3 Mathematical Expectation

3.1 Univariate Random Variable

Definition of Mathematical Expectation (3{# FJH#A#E):
Let g(X) be a function of random variable X. The mathemat-
ical expectation of g(X), denoted by E(g(X)), is defined as

follows:
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1. gX) = X.

The expectation of X, E(X), is known as mean (F£13)

of random variable X.

Z xif(x;), (Discrete RV),

EX)=<{ ' .
f xf(x)dx, (Continuous RV),

=, (Or py).

When a distribution of X is symmetric, mean indicates

the center of the distribution.
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If X is broadly distributed, o> = V(X) becomes large.
Conversely, if the distribution is concentrated on the
center, 0> becomes small. Note that o = VV(X) is
called the standard deviation (iZ#{F ).
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Z g(x)pi = Z g(x) f(x;), (Discrete RV),

E(gX) =4 ' '

) g(x)f(x) dx, (Continuous RV).

—00

The following three functional forms of g(X) are important.
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2. g(X) = (X —p).

The expectation of (X — u)? is known as variance (%

#%) of random variable X, which is denoted by V(X).

V(X) = B(X - w)?)
Z(x,- - u)z f(x), (Discrete RV),

f w(x —u)*f(x)dx, (Continuous RV),

=%, (oro?).
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3. g(X) = %X,

The expectation of e’ is called the moment-generating

function (FEZ=fEE%X), which is denoted by ¢(6).

¢(0) = E(e")
Z e f(x), (Discrete RV),

f " f(x)dx, (Continuous RV).

00
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Some Formulas of Mean and Variance:

1. Theorem: E(aX + b) = aE(X) + b, where a and b are

constant.
Proof:

When X is a discrete random variable,
E(aX +b) = ) (ax; + b)f(x)

=a )y xfCo)+b Z f(x)

= aE(X) + b.
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the definition of mean and L 0:0 f(x)dx = 1 because
f(x) is a probability density function.
. Theorem: V(X) = E(X?) — u?, where u = E(X).
Proof:
V(X) is rewritten as follows:
V(X) = E(X - ) = EQX® = 2uX - %)
= B(X?) = 2uE(X) + i = B(X?) — 4.
The first equality is due to the definition of variance.
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The first and the fifth equalities are from the definition
of variance. We use E(aX + b) = au + b in the second

equality.

. Theorem: The random variable X is assumed to be
distributed with mean E(X) = u and variance V(X) =
o?. Define Z = % Then, we have E(Z) = 0 and
VZ)=1.
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Note that we have ) ; x;f(x;) = E(X) from the defini-
tion of mean and ) ; f(x;) = 1 because f(x;) is a prob-

ability function.

If X is a continuous random variable,

E(aX + b) = fw(ax +Db)f(x) dx

:afmxf(x)dx+bfmf(x)dx

=aE(X) + .
Similarly, note that we have f_ o; xf(x) dx = E(X) from
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. Theorem: V(aX + b) = a*V(X), where a and b are

constant.
Proof:
From the definition of the mathematical expectation,
V(aX + b) is represented as:
V(aX + b) = E(((aX + b) - E(aX + b))’)
= B((aX ~ au)’) = B@(X ~ )

= E(X - p)’) = a’V(X)
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Proof:

E(X) and V(X) are obtained as:

E(Z) = E(X;“) - E(X()r_“ =0,
V(Z) = V(éx - i‘—r) - O%V(X) -1

The transformation from X to Z is known as normal-

ization (IE#{L) or standardization (FE¥4L).
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Example 1.5: In Example 1.2 of flipping a coin three times First, u = E(X) is computed as:

(Section 1.1), we see in Section 2.1 that the probability func- n n n nl
=EX) = = = I — 1= p)t=~*
tion is written as the following binomial distribution: K &) ; xf ) ; xf o) ; xx!(n - x)!p (=p
! X n—x i l’l' )C(l n—x
POXC= 0= f(0) = osp™ (= p)f'™, g ey yrremmpe L ACD)
_ n - 1) )c 1 n—x
forx=0,1,2,---,n, PZ(X Dt — (I-p)
wheren =3 and p = 1/2. e’
P np Z W p (1 =p)" =np,
When X has the binomial distribution above, we obtain E(X),
V(X) and ¢(6) as follows. where n” =n—1and x’ = x — 1 are set.
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Second, in order to obtain o> = V(X), we rewrite V(X) as: - (n-2)! = nex
— (x=2)!n - ot?
o =VX)=EX®) - 1> =EXX - 1)) + u — p*. n/ "
= nn = 1)p’ Z o =)
gar x'(n — x")!
E(X(X - 1)) is given by: 1
=n(n—1)p°,
EX(X-1)) = -1 -1
(X ) = Z Mx=Dfx) = XZ_;J Hx=Dfx) where n’ = n —2 and x" = x — 2 are re-defined.
—Zx(x Tn—nt? p(=p

n' X n—x
:; PR LA
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Therefore, 0> = V(X) is obtained as: Finally, the moment-generating function ¢(6) is represented

as:
P =VX)=EXX-1)+pu—p®

n

9(0) =E(e™) = ) ¢’ Pl =p)y”

n!
X—
=n(n—1)p* +np —n’*p* = —np* + np = np(1 - p). £ Xi(n - x)!

n

= ) s A =P = (e 1=

x=0

In the last equality, we utilize the following formula:

n

n n! X =X
(a+b) :Z(;—x!(n_x)!ab ,

which is called the binomial theorem.
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Example 1.6: As an example of continuous random vari-
ables, in Section 2.1 the uniform distribution is introduced,

which is given by:

1, forO<x<1,
fx) = ,
0, otherwise.

