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Chapter 1

Elements of Statistics

In this chapter, the statistical methods used in the proceeding chapters are summarized.
Mood, Graybill and Bose (1974), Hogg and Craig (1995) and Stuart and Ord (1991,
1994) are good references in Sections 1.1 – 1.8, while Judge, Hill, Griffiths and Lee
(1980) and Greene (1993, 1997, 2000) are representative textbooks in Section 1.9.

1.1 Event and Probability

1.1.1 Event

We consider an experiment whose outcome is not known in advance but an event oc-
curs with probability, which is sometimes called a random experiment. The sample
space of an experiment is the set of all possible outcomes. Each element of a sample
space is called an element of the sample space or a sample point, which represents
each outcome obtained by the experiment. An event is any collection of outcomes
contained in the sample space, or equivalently a subset of the sample space. A simple
event consists of exactly one element and a compound event consists of more than
one element. Sample space is denoted by Ω and sample point is given by ω.

Suppose that event A is a subset of sample space Ω. Let ω be a sample point in
event A. Then, we say that a sample point ω is contained in a sample space A, which
is denoted by ω ∈ A.

A set of the sample points which does not belong to event A is called the comple-
mentary event of A, which is denoted by Ac. An event which do not have any sample
point is called the empty event, denoted by ∅. Conversely, an event which includes
all possible sample points is called the whole event, represented by Ω.

Next, consider two events A and B. A set consisting of the whole sample points
which belong to either event A or event B is called the sum event, which is denoted
by A ∩ B. A set consisting of the whole sample points which belong to both event A
and event B is called the product event, denoted by A ∩ B. When A ∩ B = ∅, we say
that events A and B are mutually exclusive.

1



2 CHAPTER 1. ELEMENTS OF STATISTICS

Example 1.1: Consider an experiment of casting a die. We have six sample points,
which are denoted by ω1 = {1}, ω2 = {2}, ω3 = {3}, ω4 = {4}, ω5 = {5} and ω6 = {6},
where ωi represents the sample point that we have i. In this experiment, the sample
space is given by Ω = {ω1, ω2, ω3, ω4, ω5, ω6}. Let A be the event that we have even
numbers and B be the event that we have multiples of three. Then, we can write
as A = {ω2, ω4, ω6} and B = {ω3, ω6}. The complementary event of A is given by
Ac = {ω1, ω3, ω5}, which is the event that we have odd numbers. The sum event of A
and B is written as A ∪ B = {ω2, ω3, ω4, ω6}, while the product event is A ∩ B = {ω6}.
Since A ∩ Ac = ∅, we have the fact that A and Ac are mutually exclusive.

Example 1.2: Cast a coin three times. In this case, we have the following eight
sample points:

ω1 = (H,H,H), ω2 = (H,H,T), ω3 = (H,T,H), ω4 = (H,T,T),
ω5 = (T,H,H), ω6 = (T,H,T), ω7 = (T,T,H), ω8 = (T,T,T),

where H represents head while T indicates tail. For example, (H,T,H) means that the
first flip lands head, the second flip is tail and the third one is head. Therefore, the
sample space of this experiment can be written as:

Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}.

Let A be an event that we have two heads, B be an event that we obtain at least one
tail, C be an event that we have head in the second flip, and D be an event that we
obtain tail in the third flip. Then, the events A, B, C and D are give by:

A = {ω2, ω3, ω5}, B = {ω2, ω3, ω4, ω5, ω6, ω7, ω8},
C = {ω1, ω2, ω5, ω6}, D = {ω2, ω4, ω6, ω8}.

Since A is a subset of B, denoted by A ⊂ B, a sum event is A ∪ B = B, while a
product event is A ∩ B = A. Moreover, we obtain C ∩ D = {ω2, ω6} and C ∪ D =
{ω1, ω2, ω4, ω5, ω6, ω8}.

1.1.2 Probability
Let n(A) be the number of sample points in A. We have n(A) ≤ n(B) when A ⊆ B. Each
sample point is equally likely to occur. In the case of Example 1.1 (Section 1.1.1),
each of the six possible outcomes has probability 1/6 and in Example 1.2 (Section
1.1.1), each of the eight possible outcomes has probability 1/8. Thus, the probability
which the event A occurs is defined as:

P(A) =
n(A)
n(Ω)

.

In Example 1.1, P(A) = 3/6 and P(A ∩ B) = 1/6 are obtained, because n(Ω) =
6, n(A) = 3 and n(A ∩ B) = 1. Similarly, in Example 1.2, we have P(C) = 4/8,
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P(A ∩ B) = P(A) = 3/8 and so on. Note that we obtain P(A) ≤ P(B) because of
A ⊆ B.

It is known that we have the following three properties on probability:

0 ≤ P(A) ≤ 1, (1.1)
P(Ω) = 1, (1.2)
P(∅) = 0. (1.3)

∅ ⊆ A ⊆ Ω implies n(∅) ≤ n(A) ≤ n(Ω). Therefore, we have:

n(∅)
n(Ω)

≤ n(A)
n(Ω)

≤ n(Ω)
n(Ω)

= 1.

Dividing by n(Ω), we obtain:

P(∅) ≤ P(A) ≤ P(Ω) = 1.

Because ∅ has no sample point, the number of the sample point is given by n(∅) = 0
and accordingly we have P(∅) = 0. Therefore, 0 ≤ P(A) ≤ 1 is obtained as in (1.1).
Thus, (1.1) – (1.3) are obtained.

When events A and B are mutually exclusive, i.e., when A∩B = ∅, then P(A∪B) =
P(A)+P(B) holds. Moreover, since A and Ac are mutually exclusive, P(Ac) = 1−P(A)
is obtained. Note that P(A ∪ Ac) = P(Ω) = 1 holds. Generally, unless A and B are not
exclusive, we have the following formula:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B),

which is known as the addition rule. In Example 1.1, each probability is given by
P(A ∪ B) = 2/3, P(A) = 1/2, P(B) = 1/3 and P(A ∩ B) = 1/6. Thus, in the example
we can verify that the above addition rule holds.

The probability which event A occurs, given that event B has occurred, is called
the conditional probability, i.e.,

P(A|B) =
n(A ∩ B)

n(B)
=

P(A ∩ B)
P(B)

,

or equivalently,
P(A ∩ B) = P(A|B)P(B),

which is called the multiplication rule. When event A is independent of event B,
we have P(A ∩ B) = P(A)P(B), which implies that P(A|B) = P(A). Conversely,
P(A ∩ B) = P(A)P(B) implies that A is independent of B. In Example 1.2, because of
P(A∩C) = 1/4 and P(C) = 1/2, the conditional probability P(A|C) = 1/2 is obtained.
From P(A) = 3/8, we have P(A ∩C) , P(A)P(C). Therefore, A is not independent of
C. As for C and D, since we have P(C) = 1/2, P(D) = 1/2 and P(C ∩ D) = 1/4, we
can show that C is independent of D.
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1.2 Random Variable and Distribution

1.2.1 Univariate Random Variable and Distribution
The random variable X is defined as the real value function on sample space Ω.
Since X is a function of a sample point ω, it is written as X = X(ω). Suppose that
X(ω) takes a real value on the interval I. That is, X depends on a set of the sample
point ω, i.e., {ω; X(ω) ∈ I}, which is simply written as {X ∈ I}.

In Example 1.1 (Section 1.1.1), suppose that X is a random variable which takes
the number of spots up on the die. Then, X is a function of ω and takes the following
values:

X(ω1) = 1, X(ω2) = 2, X(ω3) = 3, X(ω4) = 4,
X(ω5) = 5, X(ω6) = 6.

In Example 1.2 (Section 1.1.1), suppose that X is a random variable which takes the
number of heads. Depending on the sample point ωi, X takes the following values:

X(ω1) = 3, X(ω2) = 2, X(ω3) = 2, X(ω4) = 1,
X(ω5) = 2, X(ω6) = 1, X(ω7) = 1, X(ω8) = 0.

Thus, the random variable depends on a sample point.
There are two kinds of random variables. One is a discrete random variable,

while another is a continuous random variable.

Discrete Random Variable and Probability Function: Suppose that the discrete
random variable X takes x1, x2, · · ·, where x1 < x2 < · · · is assumed. Consider the
probability that X takes xi, i.e., P(X = xi) = pi, which is a function of xi. That is, a
function of xi, say f (xi), is associated with P(X = xi) = pi. The function f (xi) repre-
sents the probability in the case where X takes xi. Therefore, we have the following
relation:

P(X = xi) = pi = f (xi), i = 1, 2, · · · ,
where f (xi) is called the probability function of X.

More formally, the function f (xi) which has the following properties is defined as
the probability function.

f (xi) ≥ 0, i = 1, 2, · · · ,∑
i

f (xi) = 1.

Furthermore, for an event A, we can write a probability as the following equation:

P(X ∈ A) =
∑
xi∈A

f (xi).

Several functional forms of f (xi) are shown in Section 2.4.
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In Example 1.2 (Section 1.1.1), all the possible values of X are 0, 1, 2 and 3. (note
that X denotes the number of heads when a die is cast three times). That is, x1 = 0,
x2 = 1, x3 = 2 and x4 = 3 are assigned in this case. The probability that X takes x1,
x2, x3 or x4 is given by:

P(X = 0) = f (0) = P({ω8}) =
1
8
,

P(X = 1) = f (1) = P({ω4, ω6, ω7}) = P({ω4}) + P({ω6}) + P({ω7}) =
3
8
,

P(X = 2) = f (2) = P({ω2, ω3, ω5}) = P({ω2}) + P({ω3}) + P({ω5}) =
3
8
,

P(X = 3) = f (3) = P({ω1}) =
1
8
,

which can be written as:

P(X = x) = f (x) =
3!

x!(3 − x)!

(1
2

)3
, x = 0, 1, 2, 3.

For P(X = 1) and P(X = 2), note that each sample point is mutually exclusive. The
above probability function is called the binomial distribution discussed in Section
2.4.5. Thus, it is easy to check f (x) ≥ 0 and

∑
x f (x) = 1 in Example 1.2.

Continuous Random Variable and Probability Density Function: Whereas a dis-
crete random variable assumes at most a countable set of possible values, a continuous
random variable X takes any real number within an interval I. For the interval I, the
probability which X is contained in A is defined as:

P(X ∈ I) =
∫

I
f (x) dx.

For example, let I be the interval between a and b for a < b. Then, we can rewrite
P(X ∈ I) as follows:

P(a < X < b) =
∫ b

a
f (x) dx,

where f (x) is called the probability density function of X, or simply the density
function of X.

In order for f (x) to be a probability density function, f (x) has to satisfy the fol-
lowing properties:

f (x) ≥ 0,∫ ∞

−∞
f (x) dx = 1.

Some functional forms of f (x) are discussed in Sections 2.1 – 2.3.
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For a continuous random variable, note as follows:

P(X = x) =
∫ x

x
f (t) dt = 0.

In the case of discrete random variables, P(X = xi) represents the probability which X
takes xi, i.e., pi = f (xi). Thus, the probability function f (xi) itself implies probability.
However, in the case of continuous random variables, P(a < X < b) indicates the
probability which X lies on the interval (a, b).

Example 1.3: As an example, consider the following function:

f (x) =
{

1, for 0 < x < 1,
0, otherwise.

Clearly, since f (x) ≥ 0 for −∞ < x < ∞ and
∫ ∞
−∞ f (x) dx =

∫ 1

0
f (x) dx = [x]1

0 = 1, the
above function can be a probability density function. In fact, it is called a uniform
distribution. See Section 2.1 for the uniform distribution.

Example 1.4: As another example, consider the following function:

f (x) =
1
√

2π
e−

1
2 x2
,

for −∞ < x < ∞. Clearly, we have f (x) ≥ 0 for all x. We check whether
∫ ∞
−∞ f (x) dx =

1. First of all, we define I as I =
∫ ∞
−∞ f (x) dx.

To show I = 1, we may prove I2 = 1 because of f (x) > 0 for all x, which is shown
as follows:

I2 =
(∫ ∞

−∞
f (x) dx

)2
=

(∫ ∞

−∞
f (x) dx

)(∫ ∞

−∞
f (y) dy

)
=

(∫ ∞

−∞

1
√

2π
exp(−1

2
x2) dx

)(∫ ∞

−∞

1
√

2π
exp(−1

2
y2) dy

)
=

1
2π

∫ ∞

−∞

∫ ∞

−∞
exp

(
−1

2
(x2 + y2)

)
dx dy

=
1

2π

∫ 2π

0

∫ ∞

0
exp(−1

2
r2)r dr dθ

=
1

2π

∫ 2π

0

∫ ∞

0
exp(−s) ds dθ =

1
2π

2π[− exp(−s)]∞0 = 1.

In the fifth equality, integration by substitution is used. See Appendix 1.1 for the
integration by substitution. x = r cos θ and y = r sin θ are taken for transformation,
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Figure 1.1: Probability Function f (x) and Distribution Function F(x)

— Discrete Random Variable —

X
x1 x2 x3 ............. xr x xr+1 .............

•
•

•
•

•............. .............


B
B
BN

f (xr)

︷                                                ︸︸                                                ︷F(x) =
∑r

i=1 f (xi)���

Note that r is the integer which satisfies xr ≤ x < xr+1.

which is a one-to-one transformation from (x, y) to (r, θ). Note that 0 < r < +∞ and
0 < θ < 2π. The Jacobian is given by:

J =

∣∣∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣∣ = r.

In the inner integration of the sixth equality, again, integration by substitution is uti-

lized, where transformation is s =
1
2

r2.

Thus, we obtain the result I2 = 1 and accordingly we have I = 1 because of
f (x) ≥ 0. Therefore, f (x) = e−

1
2 x2
/
√

2π is also taken as a probability density function.
Actually, this density function is called the standard normal probability density
function, discussed in Section 2.2.1.

Distribution Function: The distribution function (or the cumulative distribution
function), denoted by F(x), is defined as:

P(X ≤ x) = F(x),

which represents the probability less than x. The properties of the distribution function
F(x) are given by:

F(x1) ≤ F(x2), for x1 < x2,

P(a < X ≤ b) = F(b) − F(a), for a < b,
F(−∞) = 0, F(+∞) = 1.

The difference between the discrete and continuous random variables is given by:
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Figure 1.2: Density Function f (x) and Distribution Function F(x)

— Continuous Random Variable —

x
X

�
��	

f (x)

@
@@R

F(x) =
∫ x
−∞ f (t)dt
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1. Discrete random variable (Figure 1.1):

• F(x) =
r∑

i=1

f (xi) =
r∑

i=1

pi,

where r denotes the integer which satisfies xr ≤ x < xr+1.

• F(xi) − F(xi − ε) = f (xi) = pi,
where ε is a small positive number less than xi − xi−1.

2. Continuous random variable (Figure 1.2):

• F(x) =
∫ x

−∞
f (t) dt,

• F′(x) = f (x).

f (x) and F(x) are displayed in Figure 1.1 for a discrete random variable and Figure
1.2 for a continuous random variable.

1.2.2 Multivariate Random Variable and Distribution

We consider two random variables X and Y in this section. It is easy to extend to more
than two random variables.

Discrete Random Variables: Suppose that discrete random variables X and Y take
x1, x2, · · · and y1, y2, · · ·, respectively. The probability which event {ω; X(ω) = xi and
Y(ω) = y j} occurs is given by:

P(X = xi,Y = y j) = fxy(xi, y j),
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where fxy(xi, y j) represents the joint probability function of X and Y . In order for
fxy(xi, y j) to be a joint probability function, fxy(xi, y j) has to satisfies the following
properties:

fxy(xi, y j) ≥ 0, i, j = 1, 2, · · ·∑
i

∑
j

fxy(xi, y j) = 1.

Define fx(xi) and fy(y j) as:

fx(xi) =
∑

j

fxy(xi, y j), i = 1, 2, · · · ,

fy(y j) =
∑

i

fxy(xi, y j), j = 1, 2, · · · .

Then, fx(xi) and fy(y j) are called the marginal probability functions of X and Y .
fx(xi) and fy(y j) also have the properties of the probability functions, i.e., fx(xi) ≥ 0
and

∑
i fx(xi) = 1, and fy(y j) ≥ 0 and

∑
i fy(y j) = 1.

Continuous Random Variables: Consider two continuous random variables X and
Y . For a domain D, the probability which event {ω; (X(ω),Y(ω)) ∈ D} occurs is given
by:

P((X,Y) ∈ D) =
∫∫

D
fxy(x, y) dx dy,

where fxy(x, y) is called the joint probability density function of X and Y or the joint
density function of X and Y . fxy(x, y) has to satisfy the following properties:

fxy(x, y) ≥ 0,∫ ∞

−∞

∫ ∞

−∞
fxy(x, y) dx dy = 1.

Define fx(x) and fy(y) as:

fx(x) =
∫ ∞

−∞
fxy(x, y) dy, for all x and y,

fy(y) =
∫ ∞

−∞
fxy(x, y) dx,

where fx(x) and fy(y) are called the marginal probability density functions of X and
Y or the marginal density functions of X and Y .

For example, consider the event {ω; a < X(ω) < b, c < Y(ω) < d}, which is a
specific case of the domain D. Then, the probability that we have the event {ω; a <
X(ω) < b, c < Y(ω) < d} is written as:

P(a < X < b, c < Y < d) =
∫ b

a

∫ d

c
fxy(x, y) dx dy.
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The mixture of discrete and continuous random variables is also possible. For
example, let X be a discrete random variable and Y be a continuous random variable.
X takes x1, x2, · · ·. The probability which both X takes xi and Y takes real numbers
within the interval I is given by:

P(X = xi,Y ∈ I) =
∫

I
fxy(xi, y) dy.

Then, we have the following properties:

fxy(xi, y) ≥ 0, for all y and i = 1, 2, · · ·,∑
i

∫ ∞

−∞
fxy(xi, y) dy = 1.

The marginal probability function of X is given by:

fx(xi) =
∫ ∞

−∞
fxy(xi, y) dy,

for i = 1, 2, · · ·. The marginal probability density function of Y is:

fy(y) =
∑

i

fxy(xi, y).

1.2.3 Conditional Distribution
Discrete Random Variable: The conditional probability function of X given Y =
y j is represented as:

P(X = xi|Y = y j) = fx|y(xi|y j) =
fxy(xi, y j)

fy(y j)
=

fxy(xi, y j)∑
i fxy(xi, y j)

.

The second equality indicates the definition of the conditional probability, which is
shown in Section 1.1.2. The features of the conditional probability function fx|y(xi|y j)
are:

fx|y(xi|y j) ≥ 0, i = 1, 2, · · · ,∑
i

fx|y(xi|y j) = 1, for any j.

Continuous Random Variable: The conditional probability density function of
X given Y = y (or the conditional density function of X given Y = y) is:

fx|y(x|y) =
fxy(x, y)

fy(y)
=

fxy(x, y)∫ ∞
−∞ fxy(x, y) dx

.

The properties of the conditional probability density function fx|y(x|y) are given by:

fx|y(x|y) ≥ 0,∫ ∞

−∞
fx|y(x|y) dx = 1, for any Y = y.
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Independence of Random Variables: For discrete random variables X and Y , we
say that X is independent (or stochastically independent) of Y if and only if fxy(xi,
y j) = fx(xi) fy(y j). Similarly, for continuous random variables X and Y , we say that X
is independent of Y if and only if fxy(x, y) = fx(x) fy(y).

When X and Y are stochastically independent, g(X) and h(Y) are also stochastically
independent, where g(X) and h(Y) are functions of X and Y .

1.3 Mathematical Expectation

1.3.1 Univariate Random Variable
Definition of Mathematical Expectation: Let g(X) be a function of random vari-
able X. The mathematical expectation of g(X), denoted by E(g(X)), is defined as
follows:

E(g(X)) =


∑

i

g(xi)pi =
∑

i

g(xi) f (xi), (Discrete Random Variable),∫ ∞

−∞
g(x) f (x) dx, (Continuous Random Variable).

The following three functional forms of g(X) are important.

1. g(X) = X.

The expectation of X, E(X), is known as mean of random variable X.

E(X) =


∑

i

xi f (xi), (Discrete Random Variable),∫ ∞

−∞
x f (x) dx, (Continuous Random Variable),

= µ, (or µx).

When a distribution of X is symmetric, mean indicates the center of the distri-
bution.

2. g(X) = (X − µ)2.

The expectation of (X − µ)2 is known as variance of random variable X, which
is denoted by V(X).

V(X) = E((X − µ)2)

=


∑

i

(xi − µ)2 f (xi), (Discrete Random Variable),∫ ∞

−∞
(x − µ)2 f (x) dx, (Continuous Random Variable),

= σ2, (or σ2
x).



12 CHAPTER 1. ELEMENTS OF STATISTICS

If X is broadly distributed, σ2 = V(X) becomes large. Conversely, if the distri-
bution is concentrated on the center, σ2 becomes small. Note that σ =

√
V(X)

is called the standard deviation.

3. g(X) = eθX.

The expectation of eθX is called the moment-generating function, which is
denoted by φ(θ).

φ(θ) = E(eθX)

=


∑

i

eθxi f (xi), (Discrete Random Variable),∫ ∞

−∞
eθx f (x) dx, (Continuous Random Variable).

Note that the definition of e is given by:

e = lim
x→0

(1 + x)
1
x = lim

h→∞

(
1 +

1
h

)h

= 2.71828182845905.

The moment-generating function plays an important roll in statistics, which is
discussed in Section 1.5.

In Examples 1.5 – 1.8, mean, variance and the moment-generating function are
computed.

Example 1.5: In Example 1.2 of flipping a coin three times (Section 1.1.1), we
see in Section 1.2.1 that the probability function is written as the following binomial
distribution:

P(X = x) = f (x) =
n!

x!(n − x)!
px(1 − p)n−x, for x = 0, 1, 2, · · · , n,

where n = 3 and p = 1/2. When X has the binomial distribution above, we obtain
E(X), V(X) and φ(θ) as follows.

First, µ = E(X) is computed as:

µ = E(X) =
∑

x

x f (x) =
∑

x

x
n!

x!(n − x)!
px(1 − p)n−x

=
∑

x

n!
(x − 1)!(n − x)!

px(1 − p)n−x = np
∑

x

(n − 1)!
(x − 1)!(n − x)!

px−1(1 − p)n−x

= np
∑

x′

n′!
x′!(n′ − x′)!

px′(1 − p)n′−x′ = np,

where n′ = n − 1 and x′ = x − 1 are set.
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Second, in order to obtain σ2 = V(X), we rewrite V(X) as:

σ2 = V(X) = E(X2) − µ2 = E(X(X − 1)) + µ − µ2.

E(X(X − 1)) is given by:

E(X(X − 1)) =
∑

x

x(x − 1) f (x) =
∑

x

x(x − 1)
n!

x!(n − x)!
px(1 − p)n−x

=
∑

x

n!
(x − 2)!(n − x)!

px(1 − p)n−x

= n(n − 1)p2
∑

x

(n − 2)!
(x − 2)!(n − x)!

px−2(1 − p)n−x

= n(n − 1)p2
∑

x′

n′!
x′!(n′ − x′)!

px′(1 − p)n′−x′ = n(n − 1)p2,

where n′ = n − 2 and x′ = x − 2 are re-defined. Therefore, σ2 = V(X) is obtained as:

σ2 = V(X) = E(X(X − 1)) + µ − µ2

= n(n − 1)p2 + np − n2 p2 = −np2 + np = np(1 − p).

Finally, the moment-generating function φ(θ) is represented as:

φ(θ) = E(eθX) =
∑

x

eθx n!
x!(n − x)!

px(1 − p)n−p

=
∑

x

n!
x!(n − x)!

(peθ)x(1 − p)n−p = (peθ + 1 − p)n.

In the last equality, we utilize the following formula:

(a + b)n =

n∑
x=0

n!
x!(n − x)!

axbn−x,

which is called the binomial theorem.

Example 1.6: As an example of continuous random variables, in Section 1.2.1 the
uniform distribution is introduced, which is given by:

f (x) =
{

1, for 0 < x < 1,
0, otherwise.

When X has the uniform distribution above, E(X), V(X) and φ(θ) are computed as
follows:

µ = E(X) =
∫ ∞

−∞
x f (x) dx =

∫ 1

0
x dx =

[1
2

x2
]1

0
=

1
2
,
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σ2 = V(X) = E(X2) − µ2

=

∫ ∞

−∞
x2 f (x) dx − µ2 =

∫ 1

0
x2 dx − µ2 =

[1
3

x3
]1

0
−

(1
2

)2
=

1
12
,

φ(θ) = E(eθX) =
∫ ∞

−∞
eθx f (x) dx =

∫ 1

0
eθx dx = [

1
θ

eθx]1
0 =

1
θ

(eθ − 1).

Example 1.7: As another example of continuous random variables, we take the stan-
dard normal distribution:

f (x) =
1
√

2π
e−

1
2 x2
, for −∞ < x < ∞,

which is discussed in Section 2.2.1. When X has a standard normal distribution, i.e.,
when X ∼ N(0, 1), E(X), V(X) and φ(θ) are as follows.

E(X) is obtained as:

E(X) =
∫ ∞

−∞
x f (x) dx =

1
√

2π

∫ ∞

−∞
xe−

1
2 x2

dx =
1
√

2π

[
−e−

1
2 x2]∞

−∞
= 0,

because lim
x→±∞

−e−
1
2 x2
= 0.

V(X) is computed as follows:

V(X) = E(X2) =
∫ ∞

−∞
x2 f (x) dx =

∫ ∞

−∞
x2 1
√

2π
e−

1
2 x2

dx =
1
√

2π

∫ ∞

−∞
x

d(−e−
1
2 x2

)
dx

dx

=
1
√

2π

[
x(−e−

1
2 x2

)
]∞
−∞
+

1
√

2π

∫ ∞

−∞
e−

1
2 x2

dx =
∫ ∞

−∞

1
√

2π
e−

1
2 x2

dx = 1.

The first equality holds because of E(X) = 0. In the fifth equality, use the following
integration formula, called the integration by parts:∫ b

a
h(x)g′(x) dx =

[
h(x)g(x)

]b

a
−

∫ b

a
h′(x)g(x) dx,

where we take h(x) = x and g(x) = −e−
1
2 x2

in this case. See Appendix 1.2 for the
integration by parts. In the sixth equality, lim

x→±∞
−xe−

1
2 x2
= 0 is utilized. The last

equality is because the integration of the standard normal probability density function
is equal to one (see p.6 in Section 1.2.1 for the integration of the standard normal
probability density function).

φ(θ) is derived as follows:

φ(θ) =
∫ ∞

−∞
eθx f (x) dx =

∫ ∞

−∞
eθx 1
√

2π
e−

1
2 x2

dx =
∫ ∞

−∞

1
√

2π
e−

1
2 x2+θx dx

=

∫ ∞

−∞

1
√

2π
e−

1
2 ((x−θ)2−θ2) dx = e

1
2 θ

2
∫ ∞

−∞

1
√

2π
e−

1
2 (x−θ)2

dx = e
1
2 θ

2
.

The last equality holds because the integration indicates the normal density with mean
θ and variance one. See Section 2.2.2 for the normal density.
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Example 1.8: When the moment-generating function of X is given by φx(θ) = e
1
2 θ

2

(i.e., X has a standard normal distribution), we want to obtain the moment-generating
function of Y = µ + σX.

Let φx(θ) and φy(θ) be the moment-generating functions of X and Y , respectively.
Then, the moment-generating function of Y is obtained as follows:

φy(θ) = E(eθY) = E(eθ(µ+σX)) = eθµE(eθσX) = eθµφx(θσ) = eθµe
1
2σ

2θ2

= exp(µθ +
1
2
σ2θ2).

Some Formulas of Mean and Variance:

1. Theorem: E(aX + b) = aE(X) + b, where a and b are constant.

Proof:
When X is a discrete random variable,

E(aX + b) =
∑

i

(axi + b) f (xi) = a
∑

i

xi f (xi) + b
∑

i

f (xi)

= aE(X) + b.

Note that we have
∑

i xi f (xi) = E(X) from the definition of mean and
∑

i f (xi) =
1 because f (xi) is a probability function.

If X is a continuous random variable,

E(aX + b) =
∫ ∞

−∞
(ax + b) f (x) dx = a

∫ ∞

−∞
x f (x) dx + b

∫ ∞

−∞
f (x) dx

= aE(X) + b.

Similarly, note that we have
∫ ∞
−∞ x f (x) dx = E(X) from the definition of mean

and
∫ ∞
−∞ f (x) dx = 1 because f (x) is a probability density function.

2. Theorem: V(X) = E(X2) − µ2, where µ = E(X).

Proof:
V(X) is rewritten as follows:

V(X) = E((X − µ)2) = E(X2 − 2µX − µ2)
= E(X2) − 2µE(X) + µ2 = E(X2) − µ2.

The first equality is due to the definition of variance.

3. Theorem: V(aX + b) = a2V(X), where a and b are constant.
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Proof:
From the definition of the mathematical expectation, V(aX + b) is represented
as:

V(aX + b) = E
(
((aX + b) − E(aX + b))2

)
= E

(
(aX − aµ)2

)
= E(a2(X − µ)2) = a2E((X − µ)2) = a2V(X)

The first and the fifth equalities are from the definition of variance. We use
E(aX + b) = aµ + b in the second equality.

4. Theorem: The random variable X is assumed to be distributed with mean
E(X) = µ and variance V(X) = σ2. Define Z = (X − µ)/σ. Then, we have
E(Z) = 0 and V(Z) = 1.

Proof:
E(X) and V(X) are obtained as:

E(Z) = E
(X − µ

σ

)
=

E(X) − µ
σ

= 0,

V(Z) = V
( 1
σ

X − µ

σ

)
=

1
σ2 V(X) = 1.

The transformation from X to Z is known as normalization or standardization.

1.3.2 Bivariate Random Variable
Definition: Let g(X,Y) be a function of random variables X and Y . The mathemati-
cal expectation of g(X,Y), denoted by E(g(X,Y)), is defined as:

E(g(X, Y)) =


∑

i

∑
j

g(xi, y j) f (xi, y j), (Discrete Random Variables),∫ ∞

−∞

∫ ∞

−∞
g(x, y) f (x, y) dx dy, (Continuous Random Variables).

The following four functional forms are important, i.e., mean, variance, covariance
and the moment-generating function.

1. g(X, Y) = X:

The expectation of random variable X, i.e., E(X), is given by:

E(X) =


∑

i

∑
j

xi f (xi, y j), (Discrete Random Variables),∫ ∞

−∞

∫ ∞

−∞
x f (x, y) dx dy, (Continuous Random Variables),

= µx.

The case of g(X,Y) = Y is exactly the same formulation as above, i.e., E(Y) =
µy.
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2. g(X, Y) = (X − µx)2:

The expectation of (X − µx)2 is known as variance of random variable X, which
is denoted by V(X) and represented as follows:

V(X) = E((X − µx)2)

=


∑

i

∑
j

(xi − µx)2 f (xi, y j), (Discrete Case),∫ ∞

−∞

∫ ∞

−∞
(x − µx)2 f (x, y) dx dy, (Continuous Case),

= σ2
x.

The variance of Y is also obtained in the same fashion, i.e., V(Y) = σ2
y .

3. g(X, Y) = (X − µx)(Y − µy):
The expectation of (X − µx)(Y − µy) is known as covariance of X and Y , which
is denoted by Cov(X,Y) and written as:

Cov(X, Y) = E((X − µx)(Y − µy))

=


∑

i

∑
j

(xi − µx)(y j − µy) f (xi, y j), (Discrete Case),∫ ∞

−∞

∫ ∞

−∞
(x − µx)(y − µy) f (x, y) dx dy, (Continuous Case).

