3 Mathematical Expectation

3．1 Univariate Random Variable

Definition of Mathematical Expectation（数学的期待値）： Let $g(X)$ be a function of random variable X ．The mathemat－ ical expectation of $g(X)$ ，denoted by $\mathrm{E}(g(X))$ ，is defined as follows：

1．$g(X)=X$ ．
The expectation of $X, \mathrm{E}(X)$ ，is known as mean（平均） of random variable X ．

$$
\begin{aligned}
\mathrm{E}(X) & = \begin{cases}\sum_{i} x_{i} f\left(x_{i}\right), & (\text { Discrete RV }) \\
\int_{-\infty}^{\infty} x f(x) \mathrm{d} x, & (\text { Continuous RV }),\end{cases} \\
& =\mu, \quad\left(\text { or } \mu_{x}\right) .
\end{aligned}
$$

When a distribution of X is symmetric，mean indicates the center of the distribution．

88
$\mathrm{E}(g(X))= \begin{cases}\sum_{i} g\left(x_{i}\right) p_{i}=\sum_{i} g\left(x_{i}\right) f\left(x_{i}\right), & \text {（Discrete RV），} \\ \int_{-\infty}^{\infty} g(x) f(x) \mathrm{d} x, & \text {（Continuous RV）．}\end{cases}$
The following three functional forms of $g(X)$ are important．

2．$g(X)=(X-\mu)^{2}$ ．
The expectation of $(X-\mu)^{2}$ is known as variance（分散）of random variable X ，which is denoted by $\mathrm{V}(X)$ ．

$$
\begin{aligned}
\mathrm{V}(X) & =\mathrm{E}\left((X-\mu)^{2}\right) \\
& = \begin{cases}\sum_{i}\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right), & (\text { Discrete RV) }, \\
\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) \mathrm{d} x, & (\text { Continuous RV), }\end{cases} \\
& =\sigma^{2}, \quad\left(\text { or } \sigma_{x}^{2}\right) .
\end{aligned}
$$

3．$g(X)=e^{\theta X}$ ．
The expectation of $e^{\theta X}$ is called the moment－generating function（積率母関数），which is denoted by $\phi(\theta)$ ．

$$
\begin{aligned}
\phi(\theta) & =\mathrm{E}\left(e^{\theta X}\right) \\
& = \begin{cases}\sum_{i} e^{\theta x_{i}} f\left(x_{i}\right), & \text { (Discrete RV) }, \\
\int_{-\infty}^{\infty} e^{\theta x} f(x) \mathrm{d} x, & \text { (Continuous RV). }\end{cases}
\end{aligned}
$$

Some Formulas of Mean and Variance：

1．Theorem： $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$ ，where a and b are constant．

Proof：

When X is a discrete random variable，

$$
\begin{aligned}
\mathrm{E}(a X+b) & =\sum_{i}\left(a x_{i}+b\right) f\left(x_{i}\right) \\
& =a \sum_{i} x_{i} f\left(x_{i}\right)+b \sum_{i} f\left(x_{i}\right) \\
& =a \mathrm{E}(X)+b
\end{aligned}
$$

the definition of mean and $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$ because $f(x)$ is a probability density function．

2．Theorem： $\mathrm{V}(X)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$ ，where $\mu=\mathrm{E}(X)$ ．

Proof：

$\mathrm{V}(X)$ is rewritten as follows：

$$
\begin{aligned}
\mathrm{V}(X) & =\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}-2 \mu X-\mu^{2}\right) \\
& =\mathrm{E}\left(X^{2}\right)-2 \mu \mathrm{E}(X)+\mu^{2}=\mathrm{E}\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

The first equality is due to the definition of variance．

Note that we have $\sum_{i} x_{i} f\left(x_{i}\right)=\mathrm{E}(X)$ from the defini－ tion of mean and $\sum_{i} f\left(x_{i}\right)=1$ because $f\left(x_{i}\right)$ is a prob－ ability function．

If X is a continuous random variable，

$$
\begin{aligned}
\mathrm{E}(a X+b) & =\int_{-\infty}^{\infty}(a x+b) f(x) \mathrm{d} x \\
& =a \int_{-\infty}^{\infty} x f(x) \mathrm{d} x+b \int_{-\infty}^{\infty} f(x) \mathrm{d} x \\
& =a \mathrm{E}(X)+b
\end{aligned}
$$

