. Construct the null hypothesikif) on the parameter.

2. Consider an appropriate statistic, which is calleds statistic Derive a
distribution function of the test statistic whét is true.

3. From the observed data, compute the observed value of the test statistic.

4. Compare the distribution and the observed value of the test statistic. The ob-
served value of the test statistic is in the tails of the distribution, we consider
thatHg is not likely to occur and we rejeét,.

The region thaHy is unlikely to occur and accordinglM, is rejected is called
therejection region or thecritical region, denoted byR. Conversely, the region
thatHg is likely to occur and accordinglig is accepted is called thecceptance
region, denoted byA.

Using the rejection regioR and the acceptance regidy the type | and Il
errors and the power are formulated as follows. Suppose that the test statistic is
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give by T = T(Xg, Xa,- -+, Xp). The probability of committing a type | error, i.e.,
the significance levet is given by:

P(T (X1, X2, -+, %) € RHp is trug) = a,

which is the probability that rejectd, whenHg is true. Conventionally, the sig-
nificance level = 0.1, 0.05,0.001 is chosen in practice. The probability of com-
mitting a type Il error, i.e 3 is represented as:

P(T (Xg, Xo, -+, Xn) € AlHo iS Not trug = 3,

which corresponds to the probability that acceidgswhenHg is not true. The
power is defined as 4 3, i.e.,

P(T (X1, X2, -+, X)) € RHg is not trug = 1 -3,

which is the probability that rejectd, whenH, is not true.

1.8.2 Power Function

Let X3, Xy, - - -, X be mutually independently, identically and normally distributed
with meanu and variancer?. Assume thair? is known.

In Figure 1.3, we consider the hypothesis on the population meae., the
null hypothesisHy : u = uo against the alternative hypothesis : u = uq,
whereu; > ug is taken. The dark shadow area corresponds to the probability
of committing a type | error, i.e., the significance level, while the light shadow
area indicates the probability of committing a type Il error. The probability of the
right-hand side off * in the distribution undeH; represents the power of the test,
ie., 1-B.

In the case of normal population, the distribution of sample méagiven
by:

2
— o
X ~ N(,Ll, F)

For the distribution o, see the moment-generating functionXih Theorem on
p.33. By normalization, we have:

X—u
o/ \n

~ N(O, 1).
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Figure 1.3: Type | Errorq) and Type Il Error )
Ve Asaissmall,i.e.,
/] » asf* goes to right,
3 B becomes large.

The distribution under

the null hypothesisHo) The distribution

under the alternative
hypothesisii;)

f*
- V} - .R . .
Acceptance region Rejection region

Therefore, under the null hypothesis : u = uo, we obtain:

X—ﬂo
o/vn

whereu is replaced by:g. Since the significance levalis the probability which
rejectsHo whenHy is true, it is given by:

~ N(O, 1),

— o
a=PX>uy+z,—),
( Ho + Zy \/ﬁ)
wherez, denotes 10& a percent points of the standard normal density function.
Therefore, the rejection region is given bY:> o + z,0/ \/n.
Since the power 1 g is the probability which rejectsl whenH; is true, it is
given by:

X — —
( M1 > Mo — Ha

1—,3:P(Y>,U0+Za%)=|30_/\/ﬁ SR )
o Xl po—pu 4 pMo—
=1 P(a/w< G/wﬂa)—l F(U/%HQ),

whereF(-) represents the standard normal cumulative distribution function, i.e.,
F(x) = f_>;(27r)‘1/2 exp(3t?)dt. The power function is a function of;, givenuo
anda.
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1.8.3 Testing Hypothesis on Population Mean

Let Xy, Xy, - - -, X, be mutually independently, identically and normally distributed
with meanu and variancer2. Assume that-? is known.

Consider testing the null hypothesdily : u = uo. When the null hypothesis
Ho is true, the distribution oX is given by:

X — fo
o/vn

Therefore, the test statistic is given byﬁ(_Y —uo)/o, while the test statistic value
is: vn(X — uo)/o, where the sample meafis replaced by the observed valke
Depending on the alternative hypothesis, we have the following three cases.

~ N(0, 1).

1. The alternative hypothesisH; : u < ug (one-sided test):

X — fo

X - )
We have:P( Ho . —z(,) = . Therefore, when—= < —z,, we reject
o/n o/4/n

the null hypothesi$ly : 1 = uo at the significance level.

2. The alternative hypothesisH; : u > uo (one-sided test):

X — uo X — o )

> z,, We reject the
o/+/n o/4/n Z J
null hypothesidH, : 1 = uo at the significance levet.

We have:P( > za) = a. Therefore, whe

3. The alternative hypothesisH; : u # uo (two-sided test):

X - X -
We have:P(‘ G/\l/lﬁo > z(,/z) = a. Therefore, whe 0_/5% > Z,/2, W€

reject the null hypothesid, : u = ug at the significance levet.

When the sample sizeis large enough, the testing procedure above can be ap-
plied to the cases: (i) the distribution ¥f is not known and (iiy? is replaced by
its estimatoiS? (in the case where? is not known).