Thus, covariance is defined in the case of bivariate random variables.

4. g(X, Y) = eθ1 X+θ2Y:

The mathematical expectation of eθ1X+θ2Y is called the moment-generating func-
tion, which is denoted by φ(θ1, θ2) and written as:

φ(θ1, θ2) = E(eθ1X+θ2Y)

=


∑

i

∑
j

eθ1 xi+θ2y j f (xi, y j), (Discrete Case),∫ ∞

−∞

∫ ∞

−∞
eθ1 x+θ2y f (x, y) dx dy, (Continuous Case).

In Section 1.5, the moment-generating function in the multivariate cases is dis-
cussed in more detail.

Some Formulas of Mean and Variance: We consider two random variables X and
Y . Some formulas are shown as follows.

1. Theorem: E(X + Y) = E(X) + E(Y).
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Proof:
For discrete random variables X and Y , it is given by:

E(X + Y) =
∑

i

∑
j

(xi + y j) fxy(xi, y j)

=
∑

i

∑
j

xi fxy(xi, y j) +
∑

i

∑
j

y j fxy(xi, y j)

= E(X) + E(Y).

For continuous random variables X and Y , we can show:

E(X + Y) =
∫ ∞

−∞

∫ ∞

−∞
(x + y) fxy(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
x fxy(x, y) dx dy +

∫ ∞

−∞

∫ ∞

−∞
y fxy(x, y) dx dy

= E(X) + E(Y).

2. Theorem: E(XY) = E(X)E(Y), when X is independent of Y .

Proof:
For discrete random variables X and Y ,

E(XY) =
∑

i

∑
j

xiy j fxy(xi, y j) =
∑

i

∑
j

xiy j fx(xi) fy(y j)

=
(∑

i

xi fx(xi)
)(∑

j

y j fy(y j)
)
= E(X)E(Y).

If X is independent of Y , the second equality holds, i.e., fxy(xi, y j) = fx(xi) fy(y j).

For continuous random variables X and Y ,

E(XY) =
∫ ∞

−∞

∫ ∞

−∞
xy fxy(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
xy fx(x) fy(y) dx dy

=
(∫ ∞

−∞
x fx(x) dx

)(∫ ∞

−∞
y fy(y) dy

)
= E(X)E(Y).

When X is independent of Y , we have fxy(x, y) = fx(x) fy(y) in the second equal-
ity.

3. Theorem: Cov(X,Y) = E(XY) − E(X)E(Y).
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Proof:
For both discrete and continuous random variables, we can rewrite as follows:

Cov(X,Y) = E((X − µx)(Y − µy)) = E(XY − µxY − µyX + µxµy)
= E(XY) − E(µxY) − E(µyX) + µxµy

= E(XY) − µxE(Y) − µyE(X) + µxµy

= E(XY) − µxµy − µyµx + µxµy = E(XY) − µxµy

= E(XY) − E(X)E(Y).

In the fourth equality, the theorem in Section 1.3.1 is used, i.e., E(µxY) = µxE(Y)
and E(µyX) = µyE(X).

4. Theorem: Cov(X,Y) = 0, when X is independent of Y .

Proof:
From the above two theorems, we have E(XY) = E(X)E(Y) when X is indepen-
dent of Y and Cov(X,Y) = E(XY) − E(X)E(Y). Therefore, Cov(X,Y) = 0 is
obtained when X is independent of Y .

5. Definition: The correlation coefficient between X and Y , denoted by ρxy, is
defined as:

ρxy =
Cov(X,Y)
√

V(X)
√

V(Y)
=

Cov(X,Y)
σxσy

.

When ρxy > 0, we say that there is a positive correlation between X and Y . As
ρxy approaches 1, we say that there is a strong positive correlation between X
and Y . When ρxy < 0, we say that there is a negative correlation between X
and Y . As ρxy approaches −1, we say that there is a strong negative correlation
between X and Y .

6. Theorem: ρxy = 0, when X is independent of Y .

Proof:
When X is independent of Y , we have Cov(X,Y) = 0. Therefore, we can obtain

the result ρxy =
Cov(X,Y)
√

V(X)
√

V(Y)
= 0. However, note that ρxy = 0 does not mean

the independence between X and Y .

7. Theorem: V(X ± Y) = V(X) ± 2Cov(X,Y) + V(Y).

Proof:
For both discrete and continuous random variables, V(X ± Y) is rewritten as
follows:

V(X ± Y) = E
(
((X ± Y) − E(X ± Y))2

)
= E

(
((X − µx) ± (Y − µy))2

)
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= E((X − µx)2 ± 2(X − µx)(Y − µy) + (Y − µy)2)
= E((X − µx)2) ± 2E((X − µx)(Y − µy)) + E((Y − µy)2)
= V(X) ± 2Cov(X,Y) + V(Y).

8. Theorem: −1 ≤ ρxy ≤ 1.

Proof:
Consider the following function of t: f (t) = V(Xt − Y), which is always greater
than or equal to zero because of the definition of variance. Therefore, for all t,
we have f (t) ≥ 0. f (t) is rewritten as follows:

f (t) = V(Xt − Y) = V(Xt) − 2Cov(Xt,Y) + V(Y)
= t2V(X) − 2tCov(X,Y) + V(Y)

= V(X)
(
t − Cov(X,Y)

V(X)

)2
+ V(Y) − (Cov(X,Y))2

V(X)
.

In order to have f (t) ≥ 0 for all t, we need the following condition:

V(Y) − (Cov(X,Y))2

V(X)
≥ 0,

because the first term in the last equality is nonnegative, which implies:

(Cov(X,Y))2

V(X)V(Y)
≤ 1.

Therefore, we have:

−1 ≤ Cov(X,Y)
√

V(X)
√

V(Y)
≤ 1.

From the definition of correlation coefficient, i.e., ρxy =
Cov(X,Y)
√

V(X)
√

V(Y)
, we

obtain the result: −1 ≤ ρxy ≤ 1.

9. Theorem: V(X ± Y) = V(X) + V(Y), when X is independent of Y .

Proof:
From the theorem above, V(X±Y) = V(X)±2Cov(X,Y)+V(Y) generally holds.
When random variables X and Y are independent, we have Cov(X,Y) = 0.
Therefore, V(X + Y) = V(X) + V(Y) holds, when X is independent of Y .

10. Theorem: For n random variables X1, X2, · · ·, Xn,

E(
∑

i

aiXi) =
∑

i

aiµi,

V(
∑

i

aiXi) =
∑

i

∑
j

aia jCov(Xi, X j),
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where E(Xi) = µi and ai is a constant value. Especially, when X1, X2, · · ·, Xn are
mutually independent, we have the following:

V(
∑

i

aiXi) =
∑

i

a2
i V(Xi).

Proof:
For mean of

∑
i aiXi, the following representation is obtained.

E(
∑

i

aiXi) =
∑

i

E(aiXi) =
∑

i

aiE(Xi) =
∑

i

aiµi.

The first and second equalities come from the previous theorems on mean.

For variance of
∑

i aiXi, we can rewrite as follows:

V(
∑

i

aiXi) = E
(∑

i

ai(Xi − µi)
)2
= E

(∑
i

ai(Xi − µi)
)(∑

j

a j(X j − µ j)
)

= E
(∑

i

∑
j

aia j(Xi − µi)(X j − µ j)
)

=
∑

i

∑
j

aia jE
(
(Xi − µi)(X j − µ j)

)
=

∑
i

∑
j

aia jCov(Xi, X j).

When X1, X2, · · ·, Xn are mutually independent, we obtain Cov(Xi, X j) = 0 for
all i , j from the previous theorem. Therefore, we obtain:

V(
∑

i

aiXi) =
∑

i

a2
i V(Xi).

Note that Cov(Xi, Xi) = E((Xi − µ)2) = V(Xi).

11. Theorem: n random variables X1, X2, · · ·, Xn are mutually independently
and identically distributed with mean µ and variance σ2. That is, for all i =
1, 2, · · · , n, E(Xi) = µ and V(Xi) = σ2 are assumed. Consider arithmetic average
X = (1/n)

∑n
i=1 Xi. Then, mean and variance of X are given by:

E(X) = µ, V(X) =
σ2

n
.

Proof:
The mathematical expectation of X is given by:

E(X) = E(
1
n

n∑
i=1

Xi) =
1
n

E(
n∑

i=1

Xi) =
1
n

n∑
i=1

E(Xi) =
1
n

n∑
i=1

µ =
1
n

nµ = µ.

E(aX) = aE(X) in the second equality and E(X + Y) = E(X) + E(Y) in the third
equality are utilized, where X and Y are random variables and a is a constant
value. For these formulas, see p.15 in Section 1.3.1 and p.17 in this section.
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The variance of X is computed as follows:

V(X) = V(
1
n

n∑
i=1

Xi) =
1
n2 V(

n∑
i=1

Xi) =
1
n2

n∑
i=1

V(Xi) =
1
n2

n∑
i=1

σ2 =
1
n2 nσ2

=
σ2

n
.

We use V(aX) = a2V(X) in the second equality and V(X + Y) = V(X) + V(Y)
for X independent of Y in the third equality, where X and Y denote random
variables and a is a constant value. For these formulas, see p.15 in Section 1.3.1
and p.20 in this section.

1.4 Transformation of Variables
Transformation of variables is used in the case of continuous random variables. Based
on a distribution of a random variable, a distribution of the transformed random vari-
able is derived. In other words, when a distribution of X is known, we can find a
distribution of Y using the transformation of variables, where Y is a function of X.

1.4.1 Univariate Case
Distribution of Y = ψ−1(X): Let fx(x) be the probability density function of con-
tinuous random variable X and X = ψ(Y) be a one-to-one transformation. Then, the
probability density function of Y , i.e., fy(y), is given by:

fy(y) = |ψ′(y)| fx

(
ψ(y)

)
.

We can derive the above transformation of variables from X to Y as follows. Let
fx(x) and Fx(x) be the probability density function and the distribution function of X,
respectively. Note that Fx(x) = P(X ≤ x) and fx(x) = F′x(x).

When X = ψ(Y), we want to obtain the probability density function of Y . Let
fy(y) and Fy(y) be the probability density function and the distribution function of Y ,
respectively.

In the case of ψ′(X) > 0, the distribution function of Y , Fy(y), is rewritten as
follows:

Fy(y) = P(Y ≤ y) = P
(
ψ(Y) ≤ ψ(y)

)
= P

(
X ≤ ψ(y)

)
= Fx

(
ψ(y)

)
.

The first equality is the definition of the cumulative distribution function. The second
equality holds because of ψ′(Y) > 0. Therefore, differentiating Fy(y) with respect to
y, we can obtain the following expression:

fy(y) = F′y(y) = ψ′(y)F′x
(
ψ(y)

)
= ψ′(y) fx

(
ψ(y)

)
. (1.4)
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Next, in the case of ψ′(X) < 0, the distribution function of Y , Fy(y), is rewritten as
follows:

Fy(y) = P(Y ≤ y) = P
(
ψ(Y) ≥ ψ(y)

)
= P

(
X ≥ ψ(y)

)
= 1 − P

(
X < ψ(y)

)
= 1 − Fx

(
ψ(y)

)
.

Thus, in the case of ψ′(X) < 0, pay attention to the second equality, where the inequal-
ity sign is reversed. Differentiating Fy(y) with respect to y, we obtain the following
result:

fy(y) = F′y(y) = −ψ′(y)F′x
(
ψ(y)

)
= −ψ′(y) fx

(
ψ(y)

)
. (1.5)

Note that −ψ′(y) > 0.
Thus, summarizing the above two cases, i.e., ψ′(X) > 0 and ψ′(X) < 0, equations

(1.4) and (1.5) indicate the following result:

fy(y) = |ψ′(y)| fx

(
ψ(y)

)
,

which is called the transformation of variables.

Example 1.9: When X has a standard normal density function, i.e., when X ∼
N(0, 1), we derive the probability density function of Y , where Y = µ + σX.

Since we have:
X = ψ(Y) =

Y − µ
σ

,

ψ′(y) = 1/σ is obtained. Therefore, the density function of Y , fy(y), is given by:

fy(y) = |ψ′(y)| fx

(
ψ(y)

)
=

1

σ
√

2π
exp

(
− 1

2σ2 (y − µ)2
)
,

which indicates the normal distribution with mean µ and variance σ2, denoted by
N(µ, σ2).

On Distribution of Y = X2: As an example, when we know the distribution func-
tion of X as Fx(x), we want to obtain the distribution function of Y , Fy(y), where
Y = X2. Using Fx(x), Fy(y) is rewritten as follows:

Fy(y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤ √y)
= Fx(

√
y) − Fx(−

√
y).

Therefore, when we have fx(x) and Y = X2, the probability density function of Y is
obtained as follows:

fy(y) = F′y(y) =
1

2
√

y

(
fx(
√

y) + fx(−
√

y)
)
.
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1.4.2 Multivariate Cases
Bivariate Case: Let fxy(x, y) be a joint probability density function of X and Y . Let
X = ψ1(U,V) and Y = ψ2(U,V) be a one-to-one transformation from (X,Y) to (U,V).
Then, we obtain a joint probability density function of U and V , denoted by fuv(u, v),
as follows:

fuv(u, v) = |J| fxy

(
ψ1(u, v), ψ2(u, v)

)
,

where J is called the Jacobian of the transformation, which is defined as:

J =

∣∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣∣ .
Multivariate Case: Let fx(x1, x2, · · · , xn) be a joint probability density function of
X1, X2, · · · Xn. Suppose that a one-to-one transformation from (X1, X2, · · · , Xn) to
(Y1,Y2, · · · ,Yn) is given by:

X1 = ψ1(Y1, Y2, · · · ,Yn),
X2 = ψ2(Y1, Y2, · · · ,Yn),

...

Xn = ψn(Y1, Y2, · · · ,Yn).

Then, we obtain a joint probability density function of Y1, Y2, · · ·, Yn, denoted by
fy(y1, y2, · · · , yn), as follows:

fy(y1, y2, · · · , yn) = |J| fx

(
ψ1(y1, · · · , yn), ψ2(y1, · · · , yn), · · · , ψn(y1, · · · , yn)

)
,

where J is called the Jacobian of the transformation, which is defined as:

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂y1

∂x1

∂y2
· · · ∂x1

∂yn

∂x2

∂y1

∂x2

∂y2
· · · ∂x2

∂yn

...
...

. . .
...

∂xn

∂y1

∂xn

∂y2
· · · ∂xn

∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

1.5 Moment-Generating Function

1.5.1 Univariate Case
As discussed in Section 1.3.1, the moment-generating function is defined as φ(θ) =
E(eθX). In this section, several important theorems and remarks of the moment-
generating function are summarized.
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For a random variable X, µ′n ≡ E(Xn) is called the nth moment of X. Then, we
have the following first theorem.

1. Theorem: φ(n)(0) = µ′n ≡ E(Xn).

Proof:
First, from the definition of the moment-generating function, φ(θ) is written as:

φ(θ) = E(eθX) =
∫ ∞

−∞
eθx f (x) dx.

The nth derivative of φ(θ), denoted by φ(n)(θ), is:

φ(n)(θ) =
∫ ∞

−∞
xneθx f (x) dx.

Evaluating φ(n)(θ) at θ = 0, we obtain:

φ(n)(0) =
∫ ∞

−∞
xn f (x) dx = E(Xn) ≡ µ′n,

where the second equality comes from the definition of the mathematical ex-
pectation.

2. Remark: Let X and Y be two random variables. When the moment-generating
function of X is equivalent to that of Y , we have the fact that X has the same
distribution as Y .

3. Theorem: Let φ(θ) be the moment-generating function of X. Then, the
moment-generating function of Y , where Y = aX + b, is given by ebθφ(aθ).

Proof:
Let φy(θ) be the moment-generating function of Y . Then, φy(θ) is rewritten as
follows:

φy(θ) = E(eθY) = E(eθ(aX+b)) = ebθE(eaθX) = ebθφ(aθ).

Note that φ(θ) represents the moment-generating function of X.

4. Theorem: Let φ1(θ), φ2(θ), · · ·, φn(θ) be the moment-generating functions of
X1, X2, · · ·, Xn, which are mutually independently distributed random variables.
Define Y = X1 + X2 + · · · + Xn. Then, the moment-generating function of Y is
given by φ1(θ)φ2(θ) · · · φn(θ), i.e.,

φy(θ) = E(eθY) = φ1(θ)φ2(θ) · · · φn(θ),

where φy(θ) represents the moment-generating function of Y .
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Proof:
The moment-generating function of Y , i.e., φy(θ), is rewritten as:

φy(θ) = E(eθY) = E(eθ(X1+X2+···+Xn)) = E(eθX1)E(eθX2) · · ·E(eθXn)
= φ1(θ)φ2(θ) · · · φn(θ).

The third equality holds because X1, X2, · · ·, Xn are mutually independently
distributed random variables.

5. Theorem: When X1, X2, · · ·, Xn are mutually independently and identically
distributed and the moment-generating function of Xi is given by φ(θ) for all
i, the moment-generating function of Y is represented by

(
φ(θ)

)n
, where Y =

X1 + X2 + · · · + Xn.

Proof:
Using the above theorem, we have the following:

φy(θ) = φ1(θ)φ2(θ) · · · φn(θ) = φ(θ)φ(θ) · · · φ(θ) =
(
φ(θ)

)n
.

Note that φi(θ) = φ(θ) for all i.

6. Theorem: When X1, X2, · · ·, Xn are mutually independently and identically
distributed and the moment-generating function of Xi is given by φ(θ) for all

i, the moment-generating function of X is represented by
(
φ(
θ

n
)
)n

, where X =

(1/n)
∑n

i=1 Xi.

Proof:
Let φx(θ) be the moment-generating function of X.

φx(θ) = E(eθX) = E(e
θ
n
∑n

i=1 Xi) =
n∏

i=1

E(e
θ
n Xi) =

n∏
i=1

φ(
θ

n
) =

(
φ(
θ

n
)
)n
.

Example 1.10: For the binomial random variable, the moment-generating function
φ(θ) is known as:

φ(θ) = (peθ + 1 − p)n,

which is discussed in Example 1.5 (Section 1.3.1). Using the moment-generating
function, we check whether E(X) = np and V(X) = np(1 − p) are obtained when X is
a binomial random variable.

The first- and the second-derivatives with respect to θ are given by:

φ′(θ) = npeθ(peθ + 1 − p)n−1,

φ′′(θ) = npeθ(peθ + 1 − p)n−1 + n(n − 1)p2e2θ(peθ + 1 − p)n−2.
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Evaluating at θ = 0, we have:

E(X) = φ′(0) = np, E(X2) = φ′′(0) = np + n(n − 1)p2.

Therefore, V(X) = E(X2) − (E(X))2
= np(1 − p) can be derived. Thus, we can make

sure that E(X) and V(X) are obtained from φ(θ).

1.5.2 Multivariate Cases
Bivariate Case: As discussed in Section 1.3.2, for two random variables X and Y ,
the moment-generating function is defined as φ(θ1, θ2) = E(eθ1X+θ2Y). Some useful and
important theorems and remarks are shown as follows.

1. Theorem: Consider two random variables X and Y . Let φ(θ1, θ2) be the
moment-generating function of X and Y . Then, we have the following result:

∂ j+kφ(0, 0)

∂θ
j
1∂θ

k
2

= E(X jYk).

Proof:
Let fxy(x, y) be the probability density function of X and Y . From the definition,
φ(θ1, θ2) is written as:

φ(θ1, θ2) = E(eθ1X+θ2Y) =
∫ ∞

−∞

∫ ∞

−∞
eθ1 x+θ2y fxy(x, y) dx dy.

Taking the jth derivative of φ(θ1, θ2) with respect to θ1 and at the same time the
kth derivative with respect to θ2, we have the following expression:

∂ j+kφ(θ1, θ2)

∂θ
j
1∂θ

k
2

=

∫ ∞

−∞

∫ ∞

−∞
x jykeθ1 x+θ2y fxy(x, y) dx dy.

Evaluating the above equation at (θ1, θ2) = (0, 0), we can easily obtain:

∂ j+kφ(0, 0)

∂θ
j
1∂θ

k
2

=

∫ ∞

−∞

∫ ∞

−∞
x jyk fxy(x, y) dx dy ≡ E(X jYk).

2. Remark: Let (Xi,Yi) be a pair of random variables. Suppose that the moment-
generating function of (X1,Y1) is equivalent to that of (X2, Y2). Then, (X1,Y1)
has the same distribution function as (X2,Y2).

3. Theorem: Let φ(θ1, θ2) be the moment-generating function of (X,Y). The
moment-generating function of X is given by φ1(θ1) and that of Y is φ2(θ2).
Then, we have the following facts:

φ1(θ1) = φ(θ1, 0), φ2(θ2) = φ(0, θ2).
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Proof:
Again, the definition of the moment-generating function of X and Y is repre-
sented as:

φ(θ1, θ2) = E(eθ1X+θ2Y) =
∫ ∞

−∞

∫ ∞

−∞
eθ1 x+θ2y fxy(x, y) dx dy.

When φ(θ1, θ2) is evaluated at θ2 = 0, φ(θ1, 0) is rewritten as follows:

φ(θ1, 0) = E(eθ1X) =
∫ ∞

−∞

∫ ∞

−∞
eθ1 x fxy(x, y) dx dy

=

∫ ∞

−∞
eθ1 x

(∫ ∞

−∞
fxy(x, y) dy

)
dx

=

∫ ∞

−∞
eθ1 x fx(x) dx = E(eθ1X) = φ1(θ1).

Thus, we obtain the result: φ(θ1, 0) = φ1(θ1). Similarly, φ(0, θ2) = φ2(θ2) can be
derived.

4. Theorem: The moment-generating function of (X, Y) is given by φ(θ1, θ2). Let
φ1(θ1) and φ2(θ2) be the moment-generating functions of X and Y , respectively.
If X is independent of Y , we have:

φ(θ1, θ2) = φ1(θ1)φ2(θ2).

Proof:
From the definition of φ(θ1, θ2), the moment-generating function of X and Y is
rewritten as follows:

φ(θ1, θ2) = E(eθ1X+θ2Y) = E(eθ1X)E(eθ2Y) = φ1(θ1)φ2(θ2).

The second equality holds because X is independent of Y .

Multivariate Case: For multivariate random variables X1, X2, · · ·, Xn, the moment-
generating function is defined as:

φ(θ1, θ2, · · · , θn) = E(eθ1X1+θ2X2+···+θnXn).

1. Theorem: If the multivariate random variables X1, X2, · · ·, Xn are mutually
independent, the moment-generating function of X1, X2, · · ·, Xn, denoted by
φ(θ1, θ2, · · · , θn), is given by:

φ(θ1, θ2, · · · , θn) = φ1(θ1)φ2(θ2) · · · φn(θn),

where φi(θ) = E(eθXi).
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Proof:

From the definition of the moment-generating function in the multivariate cases,
we obtain the following:

φ(θ1, θ2, · · · , θn) = E(eθ1X1+θ2X2+···+θnXn) = E(eθ1X1)E(eθ2X2) · · ·E(eθnXn)
= φ1(θ1)φ2(θ2) · · · φn(θn).

2. Theorem: Suppose that the multivariate random variables X1, X2, · · ·, Xn

are mutually independently and identically distributed. Xi has a normal dis-
tribution with mean µ and variance σ2, i.e., Xi ∼ N(µ, σ2). Let us define
µ̂ =

∑n
i=1 aiXi, where ai, i = 1, 2, · · · , n, are assumed to be known. Then,

µ̂ has a normal distribution with mean µ
∑n

i=1 ai and variance σ2 ∑n
i=1 a2

i , i.e.,
µ̂ ∼ N(µ

∑n
i=1 ai, σ

2 ∑n
i=1 a2

i ).

Proof:

From Example 1.8 (p.15) and Example 1.9 (p.23), it is shown that the moment-
generating function of X is given by: φx(θ) = exp(µθ + 1

2σ
2θ2), when X is

normally distributed as X ∼ N(µ, σ2).

Let φµ̂ be the moment-generating function of µ̂.

φµ̂(θ) = E(eθµ̂) = E(eθ
∑n

i=1 aiXi) =
n∏

i=1

E(eθaiXi) =
n∏

i=1

φx(aiθ)

=

n∏
i=1

exp(µaiθ +
1
2
σ2a2

i θ
2) = exp(µ

n∑
i=1

aiθ +
1
2
σ2

n∑
i=1

a2
i θ

2)

which is equivalent to the moment-generating function of the normal distribu-
tion with mean µ

∑n
i=1 ai and variance σ2 ∑n

i=1 a2
i , where µ and σ2 in φx(θ) is

simply replaced by µ
∑n

i=1 ai and σ2 ∑n
i=1 a2

i in φµ̂(θ), respectively.

Moreover, note as follows. When ai = 1/n is taken for all i = 1, 2, · · · , n, i.e.,
when µ̂ = X is taken, µ̂ = X is normally distributed as: X ∼ N(µ, σ2/n). The
readers should check difference between Theorem 11 on p.21 and this theorem.

1.6 Law of Large Numbers and Central Limit Theo-
rem

1.6.1 Chebyshev’s Inequality

In this section, we introduce Chebyshev’s inequality, which enables us to find upper
and lower bounds given a certain probability.
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Theorem: Let g(X) be a nonnegative function of the random variable X, i.e., g(X) ≥
0. If E(g(X)) exists, then we have:

P(g(X) ≥ k) ≤ E(g(X))
k

, (1.6)

for a positive constant value k.

Proof:
We define the discrete random variable U as follows:

U =
{

1, if g(X) ≥ k,
0, if g(X) < k.

Thus, the discrete random variable U takes 0 or 1. Suppose that the probability func-
tion of U is given by:

f (u) = P(U = u),

where P(U = u) is represented as:

P(U = 1) = P(g(X) ≥ k),
P(U = 0) = P(g(X) < k).

Then, in spite of the value which U takes, the following equation always holds:

g(X) ≥ kU,

which implies that we have g(X) ≥ k when U = 1 and g(X) ≥ 0 when U = 0, where
k is a positive constant value. Therefore, taking the expectation on both sides, we
obtain:

E(g(X)) ≥ kE(U), (1.7)

where E(U) is given by:

E(U) =
1∑

u=0

uP(U = u) = 1 × P(U = 1) + 0 × P(U = 0) = P(U = 1)

= P(g(X) ≥ k). (1.8)

Accordingly, substituting equation (1.8) into equation (1.7), we have the following
inequality:

P(g(X) ≥ k) ≤ E(g(X))
k

.
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Chebyshev’s Inequality: Assume that E(X) = µ, V(X) = σ2, and λ is a positive
constant value. Then, we have the following inequality:

P(|X − µ| ≥ λσ) ≤ 1
λ2 ,

or equivalently,

P(|X − µ| < λσ) ≥ 1 − 1
λ2 ,

which is called Chebyshev’s inequality.

Proof:
Take g(X) = (X − µ)2 and k = λ2σ2. Then, we have:

P((X − µ)2 ≥ λ2σ2) ≤ E(X − µ)2

λ2σ2 ,

which implies

P(|X − µ| ≥ λσ) ≤ 1
λ2 .

Note that E(X − µ)2 = V(X) = σ2.
Since we have P(|X −µ| ≥ λσ)+P(|X −µ| < λσ) = 1, we can derive the following

inequality:

P(|X − µ| < λσ) ≥ 1 − 1
λ2 . (1.9)

An Interpretation of Chebyshev’s inequality: 1/λ2 is an upper bound for the prob-
ability P(|X − µ| ≥ λσ). Equation (1.9) is rewritten as:

P(µ − λσ < X < µ + λσ) ≥ 1 − 1
λ2 .

That is, the probability that X falls within λσ units of µ is greater than or equal to
1− 1/λ2. Taking an example of λ = 2, the probability that X falls within two standard
deviations of its mean is at least 0.75.

Furthermore, note as follows. Taking ε = λσ, we obtain as follows:

P(|X − µ| ≥ ε) ≤ σ2

ε2 ,

i.e.,

P(|X − E(X)| ≥ ε) ≤ V(X)
ε2 , (1.10)

which inequality is used in the next section.
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Remark: Equation (1.10) can be derived when we take g(X) = (X − µ)2, µ = E(X)
and k = ε2 in equation (1.6). Even when we have µ , E(X), the following inequality
still hold:

P(|X − µ| ≥ ε) ≤ E((X − µ)2)
ε2 .

Note that E((X − µ)2) represents the mean square error (MSE). When µ = E(X), the
mean square error reduces to the variance.

1.6.2 Law of Large Numbers (Convergence in probability)

Law of Large Numbers: Assume that X1, X2, · · ·, Xn are mutually independently
and identically distributed with mean E(Xi) = µ and variance V(Xi) = σ2 < ∞ for all
i. Then, for any positive value ε, as n −→ ∞, we have the following result:

P(|Xn − µ| > ε) −→ 0,

where Xn = (1/n)
∑n

i=1 Xi. We say that Xn converges to µ in probability.

Proof:
Using (1.10), Chebyshev’s inequality is represented as follows:

P(|Xn − E(Xn)| > ε) ≤ V(Xn)
ε2 ,

where X in (1.10) is replaced by Xn. As in Section 1.3.2 (p.21), we have E(Xn) = µ
and V(Xn) = σ2/n, which are substituted into the above inequality. Then, we obtain:

P(|Xn − µ| > ε) ≤
σ2

nε2 .

Accordingly, when n −→ ∞, the following equation holds:

P(|Xn − µ| > ε) ≤
σ2

nε2 −→ 0.

That is, Xn −→ µ is obtained as n −→ ∞, which is written as: plim Xn = µ. This
theorem is called the law of large numbers.

The condition P(|Xn−µ| > ε) −→ 0 or equivalently P(|Xn−µ| < ε) −→ 1 is used as
the definition of convergence in probability. In this case, we say that Xn converges
to µ in probability.
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Theorem: In the case where X1, X2, · · ·, Xn are not identically distributed and they
are not mutually independently distributed, we assume that

mn = E(
n∑

i=1

Xi) < ∞,

Vn = V(
n∑

i=1

Xi) < ∞,

Vn

n2 −→ 0, as n −→ ∞.

Then, we obtain the following result:∑n
i=1 Xi − mn

n
−→ 0.

That is, Xn converges to lim
n→∞

mn

n
in probability. This theorem is also called the law of

large numbers.

1.6.3 Central Limit Theorem
Central Limit Theorem: X1, X2, · · ·, Xn are mutually independently and identically
distributed with E(Xi) = µ and V(Xi) = σ2 for all i. Both µ and σ2 are finite. Under
the above assumptions, when n −→ ∞, we have:

P
(Xn − µ
σ/
√

n
< x

)
−→

∫ x

−∞

1
√

2π
e−

1
2 u2

du,

which is called the central limit theorem.

Proof:
Define Yi =

Xi − µ
σ

. We can rewrite as follows:

Xn − µ
σ/
√

n
=

1
√

n

n∑
i=1

Xi − µ
σ
=

1
√

n

n∑
i=1

Yi.

Since Y1, Y2, · · ·, Yn are mutually independently and identically distributed, the
moment-generating function of Yi is identical for all i, which is denoted by φ(θ). Using
E(Yi) = 0 and V(Yi) = 1, the moment-generating function of Yi, φ(θ), is rewritten as:

φ(θ) = E(eYiθ) = E
(
1 + Yiθ +

1
2

Y2
i θ

2 +
1
3!

