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Chapter 1

Elements of Statistics

In this chapter, the statistical methods used in the proceeding chapters are summarized.
Mood, Graybill and Bose (1974), Hogg and Craig (1995) and Stuart and Ord (1991,
1994) are good references in Sections 1.1 — 1.8, while Judge, Hill, Griffiths and Lee
(1980) and Greene (1993, 1997, 2000) are representative textbooks in Section 1.9.

1.1 Event and Probability

1.1.1 Event

We consider an experiment whose outcome is not known in advance but an event oc-
curs with probability, which is sometimes called a random experiment. The sample
space of an experiment is the set of all possible outcomes. Each element of a sample
space is called an element of the sample space or a sample point, which represents
each outcome obtained by the experiment. An event is any collection of outcomes
contained in the sample space, or equivalently a subset of the sample space. A simple
event consists of exactly one element and a compound event consists of more than
one element. Sample space is denoted by Q and sample point is given by w.

Suppose that event A is a subset of sample space Q. Let w be a sample point in
event A. Then, we say that a sample point w is contained in a sample space A, which
is denoted by w € A.

A set of the sample points which does not belong to event A is called the comple-
mentary event of A, which is denoted by A°. An event which do not have any sample
point is called the empty event, denoted by (). Conversely, an event which includes
all possible sample points is called the whole event, represented by Q.

Next, consider two events A and B. A set consisting of the whole sample points
which belong to either event A or event B is called the sum event, which is denoted
by A N B. A set consisting of the whole sample points which belong to both event A
and event B is called the product event, denoted by A N B. When A N B = (), we say
that events A and B are mutually exclusive.

1



2 CHAPTER 1. ELEMENTS OF STATISTICS

Example 1.1: Consider an experiment of casting a die. We have six sample points,
which are denoted by w; = {1}, wy = {2}, w3 = {3}, w4 = {4}, ws = {5} and we = {6},
where w; represents the sample point that we have i. In this experiment, the sample
space is given by Q = {w1, w;, w3, w4, Ws, we}. Let A be the event that we have even
numbers and B be the event that we have multiples of three. Then, we can write
as A = {wy, w4, we} and B = {ws,we}. The complementary event of A is given by
A° = {w1, w3, ws}, which is the event that we have odd numbers. The sum event of A
and B is written as A U B = {w», w3, w4, we}, while the product event is A N B = {wg}.
Since A N A° = (), we have the fact that A and A¢ are mutually exclusive.

Example 1.2: Cast a coin three times. In this case, we have the following eight
sample points:

wy =HHH), w =MHHT), w;=HTH), ws=HTT),
ws =(THH), ws=(THT), w;=(TTH), ws=(TTT),

where H represents head while T indicates tail. For example, (H,T,H) means that the
first flip lands head, the second flip is tail and the third one is head. Therefore, the
sample space of this experiment can be written as:

Q = {w;, Wy, W3, W4, Ws, We, W7, W}

Let A be an event that we have two heads, B be an event that we obtain at least one
tail, C be an event that we have head in the second flip, and D be an event that we
obtain tail in the third flip. Then, the events A, B, C and D are give by:

A= {(,()2, (1)3,(1)5}, B = {(,()2, w3, Wye, Ws, We, (1)7,(1)8},
C = {w1, w2, ws, we}, D = {w;, wy, we, wg}.

Since A is a subset of B, denoted by A C B, a sum eventis A U B = B, while a
product event is A N B = A. Moreover, we obtain C N D = {w,,we} and CU D =
{wi, Wy, Wy, Ws, We, Wg}.

1.1.2 Probability

Let n(A) be the number of sample points in A. We have n(A) < n(B) when A C B. Each
sample point is equally likely to occur. In the case of Example 1.1 (Section 1.1.1),
each of the six possible outcomes has probability 1/6 and in Example 1.2 (Section
1.1.1), each of the eight possible outcomes has probability 1/8. Thus, the probability
which the event A occurs is defined as:

n(A)
n(Q)’

In Example 1.1, P(A) = 3/6 and P(A N B) = 1/6 are obtained, because n(2) =
6, n(A) = 3 and n(A N B) = 1. Similarly, in Example 1.2, we have P(C) = 4/8,

PA) =
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P(AN B) = P(A) = 3/8 and so on. Note that we obtain P(A) < P(B) because of
ACB.
It is known that we have the following three properties on probability:

0<PA) <1, (1.1)
PQ) = 1, (1.2)
P(©) = 0. (1.3)

0 c A € Qimplies n(0) < n(A) < n(Q2). Therefore, we have:

n@® _n@A) _n€) _
nQ) ~ n(Q) T n(Q)

Dividing by n(£2), we obtain:
P0) < P(A) < P(Q)=1.

Because 0 has no sample point, the number of the sample point is given by n(0) = 0
and accordingly we have P(() = 0. Therefore, 0 < P(A) < 1 is obtained as in (1.1).
Thus, (1.1) — (1.3) are obtained.

When events A and B are mutually exclusive, i.e., when ANB = (), then P(AUB) =
P(A)+ P(B) holds. Moreover, since A and A¢ are mutually exclusive, P(A°) = 1 —P(A)
is obtained. Note that P(A U A°) = P(Q2) = 1 holds. Generally, unless A and B are not
exclusive, we have the following formula:

P(AUB) = P(A) + P(B) - P(AN B),

which is known as the addition rule. In Example 1.1, each probability is given by
P(AUB) =2/3, P(A) = 1/2, P(B) = 1/3 and P(A N B) = 1/6. Thus, in the example
we can verify that the above addition rule holds.

The probability which event A occurs, given that event B has occurred, is called
the conditional probability, i.e.,

n(ANB) _P(ANB)

PAB == 8 = P

or equivalently,
P(A N B) = P(A|B)P(B),

which is called the multiplication rule. When event A is independent of event B,
we have P(A N B) = P(A)P(B), which implies that P(A|B) = P(A). Conversely,
P(A N B) = P(A)P(B) implies that A is independent of B. In Example 1.2, because of
P(ANC) = 1/4 and P(C) = 1/2, the conditional probability P(A|C) = 1/2 is obtained.
From P(A) = 3/8, we have P(A N C) # P(A)P(C). Therefore, A is not independent of
C. As for C and D, since we have P(C) = 1/2, P(D) = 1/2 and P(C N D) = 1/4, we
can show that C is independent of D.
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1.2 Random Variable and Distribution

1.2.1 Univariate Random Variable and Distribution

The random variable X is defined as the real value function on sample space Q.
Since X is a function of a sample point w, it is written as X = X(w). Suppose that
X(w) takes a real value on the interval /. That is, X depends on a set of the sample
point w, i.e., {w; X(w) € I}, which is simply written as {X € I}.

In Example 1.1 (Section 1.1.1), suppose that X is a random variable which takes
the number of spots up on the die. Then, X is a function of w and takes the following

values:
X(w) =1, X(w) =2, X(w3)=3, X(ws) =4,

X(w5) = 5, X((,()6) =6.

In Example 1.2 (Section 1.1.1), suppose that X is a random variable which takes the
number of heads. Depending on the sample point w;, X takes the following values:

X(w) =3, X(w) =2, X(w3)=2, X(wg)=1,
X((,t)5) = 2, X(a)6) = 1, X(a)7) = 1, X((_Ug) =0.

Thus, the random variable depends on a sample point.
There are two kinds of random variables. One is a discrete random variable,
while another is a continuous random variable.

Discrete Random Variable and Probability Function: Suppose that the discrete
random variable X takes x;, x,, -+, where x; < x, < ---1is assumed. Consider the
probability that X takes x;, i.e., P(X = x;) = p;, which is a function of x;. That is, a
function of x;, say f(x;), is associated with P(X = x;) = p;. The function f(x;) repre-
sents the probability in the case where X takes x;. Therefore, we have the following
relation:

PX=x)=pi=fx), i=12---,

where f(x;) is called the probability function of X.
More formally, the function f(x;) which has the following properties is defined as
the probability function.

fx) =20, i=12,---,

D fa=1

Furthermore, for an event A, we can write a probability as the following equation:

P(X € A)= > f(x).

Xi€A

Several functional forms of f(x;) are shown in Section 2.4.
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In Example 1.2 (Section 1.1.1), all the possible values of X are 0, 1, 2 and 3. (note
that X denotes the number of heads when a die is cast three times). That is, x; = 0,
X, = 1, x3 = 2 and x4 = 3 are assigned in this case. The probability that X takes x;,
X2, X3 OF X4 1S given by:

P(X = 0) = £0) = P(lws]) = 5.
POX= 1) = f(1) = Plws,w5,07) = Plwa) + Pllwg)) + Plar)) = 3,
POX =) = f2) = P(lws, 05, 5)) = Pllwn)) + Pllan)) + Plsh =+,
PX =3) = f(3) = o) = 5.
which can be written as:
P(X = x) = f(x) = ﬁ(%f x=0,1,2,3.

For P(X = 1) and P(X = 2), note that each sample point is mutually exclusive. The
above probability function is called the binomial distribution discussed in Section
2.4.5. Thus, it is easy to check f(x) > 0 and }}, f(x) = 1 in Example 1.2.

Continuous Random Variable and Probability Density Function: Whereas a dis-
crete random variable assumes at most a countable set of possible values, a continuous
random variable X takes any real number within an interval /. For the interval /, the
probability which X is contained in A is defined as:

PXel) = ff(x) dx.
I
For example, let / be the interval between a and b for a < b. Then, we can rewrite
P(X € 1) as follows:
b
Pla<X<b)= f f(x) dx,

where f(x) is called the probability density function of X, or simply the density
function of X.

In order for f(x) to be a probability density function, f(x) has to satisfy the fol-
lowing properties:

f(x) >0,

foof(x) dx=1.

Some functional forms of f(x) are discussed in Sections 2.1 —2.3.
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For a continuous random variable, note as follows:

P(X:x):fxf(t)dt:O.

In the case of discrete random variables, P(X = x;) represents the probability which X
takes x;, i.e., p; = f(x;). Thus, the probability function f(x;) itself implies probability.
Howeyver, in the case of continuous random variables, P(a < X < b) indicates the
probability which X lies on the interval (a, b).

Example 1.3: As an example, consider the following function:

1, forO<x<l1,
J(x) = {0, otherwise.

Clearly, since f(x) > 0 for —co < x < coand [~ f(x)dx = fol f(x) dx = [x]} = 1, the
above function can be a probability density function. In fact, it is called a uniform
distribution. See Section 2.1 for the uniform distribution.

Example 1.4: As another example, consider the following function:

1 ia
V2r

e,
for —co < x < 0. Clearly, we have f(x) > 0 for all x. We check whether f_ O:o f(x)dx =
1. First of all, we define [ as I = f_ 0:0 f(x) dx.

To show I = 1, we may prove I?> = 1 because of f(x) > 0 for all x, which is shown
as follows:

J) =

2= (Imf(x) dx)2 _ (j:mf(X) dx)([mf(y) dy)

o ! - Y |
([m mexp(—iﬁ) dx)(Iw @exp(_iyz) dy)
= %‘[ I eXP(—%(x2+y2)) dx dy

= — eEXp(—=r")r ar
271' 0 0 p 2

1 21 00 1
= f exp(—s) ds d = ——2x[—exp(-s)]y = 1.
2 Jo 0 2n

In the fifth equality, integration by substitution is used. See Appendix 1.1 for the
integration by substitution. x = rcosf and y = rsin6 are taken for transformation,
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Figure 1.1: Probability Function f(x) and Distribution Function F(x)

— Discrete Random Variable —

- F) =3, f(x)

| [ |

[ [ T [
X1 X2 X3 eeeeeeeeeanns Xr X Xpg]  veeevveeccces

Note that r is the integer which satisfies x, < x < x,41.

which is a one-to-one transformation from (x, y) to (r, d). Note that 0 < r < +co and
0 < 6 < 2n. The Jacobian is given by:

ox Ox

7= or %Iz cosf —rsinf _,
dy 0y sinf rcosé '
or 00

In the inner integration of the sixth equality, again, integration by substitution is uti-

lized, where transformation is s = Erz.

Thus, we obtain the result /> = 1 and accordingly we have I = 1 because of
f(x) > 0. Therefore, f(x) = ¢"2% / V27 is also taken as a probability density function.
Actually, this density function is called the standard normal probability density
function, discussed in Section 2.2.1.

Distribution Function: The distribution function (or the cumulative distribution
function), denoted by F(x), is defined as:
P(X < x) = F(x),

which represents the probability less than x. The properties of the distribution function
F(x) are given by:

F(Xl) < F(Xg), for X1 < Xp,
Pla<X<b)y=F0b)-F(a), fora<b,
F(=00) =0, F(+00)=1.

The difference between the discrete and continuous random variables is given by:
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Figure 1.2: Density Function f(x) and Distribution Function F(x)

— Continuous Random Variable —

Foo = [7, fodr f

1. Discrete random variable (Figure 1.1):

o F(x) = if(xi) = 2191',
i1 Py

where r denotes the integer which satisfies x, < x < x,4.

o F(x;) — F(x; — €) = f(x;) = pis
where € is a small positive number less than x; — x;_;.

2. Continuous random variable (Figure 1.2):
ere= [ o
o F'(x) = f(x).
f(x) and F(x) are displayed in Figure 1.1 for a discrete random variable and Figure

1.2 for a continuous random variable.

1.2.2 Multivariate Random Variable and Distribution
We consider two random variables X and Y in this section. It is easy to extend to more

than two random variables.

Discrete Random Variables: Suppose that discrete random variables X and Y take
X1, X2, -+ and yy, y,, - - -, respectively. The probability which event {w; X(w) = x; and
Y(w) = y;} occurs is given by:

PX =x,Y = yj) = fxy(xi,y]'),
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where f,,(x;,y;) represents the joint probability function of X and Y. In order for
fo(xi,y;) to be a joint probability function, fy,(x;,y;) has to satisfies the following
properties:

Foxy) =0, i,j=1,2,--

DD Falxyp = 1.
i

Define f.(x;) and f,(y;) as:

Flx) = D folriyy),  i=1,20,
J
f;(yj) = foy(xi,yj)a j: 1,2,---.

Then, f.(x;) and f,(y;) are called the marginal probability functions of X and Y.
fx(x;) and f(y;) also have the properties of the probability functions, i.e., fi(x;) > 0
and ; fi(x;) = 1, and f,(y;) > O and }}; f,(y;) = 1.

Continuous Random Variables: Consider two continuous random variables X and
Y. For a domain D, the probability which event {w; (X(w), Y(w)) € D} occurs is given
by:

HmnemszmwwM®,
D

where f,,(x,y) is called the joint probability density function of X and Y or the joint
density function of X and Y. f,,(x,y) has to satisfy the following properties:

fo(x,y) >0,

f f fo(x,y)dxdy =1.

So(x) = f So(x,y) dy, for all x and y,

Define f.(x) and f,(y) as:

A@=f mmwm

where f.(x) and f|(y) are called the marginal probability density functions of X and
Y or the marginal density functions of X and Y.

For example, consider the event {w;a < X(w) < b, ¢ < Y(w) < d}, which is a
specific case of the domain D. Then, the probability that we have the event {w;a <
X(w) < b, ¢ < Y(w) < d}is written as:

b ~d
P(a<X<b,c<Y<d)=ff fo(x,y) dx dy.



10 CHAPTER 1. ELEMENTS OF STATISTICS

The mixture of discrete and continuous random variables is also possible. For
example, let X be a discrete random variable and Y be a continuous random variable.
X takes x;, xp, ---. The probability which both X takes x; and Y takes real numbers
within the interval [ is given by:

HX=%Yen=j}¢%w¢»
1

Then, we have the following properties:

fo(xi,y) 20, forallyandi=1,2,--,

D f folxi,y) dy = 1.

The marginal probability function of X is given by:

fx(xi) = f fxy(xi’ )7) dya
fori =1,2,---. The marginal probability density function of Y is:

A= D Falxiy).

1.2.3 Conditional Distribution

Discrete Random Variable: The conditional probability function of X given Y =
y; 1s represented as:

fxy(xi’yj) fxy(xiayj)
P(X = x|Y = y)) = fuy(xily)) = _ .
X=X =) = T = = = 5 Gy

The second equality indicates the definition of the conditional probability, which is
shown in Section 1.1.2. The features of the conditional probability function fy,(x;ly;)
are:

fay(xily)) 20, i=1,2,--,
foly(xilyj) =1, forany j.

1

Continuous Random Variable: The conditional probability density function of
X given Y =y (or the conditional density function of X given Y = y) is:

foxy)  fy@y)
5O [T ey dx
The properties of the conditional probability density function fy,(x[y) are given by:
Say(xly) =0,

f fay(xly)dx =1, foranyY =y.

Say(xly) =
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Independence of Random Variables: For discrete random variables X and Y, we
say that X is independent (or stochastically independent) of Y if and only if f,,(x;,
vj) = fi(x)) fy(y;). Similarly, for continuous random variables X and Y, we say that X
is independent of Y if and only if f,,(x,y) = fi(x)f,(y).

When X and Y are stochastically independent, g(X) and h(Y) are also stochastically
independent, where g(X) and h(Y) are functions of X and Y.

1.3 Mathematical Expectation

1.3.1 Univariate Random Variable

Definition of Mathematical Expectation: Let g(X) be a function of random vari-
able X. The mathematical expectation of g(X), denoted by E(g(X)), is defined as
follows:

Z gx)p: = Z g(x)f(x;), (Discrete Random Variable),

E@X) =1
f g(x)f(x) dx, (Continuous Random Variable).

The following three functional forms of g(X) are important.

1. gX) = X.

The expectation of X, E(X), is known as mean of random variable X.

Z xi f(x;), (Discrete Random Variable),

EX)={ "
f xf(x) dx, (Continuous Random Variable),

=, (or uy).

When a distribution of X is symmetric, mean indicates the center of the distri-
bution.

2. g(X) = (X —p).

The expectation of (X — u)? is known as variance of random variable X, which
is denoted by V(X).

V(X) = B(X - )
Z(xi — ,u)2 f(x), (Discrete Random Variable),

f (x - ,u)2 f(x)dx, (Continuous Random Variable),

=o?, (orc?).
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If X is broadly distributed, o> = V(X) becomes large. Conversely, if the distri-
bution is concentrated on the center, o> becomes small. Note that o = VV(X)
is called the standard deviation.

3. g(X) = %X,

The expectation of e is called the moment-generating function, which is
denoted by ¢(9).

¢(6) = E(e™)
Z ™ f(x)), (Discrete Random Variable),

f ¢’ f(x)dx, (Continuous Random Variable).
Note that the definition of e is given by:

. 1 . 1\h
e = }Cl_r)%(l + x)* = }}erolo(l - E)
=2.71828182845905.

The moment-generating function plays an important roll in statistics, which is
discussed in Section 1.5.

In Examples 1.5 — 1.8, mean, variance and the moment-generating function are
computed.

Example 1.5: In Example 1.2 of flipping a coin three times (Section 1.1.1), we
see in Section 1.2.1 that the probability function is written as the following binomial
distribution:

PX =x)=f(x) = ‘A-p, forx=0,1,2,---,n,
X

n!
n—n!?

where n = 3 and p = 1/2. When X has the binomial distribution above, we obtain
E(X), V(X) and ¢(0) as follows.
First, u = E(X) is computed as:

n! X n-x
p=EX) = > xf(x) = Zx:xmp (1-p)

— n! X1 _ )X (I’l — 1)' x—=1co1 _ yn—x
_Zx:(x—l)!(n—x)!p(l P) _npzx:(x—l)!(n—x)!p (1=7)

n'! x’ n—x _
ZHPZWP (I1-p)" " =np,

where ’ =n—1and x’ = x — 1 are set.
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Second, in order to obtain o> = V(X), we rewrite V(X) as:
o =VX)=EX*) -1 =EXX - 1)) + u — /%

E(X(X — 1)) is given by:

|
BOXC= 1) = 7 x(e= Df ) = ) aa = Do sp (U= p)™

X X

|

n' X n—x
= Z TR A2

-2
== 3 o -y
2

n . J /_x/
=n(n - 1)p* Z mpx (1-p)"™ = nn-1)p?,

where n’ = n — 2 and X’ = x — 2 are re-defined. Therefore, 0> = V(X) is obtained as:

P =VX)=EXX - 1) +u—u*
=n(n— 1)p* +np —n*p* = —np®> + np = np(1 - p).

Finally, the moment-generating function ¢(6) is represented as:

x!(n—x)!

$(6) = E(e™) = Z (1 =y
= Z . ( TP =P = e+ 1)

In the last equality, we utilize the following formula:

n '
(a+Db)' = Z EERLEETNS

(n — x)!
~ x!(n — x)!

which is called the binomial theorem.

Example 1.6: As an example of continuous random variables, in Section 1.2.1 the
uniform distribution is introduced, which is given by:

1, forO<x<l1,
fx) = {0, otherwise.

When X has the uniform distribution above, E(X), V(X) and ¢(6) are computed as

follows:
U= = _oox x)dx = Oxx— 2x0—2,



14 CHAPTER 1. ELEMENTS OF STATISTICS
o = V(X) = E(X?) - /2
:‘fooxzf(x)dx—,uz:j‘lxzdx—,uzz[lf]]—(1)2:i
—00 0 3 0 2 12’
0X * Ox ! Ox 1 Oxq1 1 ()
¢(0) = E(e™) = e’ f(x)dx = e’ dx = [56 1l = é(e - 1.
—00 0

Example 1.7:  As another example of continuous random variables, we take the stan-
dard normal distribution:

1 1.2
f(x) = ——=¢€2", for—oo<x< oo,

V2r

which is discussed in Section 2.2.1. When X has a standard normal distribution, i.e.,
when X ~ N(0, 1), E(X), V(X) and ¢(6) are as follows.
E(X) is obtained as:

0 1 0 1.2 1 1,279
E(X) = f xf(x) dx = —f xe 7 dx = —— |—e 2" =0,
—00 V27T —00 \/27‘[ [ ]_00

. _1.2
because lim —e 2* = 0.

X—*00

V(X) is computed as follows:

VQ3=E@%=1[mffﬂﬁh:1fmf:%ﬂ%ﬁdx::%;j:xgtg?Q

1 <1 12
= x(—e Zx e 7% dx = e 2 dx=1.
V27r[ ‘°° V f Ioo V2

The first equality holds because of E(X) = 0. In the fifth equality, use the following
integration formula, called the integration by parts:

dx

b b
fmme4mm%—fmmwm

where we take h(x) = x and g(x) = —¢~2* in this case. See Appendix 1.2 for the
integration by parts. In the sixth equality, lim —xe > = 0 is utilized. The last

equality is because the integration of the standard normal probability density function
is equal to one (see p.6 in Section 1.2.1 for the integration of the standard normal
probability density function).

¢(0) is derived as follows:

Ox X x2+6x
fmm_f ezm_f dx
f V2 V27T
_ —((x—e)z—eﬂ) dx = e2? f ~1(x-0)? — o3
= 2 x =e2 ——e 2 dx = ez
f V27T —00 V27T

The last equality holds because the integration indicates the normal density with mean
6 and variance one. See Section 2.2.2 for the normal density.

¢(6)
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Example 1.8: When the moment-generating function of X is given by ¢.(6) = e
(i.e., X has a standard normal distribution), we want to obtain the moment-generating

functionof ¥ = u + oX.
Let ¢.(6) and ¢,(0) be the moment-generating functions of X and Y, respectively.
Then, the moment-generating function of Y is obtained as follows:

¢y(6) = E(e”) = E("+70) = ME(e"X) = % (00r) = eMer T

1
= exp(ub + 50'292).

Some Formulas of Mean and Variance:

1. Theorem: E(aX + b) = aE(X) + b, where a and b are constant.
Proof:
When X is a discrete random variable,

E(aX +b) = ) (ax+b)f(x) =a ) xif(x) +b ) f(x)

i

= aE(X) + b.

Note that we have ) ; x; f(x;) = E(X) from the definition of mean and }}; f(x;) =
1 because f(x;) is a probability function.

If X is a continuous random variable,

E(aX + b)

foo(ax+ b)f(x)dx = afmxf(x) dx+bfoof(x) dx
a]é?X)+b. - -

Similarly, note that we have f_ O:O xf(x) dx = E(X) from the definition of mean
and f_ O:o f(x) dx = 1 because f(x) is a probability density function.

2. Theorem: V(X) = E(X?) — 2, where u = E(X).
Proof:

V(X) is rewritten as follows:

V(X) = E(X — p)*) = E(X* = 2uX — 1)
= E(X?) — 2uE(X) + u* = E(X?) — 1%

The first equality is due to the definition of variance.

3. Theorem: V(aX + b) = a*V(X), where a and b are constant.



16 CHAPTER 1. ELEMENTS OF STATISTICS

Proof:

From the definition of the mathematical expectation, V(aX + b) is represented
as:

V(aX + b) = E(((aX + b) — E(aX + b))*) = E((aX - ap)’)
= B(a*(X - w)*) = ®E(X — p)*) = a*V(X)

The first and the fifth equalities are from the definition of variance. We use
E(aX + b) = au + b in the second equality.

4. Theorem: The random variable X is assumed to be distributed with mean
E(X) = u and variance V(X) = o?. Define Z = (X — u)/o. Then, we have
E(Z)=0and V(Z) = 1.

Proof:
E(X) and V(X) are obtained as:

E(Z) = E(X;“) - E(X()T_“ = 0,
V(Z) = V(éX - g) - %V(X) ~1.

The transformation from X to Z is known as normalization or standardization.

1.3.2 Bivariate Random Variable

Definition: Let g(X, Y) be a function of random variables X and Y. The mathemati-
cal expectation of g(X, Y), denoted by E(g(X, Y)), is defined as:

Z Z 8(xi, y ) f(xi, y))s (Discrete Random Variables),
i

E@X.Y) =1 o~
f f g(x,y)f(x,y)dx dy, (Continuous Random Variables).

The following four functional forms are important, i.e., mean, variance, covariance
and the moment-generating function.