1.8.4 Wald Test

From (1.15), under the null hypothesi : 6 = 6, asn — oo, the maximum
likelihood estimato#, is distributed as follows:
én - 90

——  ~ N(O,1).
a(6n)/ vVn
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ForHo : 6 = 6y andH; : 6 # 6, replacingXy, X, - - -, % in 6, by the observed
valuesxy, X, - - +, Xn, We obtain the following testing procedure:

1. If we have: R

On - 00
O'(én)/ \Vn
we reject the null hypothesidy at the significance level, because the
probability whichHq occurs is small enough.

> Zy/2,

2. AsforHp: 0 =6,andH; : 6 > 6y, if we have:
Oh=60
0'(9n)/\/ﬁ

we rejectHy at the significance level.

Za>

3. ForHp : 8 = 6yandH; : 8 < 6y, when we have the following:
én - 00
— <
o(6n)/ \/ﬁ

we rejectHg at the significance level.

—Zg»

The testing procedure introduced here is callediiadd test.

Example 1.17: X, X, ---, X, are mutually independently, identically and ex-
ponentially distributed. Consider the following exponential probability density
function:
f(xy) = ve™,

for0 < X < oo,

Using the Wald test, we want to test the null hypothétis y = yo against
the alternative hypothesid; : vy # yo.

Generally, an — oo, the distribution of the maximum likelihood estimator
of the parametey, y,, is asymptotically represented as:

Yn—7Y
———— ~ N(O,1),

dlog f(X; - Plog f (X )\
=[] ()

where



60 CHAPTER 1. ELEMENTS OF STATISTICS

See (1.13) and (1.15) for the above properties on the maximum likelihood estima-
tor.

Therefore, under the null hypothes$is : y = yo, whenn is large enough, we
have the following distribution:

Yn— 70
Gy~ O
As for the null hypothesi#dy : y = 7y against the alternative hypothesis
Hi: y # v, if we have:

Yn = Y0
a(¥n)/ VN
we can rejecHy at the significance level.

We need to derive?(y) andy, to perform the testing procedure. Firsf(y)
is given by:

> Zy)2,

2 cy L
2y = —(E(dlogd—w» =42,

Note that the first- and the second-derivatives offiQy; v) with respect toy are
given by:

dlogf(Xiy) 1 _,  logf(Xiy) _ 1
dy Ty 7 2

Next, the maximum likelihood estimator ¢f i.e.,y,, is obtained as follows.
Since Xy, X, -+, X, are mutually independently and identically distributed, the

likelihood functionl(y) is given by:

n n

) =] [ o =] [re™ =yrer>x.

i=1 i=1

Therefore, the log-likelihood function is written as:

logl(y) = nlog(y) =) %
i=1

We obtain the value of which maximizes logd(y). Solving the following equa-
tion:

i=1



1.8. TESTING HYPOTHESIS 61

the maximum likelihood estimator of i.e.,y, is represented as:

~ n 1
Yn

- Zinzl X - i
Then, we have the following:

Yo=Y _ Yn—7Y

oc(@n)/ VN /N

wherey;, is given by I X.
ForHo: ¥ =yoandH; : y # vy, if we have:

— N(O, 1),

A

Yn— Y0

Yo/ VN

we rejectHg at the significance level.

> Zy)2,

1.8.5 Likelihood Ratio Test

Suppose that the population distribution is given fify; 6), wheref = (64, 6,).
Consider testing the null hypothesis = 6; against the alternative hypothesis
Hi @ 61 # 67, using the observed valueg( X, ---, X,) corresponding to the
random sampleXy, Xo, - - -, Xp).

Let 6, andd, be 1x k; and 1x k, vectors, respectively. Therefore= (6,1, 6,)
denotes a Xk (k; + ky) vector. Since we take the null hypothesis&s: 6, = 67,
the number of restrictions is given Iy, which is equal to the dimension 6f.

The likelihood function is written as:

n

1602, 6) = | | (%61, 62).

i=1

Let (81, 62) be the maximum likelihood estimator ofy( 6,). That is, @1, 6,)
indicates the solution ofy, 6,), obtained from the following equations:

0l(64, 62) -0 0l(61,6-) _

, 0.
06, 06,

The solution §y, 6,) is called thaeunconstrained maximum likelihood estimator,
because the null hypothest : 6, = 6; is not taken into account.
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Let 6, be the maximum likelihood estimator 64 under the null hypothesis
Ho : 61 = 6;. That is,f is a solution of the following equation:
ol(e:,0
(67, 62) _o
00,

The solutiond, is called theconstrained maximum likelihood estimator of 65,
because the likelihood function is maximized with respecf;tsubject to the
constrain®, = 6.

DefineA as follows:

1(¢:, 6
1 (~ ~2)’
1(61, 62)
which is called thdikelihood ratio .
As n goes to infinity, it is known that we have:

~2log() ~ x*(ku),

wherek; denotes the number of the constraints.

Let x2(k,) be thea percent point from the chi-square distribution wkh
degrees of freedom. Wher2log(l) > x2(ki), we reject the null hypothesis
Ho : 6, = 6] at the significance levet. If —2log(1) is close to zero, we accept
the null hypothesis. Whe], 6,) is close to {1, 6,), —2 log(1) approaches zero.