Y3
i θ

3 · · ·
)

= 1 +
1
2
θ2 + O(θ3).
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In the second equality, eYiθ is approximated by the Taylor series expansion around
θ = 0. See Appendix 1.3 for the Taylor series expansion. O(x) implies that it is
a polynomial function of x and the higher-order terms but it is dominated by x. In
this case, O(θ3) is a function of θ3, θ4, · · ·. Since the moment-generating function is
conventionally evaluated at θ = 0, θ3 is the largest value of θ3, θ4, · · · and accordingly
O(θ3) is dominated by θ3 (in other words, θ4, θ5, · · · are small enough, compared with
θ3).

Define Z as:

Z =
1
√

n

n∑
i=1

Yi.

Then, the moment-generating function of Z, i.e., φz(θ), is given by:

φz(θ) = E(eZθ) = E
(
e

θ√
n

∑n
i=1 Yi

)
=

n∏
i=1

E
(
e

θ√
n

Yi
)
=

(
φ(

θ
√

n
)
)n

=
(
1 +

1
2
θ2

n
+ O(

θ3

n
3
2

)
)n
=

(
1 +

1
2
θ2

n
+ O(n−

3
2 )
)n
.

We consider that n goes to infinity. Therefore, O( θ
3

n
3
2
) indicates a function of n−

3
2 .

Moreover, consider x =
1
2
θ2

n
+ O(n−

3
2 ). Multiply n/x on both sides of x =

1
2
θ2

n
+

O(n−
3
2 ). Then, we obtain n =

1
x

(1
2
θ2 + O(n−

1
2 )
)
. Substitute n =

1
x

(1
2
θ2 + O(n−

1
2 )
)

into
the moment-generating function of Z, i.e., φz(θ). Then, we obtain:

φz(θ) =
(
1 +

1
2
θ2

n
+ O(n−

3
2 )
)n
= (1 + x)

1
x ( θ

2
2 +O(n−

1
2 ))

=
(
(1 + x)

1
x
) θ2

2 +O(n−
1
2 )
−→ e

θ2
2 .

Note that x −→ 0 when n −→ ∞ and that lim
x→0

(1 + x)1/x = e as in Section 1.2.3 (p.12).

Furthermore, we have O(n−
1
2 ) −→ 0 as n −→ ∞.

Since φz(θ) = e
θ2
2 is the moment-generating function of the standard normal distri-

bution (see p.14 in Section 1.3.1 for the moment-generating function of the standard
normal probability density), we have:

P
(Xn − µ
σ/
√

n
< x

)
−→

∫ x

−∞

1
√

2π
e−

1
2 u2

du,

or equivalently,
Xn − µ
σ/
√

n
−→ N(0, 1).

The following expression is also possible:
√

n(Xn − µ) −→ N(0, σ2). (1.11)
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Corollary 1: When E(Xi) = µ, V(Xi) = σ2 and Xn = (1/n)
∑n

i=1 Xi, note that

Xn − E(Xn)√
V(Xn)

=
Xn − µ
σ/
√

n
.

Therefore, we can rewrite the above theorem as:

P
(Xn − E(Xn)√

V(Xn)
< x

)
−→

∫ x

−∞

1
√

2π
e−

1
2 u2

du.

Corollary 2: Consider the case where X1, X2, · · ·, Xn are not identically distributed
and they are not mutually independently distributed. Assume that

lim
n→∞

nV(Xn) = σ2 < ∞,

where Xn = (1/n)
∑n

i=1 Xi. Then, when n −→ ∞, we have:

P
(Xn − E(Xn)√

V(Xn)
< x

)
= P

(∑n
i=1 Xi − E(

∑n
i=1 Xi)√

V(
∑n

i=1 Xi)
< x

)
−→

∫ x

−∞

1
√

2π
e−

1
2 u2

du.

1.7 Statistical Inference

1.7.1 Point Estimation
Suppose that the functional form of the underlying distribution on population is known
but the parameter θ included in the distribution is not known. The distribution function
of population is given by f (x; θ). Let x1, x2, · · ·, xn be the n observed data drawn from
the population distribution. Consider estimating the parameter θ using the n observed
data. Let θ̂n(x1, x2, · · ·, xn) be a function of the observed data x1, x2, · · ·, xn. Suppose
that θ̂n(x1, x2, · · ·, xn) is constructed from the purpose of estimating the parameter θ.
θ̂n(x1, x2, · · ·, xn) takes a certain value given the n observed data. Then, θ̂n(x1, x2, · · ·,
xn) is called the point estimate of θ, or simply the estimate of θ.

Example 1.11: Consider the case of θ = (µ, σ2), where the unknown parameters
contained in population is given by mean and variance. A point estimate of population
mean µ is given by:

µ̂n(x1, x2, · · · , xn) ≡ x =
1
n

n∑
i=1

xi.

A point estimate of population variance σ2 is:

σ̂2
n(x1, x2, · · · , xn) ≡ s2 =

1
n − 1

n∑
i=1

(xi − x)2.
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An alternative point estimate of population variance σ2 is:

σ̃2
n(x1, x2, · · · , xn) ≡ s∗∗2 =

1
n

n∑
i=1

(xi − x)2.

1.7.2 Statistic, Estimate and Estimator
The underlying distribution of population is assumed to be known, but the parameter θ,
which characterizes the underlying distribution, is unknown. The probability density
function of population is given by f (x; θ). Let X1, X2, · · ·, Xn be a subset of population,
which are regarded as the random variables and are assumed to be mutually indepen-
dent. x1, x2, · · ·, xn are taken as the experimental values of the random variables X1,
X2, · · ·, Xn. In statistics, we consider that n-variate random variables X1, X2, · · ·, Xn

takes the experimental values x1, x2, · · ·, xn by chance. There, the experimental values
and the actually observed data series are used in the same meaning.

As discussed in Section 1.7.1, θ̂n(x1, x2, · · ·, xn) denotes the point estimate of θ.
In the case where the observed data x1, x2, · · ·, xn are replaced by the corresponding
random variables X1, X2, · · ·, Xn, a function of X1, X2, · · ·, Xn, i.e., θ̂(X1, X2, · · ·, Xn), is
called the estimator of θ, which should be distinguished from the estimate of θ, i.e.,
θ̂(x1, x2, · · ·, xn).

Example 1.12: Let X1, X2, · · ·, Xn denote a random sample of n from a given distri-
bution f (x; θ). Consider the case of θ = (µ, σ2).

The estimator of µ is given by X = (1/n)
∑n

i=1 Xi, while the estimate of µ is x =
(1/n)

∑n
i=1 xi. The estimator of σ2 is S 2 =

∑n
i=1(Xi − X)2/(n − 1) and the estimate of

σ2 is s2 =
∑n

i=1(xi − x)2/(n − 1).

There are numerous estimators and estimates of θ. All of (1/n)
∑n

i=1 Xi, (X1+Xn)/2,
median of (X1, X2, · · ·, Xn) and so on are taken as the estimators of µ. Of course,
they are called the estimates of θ when Xi is replaced by xi for all i. Similarly, both
S 2 =

∑n
i=1(Xi − X)2/(n − 1) and S ∗2 =

∑2
i=1(Xi − X)2/n are the estimators of σ2. We

need to choose one out of the numerous estimators of θ. The problem of choosing an
optimal estimator out of the numerous estimators is discussed in Sections 1.7.4 and
1.7.5.

In addition, note as follows. A function of random variables is called a statistic.
The statistic for estimation of the parameter is called an estimator. Therefore, an
estimator is a family of a statistic.

1.7.3 Estimation of Mean and Variance
Suppose that the population distribution is given by f (x; θ). The random sample X1,
X2, · · ·, Xn are assumed to be drawn from the population distribution f (x; θ), where
θ = (µ, σ2). Therefore, we can assume that X1, X2, · · ·, Xn are mutually independently
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and identically distributed, where “identically” implies E(Xi) = µ and V(Xi) = σ2 for
all i.

Consider the estimators of θ = (µ, σ2) as follows.

1. The estimator of population mean µ is:

• X =
1
n

n∑
i=1

Xi.

2. The estimators of population variance σ2 are:

• S ∗2 =
1
n

n∑
i=1

(Xi − µ)2, when µ is known,

• S 2 =
1

n − 1

n∑
i=1

(Xi − X)2,

• S ∗∗2 =
1
n

n∑
i=1

(Xi − X)2,

Properties of X: From Theorem on p.21, mean and variance of X are obtained as
follows:

E(X) = µ, V(X) =
σ2

n
.

Properties of S∗2, S2 and S∗∗2: The expectation of S ∗2 is:

E(S ∗2) = E
(1
n

n∑
i=1

(Xi − µ)2
)
=

1
n

E
( n∑

i=1

(Xi − µ)2
)
=

1
n

n∑
i=1

E
(
(Xi − µ)2

)
=

1
n

n∑
i=1

V(Xi) =
1
n

n∑
i=1

σ2 =
1
n

nσ2 = σ2,

where E((Xi − µ)2) = V(Xi) = σ2 is used in the fourth and fifth equalities.
Next, the expectation of S 2 is given by:

E(S 2) = E
( 1
n − 1

n∑
i=1

(Xi − X)2
)
=

1
n − 1

E
( n∑

i=1

(Xi − X)2
)

=
1

n − 1
E
( n∑

i=1

((Xi − µ) − (X − µ))2
)

=
1

n − 1
E
( n∑

i=1

((Xi − µ)2 − 2(Xi − µ)(X − µ) + (X − µ)2)
)

=
1

n − 1
E
( n∑

i=1

(Xi − µ)2 − 2(X − µ)
n∑

i=1

(Xi − µ) + n(X − µ)2
)
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=
1

n − 1
E
( n∑

i=1

(Xi − µ)2 − n(X − µ)2
)

=
n

n − 1
E
(1
n

n∑
i=1

(Xi − µ)2
)
− n

n − 1
E((X − µ)2)

=
n

n − 1
σ2 − n

n − 1
σ2

n
= σ2.

∑n
i=1(Xi−µ) = n(X−µ) is used in the sixth equality. E

(
(1/n)

∑n
i=1(Xi−µ)2

)
= E(S ∗2) =

σ2 and E((X − µ)2) = V(X) = σ2/n are required in the eighth equality.
Finally, the mathematical expectation of S ∗∗2 is represented by:

E(S ∗∗2) = E
(1
n

n∑
i=1

(Xi − X)2
)
= E

(n − 1
n

1
n − 1

n∑
i=1

(Xi − X)2
)

= E
(n − 1

n
S 2

)
=

n − 1
n

E(S 2) =
n − 1

n
σ2 , σ2.

Summarizing the above results, we obtain as follows:

E(S ∗2) = σ2, E(S 2) = σ2, E(S ∗∗2) =
n − 1

n
σ2 , σ2.

1.7.4 Point Estimation: Optimality
As mentioned in the previous sections, θ denotes the parameter to be estimated. θ̂n(X1,
X2, · · ·, Xn) represents the estimator of θ, while θ̂n(x1, x2, · · ·, xn) indicates the estimate
of θ. Hereafter, in the case of no confusion, θ̂n(X1, X2, · · ·, Xn) is simply written as θ̂n.

As discussed above, there are numerous candidates of the estimator θ̂n. The desired
properties which θ̂n have to satisfy include unbiasedness, efficiency and consistency.

Unbiasedness: One of the desirable features that the estimator of the parameter
should have is given by:

E(θ̂n) = θ, (1.12)

which implies that θ̂n is distributed around θ. When the condition (1.12) holds, θ̂n is
called the unbiased estimator of θ. E(θ̂n) − θ is defined as bias.

As an example of unbiasedness, consider the case of θ = (µ, σ2). Suppose that
X1, X2, · · ·, Xn are mutually independently and identically distributed with mean µ and
variance σ2. Consider the following estimators of µ and σ2.

1. The estimator of µ is:

• X =
1
n

n∑
i=1

Xi.
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2. The estimators of σ2 are:

• S 2 =
1

n − 1

n∑
i=1

(Xi − X)2,

• S ∗∗2 =
1
n

n∑
i=1

(Xi − X)2.

Since we have obtained E(X) = µ and E(S 2) = σ2 in Section 1.7.3, X and S 2 are
unbiased estimators of µ and σ2. However, we have obtained the result E(S ∗∗2) , σ2

in Section 1.7.3 and therefore S ∗∗2 is not an unbiased estimator of σ2. Thus, according
to the criterion of unbiasedness, S 2 is preferred to S ∗∗2 for estimation of σ2.

Efficiency: Consider two estimators, i.e., θ̂n and θ̃n. Both are assumed to be unbi-
ased. That is, we have the following condition: E(θ̂n) = θ and E(̃θn) = θ. When
V(θ̂n) < V(̃θn), we say that θ̂n is more efficient than θ̃n. The estimator which is widely
distributed is not preferred.

Consider as many unbiased estimators as possible. The unbiased estimator with
the least variance is known as the efficient estimator. We have the case where an
efficient estimator does not exist.

In order to obtain the efficient estimator, we utilize Cramer-Rao inequality. Sup-
pose that Xi has the probability density function f (xi; θ) for all i, i.e., X1, X2, · · ·, Xn

are mutually independently and identically distributed. For any unbiased estimator of
θ, denoted by θ̂n, it is known that we have the following inequality:

V(θ̂n) ≥ σ
2(θ)
n

, (1.13)

where

σ2(θ) =
1

E
((∂ log f (X; θ)

∂θ

)2
) = 1

V
((∂ log f (X; θ)

∂θ

)) = − 1

E
(∂2 log f (X; θ)

∂θ2

) , (1.14)

which is known as the Cramer-Rao inequality. See Appendix 1.4 for proof of the
Cramer-Rao inequality.

When there exists the unbiased estimator θ̂n such that the equality in (1.13) holds,
θ̂n becomes the unbiased estimator with minimum variance, which is the efficient es-
timator. σ2(θ)/n is called the Cramer-Rao lower bound.

Example 1.13 (Efficient Estimator): Suppose that X1, X2, · · ·, Xn are mutually in-
dependently, identically and normally distributed with mean µ and variance σ2. Then,
we show that X is an efficient estimator of µ.

When σ2 < ∞, from Theorem on p.21, V(X) is given by σ2/n in spite of the
distribution of Xi, i = 1, 2, · · · , n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A)
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On the other hand, because we assume that Xi is normally distributed with mean µ
and variance σ2, the probability density function of Xi is given by:

f (x; µ) =
1

√
2πσ2

exp
(
− 1

2σ2 (x − µ)2
)
.

The Cramer-Rao inequality is represented as:

V(X) ≥ 1

nE
((∂ log f (X; µ)

∂µ

)2
) ,

where the logarithm of f (X; µ) is written as:

log f (X; µ) = −1
2

log(2πσ2) − 1
2σ2 (X − µ)2.

Therefore, the partial derivative of f (X; µ) with respect to µ is:

∂ log f (X; µ)
∂µ

=
1
σ2 (X − µ).

Accordingly, the Cramer-Rao inequality in this case is written as:

V(X) ≥ 1

nE
(( 1
σ2 (X − µ)

)2
) = 1

n
1
σ4 E((X − µ)2)

=
σ2

n
. . . . . . . . . . . . . . . . . . (B)

From (A) and (B), variance of X is equal to the lower bound of Cramer-Rao in-

equality, i.e., V(X) =
σ2

n
, which implies that the equality included in the Cramer-Rao

inequality holds. Therefore, we can conclude that the sample mean X is an efficient
estimator of µ.

Example 1.14 (Linear Unbiased Minimum Variance Estimator): Suppose that
X1, X2, · · ·, Xn are mutually independently and identically distributed with mean µ
and variance σ2 ( note that the normality assumption is excluded from Example 1.13).
Consider the following linear estimator: µ̂ =

∑n
i=1 aiXi. Then, we want to show µ̂ (i.e.,

X) is a linear unbiased minimum variance estimator if ai = 1/n for all i, i.e., if
µ̂ = X.

Utilizing Theorem on p.20, when E(Xi) = µ and V(Xi) = σ2 for all i, we have:
E(µ̂) = µ

∑n
i=1 ai and V(µ̂) = σ2 ∑n

i=1 a2
i .

Since µ̂ is linear in Xi, µ̂ is called a linear estimator of µ. In order for µ̂ to be
unbiased, we need to have the condition: E(µ̂) = µ

∑n
i=1 ai = µ. That is, if

∑n
i=1 ai = 1

is satisfied, µ̂ gives us a linear unbiased estimator. Thus, as mentioned in Example
1.12 of Section 1.7.2, there are numerous unbiased estimators.
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The variance of µ̂ is given by σ2 ∑n
i=1 a2

i . We obtain the value of ai which min-
imizes

∑n
i=1 a2

i with the constraint
∑n

i=1 ai = 1. Construct the Lagrange function as
follows:

L =
1
2

n∑
i=1

a2
i + λ(1 −

n∑
i=1

ai),

where λ denotes the Lagrange multiplier. The 1
2 in front of the first term appears to

make life easier later on and does not affect the outcome. To determine the optimum
values, we set the partial derivatives of L with respect to ai and λ equal to zero, i.e.,

∂L
∂ai
= ai − λ = 0, i = 1, 2, · · · , n,

∂L
∂λ
= 1 −

n∑
i=1

ai = 0.

Solving the above equations, ai = λ = 1/n is obtained. Therefore, when ai = 1/n for
all i, µ̂ has minimum variance in a class of linear unbiased estimators. That is, X is a
linear unbiased minimum variance estimator.

The linear unbiased minimum variance estimator should be distinguished from the
efficient estimator discussed in Example 1.13. The former does not requires the as-
sumption on the underlying distribution. The latter gives us the unbiased estimator
which variance is equal to the Cramer-Rao lower bound, which is not restricted to a
class of the linear unbiased estimators. Under the assumption of normal population,
the linear unbiased minimum variance estimator leads to the efficient estimator. How-
ever, both are different in general. In addition, note that the efficient estimator does
not necessarily exist.

Consistency: Let θ̂n be an estimator of θ. Suppose that for any ε > 0 we have the
following:

P(|θ̂n − θ| > ε) −→ 0, as n −→ ∞,

which implies that θ̂ −→ θ as n −→ ∞. Then, we say that θ̂n is a consistent estimator
of θ. That is, the estimator which approaches the true parameter value as the sample
size is large is called the consistent estimator of the parameter.

Example 1.15: Suppose that X1, X2, · · ·, Xn are mutually independently and identi-
cally distributed with mean µ and variance σ2. Assume that σ2 is known. Then, it is
shown that X is a consistent estimator of µ.

From (1.10), Chebyshev’s inequality is given by:

P(|X − E(X)| > ε) ≤ V(X)
ε2 ,
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for a random variable X. Here, replacing X by X, we obtain E(X) and V(X) as follows:

E(X) = µ, V(X) =
σ2

n
,

because E(Xi) = µ and V(Xi) = σ2 < ∞ are assumed for all i.
Then, when n −→ ∞, we obtain the following result:

P(|X − µ| > ε) ≤ σ2

nε2 −→ 0,

which implies that X −→ µ as n −→ ∞. Therefore, we can conclude that X is a
consistent estimator of µ.

Summarizing the results up to now, X is an unbiased, minimum variance and con-
sistent estimator of population mean µ. When the distribution of Xi is assumed to be
normal for all i, X leads to an unbiased, efficient and consistent estimator of µ.

Example 1.16: Suppose that X1, X2, · · ·, Xn are mutually independently, identically

and normally distributed with mean µ and varianceσ2. Consider S ∗∗2 =
1
n

n∑
i=1

(Xi−X)2,

which is an estimate of σ2.
In Remark on p.32, X and µ are replaced by S ∗∗2 and σ2. Then, we obtain the

following inequality:

P(|S ∗∗2 − σ2| < ε) ≥ 1 − E((S ∗∗2 − σ2)2)
ε2 .

We compute E((S ∗∗2 − σ2)2). Since (n − 1)S 2/σ2 ∼ χ2(n − 1), we obtain E((n −

1)S 2/σ2) = n−1 and V((n−1)S 2/σ2) = 2(n−1), where S 2 =
1

n − 1

n∑
i=1

(Xi−X)2. See

Section 2.2.8 (p.146) for the chi-square distribution χ2(n − 1). Therefore, E(S 2) = σ2

and V(S 2) = 2σ4/(n − 1) can be derived. Using S ∗∗2 = S 2(n − 1)/n, we have the
following:

E((S ∗∗2 − σ2)2) = E
((n − 1

n
S 2 − σ2

)2)
= E

((n − 1
n

(S 2 − σ2) − σ
2

n

)2)
=

(n − 1)2

n2 E((S 2 − σ2)2) +
σ4

n2 =
(n − 1)2

n2 V(S 2) +
σ4

n2 =
(2n − 1)

n2 σ4.

Therefore, as n −→ ∞, we obtain:

P(|S ∗∗2 − σ2| < ε) ≥ 1 − 1
ε2

(2n − 1)
n2 σ4 −→ 1.

Because S ∗∗2 −→ σ2, S ∗∗2 is a consistent estimator of σ2. Thus, S ∗∗2 is not unbiased
(see Section 1.7.3, p.38), but is is consistent.
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1.7.5 Maximum Likelihood Estimator
In Section 1.7.4, the properties of the estimators X and S 2 are discussed. It is shown
that X is an unbiased, efficient and consistent estimator of µ under normality assump-
tion and that S 2 is an unbiased estimator of σ2. Note that S 2 is not efficient but
consistent (we do not check these features of S 2 in this book).

The population parameter θ depends on a functional form of the population distri-
bution f (x; θ). It corresponds to (µ, σ2) in the case of the normal distribution and β in
the case of the exponential distribution (Section 2.2.4). Now, in more general cases,
we want to consider how to estimate θ. The maximum likelihood estimator gives us
one of the solutions.

Let X1, X2, · · ·, Xn be mutually independently and identically distributed random
samples. Xi has the probability density function f (x; θ). Under these assumptions, the
joint density function of X1, X2, · · ·, Xn is given by:

f (x1, x2, · · · , xn; θ) =
n∏

i=1

f (xi; θ),

where θ denotes the unknown parameter.
Given the actually observed data x1, x2, · · ·, xn, the joint density f (x1, x2, · · ·, xn; θ)

is regarded as a function of θ, i.e.,

l(θ) = l(θ; x) = l(θ; x1, x2, · · · , xn) =
n∏

i=1

f (xi; θ).

l(θ) is called the likelihood function.
Let θ̂n be the θ which maximizes the likelihood function. Replacing x1, x2, · · ·,

xn by X1, X2, · · ·, Xn, θ̂n = θ̂n(X1, X2, · · ·, Xn) is called the maximum likelihood
estimator, while θ̂n(x1, x2, · · ·, xn) is called the maximum likelihood estimate.

That is, solving the following equation:

∂l(θ)
∂θ
= 0,

the maximum likelihood estimator θ̂n ≡ θ̂n(X1, X2, · · · , Xn) is obtained.

Example 1.17: Suppose that X1, X2, · · ·, Xn are mutually independently, identically
and normally distributed with mean µ and variance σ2. We derive the maximum
likelihood estimators of µ and σ2. The joint density (or the likelihood function) of X1,
X2, · · ·, Xn is written as:

f (x1, x2, · · · , xn; µ, σ2) =
n∏

i=1

f (xi; µ, σ2) =
n∏

i=1

1
√

2πσ2
exp

(
− 1

2σ2 (xi − µ)2
)

= (2πσ2)−n/2 exp
(
− 1

2σ2

n∑
i=1

(xi − µ)2
)
= l(µ, σ2).
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The logarithm of the likelihood function is given by:

log l(µ, σ2) = −n
2

log(2π) − n
2

log(σ2) − 1
2σ2

n∑
i=1

(xi − µ)2,

which is called the log-likelihood function. For maximization of the likelihood func-
tion, differentiating the log-likelihood function log l(µ, σ2) with respect to µ and σ2,
the first derivatives should be equal to zero, i.e.,

∂ log l(µ, σ2)
∂µ

=
1
σ2

n∑
i=1

(xi − µ) = 0,

∂ log l(µ, σ2)
∂σ2 = −n

2
1
σ2 +

1
2σ4

n∑
i=1

(xi − µ)2 = 0.

Let µ̂ and σ̂2 be the solution which satisfies the above two equations. Solving the two
equations, we obtain the maximum likelihood estimates as follows:

µ̂ =
1
n

n∑
i=1

xi = x,

σ̂2 =
1
n

n∑
i=1

(xi − µ̂)2 =
1
n

n∑
i=1

(xi − x)2 = s∗∗2.

Replacing xi by Xi for i = 1, 2, · · · , n, the maximum likelihood estimators of µ and
σ2 are given by X and S ∗∗2, respectively. Since E(X) = µ, the maximum likelihood

estimator of µ, X, is an unbiased estimator. However, because of E(S ∗∗2) =
n − 1

n
σ2 ,

σ2 as shown in Section 1.7.3, the maximum likelihood estimator of σ2, S ∗∗2, is not an
unbiased estimator.

Properties of Maximum Likelihood Estimator: For small sample, the maximum
likelihood estimator has the following properties.

• The maximum likelihood estimator is not necessarily unbiased in general, but
we often have the case where we can construct the unbiased estimator by an
appropriate transformation.

For instance, in Example 1.17, we find that the maximum likelihood esti-
mator of σ2, S ∗∗2, is not unbiased. However,

n
n − 1

S ∗∗2 is an unbiased estimator

of σ2.

• If the efficient estimator exists, i.e., if there exists the estimator which satisfies
the equality in the Cramer-Rao inequality, the maximum likelihood estimator is
efficient.
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For large sample, as n −→ ∞, the maximum likelihood estimator of θ, θ̂n, has the
following property: √

n(θ̂n − θ) −→ N(0, σ2(θ)), (1.15)

where
σ2(θ) =

1

E
((∂ log f (X; θ)

∂θ

)2
) .

(1.15) indicates that the maximum likelihood estimator has consistency, asymptotic
unbiasedness, asymptotic efficiency and asymptotic normality. Asymptotic normality
of the maximum likelihood estimator comes from the central limit theorem discussed
in Section 1.6.3. Even though the underlying distribution is not normal, i.e., even
though f (x; θ) is not normal, the maximum likelihood estimator is asymptotically
normally distributed. Note that the properties of n −→ ∞ are called the asymptotic
properties, which include consistency, asymptotic normality and so on.

By normalizing, as n −→ ∞, we obtain as follows:
√

n(θ̂n − θ)
σ(θ)

=
θ̂n − θ

σ(θ)/
√

n
−→ N(0, 1).

As another representation, when n is large, we can approximate the distribution of
θ̂n as follows:

θ̂n ∼ N
(
θ,
σ2(θ)

n

)
.

This implies that when n −→ ∞, θ̂n approaches the lower bound of Cramer-Rao
inequality: σ2(θ)/n, which property is called an asymptotic efficiency.

Moreover, replacing θ in variance σ2(θ) by θ̂n, when n −→ ∞, we have the
following property:

θ̂n − θ
σ(θ̂n)/

√
n
−→ N(0, 1), (1.16)

which also comes from the central limit theorem.
Practically, when n is large, we approximately use as follows:

θ̂n ∼ N
(
θ,
σ2(θ̂n)

n

)
. (1.17)

Proof of (1.15): By the central limit theorem (1.11) on p.34,

1
√

n

n∑
i=1

∂ log f (Xi; θ)
∂θ

−→ N
(
0,

1
σ2(θ)

)
, (1.18)

where σ2(θ) is defined in (1.14), i.e., V(∂ log f (Xi; θ)/∂θ) = 1/σ2(θ). As shown in
(1.46) of Appendix 1.4, note that E(∂ log f (Xi; θ)/∂θ) = 0. We can apply the central
limit theorem, taking ∂ log f (Xi; θ)/∂θ as the ith random variable.
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By performing the first order Taylor series expansion around θ̂n = θ, we have the
following approximation:

0 =
1
√

n

n∑
i=1

∂ log f (Xi; θ̂n)
∂θ

=
1
√

n

n∑
i=1

∂ log f (Xi; θ)
∂θ

+
1
√

n

n∑
i=1

∂2 log f (Xi; θ)
∂θ2 (θ̂n − θ) + · · · .

Therefore, the following approximation also holds:

1
√

n

n∑
i=1

∂ log f (Xi; θ)
∂θ

≈ − 1
√

n

n∑
i=1

∂2 log f (Xi; θ)
∂θ2 (θ̂n − θ).

From (1.18) and the above equation, we obtain:

−1
n

n∑
i=1

∂2 log f (Xi; θ)
∂θ2

√
n(θ̂n − θ) −→ N

(
0,

1
σ2(θ)

)
.

The law of large numbers indicates as follows:

−1
n

n∑
i=1

∂2 log f (Xi; θ)
∂θ2 −→ −E

(∂2 log f (Xi; θ)
∂θ2

)
=

1
σ2(θ)

,

where the last equality is from (1.14). Thus, we have the following relation:

−1
n

n∑
i=1

∂2 log f (Xi; θ)
∂θ2

√
n(θ̂n − θ) −→

1
σ2(θ)

√
n(θ̂n − θ) −→ N

(
0,

1
σ2(θ)

)
Therefore, the asymptotic normality of the maximum likelihood estimator is obtained
as follows: √

n(θ̂n − θ) −→ N(0, σ2(θ)).

Thus, (1.15) is obtained.

1.7.6 Interval Estimation
In Sections 1.7.1 – 1.7.5, the point estimation is discussed. It is important to know
where the true parameter value of θ is likely to lie.

Suppose that the population distribution is given by f (x; θ). Using the random
sample X1, X2, · · ·, Xn drawn from the population distribution, we construct the two
statistics, say, θ̂U(X1, X2, · · ·, Xn; θ∗) and θ̂L(X1, X2, · · ·, Xn; θ∗∗), where θ∗ and θ∗∗

denote the constant values which satisfy:

P(θ∗ < θ̂n < θ
∗∗) = 1 − α, (1.19)



1.7. STATISTICAL INFERENCE 47

for θ∗∗ > θ∗. Note that θ̂n depends on X1, X2, · · ·, Xn as well as θ, i.e., θ̂n ≡ θ̂n(X1,
X2, · · ·, Xn; θ). Now we assume that we can solve (1.19) with respect to θ, which is
rewritten as follows:

P
(
θ̂L(X1, X2, · · · , Xn; θ∗) < θ < θ̂U(X1, X2, · · · , Xn; θ∗∗)

)
= 1 − α. (1.20)

(1.20) implies that θ lies on the interval
(
θ̂L(X1, X2, · · ·, Xn; θ∗), θ̂U(X1, X2, · · ·, Xn; θ∗∗)

)
with probability 1 − α. Depending on a functional form of θ̂n(X1, X2, · · ·, Xn; θ), we
possibly have the situation that θ∗ and θ∗∗ are switched with each other.

Now, we replace the random variables X1, X2, · · ·, Xn by the experimental values
x1, x2, · · ·, xn. Then, we say that the interval:(

θ̂L(x1, x2, · · · , xn; θ∗), θ̂U(x1, x2, · · · , xn; θ∗∗)
)

is called the 100 × (1 − α)% confidence interval of θ. Thus, estimating the interval is
known as the interval estimation, which is distinguished from the point estimation.
In the interval, θ̂L(x1, x2, · · ·, xn; θ∗) is known as the lower bound of the confidence
interval, while θ̂U(x1, x2, · · ·, xn; θ∗∗) is the upper bound of the confidence interval.

Given probability α, the θ̂L(X1, X2, · · ·, Xn; θ∗) and θ̂U(X1, X2, · · ·, Xn; θ∗∗) which
satisfies equation (1.20) are not unique. For estimation of the unknown parameter θ,
it is more optimal to minimize the width of the confidence interval. Therefore, we
should choose θ∗ and θ∗∗ which minimizes the width θ̂U(X1, X2, · · ·, Xn; θ∗∗) − θ̂L(X1,
X2, · · ·, Xn; θ∗).