1. g(X,Y) = X:

The expectation of random variable X, i.e., E(X), is given by:

Z Z xXif(xi,y5), (Discrete Random Variables),
EX) =4t
f f xf(x,y) dxdy, (Continuous Random Variables),
= Hx-

The case of g(X, Y) = Y is exactly the same formulation as above, i.e., E(Y) =
Hy-
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2. g(X9 Y) = (X _ﬂx)z:
The expectation of (X — u,)? is known as variance of random variable X, which
is denoted by V(X) and represented as follows:
V(X) = BIX = 1)*)
Z Z(x,- — 1) f(xi,y ) (Discrete Case),
J

i

f f (x - ,ux)2 f(x,y) dx dy, (Continuous Case),

_ 2
=0

The variance of Y is also obtained in the same fashion, i.e., V(Y) = o2.

y
3. 8(X,Y) = (X = p)(Y — py):
The expectation of (X — u,)(Y — u,) is known as covariance of X and Y, which
is denoted by Cov(X, Y) and written as:

Cov(X,Y) = E((X — u)(Y — py))
D0 = )05 = ) F ), (Discrete Case),
J

i

f ) f oo(x — 1)y — py) f(x,y) dx dy, (Continuous Case).

Thus, covariance is defined in the case of bivariate random variables.

4. g(X,Y) = ehX+0:1,

The mathematical expectation of e”**%¥ is called the moment-generating func-

tion, which is denoted by ¢(6;, 6,) and written as:

$(61,6) = E("¥**7)
Z Z IO f (x,, v7), (Discrete Case),
iJ

f f 1ty f(x,y)dxdy, (Continuous Case).

In Section 1.5, the moment-generating function in the multivariate cases is dis-
cussed in more detail.

Some Formulas of Mean and Variance: We consider two random variables X and
Y. Some formulas are shown as follows.

1. Theorem: E(X +7Y) = E(X) + E(Y).
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Proof:

For discrete random variables X and Y, it is given by:

EXX+7Y)= Z Z(x, + V) fo(Xis )

_ Z Z X oy (X5 ¥ ) + Z Zy/fxy(xnyj

= E(X) + E(Y).

For continuous random variables X and Y, we can show:

E(X+Y)=f f (x + y)foy(x,y) dx dy

f f *fuly) dx dy + f f Wfo (. y) dx dy

= E(X) + E(Y).

. Theorem: E(XY) = E(X)E(Y), when X is independent of Y.

Proof:

For discrete random variables X and Y,

BXY) = > > xyifaleiy) = ) D 5 i)
i j i j

= (D] xfx)( > vih0)) = BOE).
i j

If X is independent of Y, the second equality holds, i.e., fi,(x;, y;) = fo(x) fL(V))-

For continuous random variables X and Y,
E(XY) = I : I : xy fry(x,y) dx dy
= I : I : xyfe(x) fy(y) dx dy
= ( [ : x () dx)( [ : () dy) = ECOE(Y).

When X is independent of Y, we have f,,(x,y) = fi(x)f,(y) in the second equal-
ity.

3. Theorem: Cov(X,Y) = E(XY) — E(X)E(Y).
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Proof:

For both discrete and continuous random variables, we can rewrite as follows:

Cov(X,Y) = E((X — p)(Y — y)) = E(XY — .Y — i, X + popty)
= E(XY) — E(u,Y) — E(u,X) + papy
= E(XY) — i, E(Y) — iy E(X) + papsy
= B(XY) — pupty — pyptr + popty = E(XY) — oy
= E(XY) — E(X)E(Y).

In the fourth equality, the theorem in Section 1.3.1 is used, i.e., E(u,Y) = uE(Y)
and E(u, X) = p,E(X).

4. Theorem: Cov(X,Y) =0, when X is independent of Y.
Proof:

From the above two theorems, we have E(XY) = E(X)E(Y) when X is indepen-
dent of Y and Cov(X,Y) = E(XY) — E(X)E(Y). Therefore, Cov(X,Y) = 0 is
obtained when X is independent of Y.

5. Definition: The correlation coefficient between X and Y, denoted by p,y, is
defined as:
Cov(X,Y)  Cov(X,Y)

P = NNV ooy

When p,, > 0, we say that there is a positive correlation between X and Y. As
Pxy approaches 1, we say that there is a strong positive correlation between X
and Y. When p,, < 0, we say that there is a negative correlation between X
and Y. As p,, approaches —1, we say that there is a strong negative correlation
between X and Y.

6. Theorem: p,, = 0, when X is independent of Y.

Proof:
When X is independent of Y, we have Cov(X, Y) = 0. Therefore, we can obtain
Cov(X,Y)
the result p,, = —————— = 0. Howeyver, note that p,, = 0 does not mean
Pxy '—V(X) '—V(Y) Pxy

the independence between X and Y.

7. Theorem: V(X +7Y) = V(X) +2Cov(X,Y) + V(Y).
Proof:

For both discrete and continuous random variables, V(X + Y) is rewritten as
follows:

V(X +Y) = E((X £Y) - EX £ ))’) = B(((X = ) £ (¥ = 1,))’)
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= B((X — p)” £ 2(X = u)(¥ = ) + (¥ = iy)%)
= E((X - p)?) £ 2E((X — )Y = i) + B((Y = ,)°)
= V(X) + 2Cov(X, Y) + V().

8. Theorem: -1 <p,, <1.
Proof:

Consider the following function of #: f(f) = V(X —Y), which is always greater
than or equal to zero because of the definition of variance. Therefore, for all ¢,
we have f(¢) > 0. f(¢) is rewritten as follows:

f(0) = V(Xt - Y) = V(X1) — 2Cov(Xt,Y) + V(Y)
= *V(X) — 2tCov(X, Y) + V(Y)
Cov(X,Y)
V(X)

(Cov(X, Y))*

)+ V() - v

= V(X)(t -

In order to have f(¢) > O for all 7, we need the following condition:

(Cov(X, Y))? S 0.

V(Y) - V) >

because the first term in the last equality is nonnegative, which implies:

(Cov(X, Y))* B
VX)OV(Y) ~

Therefore, we have:
Cov(X,Y)

<——2 - <
VVX) YV )

From the definition of correlation coefficient, i.e., p,, =

Cov(X,Y) we
VX)) V(Y)Y

obtain the result: -1 < p,, < 1.

9. Theorem: V(X +7Y) = V(X) + V(Y), when X is independent of Y.
Proof:

From the theorem above, V(X +Y) = V(X)+£2Cov(X, Y)+ V(Y) generally holds.
When random variables X and Y are independent, we have Cov(X,Y) = 0.
Therefore, V(X + Y) = V(X) + V(Y) holds, when X is independent of Y.

10. Theorem: For n random variables X;, Xs, - - -, X,

E(Z a;X;) = Z ali,

V(Z a;X;) = 2 Z CliajCOV(Xi, X)),
i i
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11.

where E(X;) = y; and g; is a constant value. Especially, when X, X, - -+, X, are
mutually independent, we have the following:

VO aiX) = ) avx).
Proof:
For mean of }}; a;X;, the following representation is obtained.

E(ZaX) = ZE(aX) = ZaE(X) = Za,-,u,-.

l
The first and second equalities come from the previous theorems on mean.

For variance of }; a;X;, we can rewrite as follows:

V) = B(Y alki =) = B(Y it = m)(3 ;=)
i
= E( Z Z aia (X, = p)(X; = 1))
= Z Z aiaB((Xi - p)(X; - ) = > " aa,Cov(X;, X)).
i

When X, X,, - -, X,, are mutually independent, we obtain Cov(X;, X;) = 0 for
all i # j from the previous theorem. Therefore, we obtain:

VO aX) = ) alVX)).

Note that Cov(X;, X;) = B((X; — 1)*) = V(X)).

Theorem: 7 random variables X;, X, ---, X, are mutually independently
and identically distributed with mean u and variance 0. That is, for all i =
1,2,--+,n,E(X;) = uand V(X;) = 0% are assumed. Consider arithmetic average
X=( /n) >y Xi. Then, mean and variance of X are given by:

_ _ 2
EX)=p VX)) =—

Proof:

The mathematical expectation of X is given by:

E(X) = E(% ZIX) - %E(ZX» - %ZE(X» - %Zl,u - %nu —u

E(aX) = aE(X) in the second equality and E(X + Y) = E(X) + E(Y) in the third
equality are utilized, where X and Y are random variables and a is a constant
value. For these formulas, see p.15 in Section 1.3.1 and p.17 in this section.
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The variance of X is computed as follows:

- 1 v 1 . 1 « ] < 1
VE) =V Y X) = VO XD = — ) VX) = = > 0% = —no”
i=1 i=1 i=1 i=1

0.2

n
We use V(aX) = a*V(X) in the second equality and V(X + Y) = V(X) + V(Y)
for X independent of Y in the third equality, where X and Y denote random
variables and a is a constant value. For these formulas, see p.15 in Section 1.3.1
and p.20 in this section.

1.4 Transformation of Variables

Transformation of variables is used in the case of continuous random variables. Based
on a distribution of a random variable, a distribution of the transformed random vari-
able is derived. In other words, when a distribution of X is known, we can find a
distribution of Y using the transformation of variables, where Y is a function of X.

1.4.1 Univariate Case

Distribution of Y = ¢~1(X):  Let f,(x) be the probability density function of con-
tinuous random variable X and X = (YY) be a one-to-one transformation. Then, the
probability density function of Y, i.e., f,(y), is given by:

£O) =W OIL(6)).

We can derive the above transformation of variables from X to Y as follows. Let
fx(x) and F,(x) be the probability density function and the distribution function of X,
respectively. Note that F,(x) = P(X < x) and f,(x) = F.(x).

When X = y(Y), we want to obtain the probability density function of Y. Let
£ and Fy(y) be the probability density function and the distribution function of Y,
respectively.

In the case of ¥/'(X) > 0, the distribution function of Y, F\(y), is rewritten as
follows:

Fy(y) = P(Y <y) = P(y(Y) <)) = P(X <y () = F.(y())-

The first equality is the definition of the cumulative distribution function. The second
equality holds because of ¥/(Y) > 0. Therefore, differentiating F',(y) with respect to
v, we can obtain the following expression:

A = F,0) = W OF (b)) = ¢’ O (v ). (1.4)
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Next, in the case of ¢'(X) < 0, the distribution function of Y, F(y), is rewritten as
follows:

Fy(y) = P(Y <y) = P(y(Y) 2 () = P(X 2 v ()
= 1= P(X <y) =1 - F(p).

Thus, in the case of ¥’ (X) < 0, pay attention to the second equality, where the inequal-
ity sign is reversed. Differentiating F,(y) with respect to y, we obtain the following
result:

A = F0) = =0 OF () = = O A(v)). (1.5)

Note that —¢/(y) > 0.
Thus, summarizing the above two cases, i.e., ¥’(X) > 0 and ¥’ (X) < 0, equations
(1.4) and (1.5) indicate the following result:

£O) =W OIABG)),

which is called the transformation of variables.

Example 1.9: When X has a standard normal density function, i.e., when X ~
N(O, 1), we derive the probability density function of Y, where Y = u + o X.
Since we have:

Y -
X =y =—F,

Y/'(y) = 1/0 is obtained. Therefore, the density function of Y, f,(y), is given by:

50 =W OIA() = —

1
(g0 ?)

which indicates the normal distribution with mean u and variance o2, denoted by
N(u, o?).

On Distribution of Y = X?>: Asan example, when we know the distribution func-
tion of X as F,(x), we want to obtain the distribution function of Y, Fy(y), where
Y = X2. Using F(x), F y(») 1s rewritten as follows:

F\(3)=PY <y)=PX*<y)=P(—-yy <X < )
= F.(\y) = Fu(= ).

Therefore, when we have f.(x) and Y = X2, the probability density function of Y is
obtained as follows:

1
h0)= Fi0) = 525 + L)
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1.4.2 Multivariate Cases

Bivariate Case: Let f,,(x,y) be a joint probability density function of X and Y. Let
X =y (U,V)and Y = ¥ (U, V) be a one-to-one transformation from (X, Y) to (U, V).
Then, we obtain a joint probability density function of U and V, denoted by f,,(u,v),
as follows:

S, v) = W\ (1t ), Y2, ),

where J is called the Jacobian of the transformation, which is defined as:

ox Ox
7= ou Ov .
dy Oy
ou Ov
Multivariate Case: Let f.(x;, x,- -, x,) be a joint probability density function of
X1, X5, -+ X,. Suppose that a one-to-one transformation from (X;, X5,---,X,) to

(Y1, Y,,---,Y,) is given by:
Xy =Y, Y5, -, Yy,
Xo =YY, Y2, -, Y,

Xn = WH(YDYZ,"',Yn)-

Then, we obtain a joint probability density function of Yy, Y», ---, Y¥,, denoted by
51,2, -, yn), as follows:

AOLYL ) = WA O 3 a3 a5 0m),

where J is called the Jacobian of the transformation, which is defined as:

o Ox Ox,
oy Oy OYn
o On On
J= dy1 Oy Oy, .
ox, O0x, 0x,
oy Oy OYn

1.5 Moment-Generating Function

1.5.1 Univariate Case

As discussed in Section 1.3.1, the moment-generating function is defined as ¢(0) =
E(e). 1In this section, several important theorems and remarks of the moment-
generating function are summarized.
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For a random variable X, p;, = E(X") is called the nth moment of X. Then, we
have the following first theorem.
1. Theorem: ¢™(0) =/, = E(X").
Proof:
First, from the definition of the moment-generating function, ¢(6) is written as:

00

6(6) = E(") = f & F(x) do.

—00

The nth derivative of ¢(6), denoted by ¢™ (), is:

IO f ) x"e®™ f(x) dx.

Evaluating ¢ (6) at 6 = 0, we obtain:

¢ (0) = foo X' f(x) dx = E(X") =y,

where the second equality comes from the definition of the mathematical ex-
pectation.

2. Remark: Let X and Y be two random variables. When the moment-generating
function of X is equivalent to that of Y, we have the fact that X has the same
distribution as Y.

3. Theorem: Let ¢(6) be the moment-generating function of X. Then, the
moment-generating function of Y, where Y = aX + b, is given by €”’¢(af).
Proof:

Let ¢,(6) be the moment-generating function of Y. Then, ¢,(6) is rewritten as
follows:
¢y(9) — E(eHY) — E(eﬁ(aX+b)) — ebHE(eaHX) — €b9¢(09).

Note that ¢(6) represents the moment-generating function of X.

4. Theorem: Let ¢(6), $,(0), ---, $,(0) be the moment-generating functions of
X1, Xo, - -+, X, which are mutually independently distributed random variables.
Define Y = X; + X, + --- + X,,. Then, the moment-generating function of Y is

given by ¢1(0)¢2(0) - - - $(0), i.e.,
¢y(0) = E(e”) = ¢1(0)$2(0) - - ¢,,(0),

where ¢,(6) represents the moment-generating function of Y.
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Proof:

The moment-generating function of Y, i.e., ¢,(6), is rewritten as:

¢y(0) — E(eHY) — E(eQ(X1+X2+---+X")) — E(eBXl )E(eGXQ) . E(eGX,,)
= $1(0)$2(0) - - - 9,(6).

The third equality holds because X, X5, ---, X, are mutually independently
distributed random variables.

. Theorem: When X;, X, ---, X, are mutually independently and identically

distributed and the moment-generating function of X; is given by ¢(0) for all

i, the moment-generating function of Y is represented by (¢(0))n, where Y =
Xi+Xo+---+ X,

Proof:
Using the above theorem, we have the following:

n

8,(6) = $:1(0)8(6) -+ $,(6) = H(O)H(O) -~ $(6) = (4(8))
Note that ¢;(6) = ¢(6) for all i.

. Theorem: When X, X,, ---, X, are mutually independently and identically

distributed and the moment-generating function of X; is given by ¢(0) for all
i, the moment-generating function of X is represented by (qﬁ(g))n, where X =
(1/m) iz, X

Proof:

Let ¢+(9) be the moment-generating function of X.

m@=mﬂba%%%:rhd%:ﬂa§:w%ﬂ
i=1 i=1

Example 1.10: For the binomial random variable, the moment-generating function
() is known as:

¢(0) = (pe’ +1 - p)",

which is discussed in Example 1.5 (Section 1.3.1). Using the moment-generating
function, we check whether E(X) = np and V(X) = np(1 — p) are obtained when X is
a binomial random variable.

The first- and the second-derivatives with respect to § are given by:

¢'(0) = npe’(pe’ +1—p)"',
¢"(0) = npe’(pe’ + 1 = p)"' + n(n - Dp*e*(pe’ + 1 - p)">.
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Evaluating at 8 = 0, we have:
E(X) = ¢'(0) = np, EX?) =¢"(0)=np+n(n-1)p*

Therefore, V(X) = E(X?) — (E(X))2 = np(1 — p) can be derived. Thus, we can make
sure that E(X) and V(X) are obtained from ¢(6).

1.5.2 Multivariate Cases

Bivariate Case: As discussed in Section 1.3.2, for two random variables X and Y,
the moment-generating function is defined as ¢(6;, 6,) = E(e?**%Y). Some useful and
important theorems and remarks are shown as follows.

1. Theorem: Consider two random variables X and Y. Let ¢(6,,6,) be the
moment-generating function of X and Y. Then, we have the following result:
07 $(0,0 ‘
000 _ g ixiyh,
96 06"
Proof:

Let f,,(x,y) be the probability density function of X and Y. From the definition,
@(6,, 6,) is written as:

#(81,6,) = E(eh Xy = f f M0 £ (x,y) dx dy.

Taking the jth derivative of ¢(6,, 6,) with respect to 6, and at the same time the
kth derivative with respect to #,, we have the following expression:

ok p(8,,6 ,

¢]( 1k 2) f f x] 91x+92}fxy(x’y) dx dy
06,00

Evaluating the above equation at (8, 8,) = (0,0), we can easily obtain:

6j+k¢(0, 0) foo foo . -
X'y fiy(x,y) dx dy = E(X/Y").
86/ 96% wd T
2. Remark: Let (X, Y;) be a pair of random variables. Suppose that the moment-
generating function of (Xi, Y;) is equivalent to that of (X, Y,). Then, (X, Y})
has the same distribution function as (X5, Y>).

3. Theorem: Let ¢(6,,6,) be the moment-generating function of (X,Y). The
moment-generating function of X is given by ¢;(6;) and that of Y is ¢,(6,).
Then, we have the following facts:

$1(01) = ¢(61,0),  $2(62) = ¢(0, 62).
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Proof:

Again, the definition of the moment-generating function of X and Y is repre-
sented as:

#(81, 6,) = E(eh Xy = f f MO £ (x,y) dx dy.

When ¢(0;, 8,) is evaluated at 8, = 0, ¢(0;, 0) is rewritten as follows:

$(6,,0) = E(e"¥) = f""’ f‘” e fiu(x, ) dx dy
:f eg”‘(f JENER) dy) dx
= f"" e fu(x) dx = B(e"¥) = ¢1(6)).

Thus, we obtain the result: ¢(6;,0) = ¢;(6;). Similarly, ¢(0, 6,) = ¢»(6,) can be
derived.

. Theorem: The moment-generating function of (X, Y) is given by ¢(6,,6,). Let

¢1(6,) and ¢,(6,) be the moment-generating functions of X and Y, respectively.
If X is independent of Y, we have:

é(01,0,) = ¢1(61)$2(02).

Proof:

From the definition of ¢(6;, 6,), the moment-generating function of X and Y is
rewritten as follows:

$(61,62) = E(e" ") = E(e")E(e™") = ¢1(61)$2(6).

The second equality holds because X is independent of Y.

Multivariate Case: For multivariate random variables X;, X5, - - -, X,,, the moment-
generating function is defined as:

¢(91, 6,---,6, = E(691X1+92X2+---+9nx,1).

1. Theorem: If the multivariate random variables X;, X5, ---, X, are mutually

independent, the moment-generating function of X;, X5, ---, X,, denoted by
(61,65, --,6,), is given by:

$(01,0s,---,6,) = $1(01)2(62) - - - $,(6,),

where ¢;(0) = E(e%).
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Proof:

From the definition of the moment-generating function in the multivariate cases,
we obtain the following:

¢(91, 92’ . 9’1) — E(eﬁlxl +6’2X2+---+9nX,l) — E(eﬁlxl )E(eHZXz) . E(eé),lX,,)
= ¢1(91)¢2(92) e ¢n(9n)

2. Theorem: Suppose that the multivariate random variables X;, X5, -+, X,
are mutually independently and identically distributed. X; has a normal dis-
tribution with mean u and variance o2, i.e., X; ~ N(u,0?). Let us define

A

o = Y, aX;, where a;, i = 1,2,---,n, are assumed to be known. Then,
2 has a normal distribution with mean u Y, a; and variance o Y7, af, ie.,
A n 2\ 2

A~ N Xz ai, 00~ 2 ay).

Proof:

From Example 1.8 (p.15) and Example 1.9 (p.23), it is shown that the moment-
generating function of X is given by: ¢,(60) = exp(ué + %0’292), when X is
normally distributed as X ~ N(u, o?).

Let ¢; be the moment-generating function of /1.

$4(6) = E(e") = B(e">h1 %) = ]—[ B(e"™) = ]_[ bo(aid)

n

1—[ exp(ua;0 + 0' a292) = exp(u Z a6 + 0' Z a?@Z)

i=1

which is equivalent to the moment-generating function of the normal distribu-
tion with mean p Y\, a; and variance o Y1, a?, where y and o in ¢.(6) is
simply replaced by p Y., a; and 0% Y, a? in ¢,(6), respectively.

Moreover, note as follows. When a; = 1/n is taken for all i = 1,2,---,n, i.e.,
when /i = X is taken, i = X is normally distributed as: X ~ N(u, 0'2 /n) The
readers should check difference between Theorem 11 on p.21 and this theorem.

1.6 Law of Large Numbers and Central Limit Theo-
rem

1.6.1 Chebyshev’s Inequality

In this section, we introduce Chebyshev’s inequality, which enables us to find upper
and lower bounds given a certain probability.
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Theorem: Let g(X) be a nonnegative function of the random variable X, i.e., g(X) >
0. If E(g(X)) exists, then we have:

P(g(X) > k) < E(glix)), (1.6)

for a positive constant value k.

Proof:
We define the discrete random variable U as follows:

gL s>k,
10, ifgx) <k

Thus, the discrete random variable U takes O or 1. Suppose that the probability func-
tion of U 1is given by:
fw) = P(U = u),

where P(U = u) is represented as:

P(U =1) = P(g(X) 2 k),
P(U = 0) = P(g(X) < k).

Then, in spite of the value which U takes, the following equation always holds:
8(X) > kU,

which implies that we have g(X) > kK when U = 1 and g(X) > 0 when U = 0, where
k is a positive constant value. Therefore, taking the expectation on both sides, we
obtain:

E(g(X)) > kE(U), (1.7)
where E(U) is given by:

1
E(U):ZMP(UZM):IXP(U:1)+O><P(U:O):P(U:1)
u=0

= P(g(X) = k). (1.8)

Accordingly, substituting equation (1.8) into equation (1.7), we have the following
inequality:

P(g(X) > k) < E(g]EX)).
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Chebyshev’s Inequality: Assume that E(X) = y, V(X) = o2, and A is a positive
constant value. Then, we have the following inequality:

1
P(X —ul > A0) < 7

or equivalently,

1
P(X —ul <o) > 1 -
which is called Chebyshev’s inequality.

Proof:
Take g(X) = (X — p)* and k = 2%0%. Then, we have:

E(X - p)?

P(X =)’ 2 X0?) £ —5—

b

which implies

1
P(X —ul > o) < =

Note that E(X — u)> = V(X) = o>
Since we have P(|X —u| > Ao) + P(|X —u| < Ao) = 1, we can derive the following
inequality:

1
POX ~pl < A0) 2 1 = —. (1.9)

An Interpretation of Chebyshev’s inequality: 1/42 is an upper bound for the prob-
ability P(|X — u| > Ao). Equation (1.9) is rewritten as:

1
P(,u—/lO'<X<,u+/10')21—E.

That is, the probability that X falls within Ao units of u is greater than or equal to
1 — 1/4%. Taking an example of A = 2, the probability that X falls within two standard
deviations of its mean is at least 0.75.

Furthermore, note as follows. Taking € = Ao, we obtain as follows:

0.2

P(X —ul>e) < 2

1.e.,

V(X)

P(X-E(X)| > €) < —3
€

) (1.10)

which inequality is used in the next section.



32 CHAPTER 1. ELEMENTS OF STATISTICS

Remark: Equation (1.10) can be derived when we take g(X) = (X — u)?, u = E(X)
and k = €* in equation (1.6). Even when we have u # E(X), the following inequality
still hold:

E((X — p)?
Pox -z 0 < BEZ0))

Note that E((X — u)?) represents the mean square error (MSE). When u = E(X), the
mean square error reduces to the variance.

1.6.2 Law of Large Numbers (Convergence in probability)

Law of Large Numbers: Assume that X;, X;, ---, X,, are mutually independently
and identically distributed with mean E(X;) = u and variance V(X;) = 0 < oo for all
i. Then, for any positive value €, as n — oo, we have the following result:

P(X, —ul>e) — 0,

where X, = (1/n) 37, X;. We say that X, converges to u in probability.

Proof:
Using (1.10), Chebyshev’s inequality is represented as follows:

V(X,)

P(X, - B(X,)| > ) < —,
€

where X in (1.10) is replaced by X,. As in Section 1.3.2 (p.21), we have E(X,) = u
and V(X,) = o /n, which are substituted into the above inequality. Then, we obtain:

2
P(X, -l > &) < .
ne

Accordingly, when n — oo, the following equation holds:

— 0'2
P(X, -l > ) < — — 0.
ne

That is, X, — u is obtained as n — oo, which is written as: plim X, = u. This
theorem is called the law of large numbers.

The condition P(1X,, — ul > €) — 0 or equivalently P(X, - ul < €) — lisusedas
the definition of convergence in probability. In this case, we say that X,, converges
to u in probability.
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Theorem: In the case where X, X5, - -, X,, are not identically distributed and they
are not mutually independently distributed, we assume that

ny = E(Zn: Xi) < oo,
i=1

Vi =V X)) < oo,
i=1
Va
"2
Then, we obtain the following result:

n

Zi:l Xi —m,

—_— ﬂ
n

That is, X,, converges to lim M in probability. This theorem is also called the law of

n—oo n

large numbers.