The likelihood ratio test is useful in the case where it is not easy to derive the
distribution of @1, 6,).

Example 1.18: X, X, ---, X, are mutually independently, identically and ex-
ponentially distributed. Consider the following exponential probability density
function:

f(xy) =ye,

for0 < x < oo,

Using the likelihood ratio test, we want to test the null hypothekis v = yq
against the alternative hypothesis : y # yo. Remember that in Example 1.17
we test the hypothesis with the Wald test.

In this case, the likelihood ratio is given by:

_ 1tn)

=160
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wherey, is derived in Example 1.17, i.e.,

A n 1
=oio ==
" Zinzlxi X

Since the number of the constraint is equal to one, as the sampla gzes to
infinity we have the following asymptotic distribution:

—2logl — x*(1).
The likelihood ratio is computed as follows:

(o) Ve 2%

A= —= = —
1(¥n) yne™"

If —2logd > x2(1), we reject the null hypothesldy : u = po at the sig-
nificance levela. Note thaty?(1) denotes the 108 a percent point from the
chi-square distribution with one degree of freedom.

Example 1.19: Suppose thaXy, X,, - - -, X, are mutually independently, identi-
cally and normally distributed with mean zero and variamée

The normal probability density function with mearand variancer? is given
by:

(%1, %) = e 0
V2r02

By the likelihood ratio test, we want to test the null hypothd4gs:. u = uo
against the alternative hypothesls : u # uo.

The likelihood ratio is given by:

(o, o)
ARRTRoN

wherea? is the constrained maximum likelihood estimator with the constraint
i1 = o, While (i, 6) denotes the unconstrained maximum likelihood estimator.
In this case, since the number of the constraint is one, the asymptotic distribution
is as follows:

—2loga — x?*(1).
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Now, we derivd (1o, 2) andl(i1, 572). |(u, o2) is written as:

n

l(it, 02) = F(X1, Xop -+, Xns i1, 0°2) = n f(x; w, 02

Hv_ X~ 5506 ~ 1)

= (210?) " ext{~ 55 0%~ )
i=1

The log-likelihood function lod(u, ) is represented as:
2y Mg - Moge?) — =1 S (x — )
logl(u. %) = ~7 log(2x) - 5 log(o”) z(fz;(’“ w2

For the numerator of the likelihood ratio, under the constraiat 1, maxi-
mize logl(uo, o%) with respect tar?. Since we obtain the first-derivative:

dlogl(ug, o2 ni 1 <
009 W, o) (o, 0”) = ﬁZ(Xi —#o)2 =
o i=1

do? 202
the constrained maximum likelihood estimaicris given by:
1 n
7= 2,0 k)’
=
Therefore, replacing? by o2, |(uo, 072) is written as:
1 < n
~2y _ ~2\-n/2 = N2\ ~2y-n/2 _n
(0. 7%) = (2157) ™ exp{~ = ;(x Ho)’) = (215 " exp(-5).

For the denominator of the likelihood ratio, because the unconstrained maxi-
mum likelihood estimators are obtained as:

1 Z” 1 Z”
~ = . I\2 _ = o ~ 2
/-l - n < XI9 o = n < (Xl /’l) i
i=1 i=1
|(&1, 672) is written as:

(7, 52) = (2r62) ™2 exp(—%;_z Zoq — )?) = (2r6%) 2 exr(—g).
i=1
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Thus, the likelihood ratio is given by:

| (o, 52) (271’52)_”/2 ex;(—r—;) o2
= — = R n ==
@.6%) " (rozymeex(-g) O

)—n/2

A

Asymptotically, we have:
—2logA = n(loga? - log&?) ~ x?(1).

When-2log1 > x2(1), we reject the null hypotheskdy : u = uo at the signifi-
cance leveb.

1.9 Regression Analysis

1.9.1 Setup of the Model

When (X1, Y1), (X2, Y2), - -+, (X,, Y,) are available, suppose that there is a linear
relationship betweeN andX, i.e.,

Yi = B1 + B2 X + Ui, (1.20)

fori=12,---,n.

X; andY; denote the-th observationsy; is called thedependent variableor
the unexplanatory variable, while X; is known as thendependent variableor
the explanatory variable. 8, andg, are unknowrparameters to be estimated.

u; is the unobservedrror term assumed to be a random variable with mean zero
and variancer?. 8, andp, are called theegression cofficients.

X; is assumed to be nonstochastic, Buits stochastic becausé depends on
the erroru;. The error termsiy, Uy, - -+, U, are assumed to be mutually indepen-
dently and identically distributed. it is assumed thiahas a distribution with
mean zero, i.e., BE() = 0 is assumed. Taking the expectation on both sides of
equation (1.20), the expectation4fis represented as:

E(Yi) = E(B1 + B2Xi + U) = B1 + BoXi + E(W)
=1+ BeXi, (1.21)

fori =1,2,---,n. Using E{;) we can rewrite (1.20) ag = E(Y;) + u;. Equation
(1.21) represents the true regression line.
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Figure 1.4: True and Estimated Regression Lines

Distributions
of the Errors

i
A
>

(Estimated Re-
gression Line)

Let 3, andp3, be estimators g8, andg,. Replacing £, 2) by (31, 32), equa-
tion (1.21) turns out to be:

Y, = B1 + X + €, (1.22)

fori =1,2,---,n, whereeg is called theresidual. The residuag is taken as the
experimental value ai.
We defineY; as follows: o
Yi = 1+ B2Xi, (1.23)

fori = 1,2,---,n, which is interpreted as the predicted valueYaf Equation
(2.23) |nd|cates the estimated regression line, which fiedint from equation
(1.21). Moreover, usind; we can rewrite (1.22) a§ = Y; + e.

