Some Formulas of Mean and Variance: We consider two

random variables X and Y.
1. Theorem: E(X +Y) = E(X) + E(Y).
Proof:

For discrete random variables X and Y, it is given by:
B+ Y) = D 3 6+ ) fo5 )
i
= Z Z Xifo(xis y;) + Z Zyjf;cy(xi’Yj)
i J i J
= E(X) + E(Y).
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2. Theorem: E(XY) = E(X)E(Y), when X is indepen-
dent of Y.

Proof:

For discrete random variables X and Y,

EXY) = 3" 3 xyifoly) = D D i) )
i J i J

= (D xfx))( D yih)) = BXOE®).
J

If X is independent of Y, the second equality holds,
i-e'9 f;(_v(xi’ yj) = fX(xl)f;)(yj)
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3. Theorem: Cov(X,Y) = E(XY) — E(X)E(Y).
Proof:

For both discrete and continuous random variables, we

can rewrite as follows:
Cov(X,Y) = E(X — u)(Y — )
= E(XY - HeY — /lyX + /Jx/ly)
= E(XY) ~ Eu.Y) — B, X) + sty

= E(XY) = i, E(Y) — i, E(X) + papy
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For continuous random variables X and Y, we can show:

E(X+Y)=f f (x +¥) fiy(x,y) dx dy

= fmfmxfxy(x,y) dx dy
+ f f Vfo(x,y) dx dy

= E(X) + E(Y).
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For continuous random variables X and Y,

E(XY) = f f xy fop(x,y) dx dy

=f f W0 £,) dx dy

When X is independent of Y, we have f,,(x,y) = fi(x)f£,(»)

in the second equality.
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= E(XY) — ptapty — pybts + Hfty
= B(XY) - ity

= E(XY) - E(X)E(Y).

In the fourth equality, the theorem in Section 3.1 is
used, i.e., E(u,Y) = u, E(Y) and E(u,X) = p,E(X).
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4. Theorem: Cov(X,Y) = 0, when X is independent of

Y.
Proof:

From the above two theorems, we have E(XY) = E(X)E(Y)
when X is independent of Y and Cov(X, Y) = E(XY) —
E(X)E(Y).

Therefore, Cov(X, Y) = 0 is obtained when X is inde-

pendent of Y.
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. Theorem: p,, = 0, when X is independent of Y.
Proof:

When X is independent of Y, we have Cov(X, Y) = 0.

Cov(X,Y
We obtain the result p,, = o 1) _ 0

V) VVT)

However, note that p,, = 0 does not mean the indepen-

dence between X and Y.
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= E((X — u)?) + 2E((X — (Y — 1))
+E((Y - )"

= V(X) + 2Cov(X, Y) + V(Y).
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5. Definition: The correlation coefficient (#8B8{%%k)

between X and Y, denoted by p,,, is defined as:

_ Cov(X,Y)  Cov(X,Y)
P NOWD | oy

Py > 0 = positive correlation between X and Y
pxy —> 1 = strong positive correlation
Py < 0 = negative correlation between X and Y

Pxy — —1 = strong negative correlation
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. Theorem: V(X +Y)=V(X)+2Cov(X,Y)+ V().

Proof:

For both discrete and continuous random variables, V(X=+

Y) is rewritten as follows:

V(X £Y)=E((X £ Y) - E(X £ Y))’)
= B(((X - o) £ (¥ - ))’)

= B((X = )* £2(X — )Y = ) + (Y — 11,)?)
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. Theorem: -1<p, <1.

Proof:

Consider the following function of #: f(t) = V(Xr-Y),
which is always greater than or equal to zero because
of the definition of variance. Therefore, for all ¢, we

have f(¢) > 0. f(¢) is rewritten as follows:
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() = V(Xt - Y) = V(Xt) - 2Cov(Xt, Y) + V(Y)

= V(X)) = 2tCov(X, Y) + V(Y)
Cov(X,Y)
V(X)

(Cov(X, Y))?