1.6.3 Central Limit Theorem

Central Limit Theorem: X, X5, -- -, X, are mutually independently and identically
distributed with E(X;) = u and V(X;) = o for all i. Both u and o are finite. Under
the above assumptions, when n — oo, we have:

X, — u f | R
P <x|] — e 2" du,
(O-/\/;l ) —00 V27T

which is called the central limit theorem.

Proof:
i~ H

X;
Define Y; = ———. We can rewrite as follows:

L
G WZ P

Since Yi, Y», ---, Y, are mutually independently and identically distributed, the
moment-generating function of Y; is identical for all i, which is denoted by ¢(6). Using
E(Y;) = 0 and V(Y;) = 1, the moment-generating function of Y;, ¢(6), is rewritten as:

1 1
_ Yo\ _ : Y2602 + 33
#(0) = E(e )—E(1+Y,9+2Yl.0 TR )

1
=1+ 592 + 0(6%).
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In the second equality, €' is approximated by the Taylor series expansion around
6 = 0. See Appendix 1.3 for the Taylor series expansion. O(x) implies that it is
a polynomial function of x and the higher-order terms but it is dominated by x. In
this case, O(#°) is a function of 6, #*, - --. Since the moment-generating function is
conventionally evaluated at 6 = 0, 6° is the largest value of 6°, %, - - - and accordingly
O(#?) is dominated by 6° (in other words, 6*, 6°, - - - are small enough, compared with
6%).
Define Z as:

L
Z:%;Y,-.

Then, the moment-generating function of Z, i.e., ¢.(6), is given by:

n

6.(6) = B(e%) = E(ﬁ o Y,-) _ l—[ E(JY) _ ( & % ))n
i=1

=(1+ %%2 + 0(:—2))” =(1+ %%2 +0(™)'.

We consider that n goes to infinity. Therefore, 0(6—2) indicates a function of 7 2.
n2
2 ; 1 92
Moreover, consider x = 5 + O(n_%). Multiply n/x on both sides of x = 5 +
n n
1,1 1,1
O(n™?). Then, we obtain n = —(592 + O(n"?)). Substitute n = —(592 +0(n"?)) into
X X
the moment-generating function of Z, i.e., ¢.(8). Then, we obtain:

16° 3\ 2 -%
6:0) = (1+5—+ 0 D) = (1 + 900D
2n

1
£10(n7) @
) — e7,

= (1 +x):
Note that x — 0 when n — oo and that lir% (1 + x)!'/* = ¢ as in Section 1.2.3 (p-12).

Furthermore, we have O(n‘%) —> 0asn — oo.

Since ¢.(0) = e% is the moment-generating function of the standard normal distri-
bution (see p.14 in Section 1.3.1 for the moment-generating function of the standard
normal probability density), we have:

yn—,u fx 1 1.2
Pl—— <x) — e 2" du,
(O-/\/;l ) —00 V27T

or equivalently, .
X, — U
o/ \n

The following expression is also possible:

— N(@O,1).

VX, — ) — N(,d?). (1.11)
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Corollary 1: When E(X;) = u, V(X;) = 0 and X, = (1/n) >, X;, note that
Yn - E()_(n) _ )_(n —H
JVX,) o/ Nn
Therefore, we can rewrite the above theorem as:
X, - EX, S B
P(# < x) — f e 2 du.

YVX,) Var

Corollary 2: Consider the case where X;, X5, - - -, X, are not identically distributed
and they are not mutually independently distributed. Assume that

lim nV(X,) = 07 < o,

n—oo

where X, = (1/n) >y Xi. Then, when n — oo, we have:
X, - E(X, "X —EQL X x
%o = By < x) = P(Zl_l (i1 X0 < x) — f | e 2 dy.

JV(EX) VYV X)) © V2r

1.7 Statistical Inference

A

1.7.1 Point Estimation

Suppose that the functional form of the underlying distribution on population is known
but the parameter 6 included in the distribution is not known. The distribution function
of population is given by f(x;6). Let x;, x,, - - -, x,, be the n observed data drawn from
the population distribution. Consider estimating the parameter 6 using the n observed
data. Let 6,(x;, x», - - -, x,,) be a function of the observed data x;, xa, - - -, X, Suppose
that 8,(x, xa, - - -, X,) is constructed from the purpose of estimating the parameter 6.
@n(xl, Xa, -+, X,) takes a certain value given the n observed data. Then, @,,(xl, X3, t e,
x,) is called the point estimate of 6, or simply the estimate of 6.

Example 1.11: Consider the case of # = (u,0?), where the unknown parameters
contained in population is given by mean and variance. A point estimate of population
mean y is given by:

(X1, X2, -+, X)) EX == ) X
A point estimate of population variance o is:

1
~2 — 2 -2
Op(Xt, X200, X) = 87 = E(xi—x).
i=1
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An alternative point estimate of population variance o2 is:

1 n
~2 . xx2 § —2
O-n(xl9x29"'a-xn)zs* :Z (xi_-x)-
i=1

1.7.2 Statistic, Estimate and Estimator

The underlying distribution of population is assumed to be known, but the parameter 6,
which characterizes the underlying distribution, is unknown. The probability density
function of population is given by f(x; ). Let X;, X5, - - -, X,, be a subset of population,
which are regarded as the random variables and are assumed to be mutually indepen-
dent. x;, xp, - -, x, are taken as the experimental values of the random variables X,
X5, -+, X,,. In statistics, we consider that n-variate random variables X;, X5, - --, X,
takes the experimental values xi, x», - - -, x,, by chance. There, the experimental values
and the actually observed data series are used in the same meaning.

As discussed in Section 1.7.1, @n(xl, X2, -+, X,) denotes the point estimate of 6.
In the case where the observed data x;, x,, - - -, x, are replaced by the corresponding
random variables X;, X5, - - -, X,,, a function of X1, X5, - -+, X,,, 1.e., @(Xl, X5, -+, X)), 18
called the estimator of 6, which should be distinguished from the estimate of 9, i.e.,
9(x1, X2, 00y Xp).

Example 1.12: Let X, X5, - - -, X,, denote a random sample of n from a given distri-
bution f(x;6). Consider the case of 6 = (u, 02).

The estimator of y is given by X = (1/n) Y%, X;, while the estimate of y is X =
(1/n) 3%, x;. The estimator of o> is S? = Y (X; — X)*/(n — 1) and the estimate of
o is 8 = X, (6 — 02 (n - 1).

There are numerous estimators and estimates of 6. All of (1/n) >.', X;, (X1+X,,)/2,
median of (X;, X5, -+, X,,) and so on are taken as the estimators of u. Of course,
they are called the estimates of & when X; is replaced by x; for all i. Similarly, both
S =" (Xi—X)*/(n—1)and S*2 = 32 (X; — X)?/n are the estimators of o>. We
need to choose one out of the numerous estimators of 6. The problem of choosing an
optimal estimator out of the numerous estimators is discussed in Sections 1.7.4 and
1.7.5.

In addition, note as follows. A function of random variables is called a statistic.
The statistic for estimation of the parameter is called an estimator. Therefore, an
estimator is a family of a statistic.

1.7.3 Estimation of Mean and Variance

Suppose that the population distribution is given by f(x;6). The random sample X,
X5, -+, X, are assumed to be drawn from the population distribution f(x; ), where
6 = (u, o?). Therefore, we can assume that X, X», - - -, X,, are mutually independently
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and identically distributed, where “identically” implies E(X;) = u and V(X;) = o for
all i.
Consider the estimators of 6 = (u, 0%) as follows.

1. The estimator of population mean y is:
— 1<
= - Xl'.

2. The estimators of population variance o are:

o §* = Z(X w)?, when u is known,

i=1
— ¥\
—n_li;](Xl X)?,

1 + —
S**Zz_ X[__xZ’
. n;} )

Properties of )_(: From Theorem on p.21, mean and variance of X are obtained as

follows:
2

EX)=n V&) =—

Properties of $*2, 2 and $**?:  The expectation of S *? is

E(S™%) = E( Z(X uy) Z(X uy’) ZE((X,-—W)
:—ZV(X)— ZO’ —nO' ? =07,

where E((X; — y)z) = V(X;) = o is used in the fourth and fifth equalities.
Next, the expectation of S? is given by:

E(S?) = E(ﬁ Z(X,- - X)) = n—ilE(Z(Xi -X)?)
i=1 i=1

1 . —
= — 1E(;<<Xi - - X -p)y)

1 B -
= n— 1E(;((Xl - ,u)2 - 2(Xz — ,L[)(X _ﬂ) + (X _ #)2))

T 1 1E(;(Xi —p)* = 2(X — ) ;(X,- — )+ n(X - ,u)z)
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- ﬁE(;(Xi -1 = n(X - )

- " D0 =) = B - )

n—

2
N N
n

n-—1 n—1 -7

1 (X; —p) = n(X - p) is used in the sixth equality. E((1/n) ¥ (X; - )?) = E(S*?) =
o2 and E(X — p)?) = V(X) = 0®/n are required in the eighth equality.
Finally, the mathematical expectation of S **? is represented by:

E(S*?) = Z(X X))

:E(”_lsz):”_ E(S2) = _10' + 02,
n n n

Summarizing the above results, we obtain as follows:
«2 2 2 2 w2 n-1, 2
ES™) =0, EWS)=0", ES§™)=——0" #0".
n

1.7.4 Point Estimation: Optimality

As mentioned in the previous sections, 6 denotes the parameter to be estimated. ,(X;,

X5, - -+, X,,) represents the estimator of 6, while @n(xl , X, - - -, X,) Indicates the estimate
of 6. Hereafter, in the case of no confusion, 6,(X;, X5, - - -, X)) is simply written as 6,,.

As discussed above, there are numerous candidates of the estimator 6,. The desired
properties which 6, have to satisfy include unbiasedness, efficiency and consistency.

Unbiasedness: One of the desirable features that the estimator of the parameter
should have is given by:
E@,) = 6, (1.12)

which implies that 0, is distributed around 6. When the condition (1.12) holds, 0, is
called the unbiased estimator of 6. E(6,) — 6 is defined as bias.

As an example of unbiasedness, consider the case of § = (u,c?). Suppose that
X1, Xo, - -+, X, are mutually independently and identically distributed with mean u and
variance o>. Consider the following estimators of i and o-°.

1. The estimator of y is:

—_ 1<
o X =-— X,‘.
nis
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2. The estimators of o2 are:

1 © —
§2 = - ) (X; - X)*.
. n;< )

Since we have obtained E(X) = u and E(S?) = ¢ in Section 1.7.3, X and S? are
unbiased estimators of u and o>. However, we have obtained the result E(S**?) # o
in Section 1.7.3 and therefore S **? is not an unbiased estimator of o-2. Thus, according
to the criterion of unbiasedness, S is preferred to S **? for estimation of 2.

Efficiency: Consider two estimators, i.e., §, and 6,. Both are assumed to be unbi-
ased. That is, we have the following condition: E(G ) = 6 and E(G ) = 6. When
V(6,) < V(H ), we say that 8, is more efficient than 6,. The estimator which is widely
distributed is not preferred.

Consider as many unbiased estimators as possible. The unbiased estimator with
the least variance is known as the efficient estimator. We have the case where an
efficient estimator does not exist.

In order to obtain the efficient estimator, we utilize Cramer-Rao inequality. Sup-
pose that X; has the probability density function f(x;; 6) for all i, i.e., X;, X5, - -+, X,
are mutually independently and identically distributed. For any unbiased estimator of
6, denoted by 8, it is known that we have the following inequality:

2
vy > Z9 (1.13)
n
where
o (0) = ! _ = ! — = : —, (114
E(((')logf(X, 0))2) V((c')logf(X, 6))) E(c') log f(X; 9))
00 00 00?

which is known as the Cramer-Rao inequality. See Appendix 1.4 for proof of the
Cramer-Rao inequality.

When there exists the unbiased estimator 6, such that the equality in (1.13) holds,
6, becomes the unbiased estimator with minimum variance, which is the efficient es-
timator. o>(0)/n is called the Cramer-Rao lower bound.

Example 1.13 (Efficient Estimator): Suppose that X;, X5, - - -, X, are mutually in-
dependently, identically and normally distributed with mean u and variance 0. Then,
we show that X is an efficient estimator of .

When o < oo, from Theorem on p.21, V(X) is given by o/n in spite of the
distribution of X, i = 1,2, -« -, 7. oot (A)
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On the other hand, because we assume that X; is normally distributed with mean u
and variance o2, the probability density function of X; is given by:

1 1
e exp(~5(x - p’).

The Cramer-Rao inequality is represented as:

1

nE((alOg(;;EX;ﬂ))z)’

V(X) >

where the logarithm of f(X; u) is written as:

1 1
log f(X; ) = = log(2n0?) — == (X — uy’.
2 2072
Therefore, the partial derivative of f(X; ) with respect to y is:

dlog f(X; 1
Ogg( ) _ Lx—p.
/) o

Accordingly, the Cramer-Rao inequality in this case is written as:

2
VX) > ! - ! = (B)

1 -
nE ((;(x - m)z) n—EX - "

From (A) and (B), variance of X is equal to the lower bound of Cramer-Rao in-
2

equality, 1.e., V(X) = 0-—, which implies that the equality included in the Cramer-Rao
n

inequality holds. Therefore, we can conclude that the sample mean X is an efficient
estimator of u.

Example 1.14 (Linear Unbiased Minimum Variance Estimator): Suppose that
X1, X, -+, X, are mutually independently and identically distributed with mean u
and variance o? ( note that the normality assumption is excluded from Example 1.13).
Consider the following linear estimator: & = )", a;X;. Then, we want to show { (i.e.,
X) is a linear unbiased minimum variance estimator if ¢; = 1/n for all i, i.e., if
a=X.

Utilizing Theorem on p.20, when E(X;) = u and V(X;) = o2 for all i, we have:
B(l) =pu XY, a;and V() = o? T, a.

Since f is linear in X;, {1 is called a linear estimator of . In order for /i to be
unbiased, we need to have the condition: E(1) = >\, a; = u. Thatis, if 3, a; = 1
is satisfied, [t gives us a linear unbiased estimator. Thus, as mentioned in Example
1.12 of Section 1.7.2, there are numerous unbiased estimators.
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The variance of 7 is given by o Y7, a7. We obtain the value of a; which min-
imizes )", a? with the constraint " a; = 1. Construct the Lagrange function as
follows:

n n

L:%Zaf+/l(l—2a,-),

i=1 i=1

where A denotes the Lagrange multiplier. The % in front of the first term appears to
make life easier later on and does not affect the outcome. To determine the optimum
values, we set the partial derivatives of L with respect to a; and A equal to zero, i.e.,

Solving the above equations, a; = A = 1/n is obtained. Therefore, when a; = 1/n for
all 7, 1 has minimum variance in a class of linear unbiased estimators. That is, X is a
linear unbiased minimum variance estimator.

The linear unbiased minimum variance estimator should be distinguished from the
efficient estimator discussed in Example 1.13. The former does not requires the as-
sumption on the underlying distribution. The latter gives us the unbiased estimator
which variance is equal to the Cramer-Rao lower bound, which is not restricted to a
class of the linear unbiased estimators. Under the assumption of normal population,
the linear unbiased minimum variance estimator leads to the efficient estimator. How-
ever, both are different in general. In addition, note that the efficient estimator does
not necessarily exist.

Consistency: Let §, be an estimator of 6. Suppose that for any € > 0 we have the
following:
P16, —6l>€ — 0, as n — oo,

which implies that 6 —> 6 as n —> oo. Then, we say that 9n 1s a consistent estimator
of 6. That is, the estimator which approaches the true parameter value as the sample
size is large is called the consistent estimator of the parameter.

Example 1.15:  Suppose that X, X5, - - -, X,, are mutually independently and identi-
cally distributed with mean y and variance o>. Assume that o? is known. Then, it is
shown that X is a consistent estimator of .

From (1.10), Chebyshev’s inequality is given by:

P(X -EX)| > e) < g
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for a random variable X. Here, replacing X by X, we obtain E(X) and V(X) as follows:

_ _ 2
EX)=u, V&) =—

because E(X;) = u and V(X;) = 0% < oo are assumed for all i.
Then, when n — oo, we obtain the following result:

— 0'2
P(|X—,u|>6)§—2 — 0,
ne

which implies that X — p as n —> oo. Therefore, we can conclude that X is a
consistent estimator of u.

Summarizing the results up to now, X is an unbiased, minimum variance and con-
sistent estimator of population mean u. When the distribution of X; is assumed to be
normal for all i, X leads to an unbiased, efficient and consistent estimator of u.

Example 1.16:  Suppose that X;, X;, - - -, X,, are mutually independently, identically

1 _
and normally distributed with mean u and variance o->. Consider S **? = — Z(Xi—X)z,
n
i=1
which is an estimate of o2,
In Remark on p.32, X and u are replaced by S**? and o®>. Then, we obtain the
following inequality:

E((S w2 0.2)2)
€? '

We compute E((S*? — 02)?). Since (n — 1)S2/0? ~ x*(n — 1) we obtain E((n —

PIS*™* —0?|l<e)>1-

DS?/0*) =n—1and V((n—1)S?/0?) = 2(n—1), where S? = n— Z(X X) See

Section 2.2.8 (p.146) for the chi-square distribution y?(n — 1). Therefore, E(S?) =
and V(§2) = 20*/(n — 1) can be derived. Using §*? = S%(n — 1)/n, we have the
following:

E(S™ - o)) = E((”—;ISZ ~?)) = 15((%(52 —07) - (’—2)2)

n
(n - 1)2 0'_4 (n—- 1)2 0‘4 (2n - 1)0_4

2 Vs + :

E((S? -0 +

n
Therefore, as n — oo, we obtain:

12 1
(2n - )0_4

PIS™? -c?l<e) 21— — 1L
€

n2

Because S**? — o2, $**? is a consistent estimator of o>. Thus, S *? is not unbiased
(see Section 1.7.3, p.38), but is is consistent.



1.7. STATISTICAL INFERENCE 43

1.7.5 Maximum Likelihood Estimator

In Section 1.7.4, the properties of the estimators X and S are discussed. It is shown
that X is an unbiased, efficient and consistent estimator of x under normality assump-
tion and that S? is an unbiased estimator of o>. Note that S? is not efficient but
consistent (we do not check these features of S2 in this book).

The population parameter 6 depends on a functional form of the population distri-
bution £(x;6). It corresponds to (u, o?) in the case of the normal distribution and 3 in
the case of the exponential distribution (Section 2.2.4). Now, in more general cases,
we want to consider how to estimate . The maximum likelihood estimator gives us
one of the solutions.

Let X;, X5, -+, X,, be mutually independently and identically distributed random
samples. X; has the probability density function f(x; ). Under these assumptions, the
joint density function of Xy, X», - - -, X,, is given by:

Flerx, x50 = | ] £xis0),
i=1

where 8 denotes the unknown parameter.
Given the actually observed data x{, x,, - - -, X,,, the joint density f(xy, xa, - - -, X,,; 0)
is regarded as a function of 6, i.e.,

1O) = 16 ) = I(B; x1, %, x5) = | | fxiz ).
i=1

1(0) is called the likelihood function.
Let @n be the # which maximizes the likelihood function. Replacing x;, x, - - -,
x, by X1, Xo, -+, X, 0, = 6,(X,, Xo, ---, X,)) is called the maximum likelihood

estimator, while 9n(x1, X, - -+, X,,) is called the maximum likelihood estimate.
That is, solving the following equation:
0l(0)
2 =0,
00
the maximum likelihood estimator 8, = 9n(X 1, X2, -+, X,) is obtained.

Example 1.17: Suppose that X, X,, - - -, X,, are mutually independently, identically
and normally distributed with mean u and variance o>. We derive the maximum
likelihood estimators of u and o>. The joint density (or the likelihood function) of X,

X5, - -+, X, 1S written as:

n n 1 1
f(X],XQ,"',Xn;,U,O'z) = f(xi;ﬂao-z) = eXp __(-xi_ﬂ)z
li:_l[ 11:11 ,/27_[_0_2 ( 20-2 )

= 2no?)™? exp(—%‘_2 Z(xi - ,u)2) = I(u, o).
i=1
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The logarithm of the likelihood function is given by:
n n 1 +
1 2y = —Zoe(21) — — 1 2y _ 2
0g 1, 0%) = =7 log(2m) = 5 log(@?) = 5— ;m uy.

which is called the log-likelihood function. For maximization of the likelihood func-
tion, differentiating the log-likelihood function log (i, 0*) with respect to u and o2,
the first derivatives should be equal to zero, i.e.,

Ologl
Og—w:—Z(xl ) =0,

dlog l(u, 0?) n 1 5
0o 202 * 20 ;(X A

Let 2 and 62 be the solution which satisfies the above two equations. Solving the two
equations, we obtain the maximum likelihood estimates as follows:

= %ix,- =7,
i=1
&5 = %Z(xi_mz _ %Z(xi_})z = g2

Replacing x; by X; for i = 1,2,---,n, the maximum likelihood estimators of u and

o are given by X and S ** respectlvely Since E(X) = u, the maximum likelihood

n—1
estimator of u, X, is an unbiased estimator. However, because of E(S **2) = —— o2 #

o as shown in Section 1.7.3, the maximum likelihood estimator of o2, § **2, is not an
unbiased estimator.

Properties of Maximum Likelihood Estimator: For small sample, the maximum
likelihood estimator has the following properties.

e The maximum likelihood estimator is not necessarily unbiased in general, but
we often have the case where we can construct the unbiased estimator by an
appropriate transformation.

For instance, in Example 1.17, we find that the maximum likelihood esti-

mator of 2, $ **2, is not unbiased. However, 1S **2 is an unbiased estimator

n —
of 2.

o If the efficient estimator exists, i.e., if there exists the estimator which satisfies
the equality in the Cramer-Rao inequality, the maximum likelihood estimator is
efficient.
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For large sample, asn — oo, the maximum likelihood estimator of 6, @,,, has the
following property:

Vn(b, - ) — N(O,5(0)), (1.15)
where {
a(0) = .
E (ﬁlogf(X; 9))2
00

(1.15) indicates that the maximum likelihood estimator has consistency, asymptotic
unbiasedness, asymptotic efficiency and asymptotic normality. Asymptotic normality
of the maximum likelihood estimator comes from the central limit theorem discussed
in Section 1.6.3. Even though the underlying distribution is not normal, i.e., even
though f(x;6) is not normal, the maximum likelihood estimator is asymptotically
normally distributed. Note that the properties of n — oo are called the asymptotic
properties, which include consistency, asymptotic normality and so on.
By normalizing, as n — oo, we obtain as follows:

\/ﬁ(én - 0) _ én -0
o®  o@®)/vn

As another representation, when 7 is large, we can approximate the distribution of
6, as follows:

— N(O, 1).

R ()
0.29)

This implies that when n — oo, 6, approaches the lower bound of Cramer-Rao
inequality: o~%(6)/n, which property is called an asymptotic efficiency.
Moreover, replacing 6 in variance o2 (6) by én, when n —> oo, we have the
following property:
b,-6
o6/ Vn
which also comes from the central limit theorem.
Practically, when n is large, we approximately use as follows:

—s N(O, 1), (1.16)

52
8, ~N(6.Z (9”)). (1.17)
n
Proof of (1.15): By the central limit theorem (1.11) on p.34,
1 © dlog f(X;; 6) 1
— _— N(0, ——), 1.18
Vi ; o — MO o) (1-18)

where 02(6) is defined in (1.14), i.e., V(0log f(X;;6)/060) = 1/0*(f). As shown in
(1.46) of Appendix 1.4, note that E(dlog f(X;;8)/06) = 0. We can apply the central
limit theorem, taking dlog f(X;; 8)/06 as the ith random variable.
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By performing the first order Taylor series expansion around 8, = 6, we have the
following approximation:

Z Blogf(X,,H )

dlog f(X,,H) 9% log f(X;; 6) »
T O8I G _gys ...
L3 e 1§

00 06?
Therefore, the following approximation also holds:

2
Z 810gf(Xu9) ~ Z 0 logf(Xz’ 9)(9n _ 0)

06?

From (1.18) and the above equation, we obtain:

1 v Plog f(X;;6) 1
_Z;—aez V@, - ) — N(0. 2(9))

The law of large numbers indicates as follows:

! iazlogf(xi;e)) _ (azlogﬂx,,e)) 1
n & 96* 96* 20N

where the last equality is from (1.14). Thus, we have the following relation:

__Z 8210gf(Xl,9) \/—(9 _9)

5 Vi@, - 6) — N(o, L)

1
a2(6) a(0)
Therefore, the asymptotic normality of the maximum likelihood estimator is obtained
as follows:

Vi, —6) — N(,0(6)).
Thus, (1.15) is obtained.

1.7.6 Interval Estimation

In Sections 1.7.1 — 1.7.5, the point estimation is discussed. It is important to know
where the true parameter value of 6 is likely to lie.

Suppose that the population distribution is given by f(x;6). Using the random
sample X, X5, - -+, X,, drawn from the population distribution, we construct the two
statistics, say, 9U(X1, X, -+, X,;0%) and @L(Xl, X, -+, X,;0"), where 6° and 6
denote the constant values which satisfy:

PO <0, <) =1-a, (1.19)
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for * > 6*. Note that 0, depends on X;, X5, ---, X,, as well as 6, i.e., 0, = @,,(Xl,
X5, -+, X,;6). Now we assume that we can solve (1.19) with respect to 6, which is
rewritten as follows:

P(OL(X1, Xa, -+, X3 0) < 0 < By (X1, Xo, -+, X,367)) = 1 — . (1.20)

(1.20) implies that 6 lies on the interval (9L(X1, Xa, - X3 69, 0y (X1, Xoy - -+, X3 9**))
with probability 1 — @. Depending on a functional form of 9n(X1, X, -+, X3 0), we
possibly have the situation that 6* and 6** are switched with each other.

Now, we replace the random variables X;, X5, - -, X,, by the experimental values
X1, X2, * -+, X,. Then, we say that the interval:

(@L(xl X2, Xy 09), Qu(xy, Xa, e, X 9**))

is called the 100 X (1 — @)% confidence interval of 6. Thus, estimating the interval is
known as the interval estimation, which is distinguished from the point estimation.
In the interval, @L(xl, X2, ++, X3 0%) is known as the lower bound of the confidence
interval, while 9U(x] , X2, *++, X3 077) 1s the upper bound of the confidence interval.