Equations (1.21) and (1.23) are displayed in Figure 1.4. Consider the case of
n = 6 for simplicity. x indicates the observed data series. The true regression line
(1.21) is represented by the solid line, while the estimated regression line (1.23)
is drawn with the dotted line. Based on the observed gatandg, are estimated
as: 3, andg..
_Inthe next section, we consider how to obtain the estimatgs ahd,, i.e.,
B andp,.
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1.9.2 Ordinary Least Squares Estimation

Suppose that{s, Y1), (X2, Y2), - - -, (%, Yp) are available. For the regression model
(1.20), we consider estimatirg, 5, ando?. Replacings; andg, by their esti-
matesB; andp,, remember that the residuglis given by:

e =Y -Yi=Y - B -BoX.
The sum of squared residuals is defined as follows:
S(B1.B2) = Z e = Z(Yi — B1 - B2Xi)%.
i=1 i=1

It might be plausible to choose tj#e and, which minimize the sum of squared
residuals, i.e.S(31,3,). This method is called therdinary least squares (OLS)
estimation. To minimizeS(B1, 3,) With respect tg3; andj3,, we set the partial
derivatives equal to zero:

0S(B1. B2) . ~ A

D2VPLP2) 2N (Y = By — BoX) = O,
s ;( B1— B2X)

0S(B1. B2) ° _

—=——=-2) X(Yi-B1—-BX) =0,
. le (Y = B1 — B2X)

which yields the following two equations:
Y= Bl +/§2Y, (1.24)
n n
inYi = nXp, +BZZXi2’ (1.25)
i=1 i=1

whereY = (1/n) 3L, Y andX = (1/n) XL, X. Multiplying (1.24) bynX and
subtracting (1.25), we can derige as follows:

By = TLXY —nXY 3% - X)(Yi - Y)

NG 1.26
2 it X - X L% = X)2 (1.26)

From equation (1.24); is directly obtained as follows:

ja— A —

Br=Y - BoX. (1.27)
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When the observed values are takenYpandX; fori = 1,2,---,n, we say that
51 andj, are called theordinary least squares estimate (or simply theleast
squares estimats) of 8, andg,. WhenY; fori = 1,2,---,n are regarded as
the random sample, we say thatandj, are called the)rdlnary least squares
estimators (or theleast squares estimatas) of 3, andg,.

1.9.3 Properties of Least Squares Estimator

Equation (1.26) is rewritten as:

LX) -Y) _ ZLG-X)Y VI - X)
Zun 1(X| X)Z Z| 1(X| X)2 Zinzl(xi —Y)Z

) Z 4y 1(x x)2 = Z o 29

i=1

B =

In the third equalityY, (X; — X) = 0 is utilized because of = (1/n) 3, X;. In
the fourth equalitysw; is defined as:

_ X - X
S (X = X)?

wj Is honstochastic becauXgis assumed to be nonstochastig has the following
properties:

ICEDN v b o U
n n N (% _ X)2
;wixi = ;‘Ui(xi -X) = % =1, (1.30)
SPEIAN ( X - X ) B XY
= G\ - X2 (Z0y(% _X)Z)z
= m (1.31)

The first equality of equation (1.30) comes from equation (1.29).
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From now on, we focus only g8y, because usuall§. is more important than
B in the regression model (1.20). In order to obtain the properties of the least
squares estimatg@, we rewrite equation (1.28) as:

B = Zn:ini = zn:wi(ﬂl + B2Xi + Uy)
-1 =)

=5lzn:wi +ﬁzzn:wixi + anwiui
i1 i1 i1

n
= Bo+ ) . (1.32)
i—1
In the fourth equality of (1.32), equations (1.29) and (1.30) are utilized.

Mean and Variance ofBz: Up, Uy, - -+, U, are assumed to be mutually indepen-
dently and identically distributed with mean zero and variaméebut they are
not necessarily normal. Remember that we do not need normality assumption
to obtain mean and variance but the normality assumption is required to test a
hypothesis.

From equation (1.32), the expectationgefis derived as follows:

EB2) = E(B + Z wil) = B2 + E(Z wil)
o1 -1

=B+ ) wEW) =Bz (1.33)
i=1

Itis shown from (1.33) that the ordinary least squares estingatare the unbiased
estimator of3;. A
From (1.32), the variance @b is computed as:

V(B,) = V(B + an wil) = V(Zn: wil) = i V(wiu) = Zn: w? V(W)
=) =) =) =)

n 2
=0 ) W= O-—_ 1.34
é' ZLi% = X0 -39
From Theorem on p.18, the second and the fourth equalities hold. The third equal-
ity holds because, up, ---, u, are mutually independent (see the theorem on
p.23). The last equality comes from equation (1.31).
Thus, EB,) and V(3,) are given by (1.33) and (1.34).
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Gauss-Markov Theorem: It has been discussed above tBatis represented
as (1.28), which implies tha, is a linear estimator, i.e., linear M. In addi-
tion, (1.33) indicates thas, is an unbiased estimator. Therefore, summarizing
these two facts, it is shown thaj is alinear unbiased estimator Furthermore,
here we show that, has minimum variance within a class of the linear unbiased
estimators.