Similarly，note that we have $\int_{-\infty}^{\infty} x f(x) \mathrm{d} x=\mathrm{E}(X)$ from 93

3．Theorem： $\mathrm{V}(a X+b)=a^{2} \mathrm{~V}(X)$ ，where a and b are constant．

Proof：

From the definition of the mathematical expectation， $\mathrm{V}(a X+b)$ is represented as：

$$
\begin{aligned}
\mathrm{V}(a X+b) & =\mathrm{E}\left(((a X+b)-\mathrm{E}(a X+b))^{2}\right) \\
& =\mathrm{E}\left((a X-a \mu)^{2}\right)=\mathrm{E}\left(a^{2}(X-\mu)^{2}\right) \\
& =a^{2} \mathrm{E}\left((X-\mu)^{2}\right)=a^{2} \mathrm{~V}(X)
\end{aligned}
$$

Proof：

$\mathrm{E}(X)$ and $\mathrm{V}(X)$ are obtained as：

$$
\begin{aligned}
\mathrm{E}(Z) & =\mathrm{E}\left(\frac{X-\mu}{\sigma}\right)=\frac{\mathrm{E}(X)-\mu}{\sigma}=0 \\
\mathrm{~V}(Z) & =\mathrm{V}\left(\frac{1}{\sigma} X-\frac{\mu}{\sigma}\right)=\frac{1}{\sigma^{2}} \mathrm{~V}(X)=1
\end{aligned}
$$

The transformation from X to Z is known as normal－ ization（正規化）or standardization（標準化）．

Example 1.5: In Example 1.2 of flipping a coin three times (Section 1.1), we see in Section 2.1 that the probability function is written as the following binomial distribution:

$$
\begin{aligned}
& P(X=x)=f(x)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& \qquad \text { for } x=0,1,2, \cdots, n,
\end{aligned}
$$

where $n=3$ and $p=1 / 2$.
When X has the binomial distribution above, we obtain $\mathrm{E}(X)$, $\mathrm{V}(X)$ and $\phi(\theta)$ as follows.

Second, in order to obtain $\sigma^{2}=\mathrm{V}(X)$, we rewrite $\mathrm{V}(X)$ as:

$$
\sigma^{2}=\mathrm{V}(X)=\mathrm{E}\left(X^{2}\right)-\mu^{2}=\mathrm{E}(X(X-1))+\mu-\mu^{2}
$$

$\mathrm{E}(X(X-1))$ is given by:

$$
\begin{aligned}
\mathrm{E}(X(X-1)) & =\sum_{x=0}^{n} x(x-1) f(x)=\sum_{x=2}^{n} x(x-1) f(x) \\
& =\sum_{x=2}^{n} x(x-1) \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\sum_{x=2}^{n} \frac{n!}{(x-2)!(n-x)!} p^{x}(1-p)^{n-x}
\end{aligned}
$$

Therefore, $\sigma^{2}=\mathrm{V}(X)$ is obtained as:

$$
\begin{aligned}
\sigma^{2} & =\mathrm{V}(X)=\mathrm{E}(X(X-1))+\mu-\mu^{2} \\
& =n(n-1) p^{2}+n p-n^{2} p^{2}=-n p^{2}+n p=n p(1-p)
\end{aligned}
$$

First, $\mu=\mathrm{E}(X)$ is computed as:

$$
\begin{aligned}
\mu & =\mathrm{E}(X)=\sum_{x=0}^{n} x f(x)=\sum_{x=1}^{n} x f(x)=\sum_{x=1}^{n} x \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x} \\
& =n p \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}(1-p)^{n-x} \\
& =n p \sum_{x^{\prime}=0}^{n^{\prime}} \frac{n^{\prime}!}{x^{\prime}!\left(n^{\prime}-x^{\prime}\right)!} p^{x^{\prime}}(1-p)^{n^{\prime}-x^{\prime}}=n p,
\end{aligned}
$$

where $n^{\prime}=n-1$ and $x^{\prime}=x-1$ are set.

$$
\begin{aligned}
& =n(n-1) p^{2} \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!(n-x)!} p^{x-2}(1-p)^{n-x} \\
& =n(n-1) p^{2} \sum_{x^{\prime}=0}^{n^{\prime}} \frac{n^{\prime}!}{x^{\prime}!\left(n^{\prime}-x^{\prime}\right)!} p^{x^{\prime}}(1-p)^{n^{\prime}-x^{\prime}} \\
& =n(n-1) p^{2}
\end{aligned}
$$

where $n^{\prime}=n-2$ and $x^{\prime}=x-2$ are re-defined.