Given probability «, the 9L(X1, X5, -+, X,;6%) and 9U(X1, X5, -+, X,; ) which
satisfies equation (1.20) are not unique. For estimation of the unknown parameter 6,
it is more optimal to minimize the width of the confidence interval. Therefore, we
should choose * and 6** which minimizes the width @U(Xl, Xp, oo, X3 67) — 9L(X1,
X5, -+, X, 0%).

Interval Estimation of )_(: Let X, X5, - -+, X,, be mutually independently and iden-
tically distributed random variables. X; has a distribution with mean g and variance
o2. From the central limit theorem,

—p
o/\n

Replacing o by its estimator S?2 (or S **?),

— N, 1).

X—-pu
S/n

Therefore, when n is large enough,

— N, 1).

- l'l kK
<7 =1-a,
S/n
where z* and 7™ (z" < ') are percent points from the standard normal density func-
tion. Solving the inequality above with respect to u, the following expression is ob-
tained.

P(7 <

P(Y—z"‘*i <M<Y—z*i):1—a,

Vn Vn
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where 8, and 8 correspond to X — z*“S/ vn and X — z*S/ \/n, respectively.
The length of the confidence interval is given by:

A A S
Oy -6, = —(" - 2),

\n

which should be minimized subject to:

fz fx)dx=1-aq,

i.e.,
F(Z)-F(E)=1-a,

where F'(-) denotes the standard normal cumulative distribution function.
Solving the minimization problem above, we can obtain the conditions that f(z*) =
f(z™) for z* < z** and that f(x) is symmetric. Therefore, we have:

ko kR
—< =27 = Za/2

where z,/, denotes the 100 X a/2 percent point from the standard normal density
function. _
Accordingly, replacing the estimators X and S? by their estimates x and s, the
100 X (1 — @)% confidence interval of u is approximately represented as:
()_c o T4z i)
a/2 \/71’ a/2 \/ﬁ s
for large n.
For now, we do not impose any assumptions on the distribution of X;. If we assume
that X; is normal, vn(X — u)/S has a t distribution with n — 1 degrees of freedom for
any n. Therefore, 100 X (1 — @)% confidence interval of u is given by:

(= taan = D=, T+ 120 = H—=),
n

Vi Vi
where #,/,(n — 1) denotes the 100 X «/2 percent point of the ¢ distribution with n — 1
degrees of freedom. See Section 2.2.10, p.155 for the 7 distribution.

Interval Estimation of §,: Let X;, X, -, X, be mutually independently and iden-
tically distributed random variables. X; has the probability density function f(x;;6).
Suppose that 8, represents the maximum likelihood estimator of 6.
From (1.17), we can approximate the 100 X (1 — @)% confidence interval of € as
follows: ) R
" o8, - o0,
(Hn - Za/Z%a 911 + Za/Z%)-
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Table 1.1: Type I and Type II Errors

H, is true. H, is false.
Acceptance of H, | Correct judgment Type II Error
(Probability B)
Rejection of H Type I Error Correct judgment
(Probability « (1 — 8 = Power)
= Significance Level)

1.8 Testing Hypothesis

1.8.1 Basic Concepts in Testing Hypothesis

Given the population distribution f(x;#), we want to judge from the observed values
X1, X2, - - -, X, whether the hypothesis on the parameter 6, e.g. 6 = 6y, is correct or not.
The hypothesis that we want to test is called the null hypothesis, which is denoted by
Hy : 6 = 6. The hypothesis against the null hypothesis, e.g. 6 # 6y, is called the
alternative hypothesis, which is denoted by H, : 8 # 6,.

Type I and Type II Errors: When we test the null hypothesis H, as shown in Table
1.1 we have four cases, i.e., (i) we accept Hy when H,, is true, (ii) we reject Hy when
H, is true, (ii1) we accept Hy when H, is false, and (iv) we reject Hy when H, is false.
(1) and (iv) are correct judgments, while (ii) and (iii) are not correct. (ii) is called a
type I error and (iii) is called a type II error. The probability which a type I error
occurs is called the significance level, which is denoted by «, and the probability of
committing a type II error is denoted by . Probability of (iv) is called the power or
the power function, because it is a function of the parameter 6.

Testing Procedures: The testing procedure is summarized as follows.

1. Construct the null hypothesis (H,) on the parameter.

2. Consider an appropriate statistic, which is called a test statistic. Derive a dis-
tribution function of the test statistic when H, is true.

3. From the observed data, compute the observed value of the test statistic.

4. Compare the distribution and the observed value of the test statistic. When the
observed value of the test statistic is in the tails of the distribution, we consider
that H is not likely to occur and we reject H,.

The region that H, is unlikely to occur and accordingly H is rejected is called the
rejection region or the critical region, denoted by R. Conversely, the region that
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H, is likely to occur and accordingly H is accepted is called the acceptance region,
denoted by A.

Using the rejection region R and the acceptance region A, the type I and II errors
and the power are formulated as follows. Suppose that the test statistic is give by 7 =
T(Xy,X,--+,X,). The probability of committing a type I error, i.e., the significance
level a, is given by:

P(T(X,, X, -, X,) € R|H, is true) = a,

which is the probability that rejects Hy when Hj is true. Conventionally, the signifi-
cance level o = 0.1, 0.05, 0.01 is chosen in practice. The probability of committing a
type Il error, i.e., B, is represented as:

P(T(Xy,X5,---,X,) € AlH is not true) = 3,

which corresponds to the probability that accepts Hy, when Hj is not true. The power
is defined as 1 — g3, i.e.,

P(T(X;,X5,--+,X,) € RIHy is not true) = 1 — 3,

which is the probability that rejects Hy when H, is not true.

1.8.2 Power Function

Let X, X5, - -+, X,, be mutually independently, identically and normally distributed
with mean y and variance o2. Assume that 0% is known.

In Figure 1.3, we consider the hypothesis on the population mean y, i.e., the null
hypothesis Hy : p = o against the alternative hypothesis H; : u = uy, where y; > o
is taken. The dark shadow area corresponds to the probability of committing a type I
error, i.e., the significance level, while the light shadow area indicates the probability
of committing a type II error. The probability of the right-hand side of f* in the
distribution under H, represents the power of the test, i.e., 1 — 3.

In the case of normal population, the distribution of sample mean X is given by:

X~N@,n)
For the distribution of X, see the moment-generating function of X in Theorem on
p-29. By normalization, we have:

X-u
o/ n

Therefore, under the null hypothesis Hy : u = uy, we obtain:

~ N(O,1).

~ N(O, 1),
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Figure 1.3: Type I Error (@) and Type II Error (5)

As a is small, i.e.,
as f* goes to right,
B becomes large.

4

The distribution under

the null hypothesis (Hy) The distribution

under the alternative
hypothesis (H;)

[

R -
Acceptance region Rejection region

where u is replaced by uy. Since the significance level « is the probability which
rejects Hy when Hj) is true, it is given by:

@ = P(Y > o + Zai),
\n
where z, denotes 100x« percent point of the standard normal density function. There-
fore, the rejection region is given by: X > uo + 7,0/ Vn.
Since the power 1 — 8 is the probability which rejects Hy when H, is true, it is
given by:

— X — -
1—,3=P(X>/uto+za%)=P(U/\j%1 >'L:/\/'uﬁl +Za)
:1—P(X_’ul <#0—,U1 +Za):1_F(,Uo—,U1 +ZQ),

o/\Nn  o/\n o/ \n
where F(-) represents the standard normal cumulative distribution function, which is
given by F(x) = [ Xm(Zn)*” 2exp(—1r%) dt. The power function is a function of u,
given y and a.

1.8.3 Testing Hypothesis on Population Mean

Let X, X5, -+, X,, be mutually independently, identically and normally distributed
with mean y and variance o2. Assume that 0% is known.

Consider testing the null hypothesis Hy : u = po. When the null hypothesis H is
true, the distribution of X is given by:

X — Ho
o/\n

~ N(0, 1).
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Therefore, the test statistic is given by: _\/E(Y — lo)/ o, while the test statistic value is:
Vn(x — ug)/o, where the sample mean X is replaced by the observed value .
Depending on the alternative hypothesis, we have the following three cases.

1. The alternative hypothesis H; : u < py (one-sided test):

X —

We have: P( Ho < —z(,) = a. Therefore, when i o) < —Z,, We reject the
o/\n o/\n

null hypothesis Hy : u = o at the significance level a.

2. The alternative hypothesis H; : u > py (one-sided test):

X — -
‘We have: P( ; \7_0 > za) = «. Therefore, when x/ \'L;E
o/ \n o/ \n

hypothesis Hy : u = uy at the significance level a.

> Zq, We reject the null

3. The alternative hypothesis H; : u # o (two-sided test):

X — o X~ Ho
o/ \Nn o/\Nn

the null hypothesis Hy : u = yy at the significance level a.

We have: P( > Za/z) = «a. Therefore, when > Za/2, WE reject

When the sample size n is large enough, the testing procedure above can be applied to
the cases: (i) the distribution of X; is not known and (ii) o is replaced by its estimator
S?2 (in the case where o is not known).

1.8.4 Wald Test

From (1.16), under the null hypothesis Hy : 6 = 6,, asn — oo, the maximum
likelihood estimator 6, is distributed as follows:

6, -0
———— ~ N(0,1).
(0] n
ForHy: 8 =6yand H, : 0 # 6,, replacing X;, X5, - -+, X, in 0, by the observed values
X1, X2, -+, X, We obtain the following testing procedure:
1. If we have: .
Qn - 00 >
———| > Zas2;
a(0,)/ \n

we reject the null hypothesis Hy at the significance level a, because the proba-
bility which H occurs is small enough.

2. Asfor Hy: 0 =6y and H; : 9 > 6,, if we have:
én - 90
— = >
(6] \n

we reject Hy at the significance level a.

Zas
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3. ForHy: 6 =6yand H, : 6 < 6,, when we have the following:

0, — 0, 3
o (0,)/ \Vn

we reject H at the significance level a.

—Za>»

The testing procedure introduced here is called the Wald test.

Example 1.18: X, X;, - -+, X, are mutually independently, identically and exponen-
tially distributed. Consider the following exponential probability density function:

flxy) =ye™,

for 0 < x < oo.

Using the Wald test, we want to test the null hypothesis Hy : y = 7y, against the
alternative hypothesis H; : y # o.

Generally, as n — oo, the distribution of the maximum likelihood estimator of
the parameter vy, ¥, is asymptotically represented as:

’?n_y

——— ~ N(@,1),
s v~ NOD

where

. -1 2 . -1

See (1.14) and (1.16) for the above properties on the maximum likelihood estimator.
Therefore, under the null hypothesis Hy : y = vy, when n is large enough, we
have the following distribution:

A

Yn — Y0
o(¥n)/ \n

As for the null hypothesis Hj : y = y, against the alternative hypothesis H : y #
Yo, if we have:

~ N(,1).

/)\/n — %Yo
a(7.)/ \n
we can reject Hy at the significance level a.

We need to derive o(y) and ¥, to perform the testing procedure. First, o>(y) is
given by:

> Za/2,

d’1 X -
og f( 7))) :72.

(y) = —(E( 5
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Note that the first- and the second-derivatives of log f(X;vy) with respect to y are given
by:

dlog fX;y) _ 1o Flog f(X:y) 1

dy y dy? R
Next, the maximum likelihood estimator of y, i.e., ¥,, is obtained as follows. Since

X1, X5 - -+, X, are mutually independently and identically distributed, the likelihood
function I(y) is given by:

i) = [ fsmy =] [rer =yrere.
i=1 i=1
Therefore, the log-likelihood function is written as:

log () = nlog(y) =y ), %
i=1
We obtain the value of y which maximizes log I(y). Solving the following equation:
dlog! -
dlogiy) _n _ 3=,
dy L=

the maximum likelihood estimator of v, i.e., ¥, is represented as:

Then, we have the following:
z)\/n —-Y — ’?n -7
o)/ Nn - Yl \n

where ¥, is given by 1/X.
For Hy : y =vyyand H, : y # vy, if we have:

— N, D),

i/n — %Yo
Yul N

we reject Hy at the significance level a.

> Za/2s

1.8.5 Likelihood Ratio Test

Suppose that the population distribution is given by f(x;6), where 6 = (6;,6,). Con-
sider testing the null hypothesis 6, = 8} against the alternative hypothesis H; : 6, # 6],
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using the observed values (xi, x,, -+, x,) corresponding to the random sample (X},
X5, - X,).

Let 6, and 6, be 1 X k; and 1 X k, vectors, respectively. Therefore, 8 = (6,,6,)
denotes a 1 X (k; + k) vector. Since we take the null hypothesis as H, : 6, = 67, the
number of restrictions is given by k;, which is equal to the dimension of 6;.

The likelihood function is written as:

101,02 = | | f0xi61,602).
i=1

Let (51, 52) be the maximum likelihood estimator of (6, 6,). That is, (51, 52) indicates
the solution of (8, 6,), obtained from the following equations:

ol(6,,6,) 0 ol(6,,6,) 0
00, ’ 00, '
The solution (51, 52) is called the unconstrained maximum likelihood estimator,
because the null hypothesis Hy : 6, = 6] is not taken into account.
Let 6, be the maximum likelihood estimator of 6, under the null hypothesis Hy :
6, = 6]. That is, 6, is a solution of the following equation:

0l07,6,) 0
09,

The solution 8, is called the constrained maximum likelihood estimator of 6,, be-
cause the likelihood function is maximized with respect to 6, subject to the constraint
6, = 6.

Define A as follows:

2= 00
1(91 s 92)

which is called the likelihood ratio.

As n goes to infinity, it is known that we have:

—2log() ~ x*(ky),

where k; denotes the number of the constraints.

Let x2(k;) be the 100 X « percent point from the chi-square distribution with k;
degrees of freedom. When —21log(1) > x2(k;), we reject the null hypothesis Hy :
6, = 0] at the significance level a. If —2log(1) is close to zero, we accept the null
hypothesis. When (67, 0,) is close to (51,52), —2log(A) approaches zero.

The likelihood ratio test is useful in the case where it is not easy to derive the
distribution of (6}, 6,).
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Example 1.19: X, X,, - --, X, are mutually independently, identically and exponen-
tially distributed. Consider the following exponential probability density function:

flxy) =ye™,

for 0 < x < oo.

Using the likelihood ratio test, we want to test the null hypothesis Hy : y = ¥y
against the alternative hypothesis H; : y # yo,. Remember that in Example 1.18 we
test the hypothesis with the Wald test.

In this case, the likelihood ratio is given by:

I(yo)
A= ,
I(¥n)

where ¥, is derived in Example 1.18, i.e.,

n 1

B Z?:]Xi B X-

Since the number of the constraint is equal to one, as the sample size n goes to infinity
we have the following asymptotic distribution:

A

Vn

—2logd — Xz(l).
The likelihood ratio is computed as follows:

_lyo) Yoe 02N

A== =—
I(¥n) Yne™"

If —2logA > x2(1), we reject the null hypothesis Hy : u = o at the signifi-
cance level a. Note that y>(1) denotes the 100 X @ percent point from the chi-square
distribution with one degree of freedom.

Example 1.20: Suppose that X, X», - - -, X,, are mutually independently, identically
and normally distributed with mean zero and variance o.
The normal probability density function with mean y and variance o is given by:

1 L (g2
f(X;/l, 0_2) — e erz(x 1) .
2o

By the likelihood ratio test, we want to test the null hypothesis Hy : u = u against
the alternative hypothesis H; : u # .
The likelihood ratio is given by:

1= l(19,0)
(R, 62
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where & is the constrained maximum likelihood estimator with the constraint u = py,
while (, &%) denotes the unconstrained maximum likelihood estimator. In this case,
since the number of the constraint is one, the asymptotic distribution is as follows:

—2logd — x*(1).
Now, we derive I(uy, 02) and (&1, 62). I(u, 0?) is written as:

I, %) = f(X1, X2, Xy, O°) = l—[ i, %)
i=1
& 1 1

» I ¥
= Qnro?)™? exp(—ﬁ ;(xi - ,u)z).

The log-likelihood function log I(u, o%) is represented as:
0 _ I n 2 1 < 2
log I, 0) = =5 log(2m) - 5 log(0) = 5— ;m -

For the numerator of the likelihood ratio, under the constraint 4 = py, maximize
log I(uy, %) with respect to o%. Since we obtain the first-derivative:

dlog l(uo, 07?) n 1 1 < 5
TRt T 3gR g L =0,
i=1

the constrained maximum likelihood estimator o is given by:

—, 1<
7=~ ) (6~ o)
i=1

n <

Therefore, replacing o by 02, I(uy, %) is written as:
1 © n
2\ _ o =2\-n/2 _ 2 : 2 = (rm2N-n/2 _n
(uy, o) = 2no~) exp( 7= 2 (x; — Ho) ) = Q2no”) exp( 2).

For the denominator of the likelihood ratio, because the unconstrained maximum
likelihood estimators are obtained as:

~ 1 - A2 1 Y ~\2
== % 0T ==) (-,
== n;( )

I(f1, %) is written as:

I(f2, &%) = 2r6>) ™" exp(—zc; ;(x,- — p)?) = 26y exp(—g).
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Thus, the likelihood ratio is given by:

~2\—n/2 _n
B 1o, 52) B 2ro?) exp( 2)
n

A= = =
(i1, 62 ADN—n _n
(@, %) 2rd?)—"/2 exp( 2)

Asymptotically, we have:
—2log A = n(log 7> — log &2) ~ x*(1).

When —21log A > x2(1), we reject the null hypothesis Hy : p = uy at the significance
level a.

1.9 Regression Analysis

1.9.1 Setup of the Model

When (X, Y)), (X5, Y2), -+, (X, Y,,) are available, suppose that there is a linear rela-
tionship between Y and X, i.e.,

Yi :,31 +ﬁ2Xi+I/£i, (121)

fori=1,2,---,n.

X; and Y; denote the ith observations. Y; is called the dependent variable or
the unexplanatory variable, while X; is known as the independent variable or the
explanatory variable. 8, and 3, are unknown parameters to be estimated. u; is the
unobserved error term assumed to be a random variable with mean zero and variance
o?. 5 and 3, are called the regression coefficients.

X; is assumed to be nonstochastic, but Y; is stochastic because Y; depends on the
error u;. The error terms uy, u,, - - -, u, are assumed to be mutually independently and
identically distributed. It is assumed that u; has a distribution with mean zero, i.e.,
E(u;) = 0 is assumed. Taking the expectation on both sides of equation (1.21), the
expectation of Y; is represented as:

E(Y)) = E(B) + B X + u;) = 1 + B2 X; + E(w;)
= B + B2X;, (1.22)

fori = 1,2,---,n. Using E(Y;) we can rewrite (1.21) as ¥; = E(Y;) + u;. Equation
(1.22) represents the true regression line.
Let 3, and 3, be estimators of 8; and 3,. Replacing (8, 82) by (B1, 32), equation
(1.21) turns out to be:
Y, = Bl +BZXI' + ¢;, (123)

fori = 1,2,---,n, where ¢; is called the residual. The residual ¢; is taken as the
experimental value of ;.
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Figure 1.4: True and Estimated Regression Lines

Distributions
of the Errors

Yi =B+ BaX;
(Estimated Re-
gression Line)

We define ¥; as follows:
f/i = Bl +,82Xi, (1.24)

fori = 1,2,---,n, which is interpreted as the predicted value of Y;. Equation (1.24)
indicates the estimated regression line, which is different from equation (1.22). More-
over, using ¥: we can rewrite (1.23)as Y; = Vi + e

Equations (1.22) and (1.24) are displayed in Figure 1.4. Consider the case of n = 6
for simplicity. X indicates the observed data series. The true regression line (1.22) is
represented by the solid line, while the estimated regression line (1.24) is drawn with
the dotted line. Based on the observed data, 8, and j3, are estimated as: 3; and £3,.

I£1 the next section, we consider how to obtain the estimates of 5, and £, i.e., ﬁl
and .

1.9.2 Ordinary Least Squares Estimation

Suppose that (X1, Y1), (X3, Y2), - -+, (X,,, Y,) are available. For the regression model
(1.21), we consider estimating 8; and 3,. Replacing 8; and 3, by their estimates /3,
and j3,, remember that the residual ¢; is given by:

e =Y, - Yi =Y —,Bl —ﬁZXi-

The sum of squared residuals is defined as follows:

S(ﬁl,ﬁz)_ze _Z(Y - B = BX) .

i=1
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It might be plausible to choose the 3; and 3, which minimize the sum of squared
residuals, i.e., S(B;,5,). This method is called the ordinary least squares (OLS)
estimation. To minimize S (ﬁl, ,@2) with respect to ,@’1 and [32, we set the partial
derivatives equal to zero:

3S (B1,3>) ..
—A:—2§ Y- B - B.X;) =0,
P, i:l( b1 — B2X;)

55(31,,32)
-2 X(Y; — X)) =
o Z (Y; = B1 = poX)) =

which yields the following two equations:
Y =B+ X, (1.25)

X\Yi = nXpy +p ) X2, (1.26)

i=1

where Y = (1/n) Y7, Y; and X = (1/n) ¥, X;. Multiplying (1.25) by nX and sub-
tracting (1.26), we can derive Bz as follows:

5, - ZL X = nXY B - X0 = T) (127

e le—nX S (X = X)?

From equation (1.25), B3, is directly obtained as follows:
B =Y - BX. (1.28)

When the observed values are taken for ¥; and X; fori = 1,2,---,n, we say that ,Bl
and 3, are called the ordinary least squares estimates (or simply the least squares
estimates) of 8, and 5,. When Y, fori = 1,2,---,n are regarded as the random
sample, we say that 8, and 3, are called the ordinary least squares estimators (or
the least squares estimators) of 5, and 3.

1.9.3 Properties of Least Squares Estimator

Equation (1.27) is rewritten as:

B, = X X¥-V) LK - XY YELX - X)
I (X = X)? TLXi-X)? EL (G- X7

—ZZ”X X)ZY Zw,, (1.29)

i=1
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In the third equality, ), (X; — X) = 0 is utilized because of X = (1/n) >, X;. In the
fourth equality, w; is defined as:

X - X
X - X)?
w; 1s nonstochastic because X; is assumed to be nonstochastic. w; has the following
properties:

w; =

\ X -X " (X —X)
; o ; T (X - X)? B zz::?:l](xi _X) =0, (1.30)
Y C _ " (X, - X)?
Z( )2 _ SLX-XP
i=1 T 1(X X)2 (Z?zl(Xi _ Y)2)2
i m (1.32)

The first equality of equation (1.31) comes from equation (1.30).

From now on, we focus only on f3,, because usually 3, is more important than 3,
in the regression model (1.21). In order to obtain the properties of the least squares
estimator /3,, we rewrite equation (1.29) as:

ﬁz—sz : Zw(ﬁ1+ﬁ2X+u)

—,Blzw,+,822wX +Zwu,

=B + Z wilt;. (1.33)
i=1
In the fourth equality of (1.33), equations (1.30) and (1.31) are utilized.

Mean and Variance of fi’zz uy, uy, - - -, u, are assumed to be mutually independently
and identically distributed with mean zero and variance o2, but they are not necessar-
ily normal. Remember that we do not need normality assumption to obtain mean and
variance but the normality assumption is required to test a hypothesis.

From equation (1.33), the expectation of 3, is derived as follows:

E(B) = BB, + Z wiu;) =P + E(Z wju;)
i=1 i=1

=2+ ) wBw) =B». (1.34)
i=1
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It is shown from (1.34) that the ordinary least squares estimator 3, is an unbiased
estimator of ;.
From (1.33), the variance of Bz is computed as:

V(,Bz)—V(ﬁ2+Zwu)—V(Zwu)—ZV(wu)—szV(u)

- Zw S 1(X St (1.35)

From Theorem on p.15, the second and the fourth equalities hold. The third equality
holds because uy, u,, - - -, u, are mutually independent (see the theorem on p.20). The
last equality comes from equation (1.32).

Thus, E([%z) and V([%Z) are given by (1.34) and (1.35).

Gauss-Markov Theorem: It has been discussed above that 3, is represented as
(1.29), which implies that ﬁz is a linear estimator, i.e., linear in Y;. In addition, (1.34)
indicates that ﬁz is an unbiased estimator. Therefore, summarizing these two facts, it
is shown that 3, is a linear unbiased estimator. Furthermore, here we show that 3,
has minimum variance within a class of the linear unbiased estimators.

Consider the alternative linear unbiased estimator Ez as follows:

Ez = an ciY; = i(wi +d)Y;,

i=1 i=1

where ¢; = w; + d; is defined and d; is nonstochastic. Then, Ez is transformed into:

n

Bo= ) Y, Z(w,+d><ﬁ1 + BoXi + u)

i=1

—,81Zw,+/322wx +Zwu,+/312d +,BZZdX +Zdu,
=P +51Zdi+ﬁzzdixi+zwiui+zdiui-
pay i1 i1 i1

Equations (1.30) and (1.31) are used in the forth equality. Taking the expectation on
both sides of the above equation, we obtain:

E(B,) =B + B Z d; + 2 Z d;X; + Z wB(u;) + Z dE(u;)
i=1 i=1 i=1 i=1

=p2+ B an di + B> z": diX;.
i=1 i=1
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Note that d; is not a random variable and that E(x;) = 0. Since ,Ez 1s assumed to be
unbiased, we need the following conditions:

ia’i:O, id,-X,-:O.
i=1 i=1

When these conditions hold, we can rewrite Ez as:
n
Bo=Bo+ ) (@i +du;.
i=1

The variance of 3, is derived as:

n

V(By) = V(B + i(wi +du;) = V(i(wi +du) = Y V(i + diyu)
i=1 i=1 i

i=1
= Zn:(wi +d)* V() = O'Z(Z”: Wi +2 an wid; + an d?)
i=1 i=1 i=1 i=1
- az(zn: w? + Z a.
i=1 i=1

From unbiasedness of Ez, using )i, d; = 0 and )i, d;X; = 0, we obtain:

< X =Xd; YL Xdi - X YL, d;
Z wid; = - =0,
i=1

S (X = X)? S (X = X)?

which is utilized to obtain the variance of ,Ez in the third line of the above equation.
From (1.35), the variance of 3, is given by: V(B,) = 0> Y., w?. Therefore, we have:

V(B) = V(By),
because of Y7, d7 > 0. When Y, d? = 0, ie., whend, =d, = --- = d, = 0, we
have the equa}jty: V(B,) = V([3’2). Thus, in the case of d; = dp, = --- = d, = 0, Bz 18

equivalent to 3.