Interval Estimation of X: Let X1, X2, · · ·, Xn be mutually independently and iden-
tically distributed random variables. Xi has a distribution with mean µ and variance
σ2. From the central limit theorem,

X − µ
σ/
√

n
−→ N(0, 1).

Replacing σ2 by its estimator S 2 (or S ∗∗2),

X − µ
S/
√

n
−→ N(0, 1).

Therefore, when n is large enough,

P(z∗ <
X − µ
S/
√

n
< z∗∗) = 1 − α,

where z∗ and z∗∗ (z∗ < z∗∗) are percent points from the standard normal density func-
tion. Solving the inequality above with respect to µ, the following expression is ob-
tained.

P
(
X − z∗∗

S
√

n
< µ < X − z∗

S
√

n

)
= 1 − α,
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where θ̂L and θ̂U correspond to X − z∗∗S/
√

n and X − z∗S/
√

n, respectively.
The length of the confidence interval is given by:

θ̂U − θ̂L =
S
√

n
(z∗∗ − z∗),

which should be minimized subject to:∫ z∗∗

z∗
f (x) dx = 1 − α,

i.e.,
F(z∗∗) − F(z∗) = 1 − α,

where F(·) denotes the standard normal cumulative distribution function.
Solving the minimization problem above, we can obtain the conditions that f (z∗) =

f (z∗∗) for z∗ < z∗∗ and that f (x) is symmetric. Therefore, we have:

−z∗ = z∗∗ = zα/2,

where zα/2 denotes the 100 × α/2 percent point from the standard normal density
function.

Accordingly, replacing the estimators X and S 2 by their estimates x and s2, the
100 × (1 − α)% confidence interval of µ is approximately represented as:(

x − zα/2
s
√

n
, x + zα/2

s
√

n

)
,

for large n.
For now, we do not impose any assumptions on the distribution of Xi. If we assume

that Xi is normal,
√

n(X − µ)/S has a t distribution with n − 1 degrees of freedom for
any n. Therefore, 100 × (1 − α)% confidence interval of µ is given by:(

x − tα/2(n − 1)
s
√

n
, x + tα/2(n − 1)

s
√

n

)
,

where tα/2(n − 1) denotes the 100 × α/2 percent point of the t distribution with n − 1
degrees of freedom. See Section 2.2.10, p.155 for the t distribution.

Interval Estimation of θ̂n: Let X1, X2, · · ·, Xn be mutually independently and iden-
tically distributed random variables. Xi has the probability density function f (xi; θ).
Suppose that θ̂n represents the maximum likelihood estimator of θ.

From (1.17), we can approximate the 100 × (1 − α)% confidence interval of θ as
follows: (

θ̂n − zα/2
σ(θ̂n)
√

n
, θ̂n + zα/2

σ(θ̂n)
√

n

)
.
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Table 1.1: Type I and Type II Errors

H0 is true. H0 is false.
Acceptance of H0 Correct judgment Type II Error

(Probability β)
Rejection of H0 Type I Error Correct judgment

(Probability α (1 − β = Power)
= Significance Level)

1.8 Testing Hypothesis

1.8.1 Basic Concepts in Testing Hypothesis

Given the population distribution f (x; θ), we want to judge from the observed values
x1, x2, · · ·, xn whether the hypothesis on the parameter θ, e.g. θ = θ0, is correct or not.
The hypothesis that we want to test is called the null hypothesis, which is denoted by
H0 : θ = θ0. The hypothesis against the null hypothesis, e.g. θ , θ0, is called the
alternative hypothesis, which is denoted by H1 : θ , θ0.

Type I and Type II Errors: When we test the null hypothesis H0, as shown in Table
1.1 we have four cases, i.e., (i) we accept H0 when H0 is true, (ii) we reject H0 when
H0 is true, (iii) we accept H0 when H0 is false, and (iv) we reject H0 when H0 is false.
(i) and (iv) are correct judgments, while (ii) and (iii) are not correct. (ii) is called a
type I error and (iii) is called a type II error. The probability which a type I error
occurs is called the significance level, which is denoted by α, and the probability of
committing a type II error is denoted by β. Probability of (iv) is called the power or
the power function, because it is a function of the parameter θ.

Testing Procedures: The testing procedure is summarized as follows.

1. Construct the null hypothesis (H0) on the parameter.

2. Consider an appropriate statistic, which is called a test statistic. Derive a dis-
tribution function of the test statistic when H0 is true.

3. From the observed data, compute the observed value of the test statistic.

4. Compare the distribution and the observed value of the test statistic. When the
observed value of the test statistic is in the tails of the distribution, we consider
that H0 is not likely to occur and we reject H0.

The region that H0 is unlikely to occur and accordingly H0 is rejected is called the
rejection region or the critical region, denoted by R. Conversely, the region that
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H0 is likely to occur and accordingly H0 is accepted is called the acceptance region,
denoted by A.

Using the rejection region R and the acceptance region A, the type I and II errors
and the power are formulated as follows. Suppose that the test statistic is give by T =
T (X1, X2, · · · , Xn). The probability of committing a type I error, i.e., the significance
level α, is given by:

P(T (X1, X2, · · · , Xn) ∈ R|H0 is true) = α,

which is the probability that rejects H0 when H0 is true. Conventionally, the signifi-
cance level α = 0.1, 0.05, 0.01 is chosen in practice. The probability of committing a
type II error, i.e., β, is represented as:

P(T (X1, X2, · · · , Xn) ∈ A|H0 is not true) = β,

which corresponds to the probability that accepts H0 when H0 is not true. The power
is defined as 1 − β, i.e.,

P(T (X1, X2, · · · , Xn) ∈ R|H0 is not true) = 1 − β,

which is the probability that rejects H0 when H0 is not true.

1.8.2 Power Function
Let X1, X2, · · ·, Xn be mutually independently, identically and normally distributed
with mean µ and variance σ2. Assume that σ2 is known.

In Figure 1.3, we consider the hypothesis on the population mean µ, i.e., the null
hypothesis H0 : µ = µ0 against the alternative hypothesis H1 : µ = µ1, where µ1 > µ0

is taken. The dark shadow area corresponds to the probability of committing a type I
error, i.e., the significance level, while the light shadow area indicates the probability
of committing a type II error. The probability of the right-hand side of f ∗ in the
distribution under H1 represents the power of the test, i.e., 1 − β.

In the case of normal population, the distribution of sample mean X is given by:

X ∼ N
(
µ,
σ2

n

)
.

For the distribution of X, see the moment-generating function of X in Theorem on
p.29. By normalization, we have:

X − µ
σ/
√

n
∼ N(0, 1).

Therefore, under the null hypothesis H0 : µ = µ0, we obtain:

X − µ0

σ/
√

n
∼ N(0, 1),
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Figure 1.3: Type I Error (α) and Type II Error (β)

A
A
A
AAU

�
���

The distribution under
the null hypothesis (H0) The distribution

under the alternative
hypothesis (H1)

f ∗

�
�
�
��

α
@@R

β

� A
Acceptance region

-� R
Rejection region

-

������:
As α is small, i.e.,
as f ∗ goes to right,
β becomes large.

µ0 µ1


..................

.................
.............

...........
..........
........
........
.......
.......
......
..........
..............
.............
.............
............
............
............
............
............
...........
...........
...........
............
............
............
............
............
.............
.............
..............
............
.......
........
..........
..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................

...........................

.........................

.......................

......................

....................

..................

.................

................

..............

.............

............

...........

..........

.........
................
.......
............
....................................... . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

. . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

. . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

. . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

. . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
...

.....

.......

.........

...........

................

.................

....................

.......................

.............................

............................

...............................

.................................

....................................

......................................

where µ is replaced by µ0. Since the significance level α is the probability which
rejects H0 when H0 is true, it is given by:

α = P
(
X > µ0 + zα

σ
√

n

)
,

where zα denotes 100×α percent point of the standard normal density function. There-
fore, the rejection region is given by: X > µ0 + zασ/

√
n.

Since the power 1 − β is the probability which rejects H0 when H1 is true, it is
given by:

1 − β = P
(
X > µ0 + zα

σ
√

n

)
= P

(X − µ1

σ/
√

n
>
µ0 − µ1

σ/
√

n
+ zα

)
= 1 − P

(X − µ1

σ/
√

n
<
µ0 − µ1

σ/
√

n
+ zα

)
= 1 − F

(µ0 − µ1

σ/
√

n
+ zα

)
,

where F(·) represents the standard normal cumulative distribution function, which is
given by F(x) =

∫ x

−∞(2π)−1/2 exp(− 1
2 t2) dt. The power function is a function of µ1,

given µ0 and α.

1.8.3 Testing Hypothesis on Population Mean
Let X1, X2, · · ·, Xn be mutually independently, identically and normally distributed
with mean µ and variance σ2. Assume that σ2 is known.

Consider testing the null hypothesis H0 : µ = µ0. When the null hypothesis H0 is
true, the distribution of X is given by:

X − µ0

σ/
√

n
∼ N(0, 1).



52 CHAPTER 1. ELEMENTS OF STATISTICS

Therefore, the test statistic is given by:
√

n(X − µ0)/σ, while the test statistic value is:√
n(x − µ0)/σ, where the sample mean X is replaced by the observed value x.

Depending on the alternative hypothesis, we have the following three cases.

1. The alternative hypothesis H1 : µ < µ0 (one-sided test):

We have: P
(X − µ0

σ/
√

n
< −zα

)
= α. Therefore, when

x − µ0

σ/
√

n
< −zα, we reject the

null hypothesis H0 : µ = µ0 at the significance level α.

2. The alternative hypothesis H1 : µ > µ0 (one-sided test):

We have: P
(X − µ0

σ/
√

n
> zα

)
= α. Therefore, when

x − µ0

σ/
√

n
> zα, we reject the null

hypothesis H0 : µ = µ0 at the significance level α.

3. The alternative hypothesis H1 : µ , µ0 (two-sided test):

We have: P
(∣∣∣∣∣∣X − µ0

σ/
√

n

∣∣∣∣∣∣ > zα/2
)
= α. Therefore, when

∣∣∣∣∣∣ x − µ0

σ/
√

n

∣∣∣∣∣∣ > zα/2, we reject

the null hypothesis H0 : µ = µ0 at the significance level α.

When the sample size n is large enough, the testing procedure above can be applied to
the cases: (i) the distribution of Xi is not known and (ii) σ2 is replaced by its estimator
S 2 (in the case where σ2 is not known).

1.8.4 Wald Test
From (1.16), under the null hypothesis H0 : θ = θ0, as n −→ ∞, the maximum
likelihood estimator θ̂n is distributed as follows:

θ̂n − θ0

σ(θ̂n)/
√

n
∼ N(0, 1).

For H0 : θ = θ0 and H1 : θ , θ0, replacing X1, X2, · · ·, Xn in θ̂n by the observed values
x1, x2, · · ·, xn, we obtain the following testing procedure:

1. If we have: ∣∣∣∣∣∣ θ̂n − θ0

σ(θ̂n)/
√

n

∣∣∣∣∣∣ > zα/2,

we reject the null hypothesis H0 at the significance level α, because the proba-
bility which H0 occurs is small enough.

2. As for H0 : θ = θ0 and H1 : θ > θ0, if we have:

θ̂n − θ0

σ(θ̂n)/
√

n
> zα,

we reject H0 at the significance level α.



1.8. TESTING HYPOTHESIS 53

3. For H0 : θ = θ0 and H1 : θ < θ0, when we have the following:

θ̂n − θ0

σ(θ̂n)/
√

n
< −zα,

we reject H0 at the significance level α.

The testing procedure introduced here is called the Wald test.

Example 1.18: X1, X2, · · ·, Xn are mutually independently, identically and exponen-
tially distributed. Consider the following exponential probability density function:

f (x; γ) = γe−γx,

for 0 < x < ∞.
Using the Wald test, we want to test the null hypothesis H0 : γ = γ0 against the

alternative hypothesis H1 : γ , γ0.
Generally, as n −→ ∞, the distribution of the maximum likelihood estimator of

the parameter γ, γ̂n, is asymptotically represented as:

γ̂n − γ
σ(γ̂n)/

√
n
∼ N(0, 1),

where

σ2(γ) =
(
E
(( d log f (X; γ)

dγ

)2
))−1

= −
(
E
( d2 log f (X; γ)

dγ2

))−1

.

See (1.14) and (1.16) for the above properties on the maximum likelihood estimator.
Therefore, under the null hypothesis H0 : γ = γ0, when n is large enough, we

have the following distribution:

γ̂n − γ0

σ(γ̂n)/
√

n
∼ N(0, 1).

As for the null hypothesis H0 : γ = γ0 against the alternative hypothesis H1 : γ ,
γ0, if we have: ∣∣∣∣∣∣ γ̂n − γ0

σ(γ̂n)/
√

n

∣∣∣∣∣∣ > zα/2,

we can reject H0 at the significance level α.
We need to derive σ2(γ) and γ̂n to perform the testing procedure. First, σ2(γ) is

given by:

σ2(γ) = −
(
E
( d2 log f (X; γ)

dγ2

))−1

= γ2.
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Note that the first- and the second-derivatives of log f (X; γ) with respect to γ are given
by:

d log f (X; γ)
dγ

=
1
γ
− X,

d2 log f (X; γ)
dγ2 = − 1

γ2 .

Next, the maximum likelihood estimator of γ, i.e., γ̂n, is obtained as follows. Since
X1, X2 · · ·, Xn are mutually independently and identically distributed, the likelihood
function l(γ) is given by:

l(γ) =
n∏

i=1

f (xi; γ) =
n∏

i=1

γe−γxi = γne−γ
∑

xi .

Therefore, the log-likelihood function is written as:

log l(γ) = n log(γ) − γ
n∑

i=1

xi.

We obtain the value of γ which maximizes log l(γ). Solving the following equation:

d log l(γ)
dγ

=
n
γ
−

n∑
i=1

xi = 0,

the maximum likelihood estimator of γ, i.e., γ̂n is represented as:

γ̂n =
n∑n

i=1 Xi
=

1

X
.

Then, we have the following:

γ̂n − γ
σ(γ̂n)/

√
n
=
γ̂n − γ
γ̂n/
√

n
−→ N(0, 1),

where γ̂n is given by 1/X.
For H0 : γ = γ0 and H1 : γ , γ0, if we have:∣∣∣∣∣∣ γ̂n − γ0

γ̂n/
√

n

∣∣∣∣∣∣ > zα/2,

we reject H0 at the significance level α.

1.8.5 Likelihood Ratio Test
Suppose that the population distribution is given by f (x; θ), where θ = (θ1, θ2). Con-
sider testing the null hypothesis θ1 = θ

∗
1 against the alternative hypothesis H1 : θ1 , θ∗1,
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using the observed values (x1, x2, · · ·, xn) corresponding to the random sample (X1,
X2, · · ·, Xn).

Let θ1 and θ2 be 1 × k1 and 1 × k2 vectors, respectively. Therefore, θ = (θ1, θ2)
denotes a 1 × (k1 + k2) vector. Since we take the null hypothesis as H0 : θ1 = θ

∗
1, the

number of restrictions is given by k1, which is equal to the dimension of θ1.
The likelihood function is written as:

l(θ1, θ2) =
n∏

i=1

f (xi; θ1, θ2).

Let (̃θ1, θ̃2) be the maximum likelihood estimator of (θ1, θ2). That is, (̃θ1, θ̃2) indicates
the solution of (θ1, θ2), obtained from the following equations:

∂l(θ1, θ2)
∂θ1

= 0,
∂l(θ1, θ2)
∂θ2

= 0.

The solution (̃θ1, θ̃2) is called the unconstrained maximum likelihood estimator,
because the null hypothesis H0 : θ1 = θ

∗
1 is not taken into account.

Let θ̂2 be the maximum likelihood estimator of θ2 under the null hypothesis H0 :
θ1 = θ

∗
1. That is, θ̂2 is a solution of the following equation:

∂l(θ∗1, θ2)
∂θ2

= 0.

The solution θ̂2 is called the constrained maximum likelihood estimator of θ2, be-
cause the likelihood function is maximized with respect to θ2 subject to the constraint
θ1 = θ

∗
1.

Define λ as follows:

λ =
l(θ∗1, θ̂2)

l(̃θ1, θ̃2)
,

which is called the likelihood ratio.
As n goes to infinity, it is known that we have:

−2 log(λ) ∼ χ2(k1),

where k1 denotes the number of the constraints.
Let χ2

α(k1) be the 100 × α percent point from the chi-square distribution with k1

degrees of freedom. When −2 log(λ) > χ2
α(k1), we reject the null hypothesis H0 :

θ1 = θ∗1 at the significance level α. If −2 log(λ) is close to zero, we accept the null
hypothesis. When (θ∗1, θ̂2) is close to (̃θ1, θ̃2), −2 log(λ) approaches zero.

The likelihood ratio test is useful in the case where it is not easy to derive the
distribution of (̃θ1, θ̃2).
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Example 1.19: X1, X2, · · ·, Xn are mutually independently, identically and exponen-
tially distributed. Consider the following exponential probability density function:

f (x; γ) = γe−γx,

for 0 < x < ∞.
Using the likelihood ratio test, we want to test the null hypothesis H0 : γ = γ0

against the alternative hypothesis H1 : γ , γ0. Remember that in Example 1.18 we
test the hypothesis with the Wald test.

In this case, the likelihood ratio is given by:

λ =
l(γ0)
l(γ̂n)

,

where γ̂n is derived in Example 1.18, i.e.,

γ̂n =
n∑n

i=1 Xi
=

1

X
.

Since the number of the constraint is equal to one, as the sample size n goes to infinity
we have the following asymptotic distribution:

−2 log λ −→ χ2(1).

The likelihood ratio is computed as follows:

λ =
l(γ0)
l(γ̂n)

=
γn

0e−γ0
∑

Xi

γ̂n
ne−n .

If −2 log λ > χ2
α(1), we reject the null hypothesis H0 : µ = µ0 at the signifi-

cance level α. Note that χ2
α(1) denotes the 100 × α percent point from the chi-square

distribution with one degree of freedom.

Example 1.20: Suppose that X1, X2, · · ·, Xn are mutually independently, identically
and normally distributed with mean zero and variance σ2.

The normal probability density function with mean µ and variance σ2 is given by:

f (x; µ, σ2) =
1

√
2πσ2

e−
1

2σ2 (x−µ)2
.

By the likelihood ratio test, we want to test the null hypothesis H0 : µ = µ0 against
the alternative hypothesis H1 : µ , µ0.

The likelihood ratio is given by:

λ =
l(µ0, σ̃

2)
l(µ̂, σ̂2)

,
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where σ̃2 is the constrained maximum likelihood estimator with the constraint µ = µ0,
while (µ̂, σ̂2) denotes the unconstrained maximum likelihood estimator. In this case,
since the number of the constraint is one, the asymptotic distribution is as follows:

−2 log λ −→ χ2(1).

Now, we derive l(µ0, σ̃
2) and l(µ̂, σ̂2). l(µ, σ2) is written as:

l(µ, σ2) = f (x1, x2, · · · , xn; µ, σ2) =
n∏

i=1

f (xi; µ, σ2)

=

n∏
i=1

1
√

2πσ2
exp

(
− 1

2σ2 (xi − µ)2
)

= (2πσ2)−n/2 exp
(
− 1

2σ2

n∑
i=1

(xi − µ)2
)
.

The log-likelihood function log l(µ, σ2) is represented as:

log l(µ, σ2) = −n
2

log(2π) − n
2

log(σ2) − 1
2σ2

n∑
i=1

(xi − µ)2.

For the numerator of the likelihood ratio, under the constraint µ = µ0, maximize
log l(µ0, σ

2) with respect to σ2. Since we obtain the first-derivative:

∂ log l(µ0, σ
2)

∂σ2 = −n
2

1
σ2 +

1
2σ4

n∑
i=1

(xi − µ0)2 = 0,

the constrained maximum likelihood estimator σ̃2 is given by:

σ̃2 =
1
n

n∑
i=1

(xi − µ0)2.

Therefore, replacing σ2 by σ̃2, l(µ0, σ̃
2) is written as:

l(µ0, σ̃
2) = (2πσ̃2)−n/2 exp

(
− 1

2σ̃2

n∑
i=1

(xi − µ0)2
)
= (2πσ̃2)−n/2 exp

(
−n

2

)
.

For the denominator of the likelihood ratio, because the unconstrained maximum
likelihood estimators are obtained as:

µ̂ =
1
n

n∑
i=1

xi, σ̂2 =
1
n

n∑
i=1

(xi − µ̂)2,

l(µ̂, σ̂2) is written as:

l(µ̂, σ̂2) = (2πσ̂2)−n/2 exp
(
− 1

2σ̂2

n∑
i=1

(xi − µ̂)2
)
= (2πσ̂2)−n/2 exp

(
−n

2

)
.
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Thus, the likelihood ratio is given by:

λ =
l(µ0, σ̃

2)
l(µ̂, σ̂2)

=

(2πσ̃2)−n/2 exp
(
−n

2

)
(2πσ̂2)−n/2 exp

(
−n

2

) = (σ̃2

σ̂2

)−n/2
.

Asymptotically, we have:

−2 log λ = n(log σ̃2 − log σ̂2) ∼ χ2(1).

When −2 log λ > χ2
α(1), we reject the null hypothesis H0 : µ = µ0 at the significance

level α.

1.9 Regression Analysis

1.9.1 Setup of the Model
When (X1,Y1), (X2,Y2), · · ·, (Xn,Yn) are available, suppose that there is a linear rela-
tionship between Y and X, i.e.,

Yi = β1 + β2Xi + ui, (1.21)

for i = 1, 2, · · · , n.
Xi and Yi denote the ith observations. Yi is called the dependent variable or

the unexplanatory variable, while Xi is known as the independent variable or the
explanatory variable. β1 and β2 are unknown parameters to be estimated. ui is the
unobserved error term assumed to be a random variable with mean zero and variance
σ2. β1 and β2 are called the regression coefficients.

Xi is assumed to be nonstochastic, but Yi is stochastic because Yi depends on the
error ui. The error terms u1, u2, · · ·, un are assumed to be mutually independently and
identically distributed. It is assumed that ui has a distribution with mean zero, i.e.,
E(ui) = 0 is assumed. Taking the expectation on both sides of equation (1.21), the
expectation of Yi is represented as:

E(Yi) = E(β1 + β2Xi + ui) = β1 + β2Xi + E(ui)
= β1 + β2Xi, (1.22)

for i = 1, 2, · · · , n. Using E(Yi) we can rewrite (1.21) as Yi = E(Yi) + ui. Equation
(1.22) represents the true regression line.

Let β̂1 and β̂2 be estimators of β1 and β2. Replacing (β1, β2) by (β̂1, β̂2), equation
(1.21) turns out to be:

Yi = β̂1 + β̂2Xi + ei, (1.23)

for i = 1, 2, · · · , n, where ei is called the residual. The residual ei is taken as the
experimental value of ui.
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Figure 1.4: True and Estimated Regression Lines
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We define Ŷi as follows:
Ŷi = β̂1 + β̂2Xi, (1.24)

for i = 1, 2, · · · , n, which is interpreted as the predicted value of Yi. Equation (1.24)
indicates the estimated regression line, which is different from equation (1.22). More-
over, using Ŷi we can rewrite (1.23) as Yi = Ŷi + ei.

Equations (1.22) and (1.24) are displayed in Figure 1.4. Consider the case of n = 6
for simplicity. × indicates the observed data series. The true regression line (1.22) is
represented by the solid line, while the estimated regression line (1.24) is drawn with
the dotted line. Based on the observed data, β1 and β2 are estimated as: β̂1 and β̂2.

In the next section, we consider how to obtain the estimates of β1 and β2, i.e., β̂1

and β̂2.

1.9.2 Ordinary Least Squares Estimation
Suppose that (X1,Y1), (X2,Y2), · · ·, (Xn,Yn) are available. For the regression model
(1.21), we consider estimating β1 and β2. Replacing β1 and β2 by their estimates β̂1

and β̂2, remember that the residual ei is given by:

ei = Yi − Ŷi = Yi − β̂1 − β̂2Xi.

The sum of squared residuals is defined as follows:

S (β̂1, β̂2) =
n∑

i=1

e2
i =

n∑
i=1

(Yi − β̂1 − β̂2Xi)2.
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It might be plausible to choose the β̂1 and β̂2 which minimize the sum of squared
residuals, i.e., S (β̂1, β̂2). This method is called the ordinary least squares (OLS)
estimation. To minimize S (β̂1, β̂2) with respect to β̂1 and β̂2, we set the partial
derivatives equal to zero:

∂S (β̂1, β̂2)
∂β̂1

= −2
n∑

i=1

(Yi − β̂1 − β̂2Xi) = 0,

∂S (β̂1, β̂2)
∂β̂2

= −2
n∑

i=1

Xi(Yi − β̂1 − β̂2Xi) = 0,

which yields the following two equations:

Y = β̂1 + β̂2X, (1.25)
n∑

i=1

XiYi = nXβ̂1 + β̂2

n∑
i=1

X2
i , (1.26)

where Y = (1/n)
∑n

i=1 Yi and X = (1/n)
∑n

i=1 Xi. Multiplying (1.25) by nX and sub-
tracting (1.26), we can derive β̂2 as follows:

β̂2 =

∑n
i=1 XiYi − nXY∑n

i=1 X2
i − nX

2 =

∑n
i=1(Xi − X)(Yi − Y)∑n

i=1(Xi − X)2
. (1.27)

From equation (1.25), β̂1 is directly obtained as follows:

β̂1 = Y − β̂2X. (1.28)

When the observed values are taken for Yi and Xi for i = 1, 2, · · · , n, we say that β̂1

and β̂2 are called the ordinary least squares estimates (or simply the least squares
estimates) of β1 and β2. When Yi for i = 1, 2, · · · , n are regarded as the random
sample, we say that β̂1 and β̂2 are called the ordinary least squares estimators (or
the least squares estimators) of β1 and β2.

1.9.3 Properties of Least Squares Estimator

Equation (1.27) is rewritten as:

β̂2 =

∑n
i=1(Xi − X)(Yi − Y)∑n

i=1(Xi − X)2
=

∑n
i=1(Xi − X)Yi∑n
i=1(Xi − X)2

− Y
∑n

i=1(Xi − X)∑n
i=1(Xi − X)2

=

n∑
i=1

Xi − X∑n
i=1(Xi − X)2

Yi =

n∑
i=1

ωiYi. (1.29)
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In the third equality,
∑n

i=1(Xi − X) = 0 is utilized because of X = (1/n)
∑n

i=1 Xi. In the
fourth equality, ωi is defined as:

ωi =
Xi − X∑n

i=1(Xi − X)2
.

ωi is nonstochastic because Xi is assumed to be nonstochastic. ωi has the following
properties:

n∑
i=1

ωi =

n∑
i=1

Xi − X∑n
i=1(Xi − X)2

=

∑n
i=1(Xi − X)∑n

i=1(Xi − X)2
= 0, (1.30)

n∑
i=1

ωiXi =

n∑
i=1

ωi(Xi − X) =
∑n

i=1(Xi − X)2∑n
i=1(Xi − X)2

= 1, (1.31)

n∑
i=1

ω2
i =

n∑
i=1

(
Xi − X∑n

i=1(Xi − X)2

)2

=

∑n
i=1(Xi − X)2(∑n

i=1(Xi − X)2
)2

=
1∑n

i=1(Xi − X)2
. (1.32)

The first equality of equation (1.31) comes from equation (1.30).
From now on, we focus only on β̂2, because usually β2 is more important than β1

in the regression model (1.21). In order to obtain the properties of the least squares
estimator β̂2, we rewrite equation (1.29) as:

β̂2 =

n∑
i=1

ωiYi =

n∑
i=1

ωi(β1 + β2Xi + ui)

= β1

n∑
i=1

ωi + β2

n∑
i=1

ωiXi +

n∑
i=1

ωiui

= β2 +

n∑
i=1

ωiui. (1.33)

In the fourth equality of (1.33), equations (1.30) and (1.31) are utilized.

Mean and Variance of β̂2: u1, u2, · · ·, un are assumed to be mutually independently
and identically distributed with mean zero and variance σ2, but they are not necessar-
ily normal. Remember that we do not need normality assumption to obtain mean and
variance but the normality assumption is required to test a hypothesis.

From equation (1.33), the expectation of β̂2 is derived as follows:

E(β̂2) = E(β2 +

n∑
i=1

ωiui) = β2 + E(
n∑

i=1

ωiui)

= β2 +

n∑
i=1

ωiE(ui) = β2. (1.34)
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It is shown from (1.34) that the ordinary least squares estimator β̂2 is an unbiased
estimator of β2.

From (1.33), the variance of β̂2 is computed as:

V(β̂2) = V(β2 +

n∑
i=1

ωiui) = V(
n∑

i=1

ωiui) =
n∑

i=1

V(ωiui) =
n∑

i=1

ω2
i V(ui)

= σ2
n∑

i=1

ω2
i =

σ2∑n
i=1(Xi − X)2

. (1.35)

From Theorem on p.15, the second and the fourth equalities hold. The third equality
holds because u1, u2, · · ·, un are mutually independent (see the theorem on p.20). The
last equality comes from equation (1.32).

Thus, E(β̂2) and V(β̂2) are given by (1.34) and (1.35).

Gauss-Markov Theorem: It has been discussed above that β̂2 is represented as
(1.29), which implies that β̂2 is a linear estimator, i.e., linear in Yi. In addition, (1.34)
indicates that β̂2 is an unbiased estimator. Therefore, summarizing these two facts, it
is shown that β̂2 is a linear unbiased estimator. Furthermore, here we show that β̂2

has minimum variance within a class of the linear unbiased estimators.
Consider the alternative linear unbiased estimator β̃2 as follows:

β̃2 =

n∑
i=1

ciYi =

n∑
i=1

(ωi + di)Yi,

where ci = ωi + di is defined and di is nonstochastic. Then, β̃2 is transformed into:

β̃2 =

n∑
i=1

ciYi =

n∑
i=1

(ωi + di)(β1 + β2Xi + ui)

= β1

n∑
i=1

ωi + β2

n∑
i=1

ωiXi +

n∑
i=1

ωiui + β1

n∑
i=1

di + β2

n∑
i=1

diXi +

n∑
i=1

diui

= β2 + β1

n∑
i=1

di + β2

n∑
i=1

diXi +

n∑
i=1

ωiui +

n∑
i=1

diui.

Equations (1.30) and (1.31) are used in the forth equality. Taking the expectation on
both sides of the above equation, we obtain:

E(β̃2) = β2 + β1

n∑
i=1

di + β2

n∑
i=1

diXi +

n∑
i=1

ωiE(ui) +
n∑

i=1

diE(ui)

= β2 + β1

n∑
i=1

di + β2

n∑
i=1

diXi.
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Note that di is not a random variable and that E(ui) = 0. Since β̃2 is assumed to be
unbiased, we need the following conditions:

n∑
i=1

di = 0,
n∑

i=1

diXi = 0.

When these conditions hold, we can rewrite β̃2 as:

β̃2 = β2 +

n∑
i=1

(ωi + di)ui.

The variance of β̃2 is derived as:

V(̃β2) = V
(
β2 +

n∑
i=1

(ωi + di)ui

)
= V

( n∑
i=1

(ωi + di)ui

)
=

n∑
i=1

V
(
(ωi + di)ui

)
=

n∑
i=1

(ωi + di)2V(ui) = σ2(
n∑

i=1

ω2
i + 2

n∑
i=1

ωidi +

n∑
i=1

d2
i )

= σ2(
n∑

i=1

ω2
i +

n∑
i=1

d2
i ).