101

Finally, the moment-generating function $\phi(\theta)$ is represented as:

$$
\begin{aligned}
\phi(\theta) & =\mathrm{E}\left(e^{\theta X}\right)=\sum_{x=0}^{n} e^{\theta x} \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-p} \\
& =\sum_{x=0}^{n} \frac{n!}{x!(n-x)!}\left(p e^{\theta}\right)^{x}(1-p)^{n-p}=\left(p e^{\theta}+1-p\right)^{n} .
\end{aligned}
$$

In the last equality, we utilize the following formula:

$$
(a+b)^{n}=\sum_{x=0}^{n} \frac{n!}{x!(n-x)!} a^{x} b^{n-x},
$$

which is called the binomial theorem.

Example 1.6: As an example of continuous random variables, in Section 2.1 the uniform distribution is introduced, which is given by:

$$
f(x)= \begin{cases}1, & \text { for } 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

When X has the uniform distribution above, $\mathrm{E}(X), \mathrm{V}(X)$ and $\phi(\theta)$ are computed as follows:

$$
\mu=\mathrm{E}(X)=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x=\int_{0}^{1} x \mathrm{~d} x=\left[\frac{1}{2} x^{2}\right]_{0}^{1}=\frac{1}{2},
$$

104

Example 1.7: As another example of continuous random variables, we take the standard normal distribution:

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}, \quad \text { for }-\infty<x<\infty
$$

When X has a standard normal distribution, i.e., when $X \sim$ $N(0,1), \mathrm{E}(X), \mathrm{V}(X)$ and $\phi(\theta)$ are as follows.

The first equality holds because of $\mathrm{E}(X)=0$.
In the fifth equality, use the following integration formula, called the integration by parts:

$$
\int_{a}^{b} h(x) g^{\prime}(x) \mathrm{d} x=[h(x) g(x)]_{a}^{b}-\int_{a}^{b} h^{\prime}(x) g(x) \mathrm{d} x
$$

where we take $h(x)=x$ and $g(x)=-e^{-\frac{1}{2} x^{2}}$ in this case.
In the sixth equality, $\lim _{x \rightarrow \pm \infty}-x e^{-\frac{1}{2} x^{2}}=0$ is utilized.
The last equality is because the integration of the standard normal probability density function is equal to one.
$\phi(\theta)$ is derived as follows:

$$
\begin{aligned}
\phi(\theta) & =\int_{-\infty}^{\infty} e^{\theta x} f(x) \mathrm{d} x=\int_{-\infty}^{\infty} e^{\theta x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}+\theta x} \mathrm{~d} x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left((x-\theta)^{2}-\theta^{2}\right)} \mathrm{d} x \\
& =e^{\frac{1}{2} \theta^{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(x-\theta)^{2}} \mathrm{~d} x=e^{\frac{1}{2} \theta^{2}} .
\end{aligned}
$$

The last equality holds because the integration indicates the normal density with mean θ and variance one.

Example 1.8(b): When $X \sim N\left(\mu, \sigma^{2}\right)$, what is the momentgenerating function of X ?

$$
\begin{aligned}
\phi(\theta) & =\int_{-\infty}^{\infty} e^{\theta x} f(x) \mathrm{d} x \\
& =\int_{-\infty}^{\infty} e^{\theta x} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \mathrm{d} x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\theta x-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \mathrm{d} x \\
& =\exp \left(\mu \theta+\frac{1}{2} \sigma^{2} \theta^{2}\right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{1}{2 \sigma^{2}}\left(x-\mu-\sigma^{2} \theta\right)^{2}\right) \mathrm{d} x \\
& =\exp \left(\mu \theta+\frac{1}{2} \sigma^{2} \theta^{2}\right) .
\end{aligned}
$$

Example 1.8: When the moment-generating function of X is given by $\phi_{x}(\theta)=e^{\frac{1}{2} \theta^{2}}$ (i.e., X has a standard normal distribution), we want to obtain the moment-generating function of $Y=\mu+\sigma X$.