As shown above, the least squares estimator /3, gives us the linear unbiased
minimum variance estimator, or equivalently the best linear unbiased estimator
(BLUE), which is called the Gauss-Markov theorem.

Asymptotic Properties of [32: We assume that as n goes to infinity we have the
following:

1< —
-) X;i—-X)? — M < o,
"Z( )
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where M is a constant value. From (1.32), we obtain:

‘ 1 1
nz w? = - — — —.
i=1 (1/n) Zisy (Xi = X) M
Note that f(x,) — f(m) when x, — m, where m is a constant value and f(-) is a
function.

Here, we show both consistency of 8, and asymptotic normality of n(B, — 5,).
First, we prove that 3, is a consistent estimator of 8,. As in (1.10), Chebyshev’s
inequality is given by:

2
o
P(X —pl >¢€) < =
where u = E(X) and 0® = V(X). Here, we replace X, E(X) and V(X) by ,32,

0_2

EGy =B V@-? ST
(B2) = B> (B2) o-;a)l STX %)

respectively. Then, when n — oo, we obtain the following result:
o YL W o’

P(|3, - < = — 0,
162 =l >0 € e Y (Xi—X) -

where Y| w? — 0 because n Y\, w? — 1/M from the assumption. Thus, we
obtain the result that 8, —s S8, as n —> co. Therefore, we can conclude that 3, is a
consistent estimator of £3,.

Next, we want to show that vn(B, — 8,) is asymptotically normal. Noting that
ﬁz = B2 + 2., wiy; as in (1.33) from Corollary 2 on p.35 (central limit theorem),
asymptotic normality is shown as follows:

Z?:lwiui_E(Z?:l wjl;) _ Z?:[wiui _ Bz—ﬁz — N, 1),

VV (i @) TS} o T =X

where E(YL; wiuy) = 0, V(XL ww) = 0% Y1, w? and Y| wu; = B2 — B, are substi-
tuted in the second equality. Moreover, we can rewrite as follows:

Pr=Pr  _ V(B - o) _, N =B
/S =XP o/ () 3, (6 - X7 o/ VM

or equivalently,

— N, D),

2
V(s ~ ) — N, 7).

Thus, asymptotic normality of v7n(B8, — 8,) is shown.
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Finally, replacing o by its consistent estimator s, it is known as follows:
Br— B

s \/ 2 (Xi = X)Z

— N(O, 1), (1.36)

where s? is defined as:

n-—2 —

1 © 1 « PN
2 2= — N (Y =B - X)) 1.37
§ € n—2;( Bi = B2Xi)", (1.37)

which is a consistent and unbiased estimator of 2.
Thus, using (1.36), in large sample we can construct the confidence interval dis-
cussed in Section 1.7.6 and test the hypothesis discussed in Section 1.8.

Exact Distribution of ﬁzz We have shown asymptotic normality of n(B, — 8,),
which is one of the large sample properties. Now, we discuss the small sample prop-
erties of 3,. In order to obtain the distribution of 3, in small sample, the distribution of
the error term has to be assumed. Therefore, the extra assumption is that u; ~ N(0, o).
Writing equation (1.33), again, 3, is represented as:

n
ﬁz =+ Z wil;.
i=1

First, we obtain the distribution of the second term in the above equation. From The-
orem on p.29, i, w;u; is distributed as:

n n

2 2
g wiu; ~ N0, o g wj),
i=1 i=1

which is easily shown using the moment-generating function. Therefore, from Exam-
ple 1.9 on p.23, /3, is distributed as:

n n
A 2 2
ﬂzzﬂz+2wiui~N(ﬁz,0' Zwi)’
i=1 i=1

or equivalently,

Br=PBr  _ B2 =B < N 1),

o \/Z?:l w? o/ \/Z?:l(Xi - X)?
for any n.

Moreover, replacing o by its estimator s> defined in (1.37), it is known that we
have:

B2 = B>

s/ A2 (X - X)?

~tn-2),
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where #(n —2) denotes ¢ distribution with n — 2 degrees of freedom. See Section 2.2.10
for derivation of the ¢ distribution. Thus, under normality assumption on the error
term u;, the #(n — 2) distribution is used for the confidence interval and the testing
hypothesis in small sample.

1.9.4 Multiple Regression Model

In Sections 1.9.1 — 1.9.3, only one independent variable, i.e., X;, is taken into the
regression model. In this section, we extend it to more independent variables, which
is called the multiple regression. We consider the following regression model:

Yi =61 Xi1 +BoXin + - + B Xix + u

= Xif + u;,
fori=1,2,---,n, where X; and 8 denote a 1 X k vector of the independent variables
and a k X 1 vector of the unknown parameters to be estimated, which are represented
as:
B
B>
Xi = (Xi1, Xig, -+, Xin), B=|.
Br

X; j denotes the ith observation of the jth independent variable. The case of k = 2 and
X;1 = 1 for all i is exactly equivalent to (1.21). Therefore, the matrix form above is a
generalization of (1.21). Writing all the equations fori = 1,2, - - -, n, we have:

Yi =61 X1 +6oXio+ -+ BiXix + Uy,
Y, = Bi1Xog +BaXon + - - + BiXog + Ua,

Yn = ﬁan,l +ﬁ2Xn,2 +oee +ﬁan,k + Uy,

which is rewritten as:

Y, Xin X2 - X\ (B Ui
Lo X Xooo oo Xox || B2 M
Y, Xug Xnz 0 X\ B Uy
Again, the above equation is compactly rewritten as:
Y = X6+ u. (1.38)
where Y, X and u are denoted by:
Y, Xip X2 o Xig U
O S B el RS e

Yn Xn,l Xn,Z U Xn,k Uy
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Utilizing the matrix form (1.38), we derive the ordinary least squares estimator of 3,
denoted by 3. In equation (1.38), replacing 8 by 3, we have the following equation:

Y=XB+e,

where e denotes a 1 X n vector of the residuals. The ith element of e is given by e;.
The sum of squared residuals is written as follows:

SB)=) el =ee=Y-XPY(Y - XP)= (V' = BX)Y - Xp)
i=1
=YY-YXB-BXY+BXXB=YY-2YXB+BXXB.

See Append1x 1.5 for the transpose in the fourth equality. In the last equahty, note
that 3’X’Y = Y’Xj3 because both are scalars. To minimize S (8) with respect to 3, we
set the first derivative of S (,8) equal to zero, i.e.,

) (,3)

= 2X'Y +2X'XB = 0.

See Appendix 1.5 for the derivatives of matrices. Solving the equation above with
respect to 3, the ordinary least squares estimator of 3 is given by:

B=XX"XY. (1.39)

See Appendix 1.5 for the inverse of the matrix. Thus, the ordinary least squares esti-
mator is derived in the matrix form.

Now, in order to obtain the properties of 3 such as mean, variance, distribution and
so on, (1.39) is rewritten as follows:

B=XX)'XY=XX)'XXB+u) = X'X)'XXB+X'X)'Xu
=B+ X'X)"' X u (1.40)
Taking the expectation on both sides of equation (1.40), we have the following:
E@B) =EQ@B+ X'X)"'X'u) =8+ X'X)"'XE(u) =,

because of E(u) = 0 by the assumption of the error term u;. Thus, unbiasedness of /3
is shown.
The variance of 3 is obtained as:

V(B)=E(B~B)B~p)) = B(X'X) ' X'u(X'X)"'X'u)
=E(X'X)"'Xu/XX'X)™") = X’ X) ' X'Euu)XX'X)™!
=X’ X)'X'XX'X) = (X' X)L

The first equality is the definition of variance in the case of vector. In the fifth equality,
E(uu') = o1, is used, which implies that E(u?) = o for all i and E(u;u;) = 0 for
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i # j. Remember that u,, u,, - --, u, are assumed to be mutually independently and
identically distributed with mean zero and variance o.
Under normality assumption on the error term u, it is known that the distribution

of 3 is given by:
B~ NG, X' X)™.

Taking the jth element of j3, its distribution is given by:

A

B~ N@Bjc%a;), e, FizBi o,

TN

where a;; denotes the jth diagonal element of (X' X)™".
Replacing o by its estimator s2, we have the following ¢ distribution:

A

M ~t(l’l—k),
NG

where #(n — k) denotes the ¢ distribution with n — k degrees of freedom. s is taken as
follows:

1 < 1 1 . .
2 _ 2:2: ‘e = ——(Y = XB)Y(Y - X
s n_kiZIffl P n_k( B)( 5),

which leads to an unbiased estimator of 0.
Using the central limit theorem, without normality assumption we can show that
as n — oo, under the condition of (1/n)X’X — M we have the following result:

Bi— B,

SV

— N, D),

where M denotes a k X k constant matrix.

Thus, we can construct the confidence interval and the testing procedure, using the
t distribution under the normality assumption or the normal distribution without the
normality assumption.

Appendix 1.1: Integration by Substitution

Univariate Case: For a function of x, f(x), we perform integration by substitution,
using x = Y¥(y). Then, it is easy to obtain the following formula:

fﬂmM=fwwmmmw

which formula is called the integration by substitution.
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Proof:
Let F(x) be the integration of f(x), i.e.,

Fx) = f "o,

which implies that F’(x) = f(x).
Differentiating F(x) = F(y/(y)) with respect to y, we have:

d dF (v d
FOO) _ dFQ) dx o) = Fuomw’ o).

Jlo = dy dx dy

Bivariate Case: For f(x,y), define x = (1, v) and y = ¢ (u, v).

fff(x’ y) dx dy = ff Jf(‘ﬁl(”’ V), lﬁZ(“a V)) du dV,

where J is called the Jacobian, which represents the following determinant:

ox ox

J=|0u Ov :6_96@_@@
9y Oy |" dudv  Ovou
ou Ov

Appendix 1.2: Integration by Parts

Let h(x) and g(x) be functions of x. Then, we have the following formula:

f h(x)g' (x) dx = h(x)g(x) — f ' (x)g(x) dx,
which is called the integration by parts.

Proof:
Consider the derivative of f(x)g(x) with respect to x, i.e.,

(Fg) = F(0)g(x) + f()8' ().
Integrating the above equation on both sides, we have:
f (F8) dx = f F/(08(x) dx + f F(08'(x) dx.

Therefore, we obtain:

f(oglx) = f f(x)g(x) dx + f f(x)g'(x) dx.
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Thus, the following result is derived.

f (g’ (x) dx = f(x)g(x) — f f'(x)g(x) dx.

When we want to integrate f(x)g’(x) within the range between a and b for a < b, the
above formula is modified as:

b b
jﬁﬂmguwu:[ﬂmamﬁ—jwfumwnm

Appendix 1.3: Taylor Series Expansion

Consider approximating f(x) around x = x, by the Taylor series expansion.. Then,
f(x) is approximated as follows:

1 1
f(x) = f(xo) + f(x0)(x = xo) + 2—!f"(xo)(x — xo)* + gf”'(xo)(x —x0) + -

1
DAL COCEEN

n=0 "

where f™(xo) denotes the nth derivative of f(x) evaluated at x = x,. Note that
FOx0) = f(x0) and 0! = 1.

In addition, the following approximation is called the kth order Taylor series
expansion:

k
1
fO) > 3 =) = xo)'.
n=0 "

Appendix 1.4: Cramer-Rao Inequality
As seen in (1.13) and (1.14), the Cramer-Rao inequality is given by:

A a?(6)
Vo) 2 ——,

where

6) - 1 B 1 B 1
T [0log f(X;0)\2\  _ (dlog f(X:0)\\ _(Plog f(X;0)\
() MEEE) )
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Proof:

We prove the above inequality and the equalities in 0*(6). The likelihood function
1(8; x) = 1(8; x1, x2, - -+, X,,) 1s @ joint density of X, X5, - - -, X,,. Therefore, the integra-
tion of /(6; x1, x,, - -+, x,) with respect to x, x,, - -, X, is equal to one. See Section
1.7.5 for the likelihood function. That is, we have the following equation:

1= fl(@;x) dx, (1.41)
where the likelihood function /(6; x) is given by /(6; x) = [, f(x;;6) and f <o dx

implies n-tuple integral.
Differentiating both sides of equation (1.41) with respect to 6, we obtain the fol-

lowing equation:
0l(o; 1 0l;
ozf () dx:f G916, ) dx

90 16;x) 06
_ [ dlogl®;x), _ (0logl(6; X)
= f — 1 x) dx—E(—ae ) (1.42)

which implies that the expectation of dlogl(6; X)/90 is equal to zero. In the third
equality, note that dlogx/ dx = 1/x.

Now, let @,, be an estimator of 6. The definition of the mathematical expectation of
the estimator 6, is represented as:

E@®,) = f 0,1(6; x) dx. (1.43)

Differentiating equation (1.43) with respect to 6 on both sides, we can rewrite as fol-
lows:

O0E(6,) _ fé’nal(e; x) dx = f@nwl(g;x) dx

00 00 00
N ~ ys0logl(0; O0log (0,
_ f (6. —E@)( Ogaé Y g Ogae( x)))Z(e; x) dx
~ O0logl(6; X)
= COV(Hn, T) (1 44)

In the second equality, dlog x/ dx = 1/x is utilized. The third equality holds because
of E(dlog l(6; X)/d6) = 0 from equation (1.42).

For simplicity of discussion, suppose that 6 is a scalar. Taking the square on both
sides of equation (1.44), we obtain the following expression:

. 2
(—é)]z(g"))2 = (COV(én, 9log 16: X) 1ogalg9, X))) = pZV(én)V(

. (alog 1(6; X))

dlog l(6; X))
00

< V(,)V
< V(6,) 50

(1.45)
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where p denotes the correlation coeflicient between 0, and & log I(6; X)/06. Note that
we have the definition of p is given by:

~ 0logl(8; X)
Cov(@n, OgT)

m\/v(alogalég; X))

Moreover, we have —1 < p < 1 (i.e., p> < 1). Then, the inequality (1.45) is obtained,
which is rewritten as:

P

aE(@n))Z
00
0logl(6; X)
v(—=2""2
(=)
When E(9,) = 0, i.e., when 8, is an unbiased estimator of 6, the numerator in the
right-hand side of equation (1.46) is equal to one. Therefore, we have the following
result:

V@, > . (1.46)

N 1 1

v, > = .
0logl(0; X) 0logl(6; X
V(TELER) (o)

Note that we have V(9 log (8; X)/00) = E((dlog 1(6; X)/d6)*) in the equality above,
because of E(dlog [(8; X)/06) = 0.

Moreover, the denominator in the right-hand side of the above inequality is rewrit-
ten as follows:

0log 1(6; X) = dlog f(X;;6) - dlog f(X;; 0)
B (2 ) =B EAEEOY ) < (RSO

i=1 i=1

B dlog f(X;0)\2\ “0log f(x;0)\2 .
= nE((T) =n _W(T) f(x, 0) dx.
In the first equality, log [(6; X) = >\, log f(X;; 0) is utilized. Since X;,i = 1,2,---,n,
are mutually independent, the second equality holds. The third equality holds because
X1, Xo, -+, X, are identically distributed.

Therefore, we obtain the following inequality:

2
V62 6logll(9'X) 2\ aloglf(X'Q) 2 :Gn(e)’
() ()

which is equivalent to (1.13).

Next, we prove the equalities in (1.14), i.e.,

01 (X;0) 0l (X;0) 0l (X;0)
- p(TRELED) (TR SEO) _y(2Re SR
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Differentiating f f(x;60) dx = 1 with respect to 8, we obtain as follows:
of(x; 6
f 1050 4 =0,
00

We assume that the range of x does not depend on the parameter 6 and that 9 f(x; 8)/06
exists. The above equation is rewritten as:

f dlog f(x;0)
o0

f(x;6) dx =0, (1.47)

or equivalently,
dlog f(X;0)
p(Z—=, 27
(=
Again, differentiating equation (1.47) with respect to 6,

dlog f(x;0) df(x; ) dx =

) = 0. (1.48)

8 log f(x;0) .
fo(x, 0) dx + f 9 Py 0,
1.e.,
0% log f(x;6) dlog f(x;6)\2
fo(x;H) dx+f(T) f(x;0)dx =0,
1.e.,

E(82 log f(x; 9)) N E((alogf(x; 9))2) o,

06? 00
Thus, we obtain:

d*log f(x;6) dlog f(x;6)\2
_E( 962 ) =E ( 06 ) )
Moreover, from equation (1.48), the following equation is derived.
dlog f(x;0)\2\ _ dlog f(x;6)
B (PR 0) ) - V(TR

Therefore, we have:

_ E(62 log f(X:0)) _ E((alog fX; 9))2) _ y(Yloe/X:0))

06? 00 00

Thus, the Cramer-Rao inequality is derived as:

2
A 0
vy > 9,

n

where

) 1 1 1
(oa (0) = = - — .

0l (X;0) ol (X;0) 01 X; 0
(e I (G I G
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Appendix 1.5: Some Formulas of Matrix Algebra

apn a0 Ak
azy dxp - Aok . .
1. LetA=| . L . | = [ai;], which is a [ X k matrix, where a;; denotes
) an dp o di .
ith row and jth column of A. The transpose of A, denoted by A’, is defined as:
app d -t an
dip dxp -+ dp
A =] . . = lal,
Ay Aok - Ak

where the ith row of A’ is the ith column of A.
2. (Ax) = XA,
where A and x are a [ X k matrix and a k X 1 vector, respectively.

3.4 =a,

where a denotes a scalar.

oa’'x
4. =a,
ox “
where a and x are k X 1 vectors.
0x’A
5. 228 _ A+ Ay,
ox

where A and x are a k X k matrix and a k X 1 vector, respectively.

Especially, when A is symmetric,

6. Let A and B be k X k matrices, and [; be a k X k identity matrix (one in the
diagonal elements and zero in the other elements).

When AB = I, B is called the inverse of A, denoted by B = A~
Thatis, AA™! = A7'A = I;.

7. Let A be a k X k matrix and x be a k X 1 vector.

If A is a positive definite matrix, for any x we have:
xX'Ax > 0.
If A is a positive semidefinite matrix, for any x we have:

xX'Ax > 0.
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If A is a negative definite matrix, for any x we have:
xX'Ax < 0.
If A is a negative semidefinite matrix, for any x we have:

xX'Ax <0.
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Exercises and Answers to Chapter 1

The continuous type of random variable X has the following density function:

00 a— x, fO<x<a,
X)) =
0, otherwise.

Answer the following questions.

(1) Find a.
(2) Obtain mean and variance of X.
(3) When Y = X2, derive the density function of Y.

[Answer]
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(1) From the property of the density function, i.e., f f(x)dx = 1, we need to have:

ff(x)dx:f\a(a—)c)dxz[ax—lx2
0 2

Therefore, a = V2is obtained, taking into account a > 0.

a 1 )
=—a =1.
2(1

0

(2) The definitions of mean and variance are given by: E(X) = f xf(x)dx and

VX) = f (x — )* f(x) dx, where u = E(X). Therefore, mean of X is:

1 1.0 1
E(X) = fxf(x) dx = f x(a —x)dx = —ax* - x| = =-a°
0 2 37, 6
2
= T\/_ «— a= V2is substituted.

Variance of X is:
V(X) = f(x —1)* f(x) dx = fxzf(x) dx —pu? = fax2(a — x) dx — 1
0

2
oy, 1 (V2)
‘[3‘” 4x]0 R 73713 ) Ty

(3) Let f(x) be the density function of X and F(x) be the distribution function of X.
And let g(y) be the density function of ¥ and G(y) be the distribution function
of Y. Using Y = X?, we obtain:

G(y) = P(Y <y) = P(X2 <y) = P(= 5 < X < §) = F(\}) = F(= %)
=F(yp) «— F(=yy=0.

Moreover, from the relationship between the density and the distribution func-
tions, we obtain the following:

dG) _ dF(+/fy) _ dF() d+y

80) = dy dy dx dy X= VY
1 1 1
=F/(X)2—\/§ :f(x)z_\/y :f(\/y)z—\/y
:(\/E_W)%\/}’ for0 <y<?2.

The range of y is obtained as: 0 < x < V2=0<x*<2=0<y<?2.
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The continuous type of random variable X has the following density function:

1
e 2%,

fx) =

1
V2r
Answer the following questions.

(1) Compute mean and variance of X.
(2) When Y = X2, compute mean and variance of Y.
(3) When Z = €%, obtain mean and variance of Z.

[Answer]

(1) The definitions of mean and variance are: E(X) = f xf(x)dx and V(X) =

f (x— ,u)2 f(x) dx, where u = E(X). Therefore, mean of X is:

E(X) = fxf(x) dx = [:x \/lz_e_éxz dx = — 1 [e_%xz]io 0.

1
—1x

In the third equality, we utilize: = _xe 2",

X
Variance of X is:

V(X) = f(x—,u)zf(x) dx = fx2f(x) dx —p* = I: x? \/g_ﬂe—%xz dx —

= [—x | e‘éxzr + f‘x’ Le_%)‘2 dx—py? =1
Var o Je V2r '

In the fourth equality, the following formula is used.

b b
f W (0g(x) dx = [h(x)g()] - f h(x)g'(x) dx,

where g(x) = x and /' (x) = x\%ﬂe‘%)‘2 are set.

And in the first term of the fourth equality, we use:

lim x
X—£00 271'

In the second term of the fourth equality, we utilize the property that the inte-
gration of the density function is equal to one.
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(2) When Y = X?, mean of Y is:
E(Y) =B(X*) = V(X) -} = 1
From (1), note that V(X) = 1 and u, = E(X) =0
Variance of Y is:

VY)=EY -u,)* — u,=EX)=1

=E(Y?) —p; = BXY -y = fx—e 2 dx - 1

\V2r
:foox xLe 2 dx — T
o \2n Y
:[—x3 | e_%xzw +3jmx2 | e 2t dx — 2
V2 | —~  V2r ’
=3EX) -1f — EX)=1p=1
=2

In the sixth equality, the following formula on integration is utilized.

b b
f W (0g(x) dx = [h(x)g()]| - f h(x)g'(x) dx,

where g(x) = x* and /' (x) = x\/%?e‘%’62 are set.

In the first term of the sixth equality, we use:
1
lim xX’——e 2 =0,
X—+00 27T

(3) For Z = X, mean of Z is:

1,.2
E(Z) = E(e )—f e —e_fx dx—f e 27729 g
V27r
—3 (=D dx—e2f e 20D gy = o2,
f V27T -0 \/ﬂ

In the sixth equality, ¢ 2"V is a normal distribution with mean one and

2n
variance one, and accordingly its integration is equal to one.

Variance of Z is:

V(Z)=EZ-1)* «— w=E2) =e

12
:E(Zz)—,ug :E(ezx)—pg = e 2 dx—,ug

er
—00 V27T
<1 12 <1 L2
— -1(-4x) 2 _ -lx-2242 2
= ——e? dx —u —f ——e? dx —u
[oo V2n : - V21 ‘

© 1 1 2
= ezf ——e 2072 dx —;1? =’ —e.
—00 V27T
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: . | B . -
The eighth equality comes from the facts that — 720" ig a normal distri-
2n
bution with mean two and variance one and that its integration is equal to one.

The continuous type of random variable X has the following density function:

Fx) = ;e 1, if 0 < x,

0, otherwise.

Answer the following questions.

(1) Compute mean and variance of X.
(2) Derive the moment-generating function of X.

(3) Let Xi, X5, - -+, X, be the random variables, which are mutually independently
distributed and have the density function shown above. Prove that the density
function of ¥ = X; + X, + - -+ + X,, is given by the chi-square distribution with
2n degrees of freedom when A = 2. Note that the chi-square distribution with m
degrees of freedom is given by:

1
m X2
f(x) =4 22I(%)

0, otherwise.

X .
ez, if x > 0,

[Answer]

(1) Mean of X is:

E(X) = fxf(x) dx = foo xle_f dx
0o A
= [—xe‘f]: + f(; e 1dx = [—/le_f];o = A

In the third equality, the following formula is used:
b b b
f I (0)g(x) dx = [h(x)g(0)], - f h(x)g'(x) dx.

1 .
where g(x) = x and h'(x) = Ze_i are set.

And we utilize:
lim xe™1 = 0, lim e~ 7

X—00 X—00

=0.
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Variance of X is:
V(X) = f (x — p)* f(x) dx = f Cfdy—pt — pu=EX)=2
= foo lee_% dx — % = [—xze—f]DO + 2[00 xe 1 dx — ii?
0 A 0 0
x| 0 1 X
= [—xze_i] + 2/1f x—e tdx—p?
0 0 A

=2EX)-1® «— u=EX)=21
=207 - % = A%

In the third equality, we utilize:
b b b
f I (x)g(x) dx = [h(x)g(x)]| - f h(x)g'(x) dx,

|
where g(x) = x* and /' (x) = ze_i.
In the sixth equality, the following formulas are used:

2

=

lim x“e”

X—00

=0, u=EX)= f xe T dx.
0

(2) The moment-generating function of X is:
RS B 1
00 =B = [epwar= [ @eta= |5
0 A 0 A

A (=1 1 |
= ——0 —(7-0)x dx= —
1/1—9[0(4 e T

1
e 0% dx

o 1 (g - . D o
In the last equality, since (/_l —O)e G0 i g density function, its integration is

1
one. A in f(x) is replaced by rin 6.

(3) We want to show that the moment-generating function of Y is equivalent to that
of a chi-square distribution with 2n degrees of freedom.

Because X;, X5, -+, X, are mutually independently distributed, the moment-
generating function of X;, ¢;(0), is:

1
(6) = —— = ¢(0),
0(6) = T3, = $(6)
which corresponds to the case 4 = 2 of (2).

For A = 2, the moment-generating function of ¥ = X; + X5 + -+ + X,,, ¢,(0), is:

¢y(0) — E(eHY) — E(eQ(X1+X2+---+Xn)) — E(egxl )E(eHXQ) . E(eHX,,)

= 010020)--4:(0) = (4(0)) = (5 _lze)n = (3 _129)22"-
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Therefore, the moment-generating function of Y is:

2n

06) = (1—55) -

A chi-square distribution with m degrees of freedom is given by:

f(x) = — x77'e3,  forx> 0.
25T(%)

The moment-generating function of the above density function, ¢,2(0), is:

m__ X
x27'e72 dx

— 0X\ _ - Ox
b =B = | P

2-1,-50-20)x 4,

7-1 1 1
e .
) T 120

x2 e
2:T(%)

1 ( y
25T (%) \1-26

|

-
-], 3
7! 1wy 1\’

7-1 _7yd =| —- .