From unbiasedness of β̃2, using
∑n

i=1 di = 0 and
∑n

i=1 diXi = 0, we obtain:

n∑
i=1

ωidi =

∑n
i=1(Xi − X)di∑n
i=1(Xi − X)2

=

∑n
i=1 Xidi − X

∑n
i=1 di∑n

i=1(Xi − X)2
= 0,

which is utilized to obtain the variance of β̃2 in the third line of the above equation.
From (1.35), the variance of β̂2 is given by: V(β̂2) = σ2 ∑n

i=1 ω
2
i . Therefore, we have:

V(β̃2) ≥ V(β̂2),

because of
∑n

i=1 d2
i ≥ 0. When

∑n
i=1 d2

i = 0, i.e., when d1 = d2 = · · · = dn = 0, we
have the equality: V(β̃2) = V(β̂2). Thus, in the case of d1 = d2 = · · · = dn = 0, β̂2 is
equivalent to β̃2.

As shown above, the least squares estimator β̂2 gives us the linear unbiased
minimum variance estimator, or equivalently the best linear unbiased estimator
(BLUE), which is called the Gauss-Markov theorem.

Asymptotic Properties of β̂2: We assume that as n goes to infinity we have the
following:

1
n

n∑
i=1

(Xi − X)2 −→ M < ∞,



64 CHAPTER 1. ELEMENTS OF STATISTICS

where M is a constant value. From (1.32), we obtain:

n
n∑

i=1

ω2
i =

1

(1/n)
∑n

i=1(Xi − X)
−→ 1

M
.

Note that f (xn) −→ f (m) when xn −→ m, where m is a constant value and f (·) is a
function.

Here, we show both consistency of β̂2 and asymptotic normality of
√

n(β̂2 − β2).
First, we prove that β̂2 is a consistent estimator of β2. As in (1.10), Chebyshev’s
inequality is given by:

P(|X − µ| > ε) ≤ σ2

ε2 ,

where µ = E(X) and σ2 = V(X). Here, we replace X, E(X) and V(X) by β̂2,

E(β̂2) = β2, V(β̂2) = σ2
n∑

i=1

ω2
i =

σ2∑n
i=1(Xi − X)

,

respectively. Then, when n −→ ∞, we obtain the following result:

P(|β̂2 − β2| > ε) ≤
σ2 ∑n

i=1 ω
2
i

ε2 =
σ2

ε2 ∑n
i=1(Xi − X)

−→ 0,

where
∑n

i=1 ω
2
i −→ 0 because n

∑n
i=1 ω

2
i −→ 1/M from the assumption. Thus, we

obtain the result that β̂2 −→ β2 as n −→ ∞. Therefore, we can conclude that β̂2 is a
consistent estimator of β2.

Next, we want to show that
√

n(β̂2 − β2) is asymptotically normal. Noting that
β̂2 = β2 +

∑n
i=1 ωiui as in (1.33) from Corollary 2 on p.35 (central limit theorem),

asymptotic normality is shown as follows:∑n
i=1 ωiui − E(

∑n
i=1 ωiui)√

V(
∑n

i=1 ωiui)
=

∑n
i=1 ωiui

σ
√∑n

i=1 ω
2
i

=
β̂2 − β2

σ/

√∑n
i=1(Xi − X)2

−→ N(0, 1),

where E(
∑n

i=1 ωiui) = 0, V(
∑n

i=1 ωiui) = σ2 ∑n
i=1 ω

2
i and

∑n
i=1 ωiui = β̂2 − β2 are substi-

tuted in the second equality. Moreover, we can rewrite as follows:

β̂2 − β2

σ/

√∑n
i=1(Xi − X)2

=

√
n(β̂2 − β2)

σ/

√
(1/n)

∑n
i=1(Xi − X)2

−→
√

n(β̂2 − β2)

σ/
√

M
−→ N(0, 1),

or equivalently,
√

n(β̂2 − β2) −→ N(0,
σ2

M
).

Thus, asymptotic normality of
√

n(β̂2 − β2) is shown.
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Finally, replacing σ2 by its consistent estimator s2, it is known as follows:

β̂2 − β2

s
√∑n

i=1(Xi − X)2

−→ N(0, 1), (1.36)

where s2 is defined as:

s2 =
1

n − 2

n∑
i=1

e2
i =

1
n − 2

n∑
i=1

(Yi − β̂1 − β̂2Xi)2, (1.37)

which is a consistent and unbiased estimator of σ2.
Thus, using (1.36), in large sample we can construct the confidence interval dis-

cussed in Section 1.7.6 and test the hypothesis discussed in Section 1.8.

Exact Distribution of β̂2: We have shown asymptotic normality of
√

n(β̂2 − β2),
which is one of the large sample properties. Now, we discuss the small sample prop-
erties of β̂2. In order to obtain the distribution of β̂2 in small sample, the distribution of
the error term has to be assumed. Therefore, the extra assumption is that ui ∼ N(0, σ2).
Writing equation (1.33), again, β̂2 is represented as:

β̂2 = β2 +

n∑
i=1

ωiui.

First, we obtain the distribution of the second term in the above equation. From The-
orem on p.29,

∑n
i=1 ωiui is distributed as:

n∑
i=1

ωiui ∼ N(0, σ2
n∑

i=1

ω2
i ),

which is easily shown using the moment-generating function. Therefore, from Exam-
ple 1.9 on p.23, β̂2 is distributed as:

β̂2 = β2 +

n∑
i=1

ωiui ∼ N(β2, σ
2

n∑
i=1

ω2
i ),

or equivalently,

β̂2 − β2

σ
√∑n

i=1 ω
2
i

=
β̂2 − β2

σ/

√∑n
i=1(Xi − X)2

∼ N(0, 1),

for any n.
Moreover, replacing σ2 by its estimator s2 defined in (1.37), it is known that we

have:
β̂2 − β2

s/
√∑n

i=1(Xi − X)2

∼ t(n − 2),
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where t(n−2) denotes t distribution with n−2 degrees of freedom. See Section 2.2.10
for derivation of the t distribution. Thus, under normality assumption on the error
term ui, the t(n − 2) distribution is used for the confidence interval and the testing
hypothesis in small sample.

1.9.4 Multiple Regression Model
In Sections 1.9.1 – 1.9.3, only one independent variable, i.e., Xi, is taken into the
regression model. In this section, we extend it to more independent variables, which
is called the multiple regression. We consider the following regression model:

Yi = β1Xi,1 + β2Xi,2 + · · · + βkXi,k + ui

= Xiβ + ui,

for i = 1, 2, · · · , n, where Xi and β denote a 1 × k vector of the independent variables
and a k × 1 vector of the unknown parameters to be estimated, which are represented
as:

Xi = (Xi,1, Xi,2, · · · , Xi,k), β =


β1

β2
...
βk

 .
Xi, j denotes the ith observation of the jth independent variable. The case of k = 2 and
Xi,1 = 1 for all i is exactly equivalent to (1.21). Therefore, the matrix form above is a
generalization of (1.21). Writing all the equations for i = 1, 2, · · · , n, we have:

Y1 = β1X1,1 + β2X1,2 + · · · + βkX1,k + u1,

Y2 = β1X2,1 + β2X2,2 + · · · + βkX2,k + u2,
...

Yn = β1Xn,1 + β2Xn,2 + · · · + βkXn,k + un,

which is rewritten as:
Y1

Y2
...

Yn

 =


X1,1 X1,2 · · · X1,k

X2,1 X2,2 · · · X2,k
...

...
. . .

...
Xn,1 Xn,2 · · · Xn,k



β1

β2
...
βk

 +


u1

u2
...

uk

 .
Again, the above equation is compactly rewritten as:

Y = Xβ + u. (1.38)

where Y , X and u are denoted by:

Y =


Y1

Y2
...

Yn

 , X =


X1,1 X1,2 · · · X1,k

X2,1 X2,2 · · · X2,k
...

...
. . .

...
Xn,1 Xn,2 · · · Xn,k

 , u =


u1

u2
...

uk

 .
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Utilizing the matrix form (1.38), we derive the ordinary least squares estimator of β,
denoted by β̂. In equation (1.38), replacing β by β̂, we have the following equation:

Y = Xβ̂ + e,

where e denotes a 1 × n vector of the residuals. The ith element of e is given by ei.
The sum of squared residuals is written as follows:

S (β̂) =
n∑

i=1

e2
i = e′e = (Y − Xβ̂)′(Y − Xβ̂) = (Y ′ − β̂′X′)(Y − Xβ̂)

= Y ′Y − Y ′Xβ̂ − β̂′X′Y + β̂′X′Xβ̂ = Y ′Y − 2Y ′Xβ̂ + β̂′X′Xβ̂.

See Appendix 1.5 for the transpose in the fourth equality. In the last equality, note
that β̂′X′Y = Y ′Xβ̂ because both are scalars. To minimize S (β̂) with respect to β̂, we
set the first derivative of S (β̂) equal to zero, i.e.,

∂S (β̂)
∂β̂

= −2X′Y + 2X′Xβ̂ = 0.

See Appendix 1.5 for the derivatives of matrices. Solving the equation above with
respect to β̂, the ordinary least squares estimator of β is given by:

β̂ = (X′X)−1X′Y. (1.39)

See Appendix 1.5 for the inverse of the matrix. Thus, the ordinary least squares esti-
mator is derived in the matrix form.

Now, in order to obtain the properties of β̂ such as mean, variance, distribution and
so on, (1.39) is rewritten as follows:

β̂ = (X′X)−1X′Y = (X′X)−1X′(Xβ + u) = (X′X)−1X′Xβ + (X′X)−1X′u
= β + (X′X)−1X′u. (1.40)

Taking the expectation on both sides of equation (1.40), we have the following:

E(β̂) = E(β + (X′X)−1X′u) = β + (X′X)−1X′E(u) = β,

because of E(u) = 0 by the assumption of the error term ui. Thus, unbiasedness of β̂
is shown.

The variance of β̂ is obtained as:

V(β̂) = E((β̂ − β)(β̂ − β)′) = E
(
(X′X)−1X′u((X′X)−1X′u)′

)
= E((X′X)−1X′uu′X(X′X)−1) = (X′X)−1X′E(uu′)X(X′X)−1

= σ2(X′X)−1X′X(X′X)−1 = σ2(X′X)−1.

The first equality is the definition of variance in the case of vector. In the fifth equality,
E(uu′) = σ2In is used, which implies that E(u2

i ) = σ2 for all i and E(uiu j) = 0 for
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i , j. Remember that u1, u2, · · ·, un are assumed to be mutually independently and
identically distributed with mean zero and variance σ2.

Under normality assumption on the error term u, it is known that the distribution
of β̂ is given by:

β̂ ∼ N(β, σ2(X′X)−1).

Taking the jth element of β̂, its distribution is given by:

β̂ j ∼ N(β j, σ
2a j j), i.e.,

β̂ j − β j

σ
√a j j

∼ N(0, 1),

where a j j denotes the jth diagonal element of (X′X)−1.
Replacing σ2 by its estimator s2, we have the following t distribution:

β̂ j − β j

s√a j j
∼ t(n − k),

where t(n − k) denotes the t distribution with n − k degrees of freedom. s2 is taken as
follows:

s2 =
1

n − k

n∑
i=1

e2
i =

1
n − k

e′e =
1

n − k
(Y − Xβ̂)′(Y − Xβ̂),

which leads to an unbiased estimator of σ2.
Using the central limit theorem, without normality assumption we can show that

as n −→ ∞, under the condition of (1/n)X′X −→ M we have the following result:

β̂ j − β j

s√a j j
−→ N(0, 1),

where M denotes a k × k constant matrix.
Thus, we can construct the confidence interval and the testing procedure, using the

t distribution under the normality assumption or the normal distribution without the
normality assumption.

Appendix 1.1: Integration by Substitution
Univariate Case: For a function of x, f (x), we perform integration by substitution,
using x = ψ(y). Then, it is easy to obtain the following formula:∫

f (x) dx =
∫

ψ′(y) f (ψ(y)) dy,

which formula is called the integration by substitution.
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Proof:
Let F(x) be the integration of f (x), i.e.,

F(x) =
∫ x

−∞
f (t) dt,

which implies that F′(x) = f (x).
Differentiating F(x) = F(ψ(y)) with respect to y, we have:

f (x) ≡ dF(ψ(y))
dy

=
dF(x)

dx
dx
dy
= f (x)ψ′(y) = f (ψ(y))ψ′(y).

Bivariate Case: For f (x, y), define x = ψ1(u, v) and y = ψ2(u, v).∫∫
f (x, y) dx dy =

∫∫
J f (ψ1(u, v), ψ2(u, v)) du dv,

where J is called the Jacobian, which represents the following determinant:

J =

∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣ = ∂x
∂u
∂y
∂v
− ∂x
∂v
∂y
∂u
.

Appendix 1.2: Integration by Parts
Let h(x) and g(x) be functions of x. Then, we have the following formula:∫

h(x)g′(x) dx = h(x)g(x) −
∫

h′(x)g(x) dx,

which is called the integration by parts.

Proof:
Consider the derivative of f (x)g(x) with respect to x, i.e.,(

f (x)g(x)
)′
= f ′(x)g(x) + f (x)g′(x).

Integrating the above equation on both sides, we have:∫ (
f (x)g(x)

)′
dx =

∫
f ′(x)g(x) dx +

∫
f (x)g′(x) dx.

Therefore, we obtain:

f (x)g(x) =
∫

f ′(x)g(x) dx +
∫

f (x)g′(x) dx.
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Thus, the following result is derived.∫
f (x)g′(x) dx = f (x)g(x) −

∫
f ′(x)g(x) dx.

When we want to integrate f (x)g′(x) within the range between a and b for a < b, the
above formula is modified as:∫ b

a
f (x)g′(x) dx =

[
f (x)g(x)

]b

a
−

∫ b

a
f ′(x)g(x) dx.

Appendix 1.3: Taylor Series Expansion
Consider approximating f (x) around x = x0 by the Taylor series expansion.. Then,
f (x) is approximated as follows:

f (x) = f (x0) + f ′(x0)(x − x0) +
1
2!

f ′′(x0)(x − x0)2 +
1
3!

f ′′′(x0)(x − x0)3 + · · ·

=

∞∑
n=0

1
n!

f (n)(x0)(x − x0)n,

where f (n)(x0) denotes the nth derivative of f (x) evaluated at x = x0. Note that
f (0)(x0) = f (x0) and 0! = 1.

In addition, the following approximation is called the kth order Taylor series
expansion:

f (x) ≈
k∑

n=0

1
n!

f (n)(x0)(x − x0)n.

Appendix 1.4: Cramer-Rao Inequality
As seen in (1.13) and (1.14), the Cramer-Rao inequality is given by:

V(θ̂n) ≥ σ
2(θ)
n

,

where

σ2(θ) =
1

E
((∂ log f (X; θ)

∂θ

)2
) = 1

V
((∂ log f (X; θ)

∂θ

)) = − 1

E
(
∂2 log f (X; θ)

∂θ2

) .
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Proof:
We prove the above inequality and the equalities in σ2(θ). The likelihood function
l(θ; x) = l(θ; x1, x2, · · ·, xn) is a joint density of X1, X2, · · ·, Xn. Therefore, the integra-
tion of l(θ; x1, x2, · · ·, xn) with respect to x1, x2, · · ·, xn is equal to one. See Section
1.7.5 for the likelihood function. That is, we have the following equation:

1 =
∫

l(θ; x) dx, (1.41)

where the likelihood function l(θ; x) is given by l(θ; x) =
∏n

i=1 f (xi; θ) and
∫
· · · dx

implies n-tuple integral.
Differentiating both sides of equation (1.41) with respect to θ, we obtain the fol-

lowing equation:

0 =
∫

∂l(θ; x)
∂θ

dx =
∫

1
l(θ; x)

∂l(θ; x)
∂θ

l(θ; x) dx

=

∫
∂ log l(θ; x)

∂θ
l(θ; x) dx = E

(∂ log l(θ; X)
∂θ

)
, (1.42)

which implies that the expectation of ∂ log l(θ; X)/∂θ is equal to zero. In the third
equality, note that d log x/ dx = 1/x.

Now, let θ̂n be an estimator of θ. The definition of the mathematical expectation of
the estimator θ̂n is represented as:

E(θ̂n) =
∫

θ̂nl(θ; x) dx. (1.43)

Differentiating equation (1.43) with respect to θ on both sides, we can rewrite as fol-
lows:

∂E(θ̂n)
∂θ

=

∫
θ̂n
∂l(θ; x)
∂θ

dx =
∫

θ̂n
∂ log l(θ; x)

∂θ
l(θ; x) dx

=

∫ (
θ̂n − E(θ̂n)

)(∂ log l(θ; x)
∂θ

− E(
∂ log l(θ; x)

∂θ
)
)
l(θ; x) dx

= Cov
(
θ̂n,

∂ log l(θ; X)
∂θ

)
. (1.44)

In the second equality, d log x/ dx = 1/x is utilized. The third equality holds because
of E(∂ log l(θ; X)/∂θ) = 0 from equation (1.42).

For simplicity of discussion, suppose that θ is a scalar. Taking the square on both
sides of equation (1.44), we obtain the following expression:

(∂E(θ̂n)
∂θ

)2
=

(
Cov

(
θ̂n,

∂ log l(θ; X)
∂θ

))2

= ρ2V(θ̂n)V
(∂ log l(θ; X)

∂θ

)
≤ V(θ̂n)V

(
∂ log l(θ; X)

∂θ

)
, (1.45)



72 CHAPTER 1. ELEMENTS OF STATISTICS

where ρ denotes the correlation coefficient between θ̂n and ∂ log l(θ; X)/∂θ. Note that
we have the definition of ρ is given by:

ρ =
Cov

(
θ̂n,

∂ log l(θ; X)
∂θ

)
√

V(θ̂n)

√
V
(∂ log l(θ; X)

∂θ

) .
Moreover, we have −1 ≤ ρ ≤ 1 (i.e., ρ2 ≤ 1). Then, the inequality (1.45) is obtained,
which is rewritten as:

V(θ̂n) ≥

(∂E(θ̂n)
∂θ

)2

V
(∂ log l(θ; X)

∂θ

) . (1.46)

When E(θ̂n) = θ, i.e., when θ̂n is an unbiased estimator of θ, the numerator in the
right-hand side of equation (1.46) is equal to one. Therefore, we have the following
result:

V(θ̂n) ≥ 1

V
(∂ log l(θ; X)

∂θ

) = 1

E
((∂ log l(θ; X)

∂θ

)2
) .

Note that we have V(∂ log l(θ; X)/∂θ) = E((∂ log l(θ; X)/∂θ)2) in the equality above,
because of E(∂ log l(θ; X)/∂θ) = 0.

Moreover, the denominator in the right-hand side of the above inequality is rewrit-
ten as follows:

E
((∂ log l(θ; X)

∂θ

)2
)
= E

(( n∑
i=1

∂ log f (Xi; θ)
∂θ

)2
)
=

n∑
i=1

E
((∂ log f (Xi; θ)

∂θ

)2
)

= nE
((∂ log f (X; θ)

∂θ

)2
)
= n

∫ ∞

−∞

(∂ log f (x; θ)
∂θ

)2
f (x; θ) dx.

In the first equality, log l(θ; X) =
∑n

i=1 log f (Xi; θ) is utilized. Since Xi, i = 1, 2, · · · , n,
are mutually independent, the second equality holds. The third equality holds because
X1, X2, · · ·, Xn are identically distributed.

Therefore, we obtain the following inequality:

V(θ̂n) ≥ 1

E
((∂ log l(θ; X)

∂θ

)2
) = 1

nE
((∂ log f (X; θ)

∂θ

)2
) = σ2(θ)

n
,

which is equivalent to (1.13).

Next, we prove the equalities in (1.14), i.e.,

− E
(∂2 log f (X; θ)

∂θ2

)
= E

((∂ log f (X; θ)
∂θ

)2
)
= V

(∂ log f (X; θ)
∂θ

)
.
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Differentiating
∫

f (x; θ) dx = 1 with respect to θ, we obtain as follows:∫
∂ f (x; θ)
∂θ

dx = 0.

We assume that the range of x does not depend on the parameter θ and that ∂ f (x; θ)/∂θ
exists. The above equation is rewritten as:∫

∂ log f (x; θ)
∂θ

f (x; θ) dx = 0, (1.47)

or equivalently,

E
(∂ log f (X; θ)

∂θ

)
= 0. (1.48)

Again, differentiating equation (1.47) with respect to θ,∫
∂2 log f (x; θ)

∂θ2 f (x; θ) dx +
∫

∂ log f (x; θ)
∂θ

∂ f (x; θ)
∂θ

dx = 0,

i.e., ∫
∂2 log f (x; θ)

∂θ2 f (x; θ) dx +
∫ (∂ log f (x; θ)

∂θ

)2
f (x; θ) dx = 0,

i.e.,

E
(∂2 log f (x; θ)

∂θ2

)
+ E

((∂ log f (x; θ)
∂θ

)2
)
= 0.

Thus, we obtain:

−E
(∂2 log f (x; θ)

∂θ2

)
= E

((∂ log f (x; θ)
∂θ

)2
)
.

Moreover, from equation (1.48), the following equation is derived.

E
((∂ log f (x; θ)

∂θ

)2
)
= V

(∂ log f (x; θ)
∂θ

)
.

Therefore, we have:

− E
(∂2 log f (X; θ)

∂θ2

)
= E

((∂ log f (X; θ)
∂θ

)2
)
= V

(∂ log f (X; θ)
∂θ

)
.

Thus, the Cramer-Rao inequality is derived as:

V(θ̂n) ≥ σ2(θ)
n

,

where

σ2(θ) =
1

E
((∂ log f (X; θ)

∂θ

)2
) = 1

V
((∂ log f (X; θ)

∂θ

)) = − 1

E
(∂2 log f (X; θ)

∂θ2

) .
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Appendix 1.5: Some Formulas of Matrix Algebra

1. Let A =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
al1 al2 · · · alk

 = [ai j], which is a l×k matrix, where ai j denotes

ith row and jth column of A. The transpose of A, denoted by A′, is defined as:

A′ =


a11 a21 · · · al1

a12 a22 · · · al2
...

...
. . .

...
a1k a2k · · · alk

 = [a ji],

where the ith row of A′ is the ith column of A.

2. (Ax)′ = x′A′,

where A and x are a l × k matrix and a k × 1 vector, respectively.

3. a′ = a,

where a denotes a scalar.

4.
∂a′x
∂x
= a,

where a and x are k × 1 vectors.

5.
∂x′Ax
∂x

= (A + A′)x,

where A and x are a k × k matrix and a k × 1 vector, respectively.

Especially, when A is symmetric,
∂x′Ax
∂x

= 2Ax.

6. Let A and B be k × k matrices, and Ik be a k × k identity matrix (one in the
diagonal elements and zero in the other elements).

When AB = Ik, B is called the inverse of A, denoted by B = A−1.

That is, AA−1 = A−1A = Ik.

7. Let A be a k × k matrix and x be a k × 1 vector.

If A is a positive definite matrix, for any x we have:

x′Ax > 0.

If A is a positive semidefinite matrix, for any x we have:

x′Ax ≥ 0.
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If A is a negative definite matrix, for any x we have:

x′Ax < 0.

If A is a negative semidefinite matrix, for any x we have:

x′Ax ≤ 0.
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Exercises and Answers to Chapter 1

1 The continuous type of random variable X has the following density function:

f (x) =

a − x, if 0 < x < a,

0, otherwise.

Answer the following questions.

(1) Find a.

(2) Obtain mean and variance of X.

(3) When Y = X2, derive the density function of Y .

[Answer]
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(1) From the property of the density function, i.e.,
∫

f (x) dx = 1, we need to have:

∫
f (x) dx =

∫ a

0
(a − x) dx =

[
ax − 1

2
x2

]a

0
=

1
2

a2 = 1.

Therefore, a =
√

2 is obtained, taking into account a > 0.

(2) The definitions of mean and variance are given by: E(X) =
∫

x f (x) dx and

V(X) =
∫

(x − µ)2 f (x) dx, where µ = E(X). Therefore, mean of X is:

E(X) =
∫

x f (x) dx =
∫ a

0
x(a − x) dx =

[
1
2

ax2 − 1
3

x3
]a

0
=

1
6

a3

=

√
2

3
←− a =

√
2 is substituted.

Variance of X is:

V(X) =
∫

(x − µ)2 f (x) dx =
∫

x2 f (x) dx − µ2 =

∫ a

0
x2(a − x) dx − µ2

=

[
1
3

ax3 − 1
4

x4
]a

0
− µ2 =

1
12

a4 − µ2 =
1
3
−

 √2
3

2

=
1
9
.

(3) Let f (x) be the density function of X and F(x) be the distribution function of X.
And let g(y) be the density function of Y and G(y) be the distribution function
of Y . Using Y = X2, we obtain:

G(y) = P(Y < y) = P(X2 < y) = P(−√y < X <
√

y) = F(
√

y) − F(−√y)
= F(

√
y) ←− F(−√y) = 0.

Moreover, from the relationship between the density and the distribution func-
tions, we obtain the following:

g(y) =
dG(y)

dy
=

dF(
√

y)
dy

=
dF(x)

dx
d
√

y
dy

←− x =
√

y

= F′(x)
1

2
√

y
= f (x)

1
2
√

y
= f (

√
y)

1
2
√

y

= (
√

2 − √y)
1

2
√

y
, for 0 < y < 2.

The range of y is obtained as: 0 < x <
√

2 =⇒ 0 < x2 < 2 =⇒ 0 < y < 2.
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2 The continuous type of random variable X has the following density function:

f (x) =
1
√

2π
e−

1
2 x2
.

Answer the following questions.

(1) Compute mean and variance of X.
(2) When Y = X2, compute mean and variance of Y .
(3) When Z = eX, obtain mean and variance of Z.

[Answer]

(1) The definitions of mean and variance are: E(X) =
∫

x f (x) dx and V(X) =∫
(x − µ)2 f (x) dx, where µ = E(X). Therefore, mean of X is:

E(X) =
∫

x f (x) dx =
∫ ∞

−∞
x

1
√

2π
e−

1
2 x2

dx = − 1
√

2π

[
e−

1
2 x2]∞

−∞
= 0.

In the third equality, we utilize:
de−

1
2 x2

dx
= −xe−

1
2 x2

.

Variance of X is:

V(X) =
∫

(x − µ)2 f (x) dx =
∫

x2 f (x) dx − µ2 =

∫ ∞

−∞
x2 1
√

2π
e−

1
2 x2

dx − µ2

=

[
−x

1
√

2π
e−

1
2 x2

]∞
−∞
+

∫ ∞

−∞

1
√

2π
e−

1
2 x2

dx − µ2 = 1.

In the fourth equality, the following formula is used.∫ b

a
h′(x)g(x) dx =

[
h(x)g(x)

]b

a
−

∫ b

a
h(x)g′(x) dx,

where g(x) = x and h′(x) = x 1√
2π

e−
1
2 x2

are set.

And in the first term of the fourth equality, we use:

lim
x→±∞

x
1
√

2π
e−

1
2 x2
= 0.

In the second term of the fourth equality, we utilize the property that the inte-
gration of the density function is equal to one.
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(2) When Y = X2, mean of Y is:

E(Y) = E(X2) = V(X) − µ2
x = 1

From (1), note that V(X) = 1 and µx = E(X) = 0.

Variance of Y is:

V(Y) = E(Y − µy)2 ←− µy = E(Y) = 1

= E(Y2) − µ2
y = E(X4) − µ2

y =

∫ ∞

−∞
x4 1
√

2π
e−

1
2 x2

dx − µ2
y

=

∫ ∞

−∞
x3 · x 1

√
2π

e−
1
2 x2

dx − µ2
y

=

[
−x3 1
√

2π
e−

1
2 x2

]∞
−∞
+ 3

∫ ∞

−∞
x2 1
√

2π
e−

1
2 x2

dx − µ2
y

= 3E(X2) − µ2
y ←− E(X2) = 1, µy = 1

= 2

In the sixth equality, the following formula on integration is utilized.∫ b

a
h′(x)g(x) dx =

[
h(x)g(x)

]b

a
−

∫ b

a
h(x)g′(x) dx,

where g(x) = x3 and h′(x) = x 1√
2π

e−
1
2 x2

are set.

In the first term of the sixth equality, we use:

lim
x→±∞

x3 1
√

2π
e−

1
2 x2
= 0.

(3) For Z = eX, mean of Z is:

E(Z) = E(eX) =
∫ ∞

−∞
ex 1
√

2π
e−

1
2 x2

dx =
∫ ∞

−∞

1
√

2π
e−

1
2 (x2−2x) dx

=

∫ ∞

−∞

1
√

2π
e−

1
2 (x−1)2+ 1

2 dx = e
1
2

∫ ∞

−∞

1
√

2π
e−

1
2 (x−1)2

dx = e
1
2 .

In the sixth equality,
1
√

2π
e−

1
2 (x−1)2

is a normal distribution with mean one and

variance one, and accordingly its integration is equal to one.

Variance of Z is:

V(Z) = E(Z − µz)2 ←− µz = E(Z) = e
1
2

= E(Z2) − µ2
z = E(e2X) − µ2

z =

∫ ∞

−∞
e2x 1
√

2π
e−

1
2 x2

dx − µ2
z

=

∫ ∞

−∞

1
√

2π
e−

1
2 (x2−4x) dx − µ2

z =

∫ ∞

−∞

1
√

2π
e−

1
2 (x−2)2+2 dx − µ2

z

= e2
∫ ∞

−∞

1
√

2π
e−

1
2 (x−2)2

dx − µ2
z = e2 − e.
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The eighth equality comes from the facts that
1
√

2π
e−

1
2 (x−2)2

is a normal distri-

bution with mean two and variance one and that its integration is equal to one.

3 The continuous type of random variable X has the following density function:

f (x) =


1
λ

e−
x
λ , if 0 < x,

0, otherwise.

Answer the following questions.

(1) Compute mean and variance of X.

(2) Derive the moment-generating function of X.

(3) Let X1, X2, · · ·, Xn be the random variables, which are mutually independently
distributed and have the density function shown above. Prove that the density
function of Y = X1 + X2 + · · · + Xn is given by the chi-square distribution with
2n degrees of freedom when λ = 2. Note that the chi-square distribution with m
degrees of freedom is given by:

f (x) =


1

2
m
2 Γ(m

2 )
x

m
2 −1e−

x
2 , if x > 0,

0, otherwise.

[Answer]

(1) Mean of X is:

E(X) =
∫

x f (x) dx =
∫ ∞

0
x

1
λ

e−
x
λ dx

=
[
−xe−

x
λ

]∞
0
+

∫ ∞

0
e−

x
λ dx =

[
−λe−

x
λ

]∞
0
= λ.

In the third equality, the following formula is used:∫ b

a
h′(x)g(x) dx =

[
h(x)g(x)

]b

a
−

∫ b

a
h(x)g′(x) dx.

where g(x) = x and h′(x) =
1
λ

e−
x
λ are set.

And we utilize:
lim
x→∞

xe−
x
λ = 0, lim

x→∞
e−

x
λ = 0.
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Variance of X is:

V(X) =
∫

(x − µ)2 f (x) dx =
∫

x2 f (x) dx − µ2 ←− µ = E(X) = λ

=

∫ ∞

0
x2 1
λ

e−
x
λ dx − µ2 =

[
−x2e−

x
λ

]∞
0
+ 2

∫ ∞

0
xe−

x
λ dx − µ2

=
[
−x2e−

x
λ

]∞
0
+ 2λ

∫ ∞

0
x

1
λ

e−
x
λ dx − µ2

= 2λE(X) − µ2 ←− µ = E(X) = λ
= 2λ2 − λ2 = λ2.