Let $\phi_{x}(\theta)$ and $\phi_{y}(\theta)$ be the moment-generating functions of X and Y, respectively. Then, the moment-generating function of Y is obtained as follows:

$$
\begin{aligned}
\phi_{y}(\theta) & =\mathrm{E}\left(e^{\theta Y}\right)=\mathrm{E}\left(e^{\theta(\mu+\sigma X)}\right)=e^{\theta \mu} \mathrm{E}\left(e^{\theta \sigma X}\right)=e^{\theta \mu} \phi_{x}(\theta \sigma) \\
& =e^{\theta \mu} e^{\frac{1}{2} \sigma^{2} \theta^{2}}=\exp \left(\mu \theta+\frac{1}{2} \sigma^{2} \theta^{2}\right) .
\end{aligned}
$$

3.2 Bivariate Random Variable

Definition: Let $g(X, Y)$ be a function of random variables X and Y. The mathematical expectation of $g(X, Y)$, denoted by $\mathrm{E}(g(X, Y))$, is defined as:
$\mathrm{E}(g(X, Y))= \begin{cases}\sum_{i} \sum_{j} g\left(x_{i}, y_{j}\right) f\left(x_{i}, y_{j}\right), & \text { (Discrete), } \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) \mathrm{d} x \mathrm{~d} y, & \text { (Continuous). }\end{cases}$ The following four functional forms are important, i.e., mean, variance, covariance and the moment-generating function.

1. $g(X, Y)=X$:

The expectation of random variable X, i.e., $\mathrm{E}(X)$, is given by:

$$
\begin{aligned}
\mathrm{E}(X) & =\left\{\begin{array}{ll}
\sum_{i} \sum_{j} x_{i} f\left(x_{i}, y_{j}\right), & \text { (Discrete) } \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) \mathrm{d} x \mathrm{~d} y, & \text { (Continuous), } \\
& =\mu_{x}
\end{array} .\right.
\end{aligned}
$$

The case of $g(X, Y)=Y$ is exactly the same formulation as above, i.e., $\mathrm{E}(Y)=\mu_{y}$.
2. $g(X, Y)=\left(X-\mu_{x}\right)^{2}$:

The expectation of $\left(X-\mu_{x}\right)^{2}$ is known as variance of X.

$$
\begin{aligned}
\mathrm{V}(X) & =\mathrm{E}\left(\left(X-\mu_{x}\right)^{2}\right) \\
& = \begin{cases}\sum_{i} \sum_{j}\left(x_{i}-\mu_{x}\right)^{2} f\left(x_{i}, y_{j}\right), \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{x}\right)^{2} f(x, y) \mathrm{d} x \mathrm{~d} y, & \text { (Discrete) } \\
& =\sigma_{x}^{2} .\end{cases}
\end{aligned}
$$

The variance of Y is also obtained in the same way, i.e.,

$$
\mathrm{V}(Y)=\sigma_{y}^{2} .
$$

3. $g(X, Y)=\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)$:

The expectation of $\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)$ is known as covariance of X and Y, which is denoted by $\operatorname{Cov}(X, Y)$ and written as:
4. $g(X, Y)=e^{\theta_{1} X+\theta_{2} Y}$:

The mathematical expectation of $e^{\theta_{1} X+\theta_{2} Y}$ is called the moment-generating function, which is denoted by:

$$
\begin{aligned}
\phi\left(\theta_{1}, \theta_{2}\right) & =\mathrm{E}\left(e^{\theta_{1} X+\theta_{2} Y}\right) \\
& = \begin{cases}\sum_{i} \sum_{j} e^{\theta_{1} x_{i}+\theta_{2} y_{j}} f\left(x_{i}, y_{j}\right), & \text { (Discrete) } \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\theta_{1} x+\theta_{2} y} f(x, y) \mathrm{d} x \mathrm{~d} y, & \text { (Continuous) }\end{cases}
\end{aligned}
$$

In Section 5, the moment-generating function in the multivariate cases is discussed in more detail.