2
) + V() - s

= V(-

In order to have f(¢) > 0 for all #, we need the follow-
ing condition:

(Cov(X, Y))?
V(Y) - o >0,

because the first term in the last equality is nonnega-
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9. Theorem: V(X +Y) = V(X)+ V(Y), when X is inde-
pendent of Y.

Proof:

From the theorem above, V(X+Y) = V(X)£2Cov(X, Y)+
V(Y) generally holds. When random variables X and
Y are independent, we have Cov(X, Y) = 0. Therefore,
V(X+Y) = V(X)+V(Y) holds, when X is independent
of Y.
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Proof:

For mean of };a;X;, the following representation is
obtained.

E(Z a;X;) = ZE(aiXi) = Z aB(X;) = Z aifd;.

l l
The first and second equalities come from the previous

theorems on mean.
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tive, which implies:

(Cov(X, Y))* B
VX)V(Y)

Therefore, we have:

< Cov(X,Y) <1
T AVXOVV(Y)

From the definition of correlation coefficient, i.e., p,, =

CoviX. ¥) btain th It: -1 <p, <1
—————, we obtain the result: -1 < p,, < 1.
VWX VV(Y) ’

132
10. Theorem: For n random variables X, X5, - - -, X,,,

V(Z aX;) = Z Z aa;Cov(X;, X)),
i i J

where E(X;) = w; and qg; is a constant value. Espe-

E(Z aX) = a,

cially, when X, X, - - -, X,, are mutually independent,

we have the following:

V(Z aX) = Z a2V (X).
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For variance of }; @;X;, we can rewrite as follows:
VY aX) = B(Y aiX; - )
L E(i ai(X; = ) D, 4% = )
= E(i 2 (X - ;,)(X, )
- Z Z ;,.a_,-E(oci - u)(X; - 1))
= Z Z]: a:a;Cov(X;, X)).
i

When X, X5, -+, X, are mutually independent, we
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obtain Cov(X;, X;) = 0 for all i # j from the previous

theorem. Therefore, we obtain:

V(Z a;X;) = Z aV(X).

Note that Cov(X;, X;) = E((X; — p)*) = V(X)).
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Proof:

The mathematical expectation of X is given by:
EGR) = B2 iX) = 1E(iX) -2 iE(X)
B = S i:ll_ni:l [

1 < 1
=- ) H=-nu=pu

E(aX) = aE(X) in the second equality and E(X + Y) =
E(X) + E(Y) in the third equality are utilized, where X

and Y are random variables and a is a constant value.
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4 Transformation of Variables (Z$(%Z

)

Transformation of variables is used in the case of continu-
ous random variables. Based on a distribution of a random
variable, a distribution of the transformed random variable is
derived. In other words, when a distribution of X is known,
we can find a distribution of Y using the transformation of

variables, where Y is a function of X.
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11. Theorem: n random variables X;, Xs, - --, X,, are mu-
tually independently and identically distributed with
mean g and variance . That is, foralli = 1,2,---,n,
E(X;) = p and V(X;) = o2 are assumed. Consider
arithmetic average X = (1/n) X1, X;. Then, mean and
variance of X are given by:

_ _ 2
EX) =y  VX) = ‘%
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The variance of X is computed as follows:

_ 1 n 1 n 1 n
VE) =V Y X)= =V X) = — > VX)
i=1 i=1 i=1

We use V(aX) = a*V(X) in the second equality and
V(X +Y)=V(X)+V(Y) for X independent of Y in the
third equality, where X and Y denote random variables

and a is a constant value.
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4.1 Univariate Case

Distribution of ¥ = ¢y"1(X):  Let f.(x) be the probability
density function of continuous random variable X and X =
W(Y) be a one-to-one (—xf—) transformation. Then, the

probability density function of Y, i.e., f,(y), is given by:

£O) = W ONA(v))-

We can derive the above transformation of variables from X

to Y as follows. Let f.(x) and F,(x) be the probability den-
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sity function and the distribution function of X, respectively.
Note that F,(x) = P(X < x) and f(x) = F.(x).