(—29) 1—29 2%r(§)y ¢ (1—29)

In the fourth equality, use y = (1 —26)x. In the sixth equality, since the function
in the integration corresponds to the chi-square distribution with m degrees of
freedom, the integration is one. Thus, ¢,(6) is equivalent to ¢,2(6) for m = 2n.
That is, ¢,(6) is the moment-generating function of a chi square distribution
with 2n degrees of freedom. Therefore, Y ~ y*(2n).

The continuous type of random variable X has the following density function:

1, ifO0<x<l,
f(x)={

0, otherwise.
Answer the following questions.

(1) Compute mean and variance of X.

(2) When Y = -2log X, derive the moment-generating function of Y. Note that the
log represents the natural logarithm (i.e., y = —2 log x is equivalent to x = e ).

(3) Let Y; and Y, be the random variables which have the density function obtained
in (2). Suppose that Y; is independent of ¥,. When Z = Y; + Y,, compute the
density function of Z.

[Answer]
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(1) Mean of X is:

! 1, 1
E(X):fxf(x)dx:jo\ de:[ixz]ozi'

Variance of X is:

1
V(X) = f (x — ) f(x) dx = f Xfode—p’ — p=EX) =3

! 1 ! 1 152 1

2 2 3 2
= xXdx—-pu =|=x| —p==-(=) = —.
fo [3 ]0 3 (2) 12

(2) For Y = -2log X, we obtain the moment-generating function of Y, ¢,(6).

$,(0) = B(e”) = B(e™"¥) = E(X ) = f X f () dx

! 1 : 1
-26 1-26
= ydy = | ——x —
fo [1 ~26 L 1-26

(3) Let Y; and Y; be the random variables which have the density function obtained
from (2). And, assume that Y; is independent of Y,. For Z = Y| + Y,, we want
to have the density function of Z.

The moment-generating function of Z, ¢,(0), is:

$:(6) = B(e"?) = E(""*1) = B(e"E(e"™) = (4,6))

1 \2 1 \%
_<1—29) _(1—29) ’
which is equivalent to the moment-generating function of the chi square distri-

bution with 4 degrees of freedom. Therefore, Z ~ x*(4). Note that the chi-
square density function with n degrees of freedom is given by:

1 n X
— x27 e, for x > 0,
fx) =1 250(%)
0, otherwise.

The moment-generating function ¢(0) is:

SIS

¢(0) = (l——26’)

The continuous type of random variable X has the following density function:

%x%_]e 2, if x>0,
fo = 20T

0, otherwise.
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Answer the following questions. I'(a) is called the gamma function, defined as:

I'(a) :f xle™ dx.
0

(1) What are mean and variance of X?

(2) Compute the moment-generating function of X.
[Answer]

(1) For mean:

_n n_ _X
272x27le72 dx

« <1
E(X):‘[wxf()c)dx:f0 xr(%)

2_% F(M) © 1 n+. n+. X
=—5 Fz pr) 27T X" T e E dy
2772 (2) 0 F( 2 )

1
Note that I'(s + 1) = sI'(s), I'(1) = 1, and F(i) = . Using n’ = n + 2, from
the property of the density function, we have:

0 0 l n X
f(x)dx = f — 27 TxT e dx = 1,
Lo o T(%)

which is utilized in the fifth equality.

For variance, from V(X) = E(X?) — u?> we compute E(X?) as follows:

(o) 00 1
2y _ 2 _ 2
E(X)—Iooxf()c)dx—fO xr(g)

272x 7 le7r dx

25 T 1 i iy s
= —o T Z) o 27 X led dx
275 13 Jo T(*)

n-+ 2 n 0 1 n X
ST f % x$ e dr = n(n 4 2),
2 270y T(%)

where n’ = n + 4 is set. Therefore, V(X) = n(n + 2) — n> = 2n is obtained.
(2) The moment-generating function of X is:

#(0) = E(e™) = f ) e f(x) dx = f ) e
0

—00

n_| X
— x2 exp(—=)dx
2T p(=3)
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:f T X2 1exp(——(l —29)x) dx

H_l 1
5755 &
%(g 9) xp( y) Y
%

I\JI

1

i eXp(—Ey) dy = (7—=5;) -

[STE

1 - 29) 0 2%r(g)

d
Use y = (1 — 26)x in the fifth equality. Note that Tx = (1 —26)"". In the
Y

seventh equality, the integration corresponds to the chi-square distribution with
n degrees of freedom.

@ The continuous type of random variables X and Y are mutually independent and
assumed to be X ~ N(0,1) and Y ~ N(O, 1). Define U = X/Y. Answer the following
questions. When X ~ N(0, 1), the density function of X is represented as:

|
f(x)—ﬁe .

(1) Derive the density function of U.
(2) Prove that the first moment of U does not exist.

[Answer]

(1) The density of U is obtained as follows. The densities of X and Y are:

1 ]

flx) = exp(—=x?), —00 < x < 0o,
\2n 2
1 1

g(y) = ——exp(—=)%), -0 <y<oco.
\2n 2

Since X is independent of Y, the joint density of X and Y is:

_ =L epclt) L exp- iy
h(3.y) = f(980) = —== exp(=7.8)—==exp(=27")
1

1
=5 exp(—i(x2 +3%).

. X . ) .
Using u = — and v = y, the transformation of the variables is performed. For

x = uv and y = v, we have the Jacobian:

ox ox
J=|0u ov|_ u
& o =lo 1]

ou Ov
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Using transformation of variables, the joint density of U and V, s(u, v) is given
by:

s(u,v) = h(uv,v)|J| = iexp(——v (1+u ))|v|

The marginal density of U is:
pw) = | s(u,v)ydv=— vlexp(—=v=(1 + u”)) dv
27 J o 2

1 1
= — f vexp(—=v*(1 + u?)) dv
0 2

T
B L, L
S| Tre P re)| =y

which corresponds to Cauchy distribution.
(2) We prove that the first moment of U is infinity, i.e.,

® 1
E(U)=fuf(u)du=[wumdu

<11
:f —~dx «— x=1+u?isused.
1

1 . dl 1
:[—logx] — oY _ -
1

dx X

For —co < u < oo, the range of x = 1 + u? is give by 1 < x < 0.

The continuous type of random variables has the following joint density func-
tion:
x+y, if0<x<landO<y<1,

Sy = {O, otherwise.
Answer the following questions.

(1) Compute the expectation of XY.

(2) Obtain the correlation coeflicient between X and Y.

(3) What is the marginal density function of X?
[Answer]

(1) The expectation of XY is:

E(XY) = ffxyf(xy)dxdy ffxy(x+y)dxdy
1
f0[3yx +2yx2] dy = f( y+—y)dy

1, 14" 1
==y += .
S
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(2) We want to obtain the correlation coeflicient between X and Y, which is repre-
sented as: p = Cov(X, Y)/ VV(X)V(Y). Therefore, E(X), E(Y), V(X), V(Y) and
Cov(X, Y) have to be computed.

E(X) is:
E(X) = ffxf(xy)dxdy ffx(x+y)dxdy
:f —x+1yx] dy = f(+y)dy
0 2

3
1 1,
—[§Y+Zy

In the case where x and y are exchangeable, the functional form of f(x,y) is
unchanged. Therefore, E(Y) is:

1

7
12

0

7
E(Y)=EX) = I

For V(X),

VOO =B((X ) — wu=EX) =5

1 pl
:E(Xz)—/f:ffxzf(x,y)dxdy—u2
0o Jo
1 pl M 1 1
=ffx2(x+y)dxdy—,u2:f x4 oy dy—p
4 3 0

2

1
f( +=y)dy -’ = y+6y —#2
2 11
12 (12) 144
For V(Y),
V) =VX
(Y) X) = i

For Cov(X, Y),

Cov(X,Y) = E((X ~ u)(Y ~ 1)) = E(XY) ~ opt,
77 1

371212 144
where

7
e =EX) = Hy = E(Y) = —.

12° 12

Therefore, p is:
Cov(X,Y) -1/144 1

T WOV VAl aaiiaa | 1
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(3) The marginal density function of X, f,(x), is:

1
1
R B O E e o

forO<x<1.

The discrete type of random variable X has the following density function:

—ﬂﬂx
fo=2" x=0,1,2,
x!

Answer the following questions.

(1) Prove Zf(x) = 1.
x=0

(2) Compute the moment-generating function of X.

(3) From the moment-generating function, obtain mean and variance of X.

[Answer]

(1) We can show Zf(x) =1 as:

x=0
OOE f(x) = OOE e_/l mg/l——e et = 1.
! x!
x=0 x=0 x=0
Note that e* = L because we have f®(x) = e* for f(x) = e*. As shown in

k=0
Appendix 1.3, the formula of Taylor series expansion is:
o 1
fx) = ; 000 = o)

The Taylor series expansion around x = 0 is:
fo= L= Lo gL
k! k:O k! k!

Here, replace x by A and k by x.
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(2) The moment-generating function of X is:

¢(0) = E(e™) = Z e f(x) = Z ox —/1 _ Z ﬂ(e(’/l)x

x=0 x=0
0 X & 12
= e texp(e’Q) Z exp(—e’A )( D _ = e *exp(e’) Z e —
x! x!
x=0

= exp(—A) exp(e% = exp(A(e” - 1)).
Note that A’ = exp(e ).

(3) Based on the moment-generating function, we obtain mean and variance of X.
For mean, because of ¢(f) = exp(/l(e" — 1)), &) = Aef exp(/l(ee — 1)) and
E(X) = ¢’(0), we obtain:

E(X) = ¢'(0) = 4
For variance, from V(X) = E(X?) - (E(X))?, we obtain E(X?). Note that E(X?) =
¢(0) and ¢ (6) = (1 + 1e”)Ae” exp(A(e” - 1)). Therefore,

V(X) = E(X?) - (E(X))* = ¢”(0) = (¢'(0))* = (1 + DA — 2> = A.

@ X1, X», - -+, X, are mutually independently and normally distributed with mean
u and variance o2, where the density function is given by:

52 (X_H)Z

flx) =

e 20~
2no

Then, answer the following questions.

(1) Obtain the maximum likelihood estimators of mean u and variance 0.

(2) Check whether the maximum likelihood estimator of ¢ is unbiased. If it is
not unbiased, obtain an unbiased estimator of o>. (Hint: use the maximum
likelihood estimator.)

(3) We want to test the null hypothesis Hy : u = uo by the likelihood ratio test.
Obtain the test statistic and explain the testing procedure.

[Answer]

(1) The joint density is:

fln x50 = | | flsu o)
i=1

. 1 1
:1;[ V2no? P ( 200 202 ﬂ))

= Q2no?)™"? exp (—%‘_2 Z(x,- — ,u)2] = l(u, a?).
i=1
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Taking the logarithm, we have:
1 n
log l,0%) = =3 log(2m) — 5 log(0™) = 5 Z(x he

The derivatives of the log-likelihood function log I(u, ?) with respect to u and
o are set to be zero.

dlogl
Og_wz_z(xl 1 =0,

0log l(u,
og(ﬂO'):___ 24Z(x’ ,u) - 0.

002 202

Solving the two equations, we have the solution of (u, 0?), denoted by (4, 5?):

Therefore, the maximum likelihood estimators of i and o, (&, &%), are as fol-
lows:

X, §7= %Z(X,. - X).
(2) Take the expectation to check whether S **? is unbiased.
E(S™?) = Z(X X)?) Z(X X))
—E(Zl]«xi -~ & - p))
—E(an]((x,- — 1 =2 = X - )+ X - )
—E(ano@ —u = 2X - ) an](Xi — ) +n(X - py’)

= %E(Z(X,- — w)* = 2n(X — u)* + n(X - /1)2)

i=1

~E() (X~ - n(X - )
i=1



90 CHAPTER 1. ELEMENTS OF STATISTICS
- 1E(i<xi - 10%) = ~E(n(X - 1?)
n P n

=%;E(<Xi—u>2)—E(o_<—m2)

1 - - 1< o?
:r—l;V(X,-)—V(X):Z;o-Z—7
, I, n-1

n n

0'2 * 0'2.

Therefore, S **2 is not unbiased. Based on S **2, we obtain the unbiased estimator
of 2. Multiplying n/(n — 1) on both sides of E(S **?) = o-*(n — 1)/n, we obtain:
n

E(S*?) = o2.
n-1

Therefore, the unbiased estimator of o is:

n 1 < _
n—1 n—llZ‘( )

(3) The likelihood ratio is defined as:

max /(uo, 0'2)
0—2

Lo, )
max lw,0>) 1,62

U0

Since the number of restriction is one, we have:
—2logd — Xz(l).
I(u, o) is given by:
1 n
I, 0%) = Qra?) "2 exp (—272 ;(xi - ,u)z) .

Taking the logarithm, log I(u, 0%) is:
2 _ 1 n 2 1 < 2
log I(u,0%) = ~3 log(2) ~ = log(®) = 5— ;o@- -’

On the numerator, under the restriction u = g, log (1, %) is maximized with
respect to o2 as follows:

dlog l(ugy, o) nl 1 < 5
o7 = 27t 3g7 2L TH =0,
i=1
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0

(1

This solution of o is 02, which is represented as:

1 n
~2 _ - L 2
o= ;:1 (xi = po)”.
Then, (o, 7°) is:

. - 1 < L n
(o, 0%) = (2n5>) ™" exp [_TFZ Z(xi - /10)2) = 275 "* exp (—5) .
i=1

On the denominator, from the question (1), we have:

ﬂ:%ixi, 5'2:%2(3@—,&)2-

i=1

Therefore, (1, 52) is:

1 + n
NN N A2\-n/2 2| A2\-n/2
l(@,67) = 2rn6")™" " exp [_26'2 ;:1 (xi — ) ] = (2n6°)"" exp (—5)

The likelihood ratio is:

max [(uo, 0'2)
0—2

_Mwﬁ_@ﬁwmwmmm_fwm
max [(u, 0'2) - I(i1, 672) - (2ré2)/2 exp(-n/2) -
wo?

5?2
As n goes to infinity, we obtain:

—2log A = n(loga? —log &2) ~ x*(1).

When —2logd > x2(1), the null hypothesis Hy : u = o is rejected by the
significance level a, where y2(1) denotes the 100 x « percent point of the Chi-
square distribution with one degree of freedom.

Answer the following questions.

The discrete type of random variable X is assumed to be Bernoulli. The Bernoulli
distribution is given by:

fx)=p*(1 = p)', x=0,]1.

Let X;, X, - -+ ,X, be random variables drawn from the Bernoulli trials. Com-
pute the maximum likelihood estimator of p.
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(2) Let Y be arandom variable from a binomial distribution, denoted by f(y), which
is represented as:

f(Y):nCypy(l—p)"_y, y=0,1,2,---,n,

Then, prove that Y/n goes to p as n is large.

(3) For the random variable Y in the question (2), Let us define:
Y—np
ynp(l - p)

Then, Z, goes to a standard normal distribution as 7 is large.

Z,

(4) The continuous type of random variable X has the following density function:

1 n X
pp— x27lem2, if x>0,
f) =1 25T(%)
0, otherwise.

where I'(a) denotes the Gamma function, i.e.,

[(a) = f xle™ dx.
0

Then, show that X/n approaches one whenn — oo.
[Answer]
(1) When X is a Bernoulli random variable, the probability function of X is given
by:
fsp)=pd-p'~,  x=0,L
The joint probability function of Xi, X5, - - - X, is:

n n

fx, X0, X5 p) = ]_[ fxisp) = l_[ pi(l—p)

i=1 i=1
= p (1= p)" Y = U(p).

Take the logarithm of /(p).

1

logI(p) = () x)log(p) + (n = > x)log(1 = p).

The derivative of the log-likelihood function log /(p) with respect to p is set to
be zero.

dlogl(p) _ Xixi _ n—2iXi _ XiXi—np _
dp P l-p p(1-p)
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)

Solving the above equation, we have:

p:%Zn:xi:}.

i=1

Therefore, the maximum likelihood estimator of p is:

ﬁ:%ZX[:)_(.

Mean and variance of Y are:
E(Y)=np,  V(¥)=np( -p).
Therefore, we have:
Y. 1 Y. o1 (I-p)
E-)=-EM)=p, V() =5V =21
n" n n° n n
Chebyshev’s inequality indicates that for a random variable X and g(x) > 0 we

have:
E(g(X))

PX) 2 k) < —

where k > 0.

Here, when g(X) = (X — E(X))? and k = €2 are set, we can rewrite as:

V(X)

e’

PJX-EX)| = ¢) <
where € > 0.

Y
Replacing X by —, we apply Chebyshev’s inequality.
n

Y _Y V()
P(=-E(-)| 2 €) < —2.
n n €
Thatis,asn — oo,
Y 1-
P(|——p|26)£p(—2p) — 0.
n ne
Therefore, we obtain:
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(3) Let X;, X5, -+, X,, be Bernoulli random variables, where P(X; = x) = p*(1 —
p)' = for x = 0,1. Define Y = X; + X, + --- + X,. Because Y has a binomial
distribution, Y/n is taken as the sample mean from X;, X5, ---, X,,, i.e., ¥Y/n =
(1/n) 7=, X;. Therefore, using E(Y/n) = p and V(Y/n) = p(1 — p)/n, by the
central limit theorem, as n — oo, we have:

Y —
_Ymor No.
vp(l=p)/n
Moreover,
7 = Y-np  Y/n-p
ynp(1—p)  +/p(1—p)/n
Therefore,

Z, — N(Q,1).

(4) When X ~ y*(n), we have E(X) = n and V(X) = 2n. Therefore, E(X/n) = 1 and
V(X/n) =2/n.
Apply Chebyshev’s inequality. Then, we have:

V(&)

’
62

X X
P(—-E(=)lz¢) <
n n
where € > 0. That is, asn — oo, we have:
X 2
P(|——1|26)S—2 — 0.
n ne

Therefore,

Consider n random variables X, X5, - - -, X,,, which are mutually independently
and exponentially distributed. Note that the exponential distribution is given by:

f(x) = e, x> 0.
Then, answer the following questions.

(1) Let A be the maximum likelihood estimator of A. Obtain A.

(2) When n is large enough, obtain mean and variance of .

[Answer]
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ey

2)

Since X, - - -, X,, are mutually independently and exponentially distributed, the
likelihood function /(A1) is written as:

1) = ]_[ flx) = ]_[ e~ = YTt &,
i=1 i=1

The log-likelihood function is:

log I(2) = nlog(d) = 1) x;.

i=1

We want the 4 which maximizes log /(1). Solving the following equation:

dlogl(l) n -
==t n =0,
da 1 ;x

and replacing x; by X;, the maximum likelihood estimator of A, denoted by A,

1S:
n

I
i=1 Xi

X1, X5, -+, X,, are mutually independent. Let f(x;; ) be the density function of

X;. For the maximum likelihood estimator of A, i.e., /Al,,, asn — oo, we have

the following property:
Va(d, - ) — N(0,07(),

where {
() = —~.
E dlog f(X; )
(=50

Therefore, we obtain o->(1). The expectation in o2(1,) is:

02 2
E w -E 1—X -E i_%X+X2
dAa A A2 A
_ 2E(X)+E(X2)— !
2 VN
where E(X) and E(X?) are:
1 2
EX)=-, EX)=-=.
X =~ (X =
Therefore, we have:
1

2
E[( dlog f(X; A)) l
dAa

o) = = 2%
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As n is large, 1, approximately has the following distribution:

. 2
A, ~ N4, =).
n

Thus, as 7 goes to infinity, mean and variance are given by A and A /n.

The n random variables X;, X, ---, X,, are mutually independently distributed
with mean y and variance o>. Consider the following two estimators of y:

— 1< - 1
X=- ZX,., X =S\ +X,).

Then, answer the following questions.

(1) Is X unbiased? How about X?
(2) Which is more efficient, X or X7
(3) Examine whether X and X are consistent.

[Answer]

(1) We check whether X and X are unbiased.

E(X) = E(% Z:Xi) = %E(Z: Xi) = %ZE(XL-) = %;ﬂ = M,

= 1 1
EX) = 5(EX) + EX,) = s(u+p) =

Thus, both are unbiased.
(2) We examine which is more efficient, X or X.

— 1 < 1.« 1 & 1 <& o2
VX =V(= > X) ==V X)=— > VX)) == > o? = —,
= - A= e n
2

1 1
V(X) = Z(V(Xl) +V(X,) = (@ +0%) = %

Therefore, because of V(X) < V(f ), X is more efficient than X when n > 2.
(3) We check if X and X are consistent. Apply Chebyshev’s inequality. For X,
V)

P(X -EX)| > e) < ——,
€

where € > 0. That is, when n — oco, we have:

— 0'2
P X-ulze)<— — 0.
ne
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Therefore, we obtain:

X — u

Next, for X , we have:

P(X -EX)| > e < Q

where € > 0. That is, when n — oo, the followmg equation is obtained:

— 0'2
P(X-ul>e)<— —4 0.
2¢?

X is a consistent estimator of U, but X is not consistent.

The 9 random samples:
210230320200 360 270 260 280 30

which are obtained from the normal population N(u, 0?). Then, answer the following
questions.

(1) Obtain the unbiased estimates of u and o2.
(2) Obtain both 90 and 95 percent confidence intervals for u.

(3) Test the null hypothesis Hy : u = 24 and the alternative hypothesis H; : u > 24
by the significance level 0.10. How about 0.05?

[Answer]

(1) The unbiased estimators of i and o2, denoted by X and S2, are given by:

)‘(:%ZH:X,., §? = nilg(x,.—i)%

The unbiased estimates of i and o~ are:

X= %;x §* = n%g(xi—}f

Therefore,

:—Zx, 1(21+23+32+20+36+27+26+28+30) 27,

nilz(xl_x)

= g((21 — 272 + (23 =27)* + (32 = 27)* + (20 — 27)?

+(36 =272 + (27 = 27)* + (26 = 27)* + (28 = 27)* + (30 — 27)2)

1
:§(36+16+25+49+81+0+1+1+9):27.25.



98

2)

3)

CHAPTER 1. ELEMENTS OF STATISTICS

We obtain the confidence intervals of u. The following sample distribution is
utilized: .
—H
~tn-1).
STeR @D
Therefore, B
P(u <tap(n-1)=1-a
YRz ’

where ?,2(n — 1) denotes the 100 X a/2 percent point of the ¢ distribution, which
is obtained given probability @ and n — 1 degrees of freedom. Therefore, we
have:

_ S - S
P(X = tapa(n - 1)$ <p<X+tap(n-1)—)=1-a.

vn

Replacing X and S? by X and s, the 100 x (1 — @) percent confidence interval
of u is:

Tt fyp(n - D).

Vn Vn

Since X = 27, s = 27.25,n = 9, t505(8) = 1.860 and #5,025(8) = 2.306, the 90
percent confidence interval of y is:

[27.25 [27.25
(27 - 1.860 5 27 +1.860 T) = (23.76,30.24),

and the 95 percent confidence interval of y is:

[27.2 [27.2
(27 -2.306 TS, 27 +2.306 TS) =(22.99,31.01).

We test the null hypothesis Hy : p = 24 and the alternative hypothesis H; @ p >
24 by the significance levels 0.10 and 0.05. The distribution of X is:

()_C - l(,/z(l’l - 1)

X—-pu

S/ n

Therefore, under the null hypothesis Hy : u = uy, we obtain

~tn-1).

X — po

S/ n

Note that u is replaced by uy. For the alternative hypothesis H; : u > uy, since
we have:

~tn-1).

P(Y — Ho

S/\n

> t,(n — 1)) =a,
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we reject the null hypothesis Hy : u = po by the significance level @ when we

have: B
X~ Ho

s/ Nn

Substitute X = 27, s> = 27.25, up = 24, n = 9, 1510(8) = 1.397 and 1y05(8) =
1.860 into the above formula. Then, we obtain:

> t,(n—1).

X—py  27-24
s/vn  2725]9

Therefore, we reject the null hypothesis Hy : u = 24 by the significance level
a = 0.10. And we obtain:

=1.724 > 1910(8) = 1.397.

X-po  27-24
s/Vn  \27.25/9

Therefore, the null hypothesis Hy : u = 24 is accepted by the significance level
a = 0.05.

= 1.724 < t905(8) = 1.860.

The 16 samples X, X», - - -, Xj¢ are randomly drawn from the normal population
with mean u and known variance o> = 22. The sample average is given by x = 36.
Then, answer the following questions.

(1) Obtain the 95 percent confidence interval for p.

(2) Test the null hypothesis Hy : u = 35 and the alternative hypothesis H; : u =
36.5 by the significance level 0.05.

(3) Compute the power of the test in the above question (2).
[Answer]

(1) We obtain the 95 percent confidence interval of . The distribution of X is:

X-u
~ N, 1).
v oD
Therefore, _
X-—p
P < Za = 1 -,
(‘a/«/ﬁ )

where z,/» denotes the IOOX% percent point, which is obtained given probability

a. Therefore,

P()_(—z(,/zi <u <)_(+za/2£) =1-a

Vn Vn
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Replacing X by X, the 100(1 — @) percent confidence interval of u is:

_ o _ o
(x —Zo2— =Xt Za/Z_)'

Vn Vn

Substituting X = 36, 0> = 2%, n = 16 and zp005 = 1.960, the 100 X (1 — @)
percent confidence interval of u is:

2 2
(36 — 1.960——,36 + 1.960——) = (35.02,36.98).
V16 V16

We test the null hypothesis Hy : ¢ = 35 and the alternative hypothesis H; : p =
36.5 by the significance level 0.05. The distribution of X is:

X-u
o/ \n
Under the null hypothesis Hy : u = o,

~ N(0, 1).

X — po

~ N, 1).
o/ n O
For the alternative hypothesis H; : u > uo, we obtain:
X - Ho
P > 7. =«
If we have: _
) > Zas
o/+\n

the null hypothesis Hy : u = uy 1s rejected by the significance level a. Substi-
tuting X = 36, 0> = 22, n = 16 and z 05 = 1.645, we obtain:

Yoh 30735 o 1645
o/\n  2/v16 ¢

The null hypothesis Hy : u = 35 is rejected by the significance level a = 0.05.