In the third equality, we utilize:∫ b

a
h′(x)g(x) dx =

[
h(x)g(x)

]b

a
−

∫ b

a
h(x)g′(x) dx,

where g(x) = x2 and h′(x) =
1
λ

e−
x
λ .

In the sixth equality, the following formulas are used:

lim
x→∞

x2e−
x
λ = 0, µ = E(X) =

∫ ∞

0
xe−

x
λ dx.

(2) The moment-generating function of X is:

φ(θ) = E(eθX) =
∫

eθx f (x) dx =
∫ ∞

0
eθx 1
λ

e−
x
λ dx =

∫ ∞

0

1
λ

e−( 1
λ−θ)x dx

=
1/λ

1/λ − θ

∫ ∞

0
(
1
λ
− θ)e−( 1

λ−θ)x dx =
1

1 − λθ .

In the last equality, since (
1
λ
− θ)e−( 1

λ−θ)x is a density function, its integration is

one. λ in f (x) is replaced by
1
λ
− θ.

(3) We want to show that the moment-generating function of Y is equivalent to that
of a chi-square distribution with 2n degrees of freedom.

Because X1, X2, · · ·, Xn are mutually independently distributed, the moment-
generating function of Xi, φi(θ), is:

φi(θ) =
1

1 − 2θ
= φ(θ),

which corresponds to the case λ = 2 of (2).

For λ = 2, the moment-generating function of Y = X1 + X2 + · · · + Xn, φy(θ), is:

φy(θ) = E(eθY) = E(eθ(X1+X2+···+Xn)) = E(eθX1)E(eθX2) · · ·E(eθXn)

= φ1(θ)φ2(θ) · · · φn(θ) =
(
φ(θ)

)n
=

( 1
1 − 2θ

)n
=

( 1
1 − 2θ

) 2n
2
.
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Therefore, the moment-generating function of Y is:

φy(θ) =
( 1
1 − 2θ

) 2n
2
.

A chi-square distribution with m degrees of freedom is given by:

f (x) =
1

2
m
2 Γ(m

2 )
x

m
2 −1e−

x
2 , for x > 0.

The moment-generating function of the above density function, φχ2(θ), is:

φχ2(θ) = E(eθX) =
∫ ∞

0
eθx 1

2
m
2 Γ(m

2 )
x

m
2 −1e−

x
2 dx

=

∫ ∞

0

1
2 m

2 Γ(m
2 )

x
m
2 −1e−

1
2 (1−2θ)x dx

=

∫ ∞

0

1
2

m
2 Γ(m

2 )

( y
1 − 2θ

)m
2 −1

e−
1
2 y 1

1 − 2θ
dx

=

(
1

1 − 2θ

)m
2 −1 1

1 − 2θ

∫ ∞

0

1
2

m
2 Γ(m

2 )
y

m
2 −1e−

1
2 y dx =

(
1

1 − 2θ

)m
2

.

In the fourth equality, use y = (1− 2θ)x. In the sixth equality, since the function
in the integration corresponds to the chi-square distribution with m degrees of
freedom, the integration is one. Thus, φy(θ) is equivalent to φχ2(θ) for m = 2n.
That is, φy(θ) is the moment-generating function of a chi square distribution
with 2n degrees of freedom. Therefore, Y ∼ χ2(2n).

4 The continuous type of random variable X has the following density function:

f (x) =

1, if 0 < x < 1,

0, otherwise.

Answer the following questions.

(1) Compute mean and variance of X.
(2) When Y = −2 log X, derive the moment-generating function of Y . Note that the

log represents the natural logarithm (i.e., y = −2 log x is equivalent to x = e−
1
2 y).

(3) Let Y1 and Y2 be the random variables which have the density function obtained
in (2). Suppose that Y1 is independent of Y2. When Z = Y1 + Y2, compute the
density function of Z.

[Answer]
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(1) Mean of X is:

E(X) =
∫

x f (x) dx =
∫ 1

0
x dx =

[
1
2

x2
]1

0
=

1
2
.

Variance of X is:

V(X) =
∫

(x − µ)2 f (x) dx =
∫

x2 f (x) dx − µ2 ←− µ = E(X) =
1
2

=

∫ 1

0
x2 dx − µ2 =

[
1
3

x3
]1

0
− µ2 =

1
3
−

(1
2

)2
=

1
12
.

(2) For Y = −2 log X, we obtain the moment-generating function of Y , φy(θ).

φy(θ) = E(eθY) = E(e−2θ log X) = E(X−2θ) =
∫

x−2θ f (x) dx

=

∫ 1

0
x−2θ dx =

[
1

1 − 2θ
x1−2θ

]1

0
=

1
1 − 2θ

.

(3) Let Y1 and Y2 be the random variables which have the density function obtained
from (2). And, assume that Y1 is independent of Y2. For Z = Y1 + Y2, we want
to have the density function of Z.

The moment-generating function of Z, φz(θ), is:

φz(θ) = E(eθZ) = E(eθ(Y1+Y2)) = E(eθY1)E(eθY2) =
(
φy(θ)

)2

=
( 1
1 − 2θ

)2
=

( 1
1 − 2θ

) 4
2
,

which is equivalent to the moment-generating function of the chi square distri-
bution with 4 degrees of freedom. Therefore, Z ∼ χ2(4). Note that the chi-
square density function with n degrees of freedom is given by:

f (x) =


1

2
n
2Γ( n

2 )
x

n
2−1e−

x
2 , for x > 0,

0, otherwise.

The moment-generating function φ(θ) is:

φ(θ) =
( 1
1 − 2θ

) n
2
.

5 The continuous type of random variable X has the following density function:

f (x) =


1

2
n
2Γ( n

2 )
x

n
2−1e−

x
2 , if x > 0,

0, otherwise.
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Answer the following questions. Γ(a) is called the gamma function, defined as:

Γ(a) =
∫ ∞

0
xa−1e−x dx.

(1) What are mean and variance of X?
(2) Compute the moment-generating function of X.

[Answer]

(1) For mean:

E(X) =
∫ ∞

−∞
x f (x) dx =

∫ ∞

0
x

1
Γ( n

2 )
2−

n
2 x

n
2−1e−

x
2 dx

=
2−

n
2

2−
n+2

2

Γ( n+2
2 )
Γ( n

2 )

∫ ∞

0

1
Γ( n+2

2 )
2−

n+2
2 x

n+2
2 −1e−

x
2 dx

= 2
n
2

∫ ∞

0

1
Γ( n′

2 )
2−

n′
2 x

n′
2 −1e−

x
2 dx = n.

Note that Γ(s + 1) = sΓ(s), Γ(1) = 1, and Γ(
1
2

) =
√
π. Using n′ = n + 2, from

the property of the density function, we have:∫ ∞

−∞
f (x) dx =

∫ ∞

0

1
Γ(n′

2 )
2−

n′
2 x

n′
2 −1e−

x
2 dx = 1,

which is utilized in the fifth equality.

For variance, from V(X) = E(X2) − µ2 we compute E(X2) as follows:

E(X2) =
∫ ∞

−∞
x2 f (x) dx =

∫ ∞

0
x2 1
Γ(n

2 )
2−

n
2 x

n
2−1e−

x
2 dx

=

∫ ∞

0

1
Γ( n

2 )
2−

n
2 x

n+4
2 −1e−

x
2 dx

=
2−

n
2

2−
n+4

2

Γ(n+4
2 )
Γ( n

2 )

∫ ∞

0

1
Γ( n+4

2 )
2−

n+4
2 x

n+4
2 −1e−

x
2 dx

= 4(
n + 2

2
n
2

)
∫ ∞

0

1
Γ( n′

2 )
2−

n′
2 x

n′
2 −1e−

x
2 dx = n(n + 2),

where n′ = n + 4 is set. Therefore, V(X) = n(n + 2) − n2 = 2n is obtained.
(2) The moment-generating function of X is:

φ(θ) = E(eθX) =
∫ ∞

−∞
eθx f (x) dx =

∫ ∞

0
eθx 1

2
n
2Γ( n

2 )
x

n
2−1 exp(− x

2
) dx
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=

∫ ∞

0

1
2 n

2Γ( n
2 )

x
n
2−1 exp

(
−1

2
(1 − 2θ)x

)
dx

=

∫ ∞

0

1
2

n
2Γ( n

2 )

( y
1 − 2θ

) n
2−1

exp(−1
2

y)
1

1 − 2θ
dy

=
( 1
1 − 2θ

) n
2

∫ ∞

0

1
2 n

2Γ( n
2 )

y
n
2−1 exp(−1

2
y) dy =

( 1
1 − 2θ

) n
2
.

Use y = (1 − 2θ)x in the fifth equality. Note that
dx
dy
= (1 − 2θ)−1. In the

seventh equality, the integration corresponds to the chi-square distribution with
n degrees of freedom.

6 The continuous type of random variables X and Y are mutually independent and
assumed to be X ∼ N(0, 1) and Y ∼ N(0, 1). Define U = X/Y . Answer the following
questions. When X ∼ N(0, 1), the density function of X is represented as:

f (x) =
1
√

2π
e−

1
2 x2
.

(1) Derive the density function of U.
(2) Prove that the first moment of U does not exist.

[Answer]

(1) The density of U is obtained as follows. The densities of X and Y are:

f (x) =
1
√

2π
exp(−1

2
x2), −∞ < x < ∞,

g(y) =
1
√

2π
exp(−1

2
y2), −∞ < y < ∞.

Since X is independent of Y , the joint density of X and Y is:

h(x, y) = f (x)g(y) =
1
√

2π
exp(−1

2
x2)

1
√

2π
exp(−1

2
y2)

=
1

2π
exp(−1

2
(x2 + y2)).

Using u =
x
y

and v = y, the transformation of the variables is performed. For

x = uv and y = v, we have the Jacobian:

J =

∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣ v u
0 1

∣∣∣∣∣ .
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Using transformation of variables, the joint density of U and V , s(u, v) is given
by:

s(u, v) = h(uv, v)|J| = 1
2π

exp(−1
2

v2(1 + u2))|v|.

The marginal density of U is:

p(u) =
∫

s(u, v) dv =
1

2π

∫ ∞

−∞
|v| exp(−1

2
v2(1 + u2)) dv

=
1
π

∫ ∞

0
v exp(−1

2
v2(1 + u2)) dv

=
1
π

[
− 1

1 + u2 exp(−1
2

v2(1 + u2))
]∞

v=0
=

1
π(1 + u2)

,

which corresponds to Cauchy distribution.
(2) We prove that the first moment of U is infinity, i.e.,

E(U) =
∫

u f (u) du =
∫ ∞

−∞
u

1
π(1 + u2)

du

=

∫ ∞

1

1
2π

1
x

dx ←− x = 1 + u2 is used.

=

[
1

2π
log x

]∞
1
←− d log x

dx
=

1
x

= ∞.
For −∞ < u < ∞, the range of x = 1 + u2 is give by 1 < x < ∞.

7 The continuous type of random variables has the following joint density func-
tion:

f (x, y) =

 x + y, if 0 < x < 1 and 0 < y < 1,

0, otherwise.
Answer the following questions.

(1) Compute the expectation of XY .
(2) Obtain the correlation coefficient between X and Y .
(3) What is the marginal density function of X?

[Answer]
(1) The expectation of XY is:

E(XY) =
∫ 1

0

∫ 1

0
xy f (x, y) dx dy =

∫ 1

0

∫ 1

0
xy(x + y) dx dy

=

∫ 1

0

[
1
3

yx3 +
1
2

y2x2
]1

0
dy =

∫ 1

0
(
1
3

y +
1
2

y2) dy

=

[
1
6

y2 +
1
6

y3
]1

0
=

1
3
.
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(2) We want to obtain the correlation coefficient between X and Y , which is repre-
sented as: ρ = Cov(X,Y)/

√
V(X)V(Y). Therefore, E(X), E(Y), V(X), V(Y) and

Cov(X,Y) have to be computed.

E(X) is:

E(X) =
∫ 1

0

∫ 1

0
x f (x, y) dx dy =

∫ 1

0

∫ 1

0
x(x + y) dx dy

=

∫ 1

0

[
1
3

x3 +
1
2

yx2
]1

0
dy =

∫ 1

0
(
1
3
+

1
2

y) dy

=

[
1
3

y +
1
4

y2
]1

0
=

7
12
.

In the case where x and y are exchangeable, the functional form of f (x, y) is
unchanged. Therefore, E(Y) is:

E(Y) = E(X) =
7

12
.

For V(X),

V(X) = E
(
(X − µ)2

)
←− µ = E(X) =

7
12

= E(X2) − µ2 =

∫ 1

0

∫ 1

0
x2 f (x, y) dx dy − µ2

=

∫ 1

0

∫ 1

0
x2(x + y) dx dy − µ2 =

∫ 1

0

[
1
4

x4 +
1
3

yx3
]1

0
dy − µ2

=

∫ 1

0
(
1
4
+

1
3

y) dy − µ2 =

[
1
4

y +
1
6

y2
]1

0
− µ2

=
5
12
−

( 7
12

)2
=

11
144

.

For V(Y),

V(Y) = V(X) =
11

144
.

For Cov(X,Y),

Cov(X,Y) = E
(
(X − µx)(Y − µy)

)
= E(XY) − µxµy

=
1
3
− 7

12
7

12
= − 1

144
,

where
µx = E(X) =

7
12
, µy = E(Y) =

7
12
.

Therefore, ρ is:

ρ =
Cov(X, Y)
√

V(X)V(Y)
=

−1/144
√

(11/144)(11/144)
= − 1

11
.
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(3) The marginal density function of X, fx(x), is:

fx(x) =
∫

f (x, y) dy =
∫ 1

0
(x + y) dy =

[
xy +

1
2

y2
]1

y=0
= x +

1
2
,

for 0 < x < 1.

8 The discrete type of random variable X has the following density function:

f (x) =
e−λλx

x!
, x = 0, 1, 2, · · · .

Answer the following questions.

(1) Prove
∞∑

x=0

f (x) = 1.

(2) Compute the moment-generating function of X.

(3) From the moment-generating function, obtain mean and variance of X.

[Answer]

(1) We can show
∞∑

x=0

f (x) = 1 as:

∞∑
x=0

f (x) =
∞∑

x=0

e−λ
λx

x!
= e−λ

∞∑
x=0

λx

x!
= e−λeλ = 1.

Note that ex =

∞∑
k=0

xk

k!
, because we have f (k)(x) = ex for f (x) = ex. As shown in

Appendix 1.3, the formula of Taylor series expansion is:

f (x) =
∞∑

k=0

1
k!

f (k)(x0)(x − x0)k.

The Taylor series expansion around x = 0 is:

f (x) =
∞∑

k=0

1
k!

f (k)(0)xk =

∞∑
k=0

1
k!

xk =

∞∑
k=0

xk

k!
.

Here, replace x by λ and k by x.
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(2) The moment-generating function of X is:

φ(θ) = E(eθX) =
∞∑

x=0

eθx f (x) =
∞∑

x=0

eθxe−λ
λx

x!
=

∞∑
x=0

e−λ
(eθλ)x

x!

= e−λ exp(eθλ)
∞∑

x=0

exp(−eθλ)
(eθλ)x

x!
= e−λ exp(eθλ)

∞∑
x=0

e−λ
′ λ′x

x!

= exp(−λ) exp(eθλ) = exp
(
λ(eθ − 1)

)
.

Note that λ′ = exp(eθλ).
(3) Based on the moment-generating function, we obtain mean and variance of X.

For mean, because of φ(θ) = exp
(
λ(eθ − 1)

)
, φ′(θ) = λeθ exp

(
λ(eθ − 1)

)
and

E(X) = φ′(0), we obtain:

E(X) = φ′(0) = λ.

For variance, from V(X) = E(X2)− (E(X))2, we obtain E(X2). Note that E(X2) =
φ′′(0) and φ′′(θ) = (1 + λeθ)λeθ exp

(
λ(eθ − 1)

)
. Therefore,

V(X) = E(X2) − (E(X))2
= φ′′(0) − (φ′(0))2

= (1 + λ)λ − λ2 = λ.

9 X1, X2, · · ·, Xn are mutually independently and normally distributed with mean
µ and variance σ2, where the density function is given by:

f (x) =
1

√
2πσ2

e−
1

2σ2 (x−µ)2
.

Then, answer the following questions.

(1) Obtain the maximum likelihood estimators of mean µ and variance σ2.
(2) Check whether the maximum likelihood estimator of σ2 is unbiased. If it is

not unbiased, obtain an unbiased estimator of σ2. (Hint: use the maximum
likelihood estimator.)

(3) We want to test the null hypothesis H0 : µ = µ0 by the likelihood ratio test.
Obtain the test statistic and explain the testing procedure.

[Answer]

(1) The joint density is:

f (x1, x2, · · · , xn; µ, σ2) =
n∏

i=1

f (xi; µ, σ2)

=

n∏
i=1

1
√

2πσ2
exp

(
− 1

2σ2 (xi − µ)2
)

= (2πσ2)−n/2 exp

− 1
2σ2

n∑
i=1

(xi − µ)2

 = l(µ, σ2).
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Taking the logarithm, we have:

log l(µ, σ2) = −n
2

log(2π) − n
2

log(σ2) − 1
2σ2

n∑
i=1

(xi − µ)2.

The derivatives of the log-likelihood function log l(µ, σ2) with respect to µ and
σ2 are set to be zero.

∂ log l(µ, σ2)
∂µ

=
1
σ2

n∑
i=1

(xi − µ) = 0,

∂ log l(µ, σ2)
∂σ2 = −n

2
1
σ2 +

1
2σ4

n∑
i=1

(xi − µ)2 = 0.

Solving the two equations, we have the solution of (µ, σ2), denoted by (µ̂, σ̂2):

µ̂ =
1
n

n∑
i=1

xi = x,

σ̂2 =
1
n

n∑
i=1

(xi − µ)2 =
1
n

n∑
i=1

(xi − x)2.

Therefore, the maximum likelihood estimators of µ and σ2, (µ̂, σ̂2), are as fol-
lows:

X, S ∗∗2 =
1
n

n∑
i=1

(Xi − X)2.

(2) Take the expectation to check whether S ∗∗2 is unbiased.

E(S ∗∗2) = E
(1
n

n∑
i=1

(Xi − X)2
)
=

1
n

E
( n∑

i=1

(Xi − X)2
)

=
1
n

E
( n∑

i=1

((Xi − µ) − (X − µ))2
)

=
1
n

E
( n∑

i=1

((Xi − µ)2 − 2(Xi − µ)(X − µ) + (X − µ)2)
)

=
1
n

E
( n∑

i=1

(Xi − µ)2 − 2(X − µ)
n∑

i=1

(Xi − µ) + n(X − µ)2
)

=
1
n

E
( n∑

i=1

(Xi − µ)2 − 2n(X − µ)2 + n(X − µ)2
)

=
1
n

E
( n∑

i=1

(Xi − µ)2 − n(X − µ)2
)
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=
1
n

E
( n∑

i=1

(Xi − µ)2
)
− 1

n
E
(
n(X − µ)2

)
=

1
n

n∑
i=1

E
(
(Xi − µ)2

)
− E

(
(X − µ)2

)
=

1
n

n∑
i=1

V(Xi) − V(X) =
1
n

n∑
i=1

σ2 − σ
2

n

= σ2 − 1
n
σ2 =

n − 1
n

σ2 , σ2.

Therefore, S ∗∗2 is not unbiased. Based on S ∗∗2, we obtain the unbiased estimator
of σ2. Multiplying n/(n − 1) on both sides of E(S ∗∗2) = σ2(n− 1)/n, we obtain:

n
n − 1

E(S ∗∗2) = σ2.

Therefore, the unbiased estimator of σ2 is:

n
n − 1

S ∗∗2 =
1

n − 1

n∑
i=1

(Xi − X)2 = S 2.

(3) The likelihood ratio is defined as:

λ =

max
σ2

l(µ0, σ
2)

max
µ,σ2

l(µ, σ2)
=

l(µ0, σ̃
2)

l(µ̂, σ̂2)
.

Since the number of restriction is one, we have:

−2 log λ −→ χ2(1).

l(µ, σ2) is given by:

l(µ, σ2) = (2πσ2)−n/2 exp

− 1
2σ2

n∑
i=1

(xi − µ)2

 .
Taking the logarithm, log l(µ, σ2) is:

log l(µ, σ2) = −n
2

log(2π) − n
2

log(σ2) − 1
2σ2

n∑
i=1

(xi − µ)2.

On the numerator, under the restriction µ = µ0, log l(µ0, σ
2) is maximized with

respect to σ2 as follows:

∂ log l(µ0, σ
2)

∂σ2 = −n
2

1
σ2 +

1
2σ4

n∑
i=1

(xi − µ0)2 = 0.
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This solution of σ2 is σ̃2, which is represented as:

σ̃2 =
1
n

n∑
i=1

(xi − µ0)2.

Then, l(µ0, σ̃
2) is:

l(µ0, σ̃
2) = (2πσ̃2)−n/2 exp

− 1
2σ̃2

n∑
i=1

(xi − µ0)2

 = (2πσ̃2)−n/2 exp
(
−n

2

)
.

On the denominator, from the question (1), we have:

µ̂ =
1
n

n∑
i=1

xi, σ̂2 =
1
n

n∑
i=1

(xi − µ̂)2.

Therefore, l(µ̂, σ̂2) is:

l(µ̂, σ̂2) = (2πσ̂2)−n/2 exp

− 1
2σ̂2

n∑
i=1

(xi − µ̂)2

 = (2πσ̂2)−n/2 exp
(
−n

2

)
.

The likelihood ratio is:

λ =

max
σ2

l(µ0, σ
2)

max
µ,σ2

l(µ, σ2)
=

l(µ0, σ̃
2)

l(µ̂, σ̂2)
=

(2πσ̃2)−n/2 exp(−n/2)
(2πσ̂2)−n/2 exp(−n/2)

=
(σ̃2

σ̂2

)−n/2
.

As n goes to infinity, we obtain:

−2 log λ = n(log σ̃2 − log σ̂2) ∼ χ2(1).

When −2 log λ > χ2
α(1), the null hypothesis H0 : µ = µ0 is rejected by the

significance level α, where χ2
α(1) denotes the 100 × α percent point of the Chi-

square distribution with one degree of freedom.

10 Answer the following questions.

(1) The discrete type of random variable X is assumed to be Bernoulli. The Bernoulli
distribution is given by:

f (x) = px(1 − p)1−x, x = 0, 1.

Let X1, X2, · · · ,Xn be random variables drawn from the Bernoulli trials. Com-
pute the maximum likelihood estimator of p.
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(2) Let Y be a random variable from a binomial distribution, denoted by f (y), which
is represented as:

f (y) = nCy py(1 − p)n−y, y = 0, 1, 2, · · · , n.

Then, prove that Y/n goes to p as n is large.
(3) For the random variable Y in the question (2), Let us define:

Zn ≡
Y − np√
np(1 − p)

.

Then, Zn goes to a standard normal distribution as n is large.
(4) The continuous type of random variable X has the following density function:

f (x) =


1

2
n
2Γ( n

2 )
x

n
2−1e−

x
2 , if x > 0,

0, otherwise.

where Γ(a) denotes the Gamma function, i.e.,

Γ(a) =
∫ ∞

0
xa−1e−x dx.

Then, show that X/n approaches one when n −→ ∞.

[Answer]

(1) When X is a Bernoulli random variable, the probability function of X is given
by:

f (x; p) = px(1 − p)1−x, x = 0, 1.

The joint probability function of X1, X2, · · · ,Xn is:

f (x1, x2, · · · , xn; p) =
n∏

i=1

f (xi; p) =
n∏

i=1

pxi(1 − p)1−xi

= p
∑

i xi(1 − p)n−∑i xi = l(p).

Take the logarithm of l(p).

log l(p) = (
∑

i

xi) log(p) + (n −
∑

i

xi) log(1 − p).

The derivative of the log-likelihood function log l(p) with respect to p is set to
be zero.

d log l(p)
dp

=

∑
i xi

p
− n −∑

i xi

1 − p
=

∑
i xi − np

p(1 − p)
= 0.
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Solving the above equation, we have:

p =
1
n

n∑
i=1

xi = x.

Therefore, the maximum likelihood estimator of p is:

p̂ =
1
n

n∑
i=1

Xi = X.

(2) Mean and variance of Y are:

E(Y) = np, V(Y) = np(1 − p).

Therefore, we have:

E(
Y
n

) =
1
n

E(Y) = p, V(
Y
n

) =
1
n2 V(Y) =

p(1 − p)
n

.

Chebyshev’s inequality indicates that for a random variable X and g(x) ≥ 0 we
have:

P(g(X) ≥ k) ≤ E(g(X))
k

,

where k > 0.

Here, when g(X) = (X − E(X))2 and k = ε2 are set, we can rewrite as:

P(|X − E(X)| ≥ ε) ≤ V(X)
ε2 ,

where ε > 0.

Replacing X by
Y
n

, we apply Chebyshev’s inequality.

P(|Y
n
− E(

Y
n

)| ≥ ε) ≤
V(Y

n )
ε2 .

That is, as n −→ ∞,

P(|Y
n
− p| ≥ ε) ≤ p(1 − p)

nε2 −→ 0.

Therefore, we obtain:
Y
n
−→ p.
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(3) Let X1, X2, · · ·, Xn be Bernoulli random variables, where P(Xi = x) = px(1 −
p)1−x for x = 0, 1. Define Y = X1 + X2 + · · · + Xn. Because Y has a binomial
distribution, Y/n is taken as the sample mean from X1, X2, · · ·, Xn, i.e., Y/n =
(1/n)

∑n
i=1 Xi. Therefore, using E(Y/n) = p and V(Y/n) = p(1 − p)/n, by the

central limit theorem, as n −→ ∞, we have:

Y/n − p√
p(1 − p)/n

−→ N(0, 1).

Moreover,

Zn ≡
Y − np√
np(1 − p)

=
Y/n − p√
p(1 − p)/n

.

Therefore,
Zn −→ N(0, 1).

(4) When X ∼ χ2(n), we have E(X) = n and V(X) = 2n. Therefore, E(X/n) = 1 and
V(X/n) = 2/n.

Apply Chebyshev’s inequality. Then, we have:

P(|X
n
− E(

X
n

)| ≥ ε) ≤
V( X

n )
ε2 ,

where ε > 0. That is, as n −→ ∞, we have:

P(|X
n
− 1| ≥ ε) ≤ 2

nε2 −→ 0.

Therefore,
X
n
−→ 1.

11 Consider n random variables X1, X2, · · ·, Xn, which are mutually independently
and exponentially distributed. Note that the exponential distribution is given by:

f (x) = λe−λx, x > 0.

Then, answer the following questions.

(1) Let λ̂ be the maximum likelihood estimator of λ. Obtain λ̂.

(2) When n is large enough, obtain mean and variance of λ̂.

[Answer]
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(1) Since X1, · · · , Xn are mutually independently and exponentially distributed, the
likelihood function l(λ) is written as:

l(λ) =
n∏

i=1

f (xi) =
n∏

i=1

λe−λxi = λne−λ
∑

xi .

The log-likelihood function is:

log l(λ) = n log(λ) − λ
n∑

i=1

xi.

We want the λ which maximizes log l(λ). Solving the following equation:

d log l(λ)
dλ

=
n
λ
−

n∑
i=1

xi = 0,

and replacing xi by Xi, the maximum likelihood estimator of λ, denoted by λ̂,
is:

λ̂ =
n∑n

i=1 Xi
.

(2) X1, X2, · · ·, Xn are mutually independent. Let f (xi; λ) be the density function of
Xi. For the maximum likelihood estimator of λ, i.e., λ̂n, as n −→ ∞, we have
the following property:

√
n(λ̂n − λ) −→ N

(
0, σ2(λ)

)
,

where
σ2(λ) =

1

E
( d log f (X; λ)

dλ

)2 .
Therefore, we obtain σ2(λ). The expectation in σ2(λ̂n) is:

E
( d log f (X; λ)

dλ

)2 = E
(1
λ
− X

)2 = E
(

1
λ2 −

2
λ

X + X2
)

=
1
λ2 −

2
λ

E(X) + E(X2) =
1
λ2 ,

where E(X) and E(X2) are:

E(X) =
1
λ
, E(X2) =

2
λ2 .

Therefore, we have:

σ2(λ) =
1

E
( d log f (X; λ)

dλ

)2 = λ
2.
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As n is large, λ̂n approximately has the following distribution:

λ̂n ∼ N(λ,
λ2

n
).

Thus, as n goes to infinity, mean and variance are given by λ and λ2/n.

12 The n random variables X1, X2, · · ·, Xn are mutually independently distributed
with mean µ and variance σ2. Consider the following two estimators of µ:

X =
1
n

n∑
i=1

Xi, X̃ =
1
2

(X1 + Xn).

Then, answer the following questions.

(1) Is X unbiased? How about X̃?
(2) Which is more efficient, X or X̃?
(3) Examine whether X and X̃ are consistent.

[Answer]

(1) We check whether X and X̃ are unbiased.

E(X) = E(
1
n

n∑
i=1

Xi) =
1
n

E(
n∑

i=1

Xi) =
1
n

n∑
i=1

E(Xi) =
1
n

n∑
i=1

µ = µ,

E(X̃) =
1
2

(
E(X1) + E(Xn)

)
=

1
2

(µ + µ) = µ.

Thus, both are unbiased.
(2) We examine which is more efficient, X or X̃.

V(X) = V(
1
n

n∑
i=1

Xi) =
1
n2 V(

n∑
i=1

Xi) =
1
n2

n∑
i=1

V(Xi) =
1
n2

n∑
i=1

σ2 =
σ2

n
,

V(X̃) =
1
4

(
V(X1) + V(Xn)

)
=

1
4

(σ2 + σ2) =
σ2

2
.

Therefore, because of V(X) < V(X̃), X is more efficient than X̃ when n > 2.
(3) We check if X and X̃ are consistent. Apply Chebyshev’s inequality. For X,

P(|X − E(X)| ≥ ε) ≤ V(X)
ε2 ,

where ε > 0. That is, when n −→ ∞, we have:

P(|X − µ| ≥ ε) ≤ σ2

nε2 −→ 0.
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Therefore, we obtain:
X −→ µ.

Next, for X̃, we have:

P(|X̃ − E(X̃)| ≥ ε) ≤ V(X̃)
ε2 ,

where ε > 0. That is, when n −→ ∞, the following equation is obtained:

P(|X̃ − µ| ≥ ε) ≤ σ2

2ε2 −→/ 0.

X is a consistent estimator of µ, but X̃ is not consistent.

13 The 9 random samples:
21　 23　 32　 20　 36　 27　 26　 28　 30

which are obtained from the normal population N(µ, σ2). Then, answer the following
questions.

(1) Obtain the unbiased estimates of µ and σ2.
(2) Obtain both 90 and 95 percent confidence intervals for µ.
(3) Test the null hypothesis H0 : µ = 24 and the alternative hypothesis H1 : µ > 24

by the significance level 0.10. How about 0.05?

[Answer]
(1) The unbiased estimators of µ and σ2, denoted by X and S 2, are given by:

X =
1
n

n∑
i=1

Xi, S 2 =
1

n − 1

n∑
i=1

(Xi − X)2.

The unbiased estimates of µ and σ2 are:

x =
1
n

n∑
i=1

xi, s2 =
1

n − 1

n∑
i=1

(xi − x)2.