When X = y(Y), we want to obtain the probability density
function of Y. Let f,(y) and F,(y) be the probability density
function and the distribution function of Y, respectively.

In the case of /' (X) > 0, the distribution function of Y, F(y),

is rewritten as follows:
Fy(y) = P(Y <) = P(y(Y) < y(»)
= P(X <)) = F(v).
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Next, in the case of //(X) < 0, the distribution function of Y,

Fy(y), is rewritten as follows:

Fy(y) = P(Y <) = P(y(Y) > y()) = P(X > y(3)
=1-P(X <y() =1-F(s0).
Thus, in the case of ¥/'(X) < 0, pay attention to the second

equality, where the inequality sign is reversed. Differentiat-

ing F,(y) with respect to y, we obtain the following result:

£O) = FJ0) = - OF () = -0 L) )
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Example 1.9: When X ~ N(0, 1), we derive the probabil-
ity density function of ¥ = p + o X.
Since we have:
Y—u
X=y(r)=—*,
o

Y/’ (y) = 1/o is obtained. Therefore, f,(y) is given by:

£O) = WO EO) exp(~5.50~ ),

1
oV2n
which indicates the normal distribution with mean u and vari-

ance o, denoted by N(u, o).
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The first equality is the definition of the cumulative distribu-
tion function. The second equality holds because of ¥’ (Y) >
0. Therefore, differentiating F,(y) with respect to y, we can

obtain the following expression:

A0 = FL0) =W OF (b)) = W OLp). @)
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Note that —¢'(y) > 0.
Thus, summarizing the above two cases, i.e., ¢'(X) > 0 and

Y (X) < 0, equations (4) and (5) indicate the following result:

£O) =W OIf(v),

which is called the transformation of variables.
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On Distribution of Y = X?: As an example, when we
know the distribution function of X as F'(x), we want to ob-
tain the distribution function of Y, F,(y), where ¥ = X2
Using F(x), F\(y) is rewritten as follows:
F0)=PY <y)=PX <y) =Py <X < )
= F(\Vy) = Fx(= V).

The probability density function of Y is obtained as follows:

N RS ANG))

S0 =Fo) =7
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4.2 Multivariate Cases

Bivariate Case: Let f,,(x,y) be a joint probability density
function of X and Y. Let X = ¢(U,V) and Y = y,(U,V)
be a one-to-one transformation from (X, Y) to (U, V). Then,
we obtain a joint probability density function of U and V,

denoted by f,,(u, v), as follows:

i, v) = Wl fo (91 9), e, ),

149

Multivariate Case: Let f.(x, x,,- -, X,,) be a joint proba-
bility density function of X;, X5, - - - X,,. Suppose that a one-
to-one transformation from (X, X5, ---, X)) to (Y}, Y>,---,Y},)

is given by:

Xl = lﬁl(YhYZ"”?Yn)’

X2 = lpz(YhYZ"”,Yn)’
Xn = 'l’n(YhYZy"’,Yn)'
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where J is called the Jacobian of the transformation, which

is defined as:

ATRC] Ox,

dyr Oy Oy,

o 0 0%

Oy Oy Oy,
J=

ox, O0x, 0x,

ayl (9)72 6_)%
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where J is called the Jacobian of the transformation, which

is defined as: ox Ox
ou Ov
J = .
&
ou Ov
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Then, we obtain a joint probability density function of Y,

Y, -+, Y,, denoted by f,(y1,y2,---,¥yn), as follows:

ﬁ’(yl’yZ’ e syn)
= |J|fx((!/l(yl’ e ’yn)’ (!/2())1’ e ’yn)’ e ’lpn(yl’ o ’yn))s
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