We compute the power of the test in the question (2). The power of the test is the
probability which rejects the null hypothesis under the alternative hypothesis.
That is, under the null hypothesis Hy : u = po, the region which rejects the null
hypothesis is: X > o + 2,0/ v/, because

=a.

X -
P(cf/\l;t)>za)
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We compute the probability which rejects the null hypothesis under the alter-
native hypothesis H; : u = p;. That is, under the alternative hypothesis
H, : u =y, the following probability is known as the power of the test:

P()_( > o + 2,07/ \/ﬁ)

Under the alternative hypothesis H, : u = u;, we have:

)_(_.Ul
o/ n

Therefore, we want to compute the following probability

~ N(0, 1).

X - po—
> + Zo)-
(rf/ Vn o o/+n )

Substituting o = 2, n = 16, gy = 35, yy = 36.5 and z, = 1.645, we obtain:

X-u  35-36.5 X
P(O_/\/ﬁ> e +1.645)_P(—0_/ = > 1.355)
—1 —P(X_“1 > 1.355)

o/\n

=1-0.0877 = 0.9123.

Note that zosss = 1.35 and 7 93¢0 = 1.36.

X1, X5, - -+, X, are assumed to be mutually independent and be distributed as a
Poisson process, where the Poisson distribution is given by:

x,—A

PX =x)=f(x;Q) =

— x=0,1,2,---.
x!

Then, answer the following questions.

(1) Obtain the maximum likelihood estimator of A, which is denoted by A.
(2) Prove that A is an unbiased estimator.
(3) Prove that A is an efficient estimator.

(4) Prove that A is an consistent estimator.
[Answer]

(1) We obtain the maximum likelihood estimator of A, denoted by A. The Poisson
distribution is:

x,—A

PX=x)=f(x;A) = , x=0,1,2,---.

x!
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The likelihood function is:
/lzl'.' I xie—n/l

n QN =
=[]0 =] |5 =T

i=1 L

The log-likelihood function is:

log I(2) = log() »_ x; = nd = log(| | x!).
i=1 i=1

The derivative of the log-likelihood function with respect to A is:

alog 1A
AZ

Solving the above equation, the maximum likelihood estimator A is:
=] Z X, =X
n i=1 S
(2) We prove that A is an unbiased estimator of A.
E() —E(1 Zn:X) 1 anE(X) -1 Zn:/l—/l
B nizll_nizl l_”i=1 o

(3) We prove that A is an efficient estimator of 1, where we show that the equality
holds in the Cramer-Rao inequality. First, we obtain V(1) as:

V(fl):V(%Zn;X,-): %EV(X,-): %21: %

The Cramer-Rao lower bound is given by:

1 |
Kalog f(X; A))Z] - ’(a(xmgﬁ —1-log X!))zl
g|(Z281 220 | g
oA o
1 2

nE

'(x 1)2] " HEIX — 7]

3 A2 _/lz_/l
T avVX) ndl on
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Therefore,
N 1
V(1) = .

. 2
E l(@log f(X; /l)) l
oA

That is, V(1) is equal to the lower bound of the Cramer-Rao inequality. There-
fore, A is efficient.
(4) We show that 1 is a consistent estimator of 1. Note as follows:

EQ) =4 V@)= %
In Chebyshev’s inequality:

P(1-EQ)| 2 e) < g
E(1) and V() are substituted. Then, we have:

\ Pl
P(A-A>e) <— — 0,
ne

which implies that A is consistent.

X1, Xs, -+, X, are mutually independently distributed as normal random vari-
ables. Note that the normal density is:

() = e
2o

Then, answer the following questions.

(1) Prove that the sample mean X = (1/n) >y X; is normally distributed with mean

u and variance o /n.

(2) Define: _
X—-pu
o/ \n

Show that Z is normally distributed with mean zero and variance one.

7 =

(3) Consider the sample unbiased variance:

1 _
§2 = Z(x,. ~ X
i=1

n-—1 -

The distribution of (n — 1)S 2/ is known as a Chi-square distribution with n—1
degrees of freedom. Obtain mean and variance of S2. Note that a Chi-square
distribution with m degrees of freedom is:

1 m X
g x27 e, if x > 0,
Fx) =1 290(%)

0, otherwise.
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(4) Prove that S? is an consistent estimator of o2.
[Answer]

(1) The distribution of the sample mean X = (1/n) >, X; is derived using the
moment-generating function. Note that for X ~ N(u, o) the moment-generating
function ¢(6) is:

(o) 00 1 1 )
#(0) = E(e™) = f ¢ f(x) dx = f % e M dx
—co - V2mo?

— 1 e—ﬁ(x—y)2+0x dx
~00 V210

_ f R | e—ﬁ(xz—Z(/HO'zH)xtuz) dx
—o0 V2102

2
* 1 e—ﬁ(x—(,uﬂrzG)) +uo+Lo%6%) dx
- V2no?

o 2
— /JH+%0'262 f 1 —ﬁ(x—(pﬂrzf))) dx = 0+ l 292
e Y e X exp(,u ol )

In the integration above, N(u + 026, o) is utilized. Therefore, we have:

0:(0) = exp(,u@ + %0‘202).

Now, consider the moment-generating function of X, denoted by ¢+(6):

Y 1 yn = [ & [ = 9
#x(6) = E(e™) = B2 %) = E([ | ) = | [E@™) = [ [ o)
i=1 i=1 i=1

n 2 2
= n exp(,ug + %0-2(2)2) = exp(,u@ + %az%) = exp(,u@ + %%92),
i=1

which is equivalent to the moment-generating function of the normal distribu-
tion with mean u and variance o /n.
(2) We derive the distribution of Z, which is shown as:
_X-n
o/\n

From the question (1), the moment-generating function of X, denoted by ¢x(6),
is:

_ 2
¢<(0) = E(e™) = exp(,u@ + 10—92).
2n
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The moment-generating function of Z, denoted by ¢.(6):

X —
6.(6) = E(e") = E(exp(0=——L%))

o/\Nn
= exp(—0 - \/_) (exp( 4 \/,;X))
= exp(-0 Lo )
- exp(-0—L)explu—= + L (2)) = e,

which is the moment-generating function of N(0, 1).

(3) First, as preliminaries, we derive mean and variance of the chi-square distribu-
tion with m degrees of freedom. The chi-square distribution with m degrees of
freedom is:

1 m 1
X) = X2 e, ifx>0.
)= 317,

Therefore, the moment-generating function ¢,2(0) is:

00 1 ~ .
¢,2(6) = E(e™) = fo e T )x le™2 dx

0 1 m
:f — Al mha-20x g
o 22I(%)
0 1 y -1 _1, 1
_ B d
fo 25T (2 )(1—29) NIy R

1 %—1 1 0 1 m_q _1 _m
- 4ol i dx = (1 - 260)°%.
(=) 1—29f0 irzy ¢ (1-26)

In the fourth equality, use y = (1 — 260)x. The first and second derivatives of the
moment-generating function is:

Go(O) =m(1 =201 ¢1(0) = mlm +2)(1 - 20)"F.
Therefore, we obtain:

EQX) =¢.0)=m,  E(X) = ¢/4(0) = m(m +2).

Thus, for the chi-square distribution with m degrees of freedom, mean is given
by m and variance is:

V(X) = E(X?) - (E(X))* = m(m + 2) — m* = 2m.
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Therefore, using (n — DS?/o? ~ )(z(n — 1), we have:

- 1S? - 1)S?
E(%) =n-1, V(%) =2(n-1),

which implies

n-—1
o2

E(S%) =n-1, (”U%I)ZV(S% = 2(n - 1).

Finally, mean and variance of S? are:

2 4
ESY =02, V(S = Ll
n —

(4) We show that S? is a consistent estimator of o2. Chebyshev’s inequality is
utilized, which is:
V($?)

e

P(S?-E(S?)|>e) <

Substituting E(S?) and V(S ?), we obtain:

20
P o> < — 0.
(8* =12 0 < =g —

Therefore, S? is consistent.
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Statistical Tables

Table 1.2: Standard Normal Distribution — Z ~ N(0, 1)

a/=P(Z>z0,)=f

“3

1

\/_

1

exp(—=x%) dx
2m 2

.00

.01

.02

.03

.04

.05

.06

.07

.08

.09

0.8

[ S I N I e e e e e e e )
— O V0O NP WN—=O\O

00 2 ) L ) ) Lo ) D
R R o NP I NIV SRS

.50000
46017
42074
.38209
.34458
.30854
27425
24196
21186
.18406
.15866
13567
11507
.09680
.08076
.06681
.05480
.04457
.03593
.02872
.02275
.01786
.01390
.01072
.00820
.00621
.00466
.00347
.00256
.00187
.00135
.00097
.00069
.00048
.00034
.00023
.00016
.00011
.00007
.00005

49601
45620
41683
37828
.34090
.30503
27093
.23885
.20897
18141
15625
13350
11314
.09510
07927
.06552
.05370
.04363
.03515
.02807
02222
.01743
.01355
.01044
.00798
.00604
.00453
.00336
.00248
.00181
.00131
.00094
.00066
.00047
.00032
.00022
.00015
.00010
.00007
.00005

49202
45224
41294
37448
33724
30153
26763
.23576
20611
17879
.15386
13136
11123
.09342
.07780
.06426
.05262
.04272
.03438
.02743
.02169
.01700
.01321
.01017
.00776
.00587
.00440
.00326
.00240
.00175
.00126
.00090
.00064
.00045
.00031
.00022
.00015
.00010
.00007
.00004

48803
44828
40905
.37070
.33360
.29806
.26435
.23270
20327
17619
15151
12924
.10935
.09176
.07636
.06301
.05155
04182
.03362
.02680
02118
01659
.01287
.00990
.00755
.00570
.00427
.00317
.00233
.00169
.00122
.00087
.00062
.00043
.00030
.00021
.00014
.00010
.00006
.00004

48405
44433
40517
.36693
.32997
.29460
26109
.22965
.20045
17361
.14917
12714
.10749
.09012
.07493
.06178
.05050
.04093
.03288
02619
.02068
.01618
.01255
.00964
.00734
.00554
.00415
.00307
.00226
.00164
.00118
.00084
.00060
.00042
.00029
.00020
.00014
.00009
.00006
.00004

48006
44038
40129
36317
.32636
29116
25785
22663
.19766
17106
.14686
12507
.10565
.08851
.07353
.06057
.04947
.04006
.03216
.02559
.02018
.01578
.01222
.00939
.00714
.00539
.00402
.00298
.00219
.00159
.00114
.00082
.00058
.00040
.00028
.00019
.00013
.00009
.00006
.00004

47608
43644
39743
35942
32276
28774
.25463
.22363
19489
.16853
.14457
12302
.10383
.08692
07215
.05938
.04846
.03920
03144
.02500
.01970
01539
.01191
.00914
.00695
.00523
.00391
.00289
.00212
00154
00111
.00079
.00056
.00039
.00027
.00019
.00013
.00008
.00006
.00004

47210
43251
.39358
.35569
31918
.28434
25143
.22065
19215
.16602
.14231
12100
.10204
.08534
.07078
.05821
.04746
.03836
.03074
.02442
.01923
.01500
.01160
.00889
.00676
.00508
.00379
.00280
.00205
.00149
.00107
.00076
.00054
.00038
.00026
.00018
.00012
.00008
.00005
.00004

46812
42858
.38974
35197
31561
.28096
24825
21770
.18943
.16354
.14007
.11900
.10027
.08379
.06944
.05705
.04648
.03754
.03005
.02385
.01876
.01463
.01130
.00866
.00657
.00494
.00368
.00272
.00199
.00144
.00104
.00074
.00052
.00036
.00025
.00017
.00012
.00008
.00005
.00003

46414
42465
38591
.34827
31207
27760
.24510
21476
18673
16109
.13786
11702
.09853
.08226
.06811
.05592
.04551
.03673
.02938
.02330
01831
.01426
.01101
.00842
.00639
.00480
.00357
.00264
.00193
.00139
.00100
.00071
.00050
.00035
.00024
.00017
.00011
.00008
.00005
.00003
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Table 1.3: Chi-Square Distribution — X ~ y*(m)

a=PX>x2)= ) o) dy?

Xa

a 995 .99 975 95 90 .10 .05 025 .010 .005

.989 1.24 1.69 217 283 1202 14.07 16.01 18.48 20.28
1.34 1.65 2.18 273 349 1336 1551 17.53 20.09 21.95
1.73 2.09 2.70 333 417 1468 1692 19.02 21.67 23.59
10 2.16 2.56 3.25 394 487 1599 1831 2048 2321 25.19
11 2.60 3.05 3.82 457 558 17.28 19.68 2192 2473 26.76
12 3.07 3.57 4.40 523 630 18.55 21.03 2334 2622 28.30
13 3.57 4.11 5.01 5.80  7.04 19.81 2236 2474 27.69 29.82
14 4.07 4.66 5.63 6.57 7779 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.26 726 855 2231 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 796 931 2354 2630 2885 32.00 34.27
17 5.70 6.41 7.56 8.67 10.09 2477 2759 30.19 3341 3572
18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 3153 3481 37.16
19 6.84 7.63 891 10.12 11.65 2720 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 2841 31.41 34.17 37.57 40.00
21 8.03 890 10.28 11.59 1324 29.62 32.67 3548 3893 4140
22 8.64 954 1098 1234 14.04 30.81 3392 36.78 40.29 42.80
23 9.26 1020 11.69 13.09 14.85 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 1240 13.85 15.66 3320 36.42 3936 4298 4556
25 10.52 1152 13.12  14.61 1647 3438 37.65 40.65 4431 4693
26 11.16 1220 13.84 1538 1729 3556 3889 4192 45.64 48.29
27 11.81 12.88 1457 16.15 18.11 36.74 40.11 43.19 4696 49.65
28 12.46 13.56 1531 1693 1894 3792 4134 4446 48.28 50.99
29 13.12 1426 16.05 1771 19.77 39.09 4256 45.72 49.59 52.34
30 13.79 1495 16.79 1849 20.60 40.26 43.77 4698 50.89 53.67
40 20.71 22.16 2443 2651 29.05 51.81 5576 5934 63.69 66.77
50 27.99 29.71 3236 34776 37.69 63.17 6750 7142 76.15 79.49
60 35.53 3748 4048 43.19 46.46 7440 79.08 83.30 88.38 91.95
70 143.28 4544 48.76  51.74 5533 85.53 90.53 95.02 100.43 104.21
80 51.17 53.54 57.15 6039 6428 96.58 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 7329 107.57 113.15 118.14 124.12 128.30
100 67.33 70.06 7422 7793 8236 118.50 124.34 129.56 135.81 140.17

m
1 .0000393 .000157 .000982 .00393 .0158 2.71 3.84 502 6.63 7.88
2 .0100 .0201  .0506 .103 211 461 599 738 9.21 10.60
3 0717 115 216 352 S84 625 781 935 11.34 12.84
4 207 297 484 11 1.06 7.78 949 11.14 1328 14.86
5 412 554 .831 1.15 1.61 924 11.07 12.83 15.09 16.75
6 .676 872 1.24 1.64 220 10.64 1259 14.45 16.81 18.55
7

8

9
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Table 1.4: F Distribution — F ~ F(my,m;)
_ [ my =Degree of freedom in the numerator
@=PE>Fo) = ﬁa fi) dF my =Degree of freedom in the denominator

my 1 2 3 4 5 6 7 8 9 10 11 12 13 14
m @

.050|| 161. 200. 216. 225. 230. 234. 237. 239. 241. 242. 243. 244, 245. 245.

1 .025|| 648. 800. 864. 900. 922. 937. 948. 957. 963. 969. 973. 977. 980. 983.

.010|| 4052 5000 5403 5625 5764 5859 5928 5981 6022 6056 6083 6106 6126 6143

.005([ 16211 20000 21615 22500 23056 23437 23715 23925 24091 24224 24334 24426 24505 24572

.050(| 185 19.0 192 192 193 193 194 194 194 194 194 194 194 194

2 .025]| 385 39.0 392 392 393 393 394 394 394 394 394 394 394 394

.010]| 985 99.0 992 99.2 993 993 994 994 994 994 994 994 994 994

.005|| 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199.

.050(| 10.1 9.55 928 9.12 9.01 894 889 88 881 879 876 874 873 871

3 .025]| 174 16.0 154 151 149 147 146 145 145 144 144 143 143 143

.010|| 34.1 308 295 287 282 279 277 275 273 272 271 27.1 270 269

.005|| 55.6 498 475 462 454 448 444 4411 439 437 435 434 433 432

.050|| 7.71 694 659 639 626 6.16 6.09 604 6.00 59 594 591 589 587

4 .025]| 122 106 998 9.60 936 9.20 9.07 898 890 884 879 875 872 8.68

.010|| 212 18.0 167 16.0 155 152 150 148 147 145 145 144 143 142

.005| 31.3 263 243 232 225 220 216 214 21.1 21.0 208 207 206 205

.050|| 6.61 5.79 541 5.19 505 495 488 482 477 474 470 468 4.66 4.64

5 .025]| 100 843 7776 739 7.15 698 685 676 6.68 6.62 657 652 649 646

.010|| 163 133 121 114 11.0 10.7 105 103 102 10.1 996 989 9.82 09.77

.005|| 228 183 165 156 149 145 142 140 138 13.6 135 134 133 132

.050(| 599 5.14 476 453 439 428 421 415 410 406 4.03 400 398 3.96

6 .025]| 881 7.26 6.60 623 599 582 570 560 552 546 541 537 533 530

.010|| 13.7 109 978 9.15 875 847 8206 8.10 798 787 779 772 7.66 7.60

.005|| 186 145 129 120 115 11.1 108 10.6 104 103 10.1 10.0 9.95 9.88

050 559 474 435 412 397 387 379 373 368 3.64 3.60 357 355 353

7 .025]| 8.07 6.54 589 552 529 512 499 490 482 476 471 467 4.63 4.60

.010|| 122 9.55 845 7.85 746 17.19 699 6.84 6.72 662 654 647 641 636

.005| 162 124 109 101 952 9.16 889 8.68 851 838 827 818 810 8.03

.050|| 532 446 407 384 3.69 358 350 344 339 335 331 328 326 324

8 .025|| 7.57 6.06 542 505 482 4.65 453 443 436 430 424 420 4.16 4.13

.010|| 11.3 865 759 7.01 6.63 637 6.18 603 591 581 573 567 561 556

.005|| 147 11.0 960 881 830 795 7.69 750 734 721 7.10 701 694 6.87

.050|| 5.12 426 386 3.63 348 337 329 323 318 3.14 3.10 3.07 3.05 3.03

9 .025]| 7.21 571 508 472 448 432 420 410 4.03 396 391 387 3.83 3.80

.010(| 106 8.02 699 642 6.06 580 561 547 535 526 518 511 505 5.01

.005|| 13.6 10.1 872 796 747 7.3 688 6.69 654 642 631 623 6.15 6.09

.050|| 496 4.10 371 348 333 322 314 307 3.02 298 294 291 289 286

10 .025]| 694 546 483 447 424 407 395 385 378 372 3.66 362 358 355

.010|| 100 7.56 655 599 564 539 520 506 494 485 477 471 4.65 4.60

.005|| 12.8 943 808 7.34 687 654 630 6.12 597 585 575 566 559 553

.050|| 4.84 398 359 336 320 3.09 301 295 290 285 282 279 276 274

11 .025]] 672 526 4.63 428 404 388 376 3.66 359 353 347 343 339 336

.010|| 9.65 7.21 622 567 532 507 489 474 463 454 446 440 434 429

.005|| 122 891 7.60 6.88 642 6.10 586 568 554 542 532 524 516 5.10

050 475 3.89 349 326 3.11 300 291 285 280 275 272 269 266 2.64

12 .025]| 655 5.10 447 412 389 373 3.61 351 344 337 332 328 324 321

.010|| 933 693 595 541 506 482 464 450 439 430 422 416 4.10 4.05

.005| 11.8 851 723 652 6.07 576 552 535 520 509 499 491 484 477

.050|| 4.67 3.81 341 3.18 3.03 292 283 277 271 267 263 260 258 255

13 .025|| 6.41 497 435 4.00 377 3.60 348 339 331 325 320 315 3.12 3.08

.010|| 9.07 6.70 574 521 486 4.62 444 430 419 410 4.02 396 391 386

.005| 114 819 693 623 579 548 525 508 494 482 472 464 457 451
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Table 1.4: F Distribution — F ~ F(my,m,): < Continued >

my =Degree of freedom in the numerator
my =Degree of freedom in the denominator

a/:P(F>F,1):fwf(F)dF
Fo

my 15 16 17 18 19 20 25 30 40 50 60 80 100 200
my a
050 246. 246. 247. 247. 248. 248. 249. 250. 251. 252. 252. 253. 253. 254.
1 025 985. 987. 989. 990. 992. 993. 998. 1001 1006 1008 1010 1012 1013 1016
010 6157 6170 6181 6192 6201 6209 6240 6261 6287 6303 6313 6326 6334 6350
.005 || 24630 24681 24727 24767 24803 24836 24960 25044 25148 25211 25253 25306 25337 25401

.050(] 194 194 194 194 194 194 195 195 195 195 195 195 195 195
2 025\ 394 394 394 394 394 394 395 395 395 395 395 395 395 395
.010(| 994 994 994 994 994 994 995 995 995 995 995 995 995 995
005 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199.

.050|| 870 8.69 8.68 867 8.67 866 863 862 859 858 857 856 855 8.54
3 025\ 143 142 142 142 142 142 141 141 140 140 140 140 140 139
.010|| 269 26.8 26.8 268 267 267 266 265 264 264 263 263 262 262
.005| 43.1 43.0 429 429 428 428 426 425 423 422 421 421 420 419

0501 586 5.84 583 582 581 580 577 575 572 570 569 567 566 5.65
4 .025| 8.66 8.63 861 859 858 856 850 846 841 838 836 833 832 829
.010]| 142 142 141 141 140 140 139 138 137 137 137 13.6 13.6 135
.005| 204 204 203 203 202 202 200 199 198 197 196 195 195 194

050 4.62 4.60 459 458 457 456 452 450 446 444 443 442 441 439
5 .025|| 6.43 640 638 636 634 633 627 623 6.18 6.14 6.12 6.10 6.08 6.05
0101 9.72 9.68 9.64 9.61 958 955 945 938 929 924 920 9.16 9.13 9.08
.005| 13.1 13.1 13.0 13.0 129 129 128 127 125 125 124 123 123 122

0501 394 392 391 390 3.88 387 383 381 377 375 374 372 371 3.69
6 025\ 527 524 522 520 518 517 5.11 507 501 498 496 493 492 488
.010( 7.56 7.52 748 745 742 1740 730 723 7.14 7.09 7.06 701 699 693
005 981 976 9.71 9.66 9.62 959 945 936 924 9.17 912 9.06 9.03 895

.050( 3.51 349 348 347 346 344 340 338 334 332 330 329 327 325
7 025\ 457 454 452 450 448 447 440 436 431 428 425 423 421 418
.010|| 631 6.28 624 621 6.18 6.16 6.06 599 591 586 582 578 575 5.70
005 797 791 787 783 779 775 762 753 742 735 731 725 722 7.15

05011 322 320 3.19 317 316 3.15 311 3.08 304 3.02 301 299 297 295
8 025\ 4.10 4.08 4.05 4.03 4.02 400 394 389 384 381 378 376 374 371
.010|] 552 548 544 541 538 536 526 520 512 507 503 499 496 4091
.005|| 681 6.76 6.72 6.68 6.64 661 648 640 629 622 6.18 6.12 6.09 6.02

050 3.01 299 297 296 295 294 289 286 283 280 279 277 276 273
9 025\ 377 3.74 372 370 3.68 3.67 3.60 356 351 347 345 342 340 337
.010]] 496 492 489 486 4.83 481 471 465 457 452 448 444 442 436
.005|| 6.03 598 594 590 586 583 571 562 552 545 541 536 532 526

050 285 2.83 281 280 279 277 273 270 266 264 262 260 259 256
10 025] 352 350 347 345 344 342 335 331 326 322 320 3.17 315 3.12
.010|] 456 4.52 449 446 443 441 431 425 417 412 408 404 401 396
.005| 547 542 538 534 531 527 515 507 497 490 486 481 477 471

050 272 270 269 267 266 265 260 257 253 251 249 247 246 243
11 025\ 333 330 328 326 324 323 316 312 306 3.03 3.00 297 29 292
010 425 421 418 415 412 410 4.01 394 386 381 378 373 371 3.66
.005| 5.05 5.00 496 492 489 486 474 4.65 455 449 445 439 436 429

.050( 2.62 260 258 257 256 254 250 247 243 240 238 236 235 232
12 025 3.18 3.15 3.13 311 3.09 3.07 3.01 296 291 287 285 282 280 276
.010|| 4.01 397 394 391 388 386 376 3.70 3.62 357 354 349 347 341
005] 472 4.67 4.63 459 456 453 441 433 423 417 412 407 4.04 397

