
3 Mathematical Expectation

3.1 Univariate Random Variable

Definition of Mathematical Expectation ( ):

Let g(X) be a function of random variable X. The mathemat-

ical expectation of g(X), denoted by E(g(X)), is defined as

follows:
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E(g(X)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

g(xi)pi =
∑

i

g(xi) f (xi), (Discrete RV),

∫ ∞

−∞
g(x) f (x) dx, (Continuous RV).

The following three functional forms of g(X) are important.
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1. g(X) = X.

The expectation of X, E(X), is known as mean ( )

of random variable X.

E(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

xi f (xi), (Discrete RV),

∫ ∞

−∞
x f (x) dx, (Continuous RV),

= μ, (or μx).

When a distribution of X is symmetric, mean indicates

the center of the distribution.
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2. g(X) = (X − μ)2.

The expectation of (X − μ)2 is known as variance (

) of random variable X, which is denoted by V(X).

V(X) = E((X − μ)2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

(xi − μ)2 f (xi), (Discrete RV),

∫ ∞

−∞
(x − μ)2 f (x) dx, (Continuous RV),

= σ2, (or σ2
x).
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If X is broadly distributed, σ2 = V(X) becomes large.

Conversely, if the distribution is concentrated on the

center, σ2 becomes small. Note that σ =
√

V(X) is

called the standard deviation ( ).
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3. g(X) = eθX.

The expectation of eθX is called the moment-generating

function ( ), which is denoted by φ(θ).

φ(θ) = E(eθX)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

eθxi f (xi), (Discrete RV),

∫ ∞

−∞
eθx f (x) dx, (Continuous RV).
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Some Formulas of Mean and Variance:

1. Theorem: E(aX + b) = aE(X) + b, where a and b are

constant.

Proof:

When X is a discrete random variable,

E(aX + b) =
∑

i

(axi + b) f (xi)

= a
∑

i

xi f (xi) + b
∑

i

f (xi)

= aE(X) + b.
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Note that we have
∑

i xi f (xi) = E(X) from the defini-

tion of mean and
∑

i f (xi) = 1 because f (xi) is a prob-

ability function.

If X is a continuous random variable,

E(aX + b) =

∫ ∞

−∞
(ax + b) f (x) dx

= a
∫ ∞

−∞
x f (x) dx + b

∫ ∞

−∞
f (x) dx

= aE(X) + b.

Similarly, note that we have
∫ ∞
−∞ x f (x) dx = E(X) from
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the definition of mean and
∫ ∞
−∞ f (x) dx = 1 because

f (x) is a probability density function.

2. Theorem: V(X) = E(X2) − μ2, where μ = E(X).

Proof:

V(X) is rewritten as follows:

V(X) = E((X − μ)2) = E(X2 − 2μX − μ2)

= E(X2) − 2μE(X) + μ2 = E(X2) − μ2.

The first equality is due to the definition of variance.
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3. Theorem: V(aX + b) = a2V(X), where a and b are

constant.

Proof:

From the definition of the mathematical expectation,

V(aX + b) is represented as:

V(aX + b) = E
(
((aX + b) − E(aX + b))2

)

= E
(
(aX − aμ)2

)
= E(a2(X − μ)2)

= a2E((X − μ)2) = a2V(X)
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The first and the fifth equalities are from the definition

of variance. We use E(aX + b) = aμ + b in the second

equality.

4. Theorem: The random variable X is assumed to be

distributed with mean E(X) = μ and variance V(X) =

σ2. Define Z =
X − μ
σ

. Then, we have E(Z) = 0 and

V(Z) = 1.
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Proof:

E(X) and V(X) are obtained as:

E(Z) = E
(X − μ
σ

)
=

E(X) − μ
σ

= 0,

V(Z) = V
( 1
σ

X − μ
σ

)
=

1

σ2
V(X) = 1.

The transformation from X to Z is known as normal-

ization ( ) or standardization ( ).
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Example 1.5: In Example 1.2 of flipping a coin three times

(Section 1.1), we see in Section 2.1 that the probability func-

tion is written as the following binomial distribution:

P(X = x) = f (x) =
n!

x!(n − x)!
px(1 − p)n−x,

for x = 0, 1, 2, · · · , n,

where n = 3 and p = 1/2.

When X has the binomial distribution above, we obtain E(X),

V(X) and φ(θ) as follows.
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First, μ = E(X) is computed as:

μ = E(X) =

n∑
x=0

x f (x) =

n∑
x=1

x f (x) =

n∑
x=1

x
n!

x!(n − x)!
px(1 − p)n−x

=

n∑
x=1

n!