Therefore,

x =
1
n

n∑
i=1

xi =
1
9

(21 + 23 + 32 + 20 + 36 + 27 + 26 + 28 + 30) = 27,

s2 =
1

n − 1

n∑
i=1

(xi − x)2

=
1
8

(
(21 − 27)2 + (23 − 27)2 + (32 − 27)2 + (20 − 27)2

+(36 − 27)2 + (27 − 27)2 + (26 − 27)2 + (28 − 27)2 + (30 − 27)2
)

=
1
8

(36 + 16 + 25 + 49 + 81 + 0 + 1 + 1 + 9) = 27.25.
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(2) We obtain the confidence intervals of µ. The following sample distribution is
utilized:

X − µ
S/
√

n
∼ t(n − 1).

Therefore,

P
(∣∣∣∣∣∣ X − µ

S/
√

n

∣∣∣∣∣∣ < tα/2(n − 1)
)
= 1 − α,

where tα/2(n−1) denotes the 100×α/2 percent point of the t distribution, which
is obtained given probability α and n − 1 degrees of freedom. Therefore, we
have:

P
(
X − tα/2(n − 1)

S
√

n
< µ < X + tα/2(n − 1)

S
√

n

)
= 1 − α.

Replacing X and S 2 by x and s2, the 100 × (1 − α) percent confidence interval
of µ is: (

x − tα/2(n − 1)
s
√

n
, x + tα/2(n − 1)

s
√

n

)
.

Since x = 27, s2 = 27.25, n = 9, t0.05(8) = 1.860 and t0.025(8) = 2.306, the 90
percent confidence interval of µ is:

(27 − 1.860

√
27.25

9
, 27 + 1.860

√
27.25

9
) = (23.76, 30.24),

and the 95 percent confidence interval of µ is:

(27 − 2.306

√
27.25

9
, 27 + 2.306

√
27.25

9
) = (22.99, 31.01).

(3) We test the null hypothesis H0 : µ = 24 and the alternative hypothesis H1 : µ >
24 by the significance levels 0.10 and 0.05. The distribution of X is:

X − µ
S/
√

n
∼ t(n − 1).

Therefore, under the null hypothesis H0 : µ = µ0, we obtain

X − µ0

S/
√

n
∼ t(n − 1).

Note that µ is replaced by µ0. For the alternative hypothesis H1 : µ > µ0, since
we have:

P
(X − µ0

S/
√

n
> tα(n − 1)

)
= α,
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we reject the null hypothesis H0 : µ = µ0 by the significance level α when we
have:

x − µ0

s/
√

n
> tα(n − 1).

Substitute x = 27, s2 = 27.25, µ0 = 24, n = 9, t0.10(8) = 1.397 and t0.05(8) =
1.860 into the above formula. Then, we obtain:

x − µ0

s/
√

n
=

27 − 24
√

27.25/9
= 1.724 > t0.10(8) = 1.397.

Therefore, we reject the null hypothesis H0 : µ = 24 by the significance level
α = 0.10. And we obtain:

x − µ0

s/
√

n
=

27 − 24
√

27.25/9
= 1.724 < t0.05(8) = 1.860.

Therefore, the null hypothesis H0 : µ = 24 is accepted by the significance level
α = 0.05.

14 The 16 samples X1, X2, · · ·, X16 are randomly drawn from the normal population
with mean µ and known variance σ2 = 22. The sample average is given by x = 36.
Then, answer the following questions.

(1) Obtain the 95 percent confidence interval for µ.

(2) Test the null hypothesis H0 : µ = 35 and the alternative hypothesis H1 : µ =
36.5 by the significance level 0.05.

(3) Compute the power of the test in the above question (2).

[Answer]

(1) We obtain the 95 percent confidence interval of µ. The distribution of X is:

X − µ
σ/
√

n
∼ N(0, 1).

Therefore,

P
(∣∣∣∣∣∣ X − µ
σ/
√

n

∣∣∣∣∣∣ < zα/2
)
= 1 − α,

where zα/2 denotes the 100×α
2

percent point, which is obtained given probability
α. Therefore,

P
(
X − zα/2

σ
√

n
< µ < X + zα/2

σ
√

n

)
= 1 − α.
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Replacing X by x, the 100(1 − α) percent confidence interval of µ is:(
x − zα/2

σ
√

n
, x + zα/2

σ
√

n

)
.

Substituting x = 36, σ2 = 22, n = 16 and z0.025 = 1.960, the 100 × (1 − α)
percent confidence interval of µ is:

(36 − 1.960
2
√

16
, 36 + 1.960

2
√

16
) = (35.02, 36.98).

(2) We test the null hypothesis H0 : µ = 35 and the alternative hypothesis H1 : µ =
36.5 by the significance level 0.05. The distribution of X is:

X − µ
σ/
√

n
∼ N(0, 1).

Under the null hypothesis H0 : µ = µ0,

X − µ0

σ/
√

n
∼ N(0, 1).

For the alternative hypothesis H1 : µ > µ0, we obtain:

P
(X − µ0

σ/
√

n
> zα

)
= α.

If we have:
x − µ0

σ/
√

n
> zα,

the null hypothesis H0 : µ = µ0 is rejected by the significance level α. Substi-
tuting x = 36, σ2 = 22, n = 16 and z0.05 = 1.645, we obtain:

x − µ0

σ/
√

n
=

36 − 35

2/
√

16
= 2 > zα = 1.645.

The null hypothesis H0 : µ = 35 is rejected by the significance level α = 0.05.

(3) We compute the power of the test in the question (2). The power of the test is the
probability which rejects the null hypothesis under the alternative hypothesis.
That is, under the null hypothesis H0 : µ = µ0, the region which rejects the null
hypothesis is: X > µ0 + zασ/

√
n, because

P
(X − µ0

σ/
√

n
> zα

)
= α.
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We compute the probability which rejects the null hypothesis under the alter-
native hypothesis H1 : µ = µ1. That is, under the alternative hypothesis
H1 : µ = µ1, the following probability is known as the power of the test:

P
(
X > µ0 + zασ/

√
n
)
.

Under the alternative hypothesis H1 : µ = µ1, we have:

X − µ1

σ/
√

n
∼ N(0, 1).

Therefore, we want to compute the following probability

P
(X − µ1

σ/
√

n
>
µ0 − µ1

σ/
√

n
+ zα

)
.

Substituting σ = 2, n = 16, µ0 = 35, µ1 = 36.5 and zα = 1.645, we obtain:

P
(X − µ1

σ/
√

n
>

35 − 36.5

2/
√

16
+ 1.645

)
= P

(X − µ1

σ/
√

n
> −1.355

)
= 1 − P

(X − µ1

σ/
√

n
> 1.355

)
= 1 − 0.0877 = 0.9123.

Note that z0.0885 = 1.35 and z0.0869 = 1.36.

15 X1, X2, · · ·, Xn are assumed to be mutually independent and be distributed as a
Poisson process, where the Poisson distribution is given by:

P(X = x) = f (x; λ) =
λxe−λ

x!
, x = 0, 1, 2, · · · .

Then, answer the following questions.

(1) Obtain the maximum likelihood estimator of λ, which is denoted by λ̂.
(2) Prove that λ̂ is an unbiased estimator.
(3) Prove that λ̂ is an efficient estimator.
(4) Prove that λ̂ is an consistent estimator.

[Answer]

(1) We obtain the maximum likelihood estimator of λ, denoted by λ̂. The Poisson
distribution is:

P(X = x) = f (x; λ) =
λxe−λ

x!
, x = 0, 1, 2, · · · .
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The likelihood function is:

l(λ) =
n∏

i=1

f (xi; λ) =
n∏

i=1

λxie−λ

xi!
=
λ

∑n
i=1 xie−nλ∏n

i=1 xi!
.

The log-likelihood function is:

log l(λ) = log(λ)
n∑

i=1

xi − nλ − log(
n∏

i=1

xi!).

The derivative of the log-likelihood function with respect to λ is:

∂ log l(λ)
∂λ

=
1
λ

n∑
i=1

xi − n = 0.

Solving the above equation, the maximum likelihood estimator λ̂ is:

λ̂ =
1
n

n∑
i=1

Xi = X.

(2) We prove that λ̂ is an unbiased estimator of λ.

E(λ̂) = E(
1
n

n∑
i=1

Xi) =
1
n

n∑
i=1

E(Xi) =
1
n

n∑
i=1

λ = λ.

(3) We prove that λ̂ is an efficient estimator of λ, where we show that the equality
holds in the Cramer-Rao inequality. First, we obtain V(λ̂) as:

V(λ̂) = V(
1
n

n∑
i=1

Xi) =
1
n2

n∑
i=1

V(Xi) =
1
n2

n∑
i=1

λ =
λ

n
.

The Cramer-Rao lower bound is given by:

1

nE
(∂ log f (X; λ)

∂λ

)2 =
1

nE
(∂(X log λ − λ − log X!)

∂λ

)2
=

1

nE
[(X
λ
− 1

)2] = λ2

nE[(X − λ)2]

=
λ2

nV(X)
=
λ2

nλ
=
λ

n
.
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Therefore,

V(λ̂) =
1

nE
(∂ log f (X; λ)

∂λ

)2 .
That is, V(λ̂) is equal to the lower bound of the Cramer-Rao inequality. There-
fore, λ̂ is efficient.

(4) We show that λ̂ is a consistent estimator of λ. Note as follows:

E(λ̂) = λ, V(λ̂) =
λ

n
.

In Chebyshev’s inequality:

P(|λ̂ − E(λ̂)| ≥ ε) ≤ V(λ̂)
ε2 ,

E(λ̂) and V(λ̂) are substituted. Then, we have:

P(|λ̂ − λ| > ε) < λ

nε2 −→ 0,

which implies that λ̂ is consistent.

16 X1, X2, · · ·, Xn are mutually independently distributed as normal random vari-
ables. Note that the normal density is:

f (x) =
1

√
2πσ2

e−
1

2σ2 (x−µ)2
.

Then, answer the following questions.

(1) Prove that the sample mean X = (1/n)
∑n

i=1 Xi is normally distributed with mean
µ and variance σ2/n.

(2) Define:

Z =
X − µ
σ/
√

n
.

Show that Z is normally distributed with mean zero and variance one.
(3) Consider the sample unbiased variance:

S 2 =
1

n − 1

n∑
i=1

(Xi − X)2.

The distribution of (n − 1)S 2/σ2 is known as a Chi-square distribution with n−1
degrees of freedom. Obtain mean and variance of S 2. Note that a Chi-square
distribution with m degrees of freedom is:

f (x) =


1

2
m
2 Γ(m

2 )
x

m
2 −1e−

x
2 , if x > 0,

0, otherwise.
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(4) Prove that S 2 is an consistent estimator of σ2.

[Answer]

(1) The distribution of the sample mean X = (1/n)
∑n

i=1 Xi is derived using the
moment-generating function. Note that for X ∼ N(µ, σ2) the moment-generating
function φ(θ) is:

φ(θ) ≡ E(eθX) =
∫ ∞

−∞
eθx f (x) dx =

∫ ∞

−∞
eθx 1
√

2πσ2
e−

1
2σ2 (x−µ)2

dx

=

∫ ∞

−∞

1
√

2πσ2
e−

1
2σ2 (x−µ)2+θx dx

=

∫ ∞

−∞

1
√

2πσ2
e−

1
2σ2

(
x2−2(µ+σ2θ)x+µ2

)
dx

=

∫ ∞

−∞

1
√

2πσ2
e−

1
2σ2

(
x−(µ+σ2θ)

)2

+(µθ+ 1
2σ

2θ2) dx

= eµθ+
1
2σ

2θ2
∫ ∞

−∞

1
√

2πσ2
e−

1
2σ2

(
x−(µ+σ2θ)

)2

dx = exp
(
µθ +

1
2
σ2θ2

)
.

In the integration above, N(µ + σ2θ, σ2) is utilized. Therefore, we have:

φi(θ) = exp
(
µθ +

1
2
σ2θ2

)
.

Now, consider the moment-generating function of X, denoted by φx(θ):

φx(θ) ≡ E(eθX) = E(eθ
1
n
∑n

i=1 Xi) = E(
n∏

i=1

e
θ
n Xi) =

n∏
i=1

E(e
θ
n Xi) =

n∏
i=1

φi(
θ

n
)

=

n∏
i=1

exp
(
µ
θ

n
+

1
2
σ2(

θ

n
)2
)
= exp

(
µθ +

1
2
σ2 θ

2

n

)
= exp

(
µθ +

1
2
σ2

n
θ2

)
,

which is equivalent to the moment-generating function of the normal distribu-
tion with mean µ and variance σ2/n.

(2) We derive the distribution of Z, which is shown as:

Z =
X − µ
σ/
√

n
.

From the question (1), the moment-generating function of X, denoted by φx(θ),
is:

φx(θ) ≡ E(eθX) = exp
(
µθ +

1
2
σ2

n
θ2

)
.
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The moment-generating function of Z, denoted by φz(θ):

φz(θ) ≡ E(eθZ) = E
(
exp(θ

X − µ
σ/
√

n
)
)

= exp
(
−θ µ

σ/
√

n

)
E
(
exp(

θ

σ/
√

n
X)

)
= exp

(
−θ µ

σ/
√

n

)
φx(

θ

σ/
√

n
)

= exp
(
−θ µ

σ/
√

n

)
exp

(
µ

θ

σ/
√

n
+

1
2
σ2

n

( θ

σ/
√

n

)2)
= exp(

1
2
θ2),

which is the moment-generating function of N(0, 1).
(3) First, as preliminaries, we derive mean and variance of the chi-square distribu-

tion with m degrees of freedom. The chi-square distribution with m degrees of
freedom is:

f (x) =
1

2
m
2 Γ(m

2 )
x

m
2 −1e−

x
2 , if x > 0.

Therefore, the moment-generating function φχ2(θ) is:

φχ2(θ) = E(eθX) =
∫ ∞

0
eθx 1

2 m
2 Γ(m

2 )
x

m
2 −1e−

x
2 dx

=

∫ ∞

0

1
2

m
2 Γ(m

2 )
x

m
2 −1e−

1
2 (1−2θ)x dx

=

∫ ∞

0

1
2

m
2 Γ(m

2 )

( y
1 − 2θ

)m
2 −1

e−
1
2 y 1

1 − 2θ
dx

=
( 1
1 − 2θ

)m
2 −1 1

1 − 2θ

∫ ∞

0

1
2

m
2 Γ(m

2 )
y

m
2 −1e−

1
2 y dx = (1 − 2θ)−

m
2 .

In the fourth equality, use y = (1 − 2θ)x. The first and second derivatives of the
moment-generating function is:

φ′
χ2(θ) = m(1 − 2θ)−

m
2 −1, φ′′

χ2(θ) = m(m + 2)(1 − 2θ)−
m
2 −2.

Therefore, we obtain:

E(X) = φ′
χ2(0) = m, E(X2) = φ′′

χ2(0) = m(m + 2).

Thus, for the chi-square distribution with m degrees of freedom, mean is given
by m and variance is:

V(X) = E(X2) − (E(X))2
= m(m + 2) − m2 = 2m.
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Therefore, using (n − 1)S 2/σ2 ∼ χ2(n − 1), we have:

E(
(n − 1)S 2

σ2 ) = n − 1, V(
(n − 1)S 2

σ2 ) = 2(n − 1),

which implies

n − 1
σ2 E(S 2) = n − 1, (

n − 1
σ2 )2V(S 2) = 2(n − 1).

Finally, mean and variance of S 2 are:

E(S 2) = σ2, V(S 2) =
2σ4

n − 1
.

(4) We show that S 2 is a consistent estimator of σ2. Chebyshev’s inequality is
utilized, which is:

P(|S 2 − E(S 2)| ≥ ε) ≤ V(S 2)
ε2 .

Substituting E(S 2) and V(S 2), we obtain:

P(|S 2 − σ2| ≥ ε) ≤ 2σ4

(n − 1)ε2 −→ 0.

Therefore, S 2 is consistent.
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Statistical Tables

Table 1.2: Standard Normal Distribution — Z ∼ N(0, 1)

α = P(Z > zα) =
∫ ∞

zα

1
√

2π
exp(−1

2
x2) dx

zα .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 .50000 .49601 .49202 .48803 .48405 .48006 .47608 .47210 .46812 .46414
0.1 .46017 .45620 .45224 .44828 .44433 .44038 .43644 .43251 .42858 .42465
0.2 .42074 .41683 .41294 .40905 .40517 .40129 .39743 .39358 .38974 .38591
0.3 .38209 .37828 .37448 .37070 .36693 .36317 .35942 .35569 .35197 .34827
0.4 .34458 .34090 .33724 .33360 .32997 .32636 .32276 .31918 .31561 .31207
0.5 .30854 .30503 .30153 .29806 .29460 .29116 .28774 .28434 .28096 .27760
0.6 .27425 .27093 .26763 .26435 .26109 .25785 .25463 .25143 .24825 .24510
0.7 .24196 .23885 .23576 .23270 .22965 .22663 .22363 .22065 .21770 .21476
0.8 .21186 .20897 .20611 .20327 .20045 .19766 .19489 .19215 .18943 .18673
0.9 .18406 .18141 .17879 .17619 .17361 .17106 .16853 .16602 .16354 .16109
1.0 .15866 .15625 .15386 .15151 .14917 .14686 .14457 .14231 .14007 .13786
1.1 .13567 .13350 .13136 .12924 .12714 .12507 .12302 .12100 .11900 .11702
1.2 .11507 .11314 .11123 .10935 .10749 .10565 .10383 .10204 .10027 .09853
1.3 .09680 .09510 .09342 .09176 .09012 .08851 .08692 .08534 .08379 .08226
1.4 .08076 .07927 .07780 .07636 .07493 .07353 .07215 .07078 .06944 .06811
1.5 .06681 .06552 .06426 .06301 .06178 .06057 .05938 .05821 .05705 .05592
1.6 .05480 .05370 .05262 .05155 .05050 .04947 .04846 .04746 .04648 .04551
1.7 .04457 .04363 .04272 .04182 .04093 .04006 .03920 .03836 .03754 .03673
1.8 .03593 .03515 .03438 .03362 .03288 .03216 .03144 .03074 .03005 .02938
1.9 .02872 .02807 .02743 .02680 .02619 .02559 .02500 .02442 .02385 .02330
2.0 .02275 .02222 .02169 .02118 .02068 .02018 .01970 .01923 .01876 .01831
2.1 .01786 .01743 .01700 .01659 .01618 .01578 .01539 .01500 .01463 .01426
2.2 .01390 .01355 .01321 .01287 .01255 .01222 .01191 .01160 .01130 .01101
2.3 .01072 .01044 .01017 .00990 .00964 .00939 .00914 .00889 .00866 .00842
2.4 .00820 .00798 .00776 .00755 .00734 .00714 .00695 .00676 .00657 .00639
2.5 .00621 .00604 .00587 .00570 .00554 .00539 .00523 .00508 .00494 .00480
2.6 .00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357
2.7 .00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 .00272 .00264
2.8 .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193
2.9 .00187 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139
3.0 .00135 .00131 .00126 .00122 .00118 .00114 .00111 .00107 .00104 .00100
3.1 .00097 .00094 .00090 .00087 .00084 .00082 .00079 .00076 .00074 .00071
3.2 .00069 .00066 .00064 .00062 .00060 .00058 .00056 .00054 .00052 .00050
3.3 .00048 .00047 .00045 .00043 .00042 .00040 .00039 .00038 .00036 .00035
3.4 .00034 .00032 .00031 .00030 .00029 .00028 .00027 .00026 .00025 .00024
3.5 .00023 .00022 .00022 .00021 .00020 .00019 .00019 .00018 .00017 .00017
3.6 .00016 .00015 .00015 .00014 .00014 .00013 .00013 .00012 .00012 .00011
3.7 .00011 .00010 .00010 .00010 .00009 .00009 .00008 .00008 .00008 .00008
3.8 .00007 .00007 .00007 .00006 .00006 .00006 .00006 .00005 .00005 .00005
3.9 .00005 .00005 .00004 .00004 .00004 .00004 .00004 .00004 .00003 .00003
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Table 1.3: Chi-Square Distribution — X ∼ χ2(m)

α = P(X > χ2
α) =

∫ ∞

χ2
α

f (χ2) dχ2

α .995 .99 .975 .95 .90 .10 .05 .025 .010 .005
m
1 .0000393 .000157 .000982 .00393 .0158 2.71 3.84 5.02 6.63 7.88
2 .0100 .0201 .0506 .103 .211 4.61 5.99 7.38 9.21 10.60
3 .0717 .115 .216 .352 .584 6.25 7.81 9.35 11.34 12.84
4 .207 .297 .484 .711 1.06 7.78 9.49 11.14 13.28 14.86
5 .412 .554 .831 1.15 1.61 9.24 11.07 12.83 15.09 16.75
6 .676 .872 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55
7 .989 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.95
9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.73 26.76
12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27
17 5.70 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96 49.65
28 12.46 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77
50 27.99 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.43 104.21
80 51.17 53.54 57.15 60.39 64.28 96.58 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 73.29 107.57 113.15 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 82.36 118.50 124.34 129.56 135.81 140.17
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Table 1.4: F Distribution — F ∼ F(m1,m2)

α = P(F > Fα) =
∫ ∞

Fα
f (F) dF

m1 =Degree of freedom in the numerator
m2 =Degree of freedom in the denominator

m1 1 2 3 4 5 6 7 8 9 10 11 12 13 14
m2 α

.050 161. 200. 216. 225. 230. 234. 237. 239. 241. 242. 243. 244. 245. 245.
1 .025 648. 800. 864. 900. 922. 937. 948. 957. 963. 969. 973. 977. 980. 983.

.010 4052 5000 5403 5625 5764 5859 5928 5981 6022 6056 6083 6106 6126 6143

.005 16211 20000 21615 22500 23056 23437 23715 23925 24091 24224 24334 24426 24505 24572

.050 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4
2 .025 38.5 39.0 39.2 39.2 39.3 39.3 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4

.010 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4

.005 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199.

.050 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74 8.73 8.71
3 .025 17.4 16.0 15.4 15.1 14.9 14.7 14.6 14.5 14.5 14.4 14.4 14.3 14.3 14.3

.010 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 27.1 27.0 26.9

.005 55.6 49.8 47.5 46.2 45.4 44.8 44.4 44.1 43.9 43.7 43.5 43.4 43.3 43.2

.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91 5.89 5.87
4 .025 12.2 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.79 8.75 8.72 8.68

.010 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.5 14.4 14.3 14.2

.005 31.3 26.3 24.3 23.2 22.5 22.0 21.6 21.4 21.1 21.0 20.8 20.7 20.6 20.5

.050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.70 4.68 4.66 4.64
5 .025 10.0 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.57 6.52 6.49 6.46

.010 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.96 9.89 9.82 9.77

.005 22.8 18.3 16.5 15.6 14.9 14.5 14.2 14.0 13.8 13.6 13.5 13.4 13.3 13.2

.050 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.98 3.96
6 .025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.41 5.37 5.33 5.30

.010 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 7.66 7.60

.005 18.6 14.5 12.9 12.0 11.5 11.1 10.8 10.6 10.4 10.3 10.1 10.0 9.95 9.88

.050 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57 3.55 3.53
7 .025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.71 4.67 4.63 4.60

.010 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.54 6.47 6.41 6.36

.005 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 8.38 8.27 8.18 8.10 8.03

.050 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28 3.26 3.24
8 .025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.24 4.20 4.16 4.13

.010 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.73 5.67 5.61 5.56

.005 14.7 11.0 9.60 8.81 8.30 7.95 7.69 7.50 7.34 7.21 7.10 7.01 6.94 6.87

.050 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07 3.05 3.03
9 .025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.91 3.87 3.83 3.80

.010 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18 5.11 5.05 5.01

.005 13.6 10.1 8.72 7.96 7.47 7.13 6.88 6.69 6.54 6.42 6.31 6.23 6.15 6.09

.050 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91 2.89 2.86
10 .025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.66 3.62 3.58 3.55

.010 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77 4.71 4.65 4.60

.005 12.8 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97 5.85 5.75 5.66 5.59 5.53

.050 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79 2.76 2.74
11 .025 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.47 3.43 3.39 3.36

.010 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40 4.34 4.29

.005 12.2 8.91 7.60 6.88 6.42 6.10 5.86 5.68 5.54 5.42 5.32 5.24 5.16 5.10

.050 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69 2.66 2.64
12 .025 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.32 3.28 3.24 3.21

.010 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16 4.10 4.05

.005 11.8 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20 5.09 4.99 4.91 4.84 4.77

.050 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60 2.58 2.55
13 .025 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.20 3.15 3.12 3.08

.010 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 3.91 3.86

.005 11.4 8.19 6.93 6.23 5.79 5.48 5.25 5.08 4.94 4.82 4.72 4.64 4.57 4.51
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Table 1.4: F Distribution — F ∼ F(m1,m2): < Continued >

α = P(F > Fα) =
∫ ∞

Fα
f (F) dF

m1 =Degree of freedom in the numerator
m2 =Degree of freedom in the denominator

m1 15 16 17 18 19 20 25 30 40 50 60 80 100 200
m2 α

.050 246. 246. 247. 247. 248. 248. 249. 250. 251. 252. 252. 253. 253. 254.
1 .025 985. 987. 989. 990. 992. 993. 998. 1001 1006 1008 1010 1012 1013 1016

.010 6157 6170 6181 6192 6201 6209 6240 6261 6287 6303 6313 6326 6334 6350

.005 24630 24681 24727 24767 24803 24836 24960 25044 25148 25211 25253 25306 25337 25401

.050 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
2 .025 39.4 39.4 39.4 39.4 39.4 39.4 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5

.010 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5

.005 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199. 199.

.050 8.70 8.69 8.68 8.67 8.67 8.66 8.63 8.62 8.59 8.58 8.57 8.56 8.55 8.54
3 .025 14.3 14.2 14.2 14.2 14.2 14.2 14.1 14.1 14.0 14.0 14.0 14.0 14.0 13.9

.010 26.9 26.8 26.8 26.8 26.7 26.7 26.6 26.5 26.4 26.4 26.3 26.3 26.2 26.2

.005 43.1 43.0 42.9 42.9 42.8 42.8 42.6 42.5 42.3 42.2 42.1 42.1 42.0 41.9

.050 5.86 5.84 5.83 5.82 5.81 5.80 5.77 5.75 5.72 5.70 5.69 5.67 5.66 5.65
4 .025 8.66 8.63 8.61 8.59 8.58 8.56 8.50 8.46 8.41 8.38 8.36 8.33 8.32 8.29

.010 14.2 14.2 14.1 14.1 14.0 14.0 13.9 13.8 13.7 13.7 13.7 13.6 13.6 13.5

.005 20.4 20.4 20.3 20.3 20.2 20.2 20.0 19.9 19.8 19.7 19.6 19.5 19.5 19.4

.050 4.62 4.60 4.59 4.58 4.57 4.56 4.52 4.50 4.46 4.44 4.43 4.42 4.41 4.39
5 .025 6.43 6.40 6.38 6.36 6.34 6.33 6.27 6.23 6.18 6.14 6.12 6.10 6.08 6.05

.010 9.72 9.68 9.64 9.61 9.58 9.55 9.45 9.38 9.29 9.24 9.20 9.16 9.13 9.08

.005 13.1 13.1 13.0 13.0 12.9 12.9 12.8 12.7 12.5 12.5 12.4 12.3 12.3 12.2

.050 3.94 3.92 3.91 3.90 3.88 3.87 3.83 3.81 3.77 3.75 3.74 3.72 3.71 3.69
6 .025 5.27 5.24 5.22 5.20 5.18 5.17 5.11 5.07 5.01 4.98 4.96 4.93 4.92 4.88

.010 7.56 7.52 7.48 7.45 7.42 7.40 7.30 7.23 7.14 7.09 7.06 7.01 6.99 6.93

.005 9.81 9.76 9.71 9.66 9.62 9.59 9.45 9.36 9.24 9.17 9.12 9.06 9.03 8.95

.050 3.51 3.49 3.48 3.47 3.46 3.44 3.40 3.38 3.34 3.32 3.30 3.29 3.27 3.25
7 .025 4.57 4.54 4.52 4.50 4.48 4.47 4.40 4.36 4.31 4.28 4.25 4.23 4.21 4.18

.010 6.31 6.28 6.24 6.21 6.18 6.16 6.06 5.99 5.91 5.86 5.82 5.78 5.75 5.70

.005 7.97 7.91 7.87 7.83 7.79 7.75 7.62 7.53 7.42 7.35 7.31 7.25 7.22 7.15

.050 3.22 3.20 3.19 3.17 3.16 3.15 3.11 3.08 3.04 3.02 3.01 2.99 2.97 2.95
8 .025 4.10 4.08 4.05 4.03 4.02 4.00 3.94 3.89 3.84 3.81 3.78 3.76 3.74 3.71

.010 5.52 5.48 5.44 5.41 5.38 5.36 5.26 5.20 5.12 5.07 5.03 4.99 4.96 4.91

.005 6.81 6.76 6.72 6.68 6.64 6.61 6.48 6.40 6.29 6.22 6.18 6.12 6.09 6.02

.050 3.01 2.99 2.97 2.96 2.95 2.94 2.89 2.86 2.83 2.80 2.79 2.77 2.76 2.73
9 .025 3.77 3.74 3.72 3.70 3.68 3.67 3.60 3.56 3.51 3.47 3.45 3.42 3.40 3.37

.010 4.96 4.92 4.89 4.86 4.83 4.81 4.71 4.65 4.57 4.52 4.48 4.44 4.42 4.36

.005 6.03 5.98 5.94 5.90 5.86 5.83 5.71 5.62 5.52 5.45 5.41 5.36 5.32 5.26

.050 2.85 2.83 2.81 2.80 2.79 2.77 2.73 2.70 2.66 2.64 2.62 2.60 2.59 2.56
10 .025 3.52 3.50 3.47 3.45 3.44 3.42 3.35 3.31 3.26 3.22 3.20 3.17 3.15 3.12

.010 4.56 4.52 4.49 4.46 4.43 4.41 4.31 4.25 4.17 4.12 4.08 4.04 4.01 3.96

.005 5.47 5.42 5.38 5.34 5.31 5.27 5.15 5.07 4.97 4.90 4.86 4.81 4.77 4.71

.050 2.72 2.70 2.69 2.67 2.66 2.65 2.60 2.57 2.53 2.51 2.49 2.47 2.46 2.43
11 .025 3.33 3.30 3.28 3.26 3.24 3.23 3.16 3.12 3.06 3.03 3.00 2.97 2.96 2.92

.010 4.25 4.21 4.18 4.15 4.12 4.10 4.01 3.94 3.86 3.81 3.78 3.73 3.71 3.66

.005 5.05 5.00 4.96 4.92 4.89 4.86 4.74 4.65 4.55 4.49 4.45 4.39 4.36 4.29

.050 2.62 2.60 2.58 2.57 2.56 2.54 2.50 2.47 2.43 2.40 2.38 2.36 2.35 2.32
12 .025 3.18 3.15 3.13 3.11 3.09 3.07 3.01 2.96 2.91 2.87 2.85 2.82 2.80 2.76

.010 4.01 3.97 3.94 3.91 3.88 3.86 3.76 3.70 3.62 3.57 3.54 3.49 3.47 3.41

.005 4.72 4.67 4.63 4.59 4.56 4.53 4.41 4.33 4.23 4.17 4.12 4.07 4.04 3.97

.050 2.53 2.51 2.50 2.48 2.47 2.46 2.41 2.38 2.34 2.31 2.30 2.27 2.26 2.23
13 .025 3.05 3.03 3.00 2.98 2.96 2.95 2.88 2.84 2.78 2.74 2.72 2.69 2.67 2.63