Consider the alternative linear unbiased estimﬁic&s follows:

B = Zn:CiYi = Zn:(wi +d)Y,
i1 =

wherec, = w; + d, is defined andl; is nonstochastic. Theﬁg is transformed into:

B = Zn: GY = Zn:(wi +0)(B1 + B2Xi + i)
= =
:ﬁlzn:wi +,82§wixi + Zn:wiui +,31an di +,Bzzn:dixi + Zn:diui
i1 i1 = i1 -1 =
= p2 +ﬁli d +ﬁzi diXi + iwiui + i di;.
i1 i1 i1 i1

Equations (1.29) and (1.30) are used in the forth equality. Taking the expectation
on both sides of the above equation, we obtain:

EB) =2+ 1 i di + 52 an i X + an wiE(u) + Zn: diE(u)
i—1 = i-1 =

=2 +,312n:di +ﬁzzn: di X.
i1 =

Note thatd; is not a random variable and thatB(= 0. SinceB; is assumed to be
unbiased, we need the following conditions:

Zn:di:O, Zn:diXi:O.
i=1 i=1

When these conditions hold, we can rewpijeas:

Ez =+ Z(wi + d)u;.
i=1
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The variance oB; is derived as:

n

V(B,) =V ,82+Z(w,+d)u Z(w.+d)u. :ZV(w.+d)u
i=1
= Z(a)i +d)AV(u) = O'Z(Z w? + 22 widi + Z d?)
i=1 i=1 i=1 i=1
= O'Z(Zn: wiz + z”: diz).
i=1 i=1

From unbiasedness 6§, usingX", d; = 0 andy", d; X = 0, we obtain:

i widi — Zinzl(xi - Y_)dl _ Zin:]_ Xidi - Xginzl di
i=1 it (% = X)? Yt (X = X)?

which is utilized to obtain the variance B5. From (1.34), the variance @ is
given by: V(3,) = 0% [, w?. Therefore, we have:

V(B2) = V(By),
becaus€',d? > 0. When},d?* = 0, i.e., whend; =d, = --- = dy = 0, we
have the equality: Vi) = V(B,). Inthe case ofl; = d, = -+ = dy = 0,3, is

equivalent tgs,.

Thus, the least squares estimasergives us thdinear unbiased minimum
variance estimator, or equivalently théest linear unbiased estimator (BLUE)
which is called th&Gauss-Markov theorem

Asymptotic Properties of 8,:  We assume that asgoes to infinity we have the
following:

1y -
HZ(Xi—X)Z — M < oo,
whereM is a constant value. From (1.31), we obtain:

_ —.

n 1 1
n 2 = —
2 a s D W

i=1

Note thatf(x,) — f(m) whenx, — m, wheremis a constant value anf{-) is
a function.
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Here, we show both consistencyfand asymptotic normality of/n(3,—5.).
First, we prove thag, is a consistent estimator g#6. As in (1.9), Chebyshev’s

inequality is given by:
2

P(X -l > &) < 5,
€

whereu = E(X) ando? = V(X). Here, we replac¥, E(X) and V(X) by 3,

0_2

~ _ ~ 2 4 2:
E@) =B V(Bo) =0 lew S

respectively. Then, whem — oo, we obtain the following result:
n o? Y w? 2
PUBr—pol > < TEAY T g
€ €2 Yt (X = X)

where}!, w? — 0 because Y w? — 1/M from the assumption. Thus, we
obtain the result that, — B, asn — oo. Therefore, we can conclude thgtis
a consistent estimator gf. A
_ Next, we want to show that/n(5, — B») is asymptotically normal. Noting that
B2 = B2 + XL wi; as in (1.32) from Corollary 2 on p.39 (central limit theorem),
asymptotic normality is shown as follows:

Shou-EGLww)  IThouw BB 5 N0, 1)

WELOW o 56?0/ S0 - X2

where EFL; with) = 0, V(I wity) = 0? X1 w? and T, wili = B, — B, are
substituted in the second equality. Moreover, we can rewrite as follows:

A

B2 - B> B V(B2 - B2) R V(B2 — f32)

/L= X o AL/ 2% - XY /M

or equivalently,

— N(0, 1),

o2
V(B2 - B2) — N(O, M)'

Thus, asymptotic normality of/n(3, — 3,) is shown.
Finally, replacings? by its consistent estimata¥, it is known as follows:

B2~ B2

Sy/Zia(% — X)?

— N(O, 1), (1.35)
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wheres? is defined as:

o T N A ra (1.36)

n—2i n— 2«

S =

1l
ey
|
=

which is a consistent and unbiased estimatarof
Thus, using (1.35), in large sample we can construct the confidence interval
discussed in Section (1.7.6) and test the hypothesis discussed in Section 1.8.