(x − 1)!(n − x)!
px(1 − p)n−x

= np
n∑

x=1

(n − 1)!

(x − 1)!(n − x)!
px−1(1 − p)n−x

= np
n′∑

x′=0

n′!
x′!(n′ − x′)!

px′(1 − p)n′−x′ = np,

where n′ = n − 1 and x′ = x − 1 are set.
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Second, in order to obtain σ2 = V(X), we rewrite V(X) as:

σ2 = V(X) = E(X2) − μ2 = E(X(X − 1)) + μ − μ2.

E(X(X − 1)) is given by:

E(X(X − 1)) =

n∑
x=0

x(x − 1) f (x) =

n∑
x=2

x(x − 1) f (x)

=

n∑
x=2

x(x − 1)
n!

x!(n − x)!
px(1 − p)n−x

=

n∑
x=2

n!

(x − 2)!(n − x)!
px(1 − p)n−x
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= n(n − 1)p2

n∑
x=2

(n − 2)!

(x − 2)!(n − x)!
px−2(1 − p)n−x

= n(n − 1)p2

n′∑
x′=0

n′!
x′!(n′ − x′)!

px′(1 − p)n′−x′

= n(n − 1)p2,

where n′ = n − 2 and x′ = x − 2 are re-defined.

101

Therefore, σ2 = V(X) is obtained as:

σ2 = V(X) = E(X(X − 1)) + μ − μ2

= n(n − 1)p2 + np − n2 p2 = −np2 + np = np(1 − p).
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Finally, the moment-generating function φ(θ) is represented

as:

φ(θ) = E(eθX) =

n∑
x=0

eθx
n!

x!(n − x)!
px(1 − p)n−p

=

n∑
x=0

n!

x!(n − x)!
(peθ)x(1 − p)n−p = (peθ + 1 − p)n.

In the last equality, we utilize the following formula:

(a + b)n =

n∑
x=0

n!

x!(n − x)!
axbn−x,

which is called the binomial theorem.
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Example 1.6: As an example of continuous random vari-

ables, in Section 2.1 the uniform distribution is introduced,

which is given by:

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, for 0 < x < 1,

0, otherwise.

When X has the uniform distribution above, E(X), V(X) and

φ(θ) are computed as follows:

μ = E(X) =

∫ ∞

−∞
x f (x) dx =

∫ 1

0

x dx =
[1
2

x2
]1

0
=

1

2
,
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σ2 = V(X) = E(X2) − μ2 =

∫ ∞

−∞
x2 f (x) dx − μ2

=

∫ 1

0

x2 dx − μ2 =
[1
3

x3
]1

0
−
(1
2

)2
=

1

12
,

φ(θ) = E(eθX) =

∫ ∞

−∞
eθx f (x) dx =

∫ 1

0

eθx dx

= [
1

θ
eθx]1

0 =
1

θ
(eθ − 1).
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Example 1.7: As another example of continuous random

variables, we take the standard normal distribution:

f (x) =
1√
2π

e−
1
2 x2

, for −∞ < x < ∞

When X has a standard normal distribution, i.e., when X ∼
N(0, 1), E(X), V(X) and φ(θ) are as follows.
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E(X) is obtained as:

E(X) =

∫ ∞

−∞
x f (x) dx =

1√
2π

∫ ∞

−∞
xe−

1
2 x2

dx

=
1√
2π

[
−e−

1
2 x2
]∞
−∞ = 0,

because lim
x→±∞−e−

1
2 x2

= 0.
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V(X) is computed as follows:

V(X) = E(X2) =

∫ ∞

−∞
x2 f (x) dx

=

∫ ∞

−∞
x2 1√

2π
e−

1
2 x2

dx

=
1√
2π

∫ ∞

−∞
x

d(−e−
1
2 x2

)

dx
dx

=
1√
2π

[
x(−e−

1
2 x2

)
]∞
−∞ +

1√
2π

∫ ∞

−∞
e−

1
2 x2

dx

=

∫ ∞

−∞

1√
2π

e−
1
2 x2

dx = 1.
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The first equality holds because of E(X) = 0.

In the fifth equality, use the following integration formula,

called the integration by parts:

∫ b

a
h(x)g′(x) dx =

[
h(x)g(x)

]b
a
−
∫ b

a
h′(x)g(x) dx,

where we take h(x) = x and g(x) = −e−
1
2 x2

in this case.