.010 3.82 3.78 3.75 3.72 3.69 3.66 3.57 3.51 3.43 3.38 3.34 3.30 3.27 3.22

.005 4.46 4.41 4.37 4.33 4.30 4.27 4.15 4.07 3.97 3.91 3.87 3.81 3.78 3.71
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Table 1.4: F Distribution — F ∼ F(m1,m2): < Continued >

α = P(F > Fα) =
∫ ∞

Fα
f (F) dF

m1 =Degree of freedom in the numerator
m2 =Degree of freedom in the denominator

m1 1 2 3 4 5 6 7 8 9 10 11 12 13 14
m2 α

.050 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53 2.51 2.48
14 .025 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.09 3.05 3.01 2.98

.010 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.86 3.80 3.75 3.70

.005 11.1 7.92 6.68 6.00 5.56 5.26 5.03 4.86 4.72 4.60 4.51 4.43 4.36 4.30

.050 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48 2.45 2.42
15 .025 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 3.01 2.96 2.92 2.89

.010 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 3.61 3.56

.005 10.8 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54 4.42 4.33 4.25 4.18 4.12

.050 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42 2.40 2.37
16 .025 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.93 2.89 2.85 2.82

.010 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62 3.55 3.50 3.45

.005 10.6 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.38 4.27 4.18 4.10 4.03 3.97

.050 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41 2.38 2.35 2.33
17 .025 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.87 2.82 2.79 2.75

.010 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.46 3.40 3.35

.005 10.4 7.35 6.16 5.50 5.07 4.78 4.56 4.39 4.25 4.14 4.05 3.97 3.90 3.84

.050 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.31 2.29
18 .025 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.81 2.77 2.73 2.70

.010 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.43 3.37 3.32 3.27

.005 10.2 7.21 6.03 5.37 4.96 4.66 4.44 4.28 4.14 4.03 3.94 3.86 3.79 3.73

.050 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34 2.31 2.28 2.26
19 .025 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.76 2.72 2.68 2.65

.010 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 3.24 3.19

.005 10.1 7.09 5.92 5.27 4.85 4.56 4.34 4.18 4.04 3.93 3.84 3.76 3.70 3.64

.050 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28 2.25 2.23
20 .025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.72 2.68 2.64 2.60

.010 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23 3.18 3.13

.005 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96 3.85 3.76 3.68 3.61 3.55

.050 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.22 2.20
21 .025 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.68 2.64 2.60 2.56

.010 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.24 3.17 3.12 3.07

.005 9.83 6.89 5.73 5.09 4.68 4.39 4.18 4.01 3.88 3.77 3.68 3.60 3.54 3.48

.050 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 2.23 2.20 2.17
22 .025 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.65 2.60 2.56 2.53

.010 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.07 3.02

.005 9.73 6.81 5.65 5.02 4.61 4.32 4.11 3.94 3.81 3.70 3.61 3.54 3.47 3.41

.050 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.24 2.20 2.18 2.15
23 .025 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.62 2.57 2.53 2.50

.010 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07 3.02 2.97

.005 9.63 6.73 5.58 4.95 4.54 4.26 4.05 3.88 3.75 3.64 3.55 3.47 3.41 3.35

.050 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.22 2.18 2.15 2.13
24 .025 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.59 2.54 2.50 2.47

.010 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03 2.98 2.93

.005 9.55 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.69 3.59 3.50 3.42 3.35 3.30

.050 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.20 2.16 2.14 2.11
25 .025 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.56 2.51 2.48 2.44

.010 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13 3.06 2.99 2.94 2.89

.005 9.48 6.60 5.46 4.84 4.43 4.15 3.94 3.78 3.64 3.54 3.45 3.37 3.30 3.25

.050 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09 2.06 2.04
30 .025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.46 2.41 2.37 2.34

.010 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.91 2.84 2.79 2.74

.005 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45 3.34 3.25 3.18 3.11 3.06
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Table 1.4: F Distribution — F ∼ F(m1,m2): < Continued >

α = P(F > Fα) =
∫ ∞

Fα
f (F) dF

m1 =Degree of freedom in the numerator
m2 =Degree of freedom in the denominator

m1 15 16 17 18 19 20 25 30 40 50 60 80 100 200
m2 α

.050 2.46 2.44 2.43 2.41 2.40 2.39 2.34 2.31 2.27 2.24 2.22 2.20 2.19 2.16
14 .025 2.95 2.92 2.90 2.88 2.86 2.84 2.78 2.73 2.67 2.64 2.61 2.58 2.56 2.53

.010 3.66 3.62 3.59 3.56 3.53 3.51 3.41 3.35 3.27 3.22 3.18 3.14 3.11 3.06

.005 4.25 4.20 4.16 4.12 4.09 4.06 3.94 3.86 3.76 3.70 3.66 3.60 3.57 3.50

.050 2.40 2.38 2.37 2.35 2.34 2.33 2.28 2.25 2.20 2.18 2.16 2.14 2.12 2.10
15 .025 2.86 2.84 2.81 2.79 2.77 2.76 2.69 2.64 2.59 2.55 2.52 2.49 2.47 2.44

.010 3.52 3.49 3.45 3.42 3.40 3.37 3.28 3.21 3.13 3.08 3.05 3.00 2.98 2.92

.005 4.07 4.02 3.98 3.95 3.91 3.88 3.77 3.69 3.59 3.52 3.48 3.43 3.39 3.33

.050 2.35 2.33 2.32 2.30 2.29 2.28 2.23 2.19 2.15 2.12 2.11 2.08 2.07 2.04
16 .025 2.79 2.76 2.74 2.72 2.70 2.68 2.61 2.57 2.51 2.47 2.45 2.42 2.40 2.36

.010 3.41 3.37 3.34 3.31 3.28 3.26 3.17 3.10 3.02 2.97 2.93 2.89 2.86 2.81

.005 3.92 3.87 3.83 3.80 3.76 3.73 3.62 3.54 3.44 3.37 3.33 3.28 3.25 3.18

.050 2.31 2.29 2.27 2.26 2.24 2.23 2.18 2.15 2.10 2.08 2.06 2.03 2.02 1.99
17 .025 2.72 2.70 2.67 2.65 2.63 2.62 2.55 2.50 2.44 2.41 2.38 2.35 2.33 2.29

.010 3.31 3.27 3.24 3.21 3.19 3.16 3.07 3.00 2.92 2.87 2.83 2.79 2.76 2.71

.005 3.79 3.75 3.71 3.67 3.64 3.61 3.49 3.41 3.31 3.25 3.21 3.15 3.12 3.05

.050 2.27 2.25 2.23 2.22 2.20 2.19 2.14 2.11 2.06 2.04 2.02 1.99 1.98 1.95
18 .025 2.67 2.64 2.62 2.60 2.58 2.56 2.49 2.44 2.38 2.35 2.32 2.29 2.27 2.23

.010 3.23 3.19 3.16 3.13 3.10 3.08 2.98 2.92 2.84 2.78 2.75 2.71 2.68 2.62

.005 3.68 3.64 3.60 3.56 3.53 3.50 3.38 3.30 3.20 3.14 3.10 3.04 3.01 2.94

.050 2.23 2.21 2.20 2.18 2.17 2.16 2.11 2.07 2.03 2.00 1.98 1.96 1.94 1.91
19 .025 2.62 2.59 2.57 2.55 2.53 2.51 2.44 2.39 2.33 2.30 2.27 2.24 2.22 2.18

.010 3.15 3.12 3.08 3.05 3.03 3.00 2.91 2.84 2.76 2.71 2.67 2.63 2.60 2.55

.005 3.59 3.54 3.50 3.46 3.43 3.40 3.29 3.21 3.11 3.04 3.00 2.95 2.91 2.85

.050 2.20 2.18 2.17 2.15 2.14 2.12 2.07 2.04 1.99 1.97 1.95 1.92 1.91 1.88
20 .025 2.57 2.55 2.52 2.50 2.48 2.46 2.40 2.35 2.29 2.25 2.22 2.19 2.17 2.13

.010 3.09 3.05 3.02 2.99 2.96 2.94 2.84 2.78 2.69 2.64 2.61 2.56 2.54 2.48

.005 3.50 3.46 3.42 3.38 3.35 3.32 3.20 3.12 3.02 2.96 2.92 2.86 2.83 2.76

.050 2.18 2.16 2.14 2.12 2.11 2.10 2.05 2.01 1.96 1.94 1.92 1.89 1.88 1.84
21 .025 2.53 2.51 2.48 2.46 2.44 2.42 2.36 2.31 2.25 2.21 2.18 2.15 2.13 2.09

.010 3.03 2.99 2.96 2.93 2.90 2.88 2.79 2.72 2.64 2.58 2.55 2.50 2.48 2.42

.005 3.43 3.38 3.34 3.31 3.27 3.24 3.13 3.05 2.95 2.88 2.84 2.79 2.75 2.68

.050 2.15 2.13 2.11 2.10 2.08 2.07 2.02 1.98 1.94 1.91 1.89 1.86 1.85 1.82
22 .025 2.50 2.47 2.45 2.43 2.41 2.39 2.32 2.27 2.21 2.17 2.14 2.11 2.09 2.05

.010 2.98 2.94 2.91 2.88 2.85 2.83 2.73 2.67 2.58 2.53 2.50 2.45 2.42 2.36

.005 3.36 3.32 3.27 3.24 3.21 3.18 3.06 2.98 2.88 2.82 2.77 2.72 2.69 2.62

.050 2.13 2.11 2.09 2.08 2.06 2.05 2.00 1.96 1.91 1.88 1.86 1.84 1.82 1.79
23 .025 2.47 2.44 2.42 2.39 2.37 2.36 2.29 2.24 2.18 2.14 2.11 2.08 2.06 2.01

.010 2.93 2.89 2.86 2.83 2.80 2.78 2.69 2.62 2.54 2.48 2.45 2.40 2.37 2.32

.005 3.30 3.25 3.21 3.18 3.15 3.12 3.00 2.92 2.82 2.76 2.71 2.66 2.62 2.56

.050 2.11 2.09 2.07 2.05 2.04 2.03 1.98 1.94 1.89 1.86 1.84 1.82 1.80 1.77
24 .025 2.44 2.41 2.39 2.36 2.35 2.33 2.26 2.21 2.15 2.11 2.08 2.05 2.02 1.98

.010 2.89 2.85 2.82 2.79 2.76 2.74 2.64 2.58 2.49 2.44 2.40 2.36 2.33 2.27

.005 3.25 3.20 3.16 3.12 3.09 3.06 2.95 2.87 2.77 2.70 2.66 2.60 2.57 2.50

.050 2.09 2.07 2.05 2.04 2.02 2.01 1.96 1.92 1.87 1.84 1.82 1.80 1.78 1.75
25 .025 2.41 2.38 2.36 2.34 2.32 2.30 2.23 2.18 2.12 2.08 2.05 2.02 2.00 1.95

.010 2.85 2.81 2.78 2.75 2.72 2.70 2.60 2.54 2.45 2.40 2.36 2.32 2.29 2.23

.005 3.20 3.15 3.11 3.08 3.04 3.01 2.90 2.82 2.72 2.65 2.61 2.55 2.52 2.45

.050 2.01 1.99 1.98 1.96 1.95 1.93 1.88 1.84 1.79 1.76 1.74 1.71 1.70 1.66
30 .025 2.31 2.28 2.26 2.23 2.21 2.20 2.12 2.07 2.01 1.97 1.94 1.90 1.88 1.84

.010 2.70 2.66 2.63 2.60 2.57 2.55 2.45 2.39 2.30 2.25 2.21 2.16 2.13 2.07

.005 3.01 2.96 2.92 2.89 2.85 2.82 2.71 2.63 2.52 2.46 2.42 2.36 2.32 2.25
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Table 1.4: F Distribution — F ∼ F(m1,m2): < Continued >

α = P(F > Fα) =
∫ ∞

Fα
f (F) dF

m1 =Degree of freedom in the numerator
m2 =Degree of freedom in the denominator

m1 1 2 3 4 5 6 7 8 9 10 11 12 13 14
m2 α

.050 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 2.08 2.04 2.01 1.99
35 .025 5.48 4.11 3.52 3.18 2.96 2.80 2.68 2.58 2.50 2.44 2.39 2.34 2.30 2.27

.010 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88 2.80 2.74 2.69 2.64

.005 8.98 6.19 5.09 4.48 4.09 3.81 3.61 3.45 3.32 3.21 3.12 3.05 2.98 2.93

.050 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00 1.97 1.95
40 .025 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.33 2.29 2.25 2.21

.010 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66 2.61 2.56

.005 8.83 6.07 4.98 4.37 3.99 3.71 3.51 3.35 3.22 3.12 3.03 2.95 2.89 2.83

.050 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 2.01 1.97 1.94 1.92
45 .025 5.38 4.01 3.42 3.09 2.86 2.70 2.58 2.49 2.41 2.35 2.29 2.25 2.21 2.17

.010 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74 2.67 2.61 2.55 2.51

.005 8.71 5.97 4.89 4.29 3.91 3.64 3.43 3.28 3.15 3.04 2.96 2.88 2.82 2.76

.050 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.99 1.95 1.92 1.89
50 .025 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38 2.32 2.26 2.22 2.18 2.14

.010 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.79 2.70 2.63 2.56 2.51 2.46

.005 8.63 5.90 4.83 4.23 3.85 3.58 3.38 3.22 3.09 2.99 2.90 2.82 2.76 2.70

.050 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.89 1.86
60 .025 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.22 2.17 2.13 2.09

.010 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.44 2.39

.005 8.49 5.80 4.73 4.14 3.76 3.49 3.29 3.13 3.01 2.90 2.82 2.74 2.68 2.62

.050 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97 1.93 1.89 1.86 1.84
70 .025 5.25 3.89 3.31 2.97 2.75 2.59 2.47 2.38 2.30 2.24 2.18 2.14 2.10 2.06

.010 7.01 4.92 4.07 3.60 3.29 3.07 2.91 2.78 2.67 2.59 2.51 2.45 2.40 2.35

.005 8.40 5.72 4.66 4.08 3.70 3.43 3.23 3.08 2.95 2.85 2.76 2.68 2.62 2.56

.050 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.91 1.88 1.84 1.82
80 .025 5.22 3.86 3.28 2.95 2.73 2.57 2.45 2.35 2.28 2.21 2.16 2.11 2.07 2.03

.010 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55 2.48 2.42 2.36 2.31

.005 8.33 5.67 4.61 4.03 3.65 3.39 3.19 3.03 2.91 2.80 2.72 2.64 2.58 2.52

.050 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94 1.90 1.86 1.83 1.80
90 .025 5.20 3.84 3.26 2.93 2.71 2.55 2.43 2.34 2.26 2.19 2.14 2.09 2.05 2.02

.010 6.93 4.85 4.01 3.54 3.23 3.01 2.84 2.72 2.61 2.52 2.45 2.39 2.33 2.29

.005 8.28 5.62 4.57 3.99 3.62 3.35 3.15 3.00 2.87 2.77 2.68 2.61 2.54 2.49

.050 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.89 1.85 1.82 1.79
100 .025 5.18 3.83 3.25 2.92 2.70 2.54 2.42 2.32 2.24 2.18 2.12 2.08 2.04 2.00

.010 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.43 2.37 2.31 2.27

.005 8.24 5.59 4.54 3.96 3.59 3.33 3.13 2.97 2.85 2.74 2.66 2.58 2.52 2.46

.050 3.90 3.06 2.66 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.85 1.82 1.79 1.76
150 .025 5.13 3.78 3.20 2.87 2.65 2.49 2.37 2.28 2.20 2.13 2.08 2.03 1.99 1.95

.010 6.81 4.75 3.91 3.45 3.14 2.92 2.76 2.63 2.53 2.44 2.37 2.31 2.25 2.20

.005 8.12 5.49 4.45 3.88 3.51 3.25 3.05 2.89 2.77 2.67 2.58 2.51 2.44 2.38

.050 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.84 1.80 1.77 1.74
200 .025 5.10 3.76 3.18 2.85 2.63 2.47 2.35 2.26 2.18 2.11 2.06 2.01 1.97 1.93

.010 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.34 2.27 2.22 2.17

.005 8.06 5.44 4.41 3.84 3.47 3.21 3.01 2.86 2.73 2.63 2.54 2.47 2.40 2.35

.050 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.81 1.77 1.74 1.71
500 .025 5.05 3.72 3.14 2.81 2.59 2.43 2.31 2.22 2.14 2.07 2.02 1.97 1.93 1.89

.010 6.69 4.65 3.82 3.36 3.05 2.84 2.68 2.55 2.44 2.36 2.28 2.22 2.17 2.12

.005 7.95 5.35 4.33 3.76 3.40 3.14 2.94 2.79 2.66 2.56 2.48 2.40 2.34 2.28

.050 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75 1.72 1.69
∞ .025 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.99 1.94 1.90 1.87

.010 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25 2.18 2.13 2.08

.005 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62 2.52 2.43 2.36 2.29 2.24
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Table 1.4: F Distribution — F ∼ F(m1,m2): < Continued >

α = P(F > Fα) =
∫ ∞

Fα
f (F) dF

m1 =Degree of freedom in the numerator
m2 =Degree of freedom in the denominator

m1 15 16 17 18 19 20 25 30 40 50 60 80 100 200
m2 α

.050 1.96 1.94 1.92 1.91 1.89 1.88 1.82 1.79 1.74 1.70 1.68 1.65 1.63 1.60
35 .025 2.24 2.21 2.18 2.16 2.14 2.12 2.05 2.00 1.93 1.89 1.86 1.82 1.80 1.75

.010 2.60 2.56 2.53 2.50 2.47 2.44 2.35 2.28 2.19 2.14 2.10 2.05 2.02 1.96

.005 2.88 2.83 2.79 2.76 2.72 2.69 2.58 2.50 2.39 2.33 2.28 2.22 2.19 2.11

.050 1.92 1.90 1.89 1.87 1.85 1.84 1.78 1.74 1.69 1.66 1.64 1.61 1.59 1.55
40 .025 2.18 2.15 2.13 2.11 2.09 2.07 1.99 1.94 1.88 1.83 1.80 1.76 1.74 1.69

.010 2.52 2.48 2.45 2.42 2.39 2.37 2.27 2.20 2.11 2.06 2.02 1.97 1.94 1.87

.005 2.78 2.74 2.70 2.66 2.63 2.60 2.48 2.40 2.30 2.23 2.18 2.12 2.09 2.01

.050 1.89 1.87 1.86 1.84 1.82 1.81 1.75 1.71 1.66 1.63 1.60 1.57 1.55 1.51
45 .025 2.14 2.11 2.09 2.07 2.05 2.03 1.95 1.90 1.83 1.79 1.76 1.72 1.69 1.64

.010 2.46 2.43 2.39 2.36 2.34 2.31 2.21 2.14 2.05 2.00 1.96 1.91 1.88 1.81

.005 2.71 2.66 2.62 2.59 2.56 2.53 2.41 2.33 2.22 2.16 2.11 2.05 2.01 1.93

.050 1.87 1.85 1.83 1.81 1.80 1.78 1.73 1.69 1.63 1.60 1.58 1.54 1.52 1.48
50 .025 2.11 2.08 2.06 2.03 2.01 1.99 1.92 1.87 1.80 1.75 1.72 1.68 1.66 1.60

.010 2.42 2.38 2.35 2.32 2.29 2.27 2.17 2.10 2.01 1.95 1.91 1.86 1.82 1.76

.005 2.65 2.61 2.57 2.53 2.50 2.47 2.35 2.27 2.16 2.10 2.05 1.99 1.95 1.87

.050 1.84 1.82 1.80 1.78 1.76 1.75 1.69 1.65 1.59 1.56 1.53 1.50 1.48 1.44
60 .025 2.06 2.03 2.01 1.98 1.96 1.94 1.87 1.82 1.74 1.70 1.67 1.63 1.60 1.54

.010 2.35 2.31 2.28 2.25 2.22 2.20 2.10 2.03 1.94 1.88 1.84 1.78 1.75 1.68

.005 2.57 2.53 2.49 2.45 2.42 2.39 2.27 2.19 2.08 2.01 1.96 1.90 1.86 1.78

.050 1.81 1.79 1.77 1.75 1.74 1.72 1.66 1.62 1.57 1.53 1.50 1.47 1.45 1.40
70 .025 2.03 2.00 1.97 1.95 1.93 1.91 1.83 1.78 1.71 1.66 1.63 1.59 1.56 1.50

.010 2.31 2.27 2.23 2.20 2.18 2.15 2.05 1.98 1.89 1.83 1.78 1.73 1.70 1.62

.005 2.51 2.47 2.43 2.39 2.36 2.33 2.21 2.13 2.02 1.95 1.90 1.84 1.80 1.71

.050 1.79 1.77 1.75 1.73 1.72 1.70 1.64 1.60 1.54 1.51 1.48 1.45 1.43 1.38
80 .025 2.00 1.97 1.95 1.93 1.90 1.88 1.81 1.75 1.68 1.63 1.60 1.55 1.53 1.47

.010 2.27 2.23 2.20 2.17 2.14 2.12 2.01 1.94 1.85 1.79 1.75 1.69 1.65 1.58

.005 2.47 2.43 2.39 2.35 2.32 2.29 2.17 2.08 1.97 1.90 1.85 1.79 1.75 1.66

.050 1.78 1.76 1.74 1.72 1.70 1.69 1.63 1.59 1.53 1.49 1.46 1.43 1.41 1.36
90 .025 1.98 1.95 1.93 1.91 1.88 1.86 1.79 1.73 1.66 1.61 1.58 1.53 1.50 1.44

.010 2.24 2.21 2.17 2.14 2.11 2.09 1.99 1.92 1.82 1.76 1.72 1.66 1.62 1.55

.005 2.44 2.39 2.35 2.32 2.28 2.25 2.13 2.05 1.94 1.87 1.82 1.75 1.71 1.62

.050 1.77 1.75 1.73 1.71 1.69 1.68 1.62 1.57 1.52 1.48 1.45 1.41 1.39 1.34
100 .025 1.97 1.94 1.91 1.89 1.87 1.85 1.77 1.71 1.64 1.59 1.56 1.51 1.48 1.42

.010 2.22 2.19 2.15 2.12 2.09 2.07 1.97 1.89 1.80 1.74 1.69 1.63 1.60 1.52

.005 2.41 2.37 2.33 2.29 2.26 2.23 2.11 2.02 1.91 1.84 1.79 1.72 1.68 1.59

.050 1.73 1.71 1.69 1.67 1.66 1.64 1.58 1.54 1.48 1.44 1.41 1.37 1.34 1.29
150 .025 1.92 1.89 1.87 1.84 1.82 1.80 1.72 1.67 1.59 1.54 1.50 1.45 1.42 1.35

.010 2.16 2.12 2.09 2.06 2.03 2.00 1.90 1.83 1.73 1.66 1.62 1.56 1.52 1.43

.005 2.33 2.29 2.25 2.21 2.18 2.15 2.03 1.94 1.83 1.76 1.70 1.63 1.59 1.49

.050 1.72 1.69 1.67 1.66 1.64 1.62 1.56 1.52 1.46 1.41 1.39 1.35 1.32 1.26
200 .025 1.90 1.87 1.84 1.82 1.80 1.78 1.70 1.64 1.56 1.51 1.47 1.42 1.39 1.32

.010 2.13 2.09 2.06 2.03 2.00 1.97 1.87 1.79 1.69 1.63 1.58 1.52 1.48 1.39

.005 2.30 2.25 2.21 2.18 2.14 2.11 1.99 1.91 1.79 1.71 1.66 1.59 1.54 1.44

.050 1.69 1.66 1.64 1.62 1.61 1.59 1.53 1.48 1.42 1.38 1.35 1.30 1.28 1.21
500 .025 1.86 1.83 1.80 1.78 1.76 1.74 1.65 1.60 1.52 1.46 1.42 1.37 1.34 1.25

.010 2.07 2.04 2.00 1.97 1.94 1.92 1.81 1.74 1.63 1.57 1.52 1.45 1.41 1.31

.005 2.23 2.19 2.14 2.11 2.07 2.04 1.92 1.84 1.72 1.64 1.58 1.51 1.46 1.35

.050 1.67 1.64 1.62 1.60 1.59 1.57 1.51 1.46 1.39 1.35 1.32 1.27 1.24 1.17
∞ .025 1.83 1.80 1.78 1.75 1.73 1.71 1.63 1.57 1.48 1.43 1.39 1.33 1.30 1.21

.010 2.04 2.00 1.97 1.93 1.90 1.88 1.77 1.70 1.59 1.52 1.47 1.40 1.36 1.25

.005 2.19 2.14 2.10 2.06 2.03 2.00 1.88 1.79 1.67 1.59 1.53 1.45 1.40 1.28
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Table 1.5: t Distribution — T ∼ t(m)

α = P(T > tα) =
∫ ∞

tα

Γ( m+1
2 )

Γ( m
2 )

1
√

mπ
1

(1 + x2/m)(m+1)/2 dx

α .10 .05 .025 .01 .005
m
1 3.0777 6.3137 12.7062 31.8210 63.6559
2 1.8856 2.9200 4.3027 6.9645 9.9250
3 1.6377 2.3534 3.1824 4.5407 5.8408
4 1.5332 2.1318 2.7765 3.7469 4.6041
5 1.4759 2.0150 2.5706 3.3649 4.0321
6 1.4398 1.9432 2.4469 3.1427 3.7074
7 1.4149 1.8946 2.3646 2.9979 3.4995
8 1.3968 1.8595 2.3060 2.8965 3.3554
9 1.3830 1.8331 2.2622 2.8214 3.2498

10 1.3722 1.8125 2.2281 2.7638 3.1693
11 1.3634 1.7959 2.2010 2.7181 3.1058
12 1.3562 1.7823 2.1788 2.6810 3.0545
13 1.3502 1.7709 2.1604 2.6503 3.0123
14 1.3450 1.7613 2.1448 2.6245 2.9768
15 1.3406 1.7531 2.1315 2.6025 2.9467
16 1.3368 1.7459 2.1199 2.5835 2.9208
17 1.3334 1.7396 2.1098 2.5669 2.8982
18 1.3304 1.7341 2.1009 2.5524 2.8784
19 1.3277 1.7291 2.0930 2.5395 2.8609
20 1.3253 1.7247 2.0860 2.5280 2.8453
21 1.3232 1.7207 2.0796 2.5176 2.8314
22 1.3212 1.7171 2.0739 2.5083 2.8188
23 1.3195 1.7139 2.0687 2.4999 2.8073
24 1.3178 1.7109 2.0639 2.4922 2.7970
25 1.3163 1.7081 2.0595 2.4851 2.7874
26 1.3150 1.7056 2.0555 2.4786 2.7787
27 1.3137 1.7033 2.0518 2.4727 2.7707
28 1.3125 1.7011 2.0484 2.4671 2.7633
29 1.3114 1.6991 2.0452 2.4620 2.7564
30 1.3104 1.6973 2.0423 2.4573 2.7500
31 1.3095 1.6955 2.0395 2.4528 2.7440
32 1.3086 1.6939 2.0369 2.4487 2.7385
33 1.3077 1.6924 2.0345 2.4448 2.7333
34 1.3070 1.6909 2.0322 2.4411 2.7284
35 1.3062 1.6896 2.0301 2.4377 2.7238
40 1.3031 1.6839 2.0211 2.4233 2.7045
50 1.2987 1.6759 2.0086 2.4033 2.6778
60 1.2958 1.6706 2.0003 2.3901 2.6603
70 1.2938 1.6669 1.9944 2.3808 2.6479
80 1.2922 1.6641 1.9901 2.3739 2.6387
90 1.2910 1.6620 1.9867 2.3685 2.6316

100 1.2901 1.6602 1.9840 2.3642 2.6259
∞ 1.2816 1.6449 1.9600 2.3264 2.5758
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alternative hypothesis, 49
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best linear unbiased estimator, 63
bias, 38
binomial distribution, 5, 12, 26
binomial theorem, 13
BLUE, 63

central limit theorem, 33, 45, 47
Chebyshev’s inequality, 29, 31, 32
chi-square distribution, 108
complementary event, 1
compound event, 1
conditional density function, 10
conditional distribution, 10
conditional probability, 3
conditional probability density function,

10
conditional probability function, 10
confidence interval, 47
consistency, 38, 41
consistent estimator, 41
constrained maximum likelihood

estimator, 55
continuous random variable, 4, 5, 9, 10
convergence in probability, 32
correlation coefficient, 19
covariance, 17
Cramer-Rao Inequality, 70
Cramer-Rao inequality, 39, 70

Cramer-Rao lower bound, 39
critical region, 49
cumulative distribution function, 7

density function, 5
dependent variable, 58
discrete random variable, 4, 8, 10
distribution, 4

binomial distribution, 5, 12, 26
normal distribution, 7
standard normal distribution, 7, 14
uniform distribution, 6, 13

distribution function, 7

e, 12
efficiency, 38, 39
efficient estimator, 39
empty event, 1
estimate, 36
estimated regression line, 59
estimator, 36
event, 1
exclusive, 1
experiment, 1
explanatory variable, 58

F distribution, 109

Gauss-Markov theorem, 62

identity matrix, 74
independence, 3, 19–21, 25, 26, 28, 29
independence of random variables, 11
independent variable, 58
integration by parts, 14, 69
integration by substitution, 6, 68
interval estimation, 47
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inverse, 74

Jacobian, 7, 24
joint density function, 9
joint probability density function, 9
joint probability function, 9

kth order Taylor series expansion, 70

Lagrange function, 41
Lagrange multiplier, 41
law of large numbers, 32, 33, 46
least squares estimate, 60
least squares estimator, 60
likelihood function, 43
likelihood ratio, 55
likelihood ratio test, 54
linear estimator, 40
linear unbiased estimator, 40, 62
linear unbiased minimum variance

estimator, 40
log-likelihood function, 44

marginal density function, 9
marginal probability density function, 9
marginal probability function, 9
mathematical expectation, 11
maximum likelihood estimate, 43
maximum likelihood estimator, 43
mean, 11, 15–17, 35, 37
mean square error, 32
moment-generating function, 12, 17, 24
MSE, 32
multiple regression model, 66
multiplication rule, 3

negative definite matrix, 75
negative semidefinite matrix, 75
normal distribution, 7, 107
normalization, 16
nth moment, 25
null hypothesis, 49

OLS, 60
one-sided test, 52

ordinary least squares estimate, 60
ordinary least squares estimation, 60
ordinary least squares estimator, 60, 67

point estimate, 35
point estimation, 38
positive definite matrix, 74
positive semidefinite matrix, 74
power, 49
power function, 49
predicted value, 59
probability, 2
probability density function, 5
probability function, 4
product event, 1

random experiment, 1
random variable, 4
regression coefficient, 58
regression line, 58
rejection region, 49
residual, 58

sample point, 1
sample space, 1
significance level, 49
simple event, 1
standard deviation, 12
standard normal distribution, 107
standard normal distribution, 7, 14
standardization, 16
statistic, 36
sum event, 1

t distribution, 115
Taylor series expansion, 34, 46, 70
test statistic, 49
transformation of variables, 22, 23
transpose, 74
true regression line, 58
two-sided test, 52
type I error, 49
type II error, 49

unbiased estimator, 38
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unbiasedness, 38
unconstrained maximum likelihood

estimator, 55
unexplanatory variable, 58
uniform distribution, 6, 13

variance, 11, 15, 17, 35, 37

Wald test, 52, 53
whole event, 1