Exact Distribution of B,: We have shown asymptotic normality §(3. — ),

which is one of the large sample properties. Now, we discuss the small sample
properties of3,. In order to obtain the distribution ¢, in small sample, the
distribution of the error term has to be assumed. Therefore, the extra assumption
is thatu; ~ N(0, o2). Writing equation (1.32), agaip. is represented as:

Bo =P+ Zn:wiui-
i1

First, we obtain the distribution of the second term in the above equation. From
Theorem on p.33%; wiu; is distributed as:

n n
Z wili ~ N(0, o2 Z w?).
i=1 i=1
Therefore, from Example 1.9 on p.28, is distributed as:
R n n
B2=p2+ Z wil; ~ N(ﬁz,O'ZZ w?),
i=1 i=1
or equivalently,

B2 — B2 3 B2~ 2

oI o/ R 06 - X
for anyn.

Moreover, replacingr? by its estimators® defined in (1.36), it is known that
we have:

~ N(0, 1),

B2 — B2
s/ \/Zinzl(xi - X)2

~t(n-2),
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wheret(n — 2) denotes distribution withn — 2 degrees of freedom. See Section
2.2.10 for derivation of the distribution. Thus, under normality assumption on
the error termuy;, thet(n — 2) distribution is used for the confidence interval and
the testing hypothesis in small sample.

1.9.4 Multiple Regression Model

In Sections 1.9.1 — 1.9.3, only one independent variable X;gis taken into the
regression model. In this section, we extend it to more independent variables,
which is called themultiple regression We consider the following regression
model:

Yi = B1Xi1 + FoXio+ -+ BiXik + Ui
= X,,B + U,

fori =1,2,---,n, whereX; andg denote a Ix k vector of the independent vari-
ables and & x 1 vector of the unknown parameters to be estimated, which are
represented as:
B1
Xi= (XX Xi),  B= '8;2 -
B
X; j denotes the-th observation of thg-th independent variable. The case&of 2
andX;; = 1 for all i is exactly equivalent to (1.20). Therefore, the matrix form
above is a generalization of (1.20). Writing all the equationd fer1,2,---,n,
we have:

Y1 = B1Xy1 + BaXyo + -+ + BiXyk + Uy,
Yo = 1X01 + B2Xo2 + -+ + PiXok + Uy,

Yn = ﬁlxn,l +ﬁ2xn,2 +- +ﬁkxn,k + Up,

which is rewritten as:

Y1 Xi1 X2 - Xk (B Uy
Ya| [ KXo X2 o0 Xex | B2 . Up

Yn Xn,l Xn,2 Xn,k ﬁk Uk
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Again, the above equation is compactly rewritten as:

Y = XB+u. (1.37)
whereY, X andu are denoted by:
Y1 X Xz oo Xk Uy
2 I R e T b
Yo Xai Yoz oo Xk Ui

Utilizing the matrix form (1.37), we derive the ordinary least squares estimator
of B, denoted by3. In equation (1.37), replacing by 3, we have the following
equation:

Y =X3+e
wheree denotes a Xk n vector of the residuals. Theth element ok is given by
€. The sum of squared residuals is written as follows:

n
S(B) = Z e = €e= (Y- XB) (Y- XB) = (Y - BX)(Y - XB)
i=1
=YY -YXB-BXY+BXXB=YY=2Y'XB+ B X XB.
See Appendix 1.5 for the transpose in the fourth equality. In the last equality, note
thatg"X"Y = Y’XB because both are scalars. To minim&() with respect tg,
we set the first derivative &(8) equal to zero, i.e.,

95B) _ _oxry + 2X'XB = 0.
B

See Appendix 1.5 for the derivatives of matrices. Solving the equation above with
respect tg, the ordinary least squares estimatopa$ given by:

B =(X'X)IXY. (1.38)

See Appendix 1.5 for the inverse of the matrix. Thus, the ordinary least squares
estimator is derived in the matrix form.

Now, in order to obtain the properties@&uch as mean, variance, distribution
and so on, (1.38) is rewritten as follows:

B = (X'X)IXY = (X'X)IX(XB + u) = (X' X)X XB + (X' X)1X'u
=B+ (X'X)Xu. (1.39)
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Taking the expectation on both sides of equation (1.39), we have the following:
E(B) = E@ + (X' X)7'X'U) = B+ (X X)XE(U) =5,

because of E( = 0 by the assumption of the error teum Thus, unbiasedness of
B is shown. A
The variance opB is obtained as:

V(B) = E((B - B)B - B)') = E((X'X) " Xu((X'X) X))
= E((X'X)™ X uu X(X'’X) ™) = (X' X)X EQUU)X (X' X) ™
= (X' X)X XX X)L = ?(X' X)L
The first equality is the definition of variance in the case of vector. In the fifth
equality, EQu) = o?l, is used, which implies that Bf) = o2 for all i and
E(uu;) = O fori # j. Remember thati, uy, ---, U, are assumed to be mutu-
ally independently and identically distributed with mean zero and variadce