In the sixth equality, lim
x→±∞−xe−

1
2 x2

= 0 is utilized.

The last equality is because the integration of the standard

normal probability density function is equal to one.
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φ(θ) is derived as follows:

φ(θ) =

∫ ∞

−∞
eθx f (x) dx =

∫ ∞

−∞
eθx

1√
2π

e−
1
2 x2

dx

=

∫ ∞

−∞

1√
2π

e−
1
2 x2+θx dx =

∫ ∞

−∞

1√
2π

e−
1
2
((x−θ)2−θ2) dx

= e
1
2 θ

2

∫ ∞

−∞

1√
2π

e−
1
2 (x−θ)2

dx = e
1
2 θ

2

.

The last equality holds because the integration indicates the

normal density with mean θ and variance one.
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Example 1.8: When the moment-generating function of X

is given by φx(θ) = e
1
2 θ

2

(i.e., X has a standard normal distri-

bution), we want to obtain the moment-generating function

of Y = μ + σX.

Let φx(θ) and φy(θ) be the moment-generating functions of X

and Y , respectively. Then, the moment-generating function

of Y is obtained as follows:

φy(θ) = E(eθY) = E(eθ(μ+σX)) = eθμE(eθσX) = eθμφx(θσ)

= eθμe
1
2σ

2θ2 = exp(μθ +
1

2
σ2θ2).
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Example 1.8(b): When X ∼ N(μ, σ2), what is the moment-

generating function of X?

φ(θ) =

∫ ∞

−∞
eθx f (x) dx

=

∫ ∞

−∞
eθx

1√
2πσ2

exp
(
− 1

2σ2
(x − μ)2

)
dx

=

∫ ∞

−∞

1√
2πσ2

exp
(
θx − 1

2σ2
(x − μ)2

)
dx

= exp(μθ +
1

2
σ2θ2)

∫ ∞

−∞

1√
2πσ2

exp
( 1

2σ2
(x − μ − σ2θ)2

)
dx

= exp(μθ +
1

2
σ2θ2).
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3.2 Bivariate Random Variable

Definition: Let g(X,Y) be a function of random variables

X and Y . The mathematical expectation of g(X,Y), denoted

by E(g(X,Y)), is defined as:

E(g(X,Y)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

∑
j

g(xi, y j) f (xi, y j), (Discrete),

∫ ∞

−∞

∫ ∞

−∞
g(x, y) f (x, y) dx dy, (Continuous).

The following four functional forms are important, i.e., mean,

variance, covariance and the moment-generating function.
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1. g(X, Y) = X:

The expectation of random variable X, i.e., E(X), is

given by:

E(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

∑
j

xi f (xi, y j), (Discrete),

∫ ∞

−∞

∫ ∞

−∞
x f (x, y) dx dy, (Continuous),

= μx.

The case of g(X,Y) = Y is exactly the same formula-

tion as above, i.e., E(Y) = μy.
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2. g(X, Y) = (X − μx)2:

The expectation of (X − μx)
2 is known as variance of X.

V(X) = E((X − μx)
2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

∑
j

(xi − μx)
2 f (xi, y j), (Discrete)

∫ ∞

−∞

∫ ∞

−∞
(x − μx)

2 f (x, y) dx dy, (Continuous)

= σ2
x.

The variance of Y is also obtained in the same way, i.e.,

V(Y) = σ2
y .
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3. g(X, Y) = (X − μx)(Y − μy):

The expectation of (X − μx)(Y − μy) is known as co-

variance of X and Y , which is denoted by Cov(X,Y)

and written as:
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Cov(X,Y) = E((X − μx)(Y − μy))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

∑
j

(xi − μx)(y j − μy) f (xi, y j),

(Discrete),∫ ∞

−∞

∫ ∞

−∞
(x − μx)(y − μy) f (x, y) dx dy,

(Continuous).

Thus, covariance is defined in the case of bivariate ran-

dom variables.
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4. g(X, Y) = eθ1 X+θ2Y:

The mathematical expectation of eθ1X+θ2Y is called the

moment-generating function, which is denoted by:

φ(θ1, θ2) = E(eθ1X+θ2Y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

∑
j

eθ1 xi+θ2y j f (xi, y j), (Discrete)

∫ ∞

−∞

∫ ∞

−∞
eθ1 x+θ2y f (x, y) dx dy, (Continuous)

In Section 5, the moment-generating function in the

multivariate cases is discussed in more detail.
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