050 253 251 250 248 247 246 241 238 234 231 230 227 226 223
13 .025| 3.05 3.03 3.00 298 296 295 288 284 278 274 272 269 267 263
010 3.82 3.78 3775 372 3.69 3.66 357 351 343 338 334 330 327 322
.005|| 4.46 441 437 433 430 427 415 4.07 397 391 387 381 378 3.71
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Table 1.4: F Distribution — F ~ F(my, m,): < Continued >
_ [ my =Degree of freedom in the numerator
@=PE>Fo) = ﬁa St dF my =Degree of freedom in the denominator
my 1 2 3 4 5 6 7 8 9 10 11 12 13 14
m @
.050|| 4.60 3.74 334 311 296 285 276 270 265 260 257 253 251 248
14 025\ 630 4.86 424 389 3.66 350 338 329 321 315 3.09 305 3.01 298
.010|| 886 6.51 556 5.04 470 446 428 414 403 394 386 380 3.75 3.70
.005|| I1.1 792 6.68 6.00 556 526 503 486 472 460 451 443 436 430
.050|| 4.54 3.68 329 3.06 290 279 271 264 259 254 251 248 245 242
15 .025]| 620 4.77 4.15 3.80 358 341 329 320 3.12 3.06 3.01 296 292 289
.010|| 8.68 636 542 489 456 432 414 400 3.89 380 373 3.67 3.61 356
.005 10.8 7.70 648 580 537 507 485 4.67 454 442 433 425 418 4.12
.050|| 4.49 3.63 324 301 285 274 266 259 254 249 246 242 240 237
16 .025]| 6.12 4.69 408 373 350 334 322 312 3.05 299 293 289 285 282
.010|| 853 6.23 529 477 444 420 403 389 378 369 3.62 355 350 345
.005|| 106 7.51 630 5.64 521 491 469 452 438 427 418 410 4.03 397
.050|| 4.45 359 320 296 281 270 261 255 249 245 241 238 235 233
17 .025|| 6.04 4.62 401 3.66 344 328 3.16 3.06 298 292 287 282 279 275
.010|| 840 6.11 519 4.67 434 410 393 379 368 359 352 346 340 335
.005|| 104 735 6.16 550 5.07 478 456 439 425 414 405 397 390 384
.050|| 4.41 3,55 316 293 277 266 258 251 246 241 237 234 231 229
18 .025]| 598 456 395 3.61 338 322 310 301 293 287 281 277 273 270
.010|| 829 6.01 5.09 458 425 401 384 371 3.60 351 343 337 332 327
.005|| 102 7.21 6.03 537 496 4.66 444 428 414 403 394 386 3.79 373
.050|| 438 3,52 3.13 290 274 263 254 248 242 238 234 231 228 226
19 025|] 592 451 390 356 333 3117 3.05 296 288 282 276 272 268 265
.010|| 8.18 593 501 450 4.17 394 377 363 352 343 336 330 324 3.19
.005|| 10.1 7.09 592 527 485 456 434 418 404 393 384 376 370 3.64
.050|| 435 349 3.10 287 271 260 251 245 239 235 231 228 225 223
20 .025]| 587 446 386 351 329 313 3.01 291 284 277 272 268 2.64 260
.010|| 810 5.85 494 443 410 3.87 370 356 346 337 329 323 318 3.13
.005|| 994 699 582 517 476 447 426 4.09 396 385 376 3.68 3.61 355
.050|| 432 347 3.07 284 268 257 249 242 237 232 228 225 222 220
21 .025]| 583 442 382 348 325 3.09 297 287 280 273 268 264 260 256
.010|| 8.02 578 487 437 404 381 364 351 340 331 324 317 3.12 3.07
.005|| 9.83 6.89 573 509 468 439 418 401 388 377 3.68 3.60 3.54 348
.050|| 430 344 3.05 282 266 255 246 240 234 230 226 223 220 217
22 .025]| 579 438 378 344 322 305 293 284 276 270 265 260 256 253
.010| 795 5.72 482 431 399 376 359 345 335 326 3.18 312 3.07 3.02
.005|| 9.73 6.81 565 5.02 461 432 411 394 381 370 3.61 354 347 341
.050|| 4.28 342 3.03 280 264 253 244 237 232 227 224 220 218 215
23 .025]| 575 435 375 341 3.18 3.02 290 281 273 267 262 257 253 250
.010|| 7.88 5.66 476 426 394 371 354 341 330 321 3.14 3.07 3.02 297
.005|| 9.63 6.73 558 495 454 426 405 388 375 364 355 347 341 335
.050|| 426 340 3.01 278 262 251 242 236 230 225 222 218 215 213
24 .025]| 572 432 372 338 3.15 299 287 278 270 264 259 254 250 247
.010|| 7.82 5.61 472 422 390 3.67 350 336 326 3.17 3.09 303 298 293
.005|| 9.55 6.66 552 4.89 449 420 399 383 3.69 359 350 342 335 330
.050|| 424 339 299 276 260 249 240 234 228 224 220 216 214 211
25 .025]] 5.69 429 3.69 335 313 297 285 275 268 261 256 251 248 244
.010|| 7.77 557 4.68 4.18 386 3.63 346 332 322 313 3.06 299 294 289
.005|| 9.48 6.60 546 4.84 443 415 394 378 3.64 354 345 337 330 325
.050|| 4.17 332 292 269 253 242 233 227 221 216 213 209 206 204
30 .025]| 557 4.8 359 325 3.03 287 275 265 257 251 246 241 237 234
.010|| 7.56 539 451 4.02 370 347 330 3.17 3.07 298 291 284 279 274
.005|| 9.18 635 524 462 423 395 374 358 345 334 325 318 3.11 3.06
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Table 1.4: F Distribution — F ~ F(my,m,): < Continued >

my =Degree of freedom in the numerator
my =Degree of freedom in the denominator

a/:P(F>F,1):fwf(F)dF
Fo

my 15 16 17 18 19 20 25 30 40 50 60 80 100 200
my a
050 246 244 243 241 240 239 234 231 227 224 222 220 219 216
14 .025]| 295 292 290 288 286 2.84 278 273 267 264 261 258 256 253
010 3.66 3.62 359 356 353 351 341 335 327 322 318 3.14 3.11 3.06
005 425 420 4.16 412 409 406 394 386 376 370 3.66 3.60 357 3.50
050 240 238 237 235 234 233 228 225 220 218 216 214 212 210
15 025 2.86 2.84 281 279 277 276 269 264 259 255 252 249 247 244
010 3.52 349 345 342 340 337 328 321 3.13 3.08 305 3.00 298 292
.005|| 4.07 4.02 398 395 391 388 377 369 359 352 348 343 339 333
050 235 233 232 230 229 228 223 219 215 212 211 208 207 204
16 025 279 276 274 272 270 2.68 261 257 251 247 245 242 240 236
010 341 337 334 331 328 326 3.17 3.10 3.02 297 293 289 286 281
.005( 392 387 383 380 376 3.73 3.62 354 344 337 333 328 325 3.18
050 231 229 227 226 224 223 218 215 210 208 206 203 202 199
17 025 272 270 267 265 263 262 255 250 244 241 238 235 233 229
010 331 327 324 321 319 316 3.07 300 292 287 283 279 276 271
.005( 379 3.75 371 3.67 3.64 3.61 349 341 331 325 321 315 312 3.05
050 227 225 223 222 220 219 214 211 206 204 202 199 198 195
18 025 267 2.64 262 260 258 256 249 244 238 235 232 229 227 223
010 323 3.19 3.16 3.13 3.10 3.08 298 292 284 278 275 271 268 262
.005( 3.68 3.64 3.60 356 353 350 338 330 320 3.14 3.10 3.04 3.01 294
050 223 221 220 218 217 216 211 207 203 200 198 196 194 191
19 025 262 2,59 257 255 253 251 244 239 233 230 227 224 222 218
010 3.15 3.12 3.08 3.05 3.03 3.00 291 284 276 271 267 263 260 255
.005( 359 354 350 346 343 340 329 321 311 3.04 300 295 291 285
.050( 220 2.8 217 215 214 212 207 204 199 197 195 192 191 1.88
20 025( 257 255 252 250 248 246 240 235 229 225 222 219 217 213
010 3.09 3.05 3.02 299 296 294 284 278 2.69 264 261 256 254 248
.005|| 350 346 342 338 335 332 320 3.12 3.02 296 292 286 283 276
.050( 2.18 216 214 212 211 210 205 201 196 194 192 189 188 184
21 025 253 251 248 246 244 242 236 231 225 221 218 215 213 2.09
010 3.03 299 296 293 290 288 279 272 264 258 255 250 248 242
.005( 343 338 334 331 327 324 313 305 295 288 284 279 275 268
.050( 2.15 2.13 211 210 208 2.07 202 198 194 191 189 186 185 1.82
22 025 250 247 245 243 241 239 232 227 221 217 214 211 209 205
.010|| 298 294 291 288 285 283 273 267 258 253 250 245 242 236
.005( 336 332 327 324 321 3.18 3.06 298 288 282 277 272 269 262
.050( 2.13 2.11 2.09 208 206 205 200 196 191 188 186 1.84 182 1.79
23 025 247 244 242 239 237 236 229 224 218 214 211 208 2.06 201
010 293 289 286 283 280 278 269 262 254 248 245 240 237 232
.005( 330 325 321 318 3.5 3.12 3.00 292 282 276 271 266 262 256
.050( 2.11 2.09 2.07 205 204 203 198 194 189 186 1.84 1.82 180 1.77
24 .025]] 244 241 239 236 235 233 226 221 215 211 208 205 202 198
010 2.89 2.85 282 279 276 274 264 258 249 244 240 236 233 227
.005( 325 320 3.16 3.12 3.09 3.06 295 287 277 270 266 260 257 250
050 2.09 2.07 205 204 202 201 19 192 187 184 182 180 178 1.75
25 025 241 238 236 234 232 230 223 218 2.12 208 205 202 200 195
010 2.85 2.81 278 275 272 270 260 254 245 240 236 232 229 223
.005|| 320 3.15 3.11 3.08 3.04 3.01 290 282 272 265 261 255 252 245
050 201 199 198 196 195 193 188 184 179 176 174 171 170 1.66
30 025 231 228 226 223 221 220 212 207 201 197 194 190 188 1.84
010 270 2.66 2.63 260 257 255 245 239 230 225 221 216 213 207
.005] 3.01 296 292 289 285 282 271 263 252 246 242 236 232 225
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Table 1.4: F Distribution — F ~ F(my, m,): < Continued >
_ [ my =Degree of freedom in the numerator
@=PE>Fo) = ﬁa St dF my =Degree of freedom in the denominator
my 1 2 3 4 5 6 7 8 9 10 11 12 13 14
my a
.050(| 4.12 327 287 264 249 237 229 222 216 211 208 204 201 199
35 025|] 548 4.11 352 318 296 280 268 258 250 244 239 234 230 227
.010(| 7.42 527 440 391 359 337 320 307 296 288 280 274 269 264
.005( 898 6.19 509 448 409 381 361 345 332 321 3.12 305 298 293
.050(| 4.08 323 284 261 245 234 225 218 2.12 208 2.04 200 197 195
40 025(| 542 405 346 3.13 290 274 262 253 245 239 233 229 225 221
.010(| 731 5.18 431 3.83 351 329 312 299 289 280 273 266 261 256
.005|| 883 6.07 498 437 399 371 351 335 322 312 303 295 289 283
.050(| 4.06 320 281 258 242 231 222 215 210 205 201 197 194 192
45 .025(| 538 4.01 342 309 286 270 258 249 241 235 229 225 221 217
010 7.23 511 425 377 345 323 3.07 294 283 274 267 261 255 251
.005( 871 597 489 429 391 364 343 328 3.15 3.04 296 288 282 276
.050f| 4.03 3.18 279 256 240 229 220 213 2.07 203 199 195 192 1.89
50 .025(| 534 397 339 305 283 267 255 246 238 232 226 222 218 214
.010(| 7.17 5.06 420 3.72 341 319 3.02 289 279 270 263 256 251 246
.005(| 863 590 483 423 385 358 338 322 3.09 299 290 282 276 270
.050f| 4.00 3.15 276 253 237 225 217 210 2.04 199 195 192 1.89 1.86
60 .025(| 529 393 334 301 279 263 251 241 233 227 222 217 213 2.09
.010(| 7.08 498 413 365 334 312 295 282 272 263 256 250 244 239
.005( 849 580 473 414 376 349 329 313 3.01 290 282 274 268 262
.050f| 398 3.13 274 250 235 223 214 207 202 197 193 189 186 1.84
70 .025]| 525 3.89 331 297 275 259 247 238 230 224 218 214 210 2.06
.010(| 7.01 492 407 3.60 329 307 291 278 267 259 251 245 240 235
.005(| 840 572 466 408 370 343 323 308 295 285 276 268 262 256
.050(| 396 3.11 272 249 233 221 213 206 200 195 191 188 1.84 1.82
80 .025(| 522 386 328 295 273 257 245 235 228 221 216 211 207 2.03
.010(| 696 4.88 4.04 356 326 3.04 287 274 264 255 248 242 236 231
.005|| 833 5.67 461 403 365 339 319 3.03 291 280 272 264 258 252
.050f 3.95 3.10 271 247 232 220 211 204 199 194 190 186 1.83 1.80
90 .025(| 520 3.84 326 293 271 255 243 234 226 219 214 209 205 202
.010(| 693 485 4.01 354 323 301 284 272 261 252 245 239 233 229
.005(| 828 562 457 399 3.62 335 315 300 287 277 268 261 254 249
050 394 3.09 270 246 231 219 210 203 197 193 189 185 1.82 1.79
100 .025(| 5.18 3.83 325 292 270 254 242 232 224 218 212 208 2.04 2.00
.010(| 690 4.82 398 351 321 299 282 269 259 250 243 237 231 227
.005( 824 559 454 396 359 333 313 297 285 274 266 258 252 246
.050f| 390 3.06 266 243 227 216 207 200 194 189 185 182 179 1.76
150 .025(| 5.13 378 320 2.87 265 249 237 228 220 213 208 203 199 195
.010(| 6.81 475 391 345 314 292 276 263 253 244 237 231 225 220
.005(| 812 549 445 388 351 325 3.05 289 277 267 258 251 244 238
.050f| 3.89 3.04 265 242 226 214 206 198 193 188 184 180 1.77 174
200 .025(| 5.10 3.76 3.18 285 263 247 235 226 218 211 206 201 197 193
.010(| 6.76 471 388 341 3.11 289 273 260 250 241 234 227 222 217
.005(| 8.06 544 441 384 347 321 3.01 286 273 263 254 247 240 235
.050(| 3.86 3.01 262 239 223 212 203 19 19 185 181 177 174 1.71
500 .025(| 5.05 372 3.14 281 259 243 231 222 214 207 202 197 193 1.89
.010(| 6.69 4.65 382 336 3.05 284 268 255 244 236 228 222 217 212
005| 795 535 433 376 340 3.14 294 279 266 256 248 240 234 228
.050f| 3.84 3.00 260 237 221 210 201 194 188 183 179 175 172 1.69
00 025( 5.02 3.69 312 279 257 241 229 219 211 205 199 194 190 1.87
.010(| 6.63 4.61 378 332 3.02 280 264 251 241 232 225 218 213 2.08
.005( 7.88 530 428 372 335 309 290 274 262 252 243 236 229 224
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Table 1.4: F Distribution — F ~ F(my,m,): < Continued >

my =Degree of freedom in the numerator
my =Degree of freedom in the denominator

a/:P(F>F,1):fwf(F)dF
Fo

my 15 16 17 18 19 20 25 30 40 50 60 80 100 200
my a
050 196 194 192 191 1.8 1.8 18 179 174 170 168 1.65 1.63 1.60
35 .025|| 224 221 218 216 214 212 205 200 193 189 186 1.82 180 1.75
.010]| 2.60 256 253 250 247 244 235 228 219 214 210 205 2.02 196
.005|| 2.88 2.83 279 276 272 269 258 250 239 233 228 222 219 211
.050])] 192 190 189 187 185 1.84 178 174 1.69 166 164 161 159 1.55
40 .025]| 2.18 215 213 211 209 207 199 194 188 183 180 1.76 1.74 1.69
.010]| 252 248 245 242 239 237 227 220 211 206 202 197 194 1.87
.005|| 278 274 270 266 263 2.60 248 240 230 223 218 212 2.09 201
.050)]] 1.89 1.87 186 184 1.82 181 175 171 1.66 163 1.60 157 155 1.51
45 .025]| 2.14 211 2.09 207 205 203 195 19 183 179 176 172 1.69 1.64
.010|| 246 243 239 236 234 231 221 214 205 200 196 191 188 1.81
.005|| 271 266 2.62 259 256 253 241 233 222 216 211 205 201 193
.050)] 1.87 1.85 183 181 180 1.78 173 169 1.63 160 158 1.54 152 1.48
50 .025]| 2.11 2.08 2.06 203 201 199 192 187 180 175 172 1.68 1.66 1.60
.010|| 242 238 235 232 229 227 217 210 201 195 191 18 182 1.76
.005]| 265 261 257 253 250 247 235 227 216 210 205 199 195 1.87
.050)| 1.84 1.82 180 178 176 1.75 1.69 165 159 156 153 150 148 1.44
60 .025|| 2.06 2.03 2.01 198 196 194 187 182 174 170 167 1.63 160 1.54
.010]| 235 231 228 225 222 220 210 203 194 188 184 1.78 1.75 1.68
.005|| 257 253 249 245 242 239 227 219 208 201 196 190 186 1.78
.050)| 1.81 1.79 177 175 174 172 1.66 162 157 153 150 147 145 140
70 .025]| 203 200 197 195 193 191 183 178 171 166 163 159 156 150
.010]| 231 227 223 220 218 2.15 205 198 189 183 178 173 170 1.62
.005|| 251 247 243 239 236 233 221 213 202 195 190 1.84 180 1.71
050 1.79 177 175 173 172 170 1.64 160 154 151 148 145 143 1.38
80 .025]| 200 197 195 193 190 188 181 1.75 1.68 163 160 1.55 153 147
.010]| 227 223 220 217 214 212 201 194 18 179 175 1.69 1.65 1.58
.005|| 247 243 239 235 232 229 217 208 197 190 185 179 175 1.66
.050)] 1.78 176 1.74 172 170 1.69 163 159 153 149 146 143 141 136
90 .025]] 198 195 193 191 18 18 179 173 1.66 1.61 158 1.53 150 1.44
.010]| 224 221 217 214 211 209 199 192 182 176 172 166 162 1.55
.005|| 244 239 235 232 228 225 213 205 194 187 182 175 171 1.62
.050)| 177 175 173 171 1.69 1.68 1.62 157 152 148 145 141 139 134
100 .025]] 197 194 191 189 187 1.8 177 171 1.64 159 156 1.51 148 142
.010]| 222 219 215 212 209 207 197 189 180 174 169 1.63 160 1.52
.005|| 241 237 233 229 226 223 211 202 191 184 179 172 1.68 1.59
.050]] 1.73 1.71 1.69 1.67 166 1.64 158 154 148 144 141 137 134 129
150 .025]| 192 1.89 187 184 1.82 180 172 167 159 154 150 145 142 1.35
.010]| 2.16 2.12 2.09 206 203 200 190 183 1.73 166 162 156 152 143
.005|| 233 229 225 221 218 215 203 194 183 176 170 1.63 159 1.49
.050]] 1.72 1.69 1.67 166 164 1.62 156 152 146 141 139 135 132 1.26
200 .025]| 190 1.87 184 182 180 1.78 170 164 156 151 147 142 139 132
.010]| 2.13 2.09 2.06 203 200 197 187 179 1.69 163 158 152 148 1.39
.005|| 230 225 221 218 214 211 199 191 179 171 166 1.59 154 1.44
.050]] 1.69 166 164 162 161 159 153 148 142 138 135 130 128 1.21
500 .025|| 1.86 1.83 180 178 1.76 1.74 1.65 160 1.52 146 142 137 134 1.25
.010|| 2.07 2.04 200 197 194 192 181 174 1.63 157 152 145 141 131
.005|| 223 219 214 211 207 204 192 184 172 164 158 151 146 1.35
.050]] 1.67 1.64 162 160 159 157 151 146 139 135 132 127 124 1.17
) .025]| 183 1.80 178 1.75 173 1.71 1.63 157 148 143 139 133 130 1.21
.010|| 2.04 200 197 193 190 1.8 177 170 1.59 152 147 140 136 1.25
.005]| 2.19 2.14 210 206 203 2.00 188 179 1.67 159 153 145 140 1.28
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Table 1.5: ¢ Distribution — T ~ #(m)

e fwn"%') 1 1 .
¢ “ =), T® VxR e
a .10 .05 .025 .01 .005
m
1 3.0777 63137 12.7062 31.8210 63.6559
2 1.8856 2.9200 4.3027 6.9645 9.9250
3 1.6377 2.3534 3.1824 4.5407 5.8408
4 1.5332 2.1318 2.7765 3.7469 4.6041
5 1.4759 2.0150 2.5706 3.3649 4.0321
6 1.4398 1.9432 2.4469 3.1427 3.7074
7 1.4149 1.8946 2.3646 2.9979 3.4995
8 1.3968 1.8595 2.3060 2.8965 3.3554
9 1.3830 1.8331 2.2622 2.8214 3.2498
10 1.3722 1.8125 2.2281 2.7638 3.1693
11 1.3634 1.7959 2.2010 2.7181 3.1058
12 1.3562 1.7823 2.1788 2.6810 3.0545
13 1.3502 1.7709 2.1604 2.6503 3.0123
14 1.3450 1.7613 2.1448 2.6245 2.9768
15 1.3406 1.7531 2.1315 2.6025 2.9467
16 1.3368 1.7459 2.1199 2.5835 2.9208
17 1.3334 1.7396 2.1098 2.5669 2.8982
18 1.3304 1.7341 2.1009 2.5524 2.8784
19 1.3277 1.7291 2.0930 2.5395 2.8609
20 1.3253 1.7247 2.0860 2.5280 2.8453
21 1.3232  1.7207 2.0796 2.5176 2.8314
22 1.3212 1.7171 2.0739 2.5083 2.8188
23 1.3195 1.7139 2.0687 2.4999 2.8073
24 1.3178 1.7109 2.0639 2.4922 2.7970
25 1.3163 1.7081 2.0595 2.4851 2.7874
26 1.3150 1.7056 2.0555 2.4786 2.7787
27 1.3137 1.7033 2.0518 24727 2.7707
28 1.3125 1.7011 2.0484 2.4671 2.7633
29 1.3114 1.6991 2.0452 2.4620 2.7564
30 1.3104 1.6973 2.0423 2.4573 2.7500
31 1.3095 1.6955 2.0395 2.4528 2.7440
32 1.3086 1.6939 2.0369 2.4487 2.7385
33 1.3077 1.6924 2.0345 2.4448 2.7333
34 1.3070 1.6909 2.0322 24411 2.7284
35 1.3062 1.6896 2.0301 2.4377 2.7238
40 1.3031 1.6839 2.0211 2.4233 2.7045
50 1.2987 1.6759 2.0086 2.4033 2.6778
60 1.2958 1.6706 2.0003 2.3901 2.6603
70 1.2938 1.6669 1.9944 2.3808 2.6479
80 1.2922 1.6641 1.9901 2.3739 2.6387
90 1.2910 1.6620 1.9867 2.3685 2.6316
100 1.2901 1.6602 1.9840 2.3642 2.6259
) 1.2816 1.6449 1.9600 2.3264 2.5758
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acceptance region, 50
addition rule, 3

alternative hypothesis, 49
asymptotic efficiency, 45
asymptotic normality, 45, 46
asymptotic properties, 45
asymptotic unbiasedness, 45

best linear unbiased estimator, 63
bias, 38

binomial distribution, 5, 12, 26
binomial theorem, 13

BLUE, 63

central limit theorem, 33, 45, 47

Chebyshev’s inequality, 29, 31, 32

chi-square distribution, 108

complementary event, 1

compound event, 1

conditional density function, 10

conditional distribution, 10

conditional probability, 3

conditional probability density function,
10

conditional probability function, 10

confidence interval, 47

consistency, 38, 41

consistent estimator, 41

constrained maximum likelihood
estimator, 55

continuous random variable, 4, 5, 9, 10

convergence in probability, 32

correlation coefficient, 19

covariance, 17

Cramer-Rao Inequality, 70

Cramer-Rao inequality, 39, 70

Cramer-Rao lower bound, 39
critical region, 49
cumulative distribution function, 7

density function, 5
dependent variable, 58
discrete random variable, 4, 8, 10
distribution, 4
binomial distribution, 5, 12, 26
normal distribution, 7
standard normal distribution, 7, 14
uniform distribution, 6, 13
distribution function, 7

e, 12

efficiency, 38, 39
efficient estimator, 39
empty event, 1
estimate, 36

estimated regression line, 59
estimator, 36

event, 1

exclusive, 1
experiment, 1
explanatory variable, 58

F distribution, 109
Gauss-Markov theorem, 62

identity matrix, 74

independence, 3, 19-21, 25, 26, 28, 29
independence of random variables, 11
independent variable, 58

integration by parts, 14, 69

integration by substitution, 6, 68
interval estimation, 47
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inverse, 74 ordinary least squares estimate, 60
ordinary least squares estimation, 60

Jacobian, 7, 24 ordinary least squares estimator, 60, 67

joint density function, 9

joint probability density function, 9 point estimate, 35

joint probability function, 9 point estimation, 38
positive definite matrix, 74

kth order Taylor series expansion, 70 positive semidefinite matrix, 74
power, 49

Lagrange function, 41

Lagrange multiplier, 41

law of large numbers, 32, 33, 46
least squares estimate, 60

least squares estimator, 60
likelihood function, 43
likelihood ratio, 55

power function, 49

predicted value, 59
probability, 2

probability density function, 5
probability function, 4
product event, 1

likelihood ratio test, 54 random experiment, 1
linear estimator, 40 random variable, 4
linear unbiased estimator, 40, 62 regression coeflicient, 58
linear unbiased minimum variance regression line, 58

estimator, 40 rejection region, 49
log-likelihood function, 44 residual, 58
marginal density function, 9 sample point, 1
marginal probability density function, 9 sample space, 1
marginal probability function, 9 significance level, 49
mathematical expectation, 11 simple event, 1
maximum likelihood estimate, 43 standard deviation, 12
maximum likelihood estimator, 43 standard normal distribution, 107
mean, 11, 15-17, 35, 37 standard normal distribution, 7, 14
mean square error, 32 standardization, 16
moment-generating function, 12, 17,24 gstatistic, 36
MSE, 32 sum event, 1

multiple regression model, 66

multiplication rule, 3 t distribution, 115

Taylor series expansion, 34, 46, 70

negative definite matrix, 75 test statistic, 49

negative semidefinite matrix, 75 transformation of variables, 22, 23
normal distribution, 7, 107 transpose, 74

normalization, 16 true regression line, 58

nth moment, 25 two-sided test, 52

null hypothesis, 49 type I error, 49

type 1I error, 49
OLS, 60 P

one-sided test, 52 unbiased estimator, 38
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unbiasedness, 38

unconstrained maximum likelihood
estimator, 55

unexplanatory variable, 58

uniform distribution, 6, 13

variance, 11, 15, 17, 35, 37

Wald test, 52, 53
whole event, 1
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