Under normality assumption on the error teunit is known that the distribu-
tion of 8 is given by:

B~ N, o3 (X'X)™).
Taking thej-th element of3, its distribution is given by:

~ . Bi - B;
Bi ~ N(Bj, o°a;), e, ——— ~N(0,1),
] J 1] O’\/a_jj

wherea;; denotes thg-th diagonal element of{' X)™*.
Replacingo? by its estimatois?, we have the following distribution:

Bi-Fi _ t(n - K),
S+/ajj

wheret(n — k) denotes the distribution withn — k degrees of freedons? is taken
as follows:

1 < 1 1 A R
SZZH;QZZHe,e:m(Y_Xﬁ) (Y_Xﬁ)’

which leads to an unbiased estimatoodf
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Using the central limit theorem, without normality assumption we can show
that asn — oo, under the condition of ()X’X — M we have the following
result:

Bj — B
SVajj
whereM denotes & x k constant matrix.
Thus, we can construct the confidence interval and the testing procedure, us-
ing thet distribution under the normality assumption or the normal distribution
without the normality assumption.

— N(O,1),

Appendix 1.1: Integration by Substitution

Univariate Case: For a function ofx, f(x), we perform integration by substitu-
tion, usingx = ¥(y). Then, it is easy to obtain the following formula:

[ fax= [wortwos.
which formula is called thentegration by substitution.

Proof:
Let F(x) be the integration of (x), i.e.,

F(x) = IX f(t)dt,

which implies that~"(x) = f(x).
DifferentiatingF(x) = F(y(y)) with respect to/, we have:

f9 = g = SO 00w ) = HUOW )

Bivariate Case: For f(x,y), definex = y1(u,v) andy = y(u, v).

f f f(x, y)dxdy = f f Jf(¥1(u,v), ¥2(u, v))dudy,

wherelJ is called theJacobian, which represents the following determinant:

0x 0X
s @ | oy _axay
gy 9yl duov  dvou’

ou ov
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Appendix 1.2: Integration by Parts

Let h(x) andg(x) be functions ofk. Then, we have the following formula:

f h(X)g (X)dx = h()g(x) - f Y ()g(3)dlx
which is called thentegration by parts.

Proof:
Consider the derivative df(x)g(x) with respect to, i.e.,

(f()9(x) = F(x)a(x) + f (g (x).
Integrating the above equation on both sides, we have:
f (f(x)g(x))’dx = f f/(X)g(x)dx + f f(X)g' (X)dx.
Therefore, we obtain:
19909 = [ F'(g09ex+ [ 109 (e
Thus, the following result is derived.
| g 09ex = 109903 - [ (090

When we want to integrat&(x)g’(x) within the range betweemandb for a < b,
the above formula is modified as:

b b b
f F(0g (9dx = [F()g(3) ], - f #(x)g()dx.

Appendix 1.3: Taylor Series Expansion

Consider approximatin)(x) aroundx = Xg by the Taylor series expansion. Then,
f(x) is approximated as follows:

() = 106) + 10X~ 50) + 5 ()X~ X0 + 1 17 ()X~ 30)" +

= 25 000"
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where f(W(x,) denotes ther-th derivative off (x) evaluated ak = x,. Note that
fO(x) = f(x) and 0!= 1
In addition, the following approximation is called theorder Taylor series
expansion:
1
00~ > = FO00)(x— x0)"

|
e n:

Appendix 1.4: Cramer-Rao Inequality

As seenin (1.12) and (1.13), the Cramer-Rao inequality is given by:

V(6,) > (Tzrfe),
where
6) = 1 _ 1 _ 1
dlog f(X; 6 dlog f(X; 0 dlog f(X;0)\
() () )

Here, we prove the above inequality and the equalities?{s).

Proof:
The likelihood functior(0; xX) = 1(; X1, X2, - - -, Xn) IS @ joint density ofX;, X,
-, Xn. Therefore, the integration &f9; x;, Xy, - - -, X,) with respect taxy, X, - - -,
Xy is equal to one. See Section 1.7.5 for the likelihood function.
That is, we have the following equation:

= f [(0; x)dx, (1.40)

where the likelihood functiot(; x) is given byl (6; x) = [T, f(x;6) and [ -- - dx
impliesn-tuple integral.

Differentiating both sides of equation (1.40) with resped, tae obtain the
following equation:

ol(o; x) 1 0l(6;x)
o= [ %5 @ 00

:f%l(@; x)dx:E(W), (1.41)

[(6; X)dx
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which implies that the expectation 8tog|(9; X)/06 is equal to zero. In the third
equality, note that d log/dx = 1/x.

Now, let én be an estimator of. The definition of the mathematical expecta-
tion of the estimato@n Is represented as:

E@,) = f 6l (6; X)dx. (1.42)

Differentiating equation (1.42) with respectiton both sides, we can rewrite as
follows:

OE(6n) ;%) 4 dlogl(@; %),
_fen 50 f@n—l(e, X)dx

96 a6
_ f (6n - E(én))(‘9 'Oga'gg’ ) _gl 'og(;ég’ X)))|(ev; X)dx
_co v(Qn’alogl(e X))_ (1.43)

In the second equality, dlogdx = 1/x is utilized. The third equality holds
because of EXlog|(; xX)/96) from equation (1.41).