When X has the uniform distribution above, E(X), V(X) and

¢(0) are computed as follows:
“500= [ o= [ xae=[Le]. -]
u= __wxxx—oxx— X T
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Example 1.7: As another example of continuous random

variables, we take the standard normal distribution:

1 >
fx) = — e, for—oo<x<oo
2m

When X has a standard normal distribution, i.e., when X ~

N0, 1), E(X), V(X) and ¢(0) are as follows.
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V(X) is computed as follows:

V(X) = E(X?) = f ) x*f(x) dx

—00

o 1 |2
2 —5x"
= X e 7% dx
Ioo V27T
_1

1l
[oN
=

1l
=
T
Q
(ST
S
-
8
o
-
o
=
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00

?=VX)=EX?) -1 = f X2 f(x) dx — 1

—00

! 10 /12 1
=f0 2w =30 - (5) = 53

'~ 1
00 =) = [ ema= [ e
. !
1 1
= [Eeex](l) = 5(66 -1).
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E(X) is obtained as:

E(X) = I: xf(x) dx = %I: xe 7 dx

T

1 e

. _1,2
because lim —e 2% = 0.

X—+00
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The first equality holds because of E(X) = 0.
In the fifth equality, use the following integration formula,

called the integration by parts:
b , b
f h(0g'(x) dx = [A(x)g(x)] - f I (x)g(x) dx,

where we take A(x) = x and g(x) = —e~2* in this case.
In the sixth equality, lim —xe " = 0 is utilized.
X—*+00

The last equality is because the integration of the standard

normal probability density function is equal to one.
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¢(0) is derived as follows:

e 2% dx

®) = f o f(x) dx =
1) e’ f(x)dx = N \/_
§0x g f b N -e2-67) d
f \/_ - \/ﬂe X
= ¢2° Iw \/Zre_%()‘_9>2 dx = 2%,

The last equality holds because the integration indicates the

normal density with mean 6 and variance one.
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Example 1.8(b): When X ~ N(u, 0%), what is the moment-

generating function of X?

$(6) = f i ™ f(x) dx

1 1
™ exp ——(x —w)*) dx
s et w)

= el gt p) s

1
= exp(uf + zazﬂz)f

e Pl -0 d

1
= exp(uf + 50'292).

112

1. gX,Y)=X

The expectation of random variable X, i.e., E(X), is

given by:
Z Z xif (i, y7), (Discrete),
EX) = ?J
f f xf(x,y) dx dy, (Continuous),
= iy

The case of g(X,Y) = Y is exactly the same formula-

tion as above, i.e., E(Y) =y,
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Example 1.8: When the moment-generating function of X
is given by ¢.(6) = er? (i.e., X has a standard normal distri-
bution), we want to obtain the moment-generating function
of Y =u+oX.

Let ¢.(0) and ¢,(#) be the moment-generating functions of X
and Y, respectively. Then, the moment-generating function

of Y is obtained as follows:

9,(6) = E(e") = B(e" ™) = eME(e"™) = e"g.(60)

2 1
= ™17 = exp(ud + 50'202).
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3.2 Bivariate Random Variable

Definition: Let g(X,Y) be a function of random variables
X and Y. The mathematical expectation of g(X,Y), denoted
by E(g(X, Y)), is defined as:

Z Z 8(xi, y) f (xi, ), (Discrete),
EgX.v)=1{ ' "

f f g(x,y)f(x,y) dx dy, (Continuous).
The following four functional forms are important, i.e., mean,

variance, covariance and the moment-generating function.
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2. g(X’ Y) = (X _ﬂx)z:
The expectation of (X — u,)? is known as variance of X.

V(X) = E(X — u2)*)
Z Z(xi — ) (), (Discrete)
i

f ) f oo()c — 1> f(x,y) dx dy, (Continuous)

_ 2
=0

The variance of Y is also obtained in the same way, i.e.,

V(Y) = o2
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3. 8(X,Y) = (X — p)(Y — py):

The expectation of (X — u)(Y — u,) is known as co- Cov(X, ¥) = E((X — u)(Y — 1))

variance of X and Y, which is denoted by Cov(X, Y) Z Z
(x; — ,Ux)()’j - ﬂy)f(xiv yj),
J

and written as: i (Discrete),

f f (= 1) — ) (5, ) dx dy,

(Continuous).

Thus, covariance is defined in the case of bivariate ran-

dom variables.
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4. g(X,Y) = ehX+0Y;

The mathematical expectation of e/**%Y is called the

moment-generating function, which is denoted by:
$(61,6,) = E(e" )
Z Z M f (X)), (Discrete)
i

f f oty f(x,y) dx dy, (Continuous)

In Section 5, the moment-generating function in the

multivariate cases is discussed in more detail.
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