For simplicity of discussion, suppose tltats a scalar. Taking the square on
both sides of equation (1.43), we obtain the following expression:

OE(Bn)\2 ~ dlogl(g; X)\\* ~ . dlogl(®; X)
( = ) :(Cov(en, — )) :p2V(9n)v(—69 )
Y (a Iogalée; X)) ,

wherep denotes the correlation ciieient betweer, anddlogl(; X)/d6. That
is, we have the definition gf is given by:

~ 9logl(; X)
co m“’T>

Moreover, we have-1 < p < 1 (i.e.,p? < 1). Then, the following inequality is

obtained. ~
O0E(0,)\2
(=)

o=

ologl(o; X))

< V(6n) V( o
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which is rewritten as:

%@%2
00
amm@xw
060
When E@,) = 6, i.e., whend, is an unbiased estimator 6f the numerator in

the right-hand side of equation (1.44) is equal to one. Therefore, we have the
following inequality:

V(6y) > (1.44)

v(

V(6,) > ! = .
V= 0logl(@; xX)y — _{,0logl(; X)\2\
V( Ogaé )) E(( 09529 ))2)

Note that we have \&log(¢; X)/06) = E((dlogl(8; X)/96)?) in the equality above,
because of E{logl(6; X)/d6) = 0.

Moreover, the denominator in the right-hand side of the above inequality is
rewritten as follows:

0|5 sty & gosiocn

= nE((—mOg;;X; 9) )2) =n I :(—alogafg(x; 0))2f(x; g)dx.

In the first equality, log(9; X) = >, log f(X;6) is utilized. SinceX;, i =
1,2,---,n, are mutually independent, the second equality holds. The third equal-
ity holds becaus&,, X,, - - -, X, are identically distributed.

Therefore, we obtain the following inequality:

A 1 1 a?(6)
V(Hn)Z = = )
dlogl(8; X)\2 dlog f(X;0)\2 n
(2% ) oe{E5)

which is equivalent to (1.12).
Next, we prove the equalities in (1.13), i.e.,

0%log f(X; 6 dlog f(X; 6 dlog f(X;6
—d—ﬁ%%—5=E«J§%—lﬂ=vkﬁ%§—5
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Differentiating f(x; 6)dx = 1 with respect t@, we obtain as follows:
f .
fa (X’O)dx: 0.
00

We assume that the range nfdoes not depend on the paramefeand that
01 (x; 0)/00 exists. The above equation is rewritten as:

dlog f(x6) ., 3
f e f(x;0)dx = 0,

or equivalently,
dlog f(x; 6)
%0

Again, differentiating with respect t@,
2 . . .
fa log f(X; Q)f(x;e)dx+fal()gf(x’e)af(x' g)dx: 0

)=0. (1.45)

062 00 00
ie.,
#log f(x6) ., dlog f(x;6)\2, _
[ 25 o+ [ (F2EY o= o
ie.,

d%log f(x; 6) dlog f(x; 6)\2
(o9 (P AY) o
Thus, we obtain:
0% log f(x; 6) dlog f(x; 0)\2
(00 ) | (TRL Y,
Moreover, from equation (1.45), the following equation is derived.
dlog f(x;0)\2\ . (dlogf(x;6)
() -V
Therefore, we have:

d%log f(X; 6) dlog f(X; )2 dlog f(X; 6)
- B0 = (TSN ) < v(HORD)
Thus, the Cramer-Rao inequality is derived as:
0'2(9) = 1 = 1 = - 1 .

dlog f(X;6)\2 dlog f(X; 6) d%log f(X; 6)
(PP (PR g TRt
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Appendix 1.5: Some Formulas of Matrix Algebra

A1 A2 - Ak
1 A2 - Ax C .
1. LetA = : A | = [&;], which is al x k matrix, wherea;;
N1 Q2 e Ak
denotes-th row andj-th column ofA. Thetransposeof A, denoted by,
is defined as:
a1 A1 - A
A2 dxp -t Q2
A= . .. . | =[],
Ak Ak o Ak

where thd-th row of A’ is thei-th column ofA.

2. (AX) = XA,
whereA andx are al x k matrix and & x 1 vector, respectively.

3. =a,
wherea denotes a scalar.

oa’x
4. =a,
0X a

wherea andx arek x 1 vectors.

OX AX
0X

whereA andx are ak x k matrix and & x 1 vector, respectively.

= (A+A)x,

Especially, wherA is symmetric,
OX AX
O0X

= 2AX

6. LetAandB bek x k matrices, andy be ak x k identity matrix (one in the
diagonal elements and zero in the other elements).

WhenAB = |,, Bis called thenverseof A, denoted by = A2,
Thatis,AA™? = AtA = I,.

7. LetAbe ak x k matrix andx be ak x 1 vector.
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If Ais apositive definite matrix, for anyx we have:
X Ax > 0.

If Ais apositive semidefinite matrix for anyx we have:
X Ax > 0.

If Aiis anegative definite matrix, for anyx we have:
X Ax < 0.

If Ais anegative semidefinite matrix for anyx we have:

X Ax < 0.
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