
Some Formulas of Mean and Variance: We consider two

random variables X and Y .

1. Theorem: E(X + Y) = E(X) + E(Y).

Proof:

For discrete random variables X and Y , it is given by:

E(X + Y) =
∑

i

∑
j

(xi + y j) fxy(xi, y j)

=
∑

i

∑
j

xi fxy(xi, y j) +
∑

i

∑
j

y j fxy(xi, y j)

= E(X) + E(Y).
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For continuous random variables X and Y , we can show:

E(X + Y) =

∫ ∞

−∞

∫ ∞

−∞
(x + y) fxy(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
x fxy(x, y) dx dy

+

∫ ∞

−∞

∫ ∞

−∞
y fxy(x, y) dx dy

= E(X) + E(Y).
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2. Theorem: E(XY) = E(X)E(Y), when X is indepen-

dent of Y .

Proof:

For discrete random variables X and Y ,

E(XY) =
∑

i

∑
j

xiy j fxy(xi, y j) =
∑

i

∑
j

xiy j fx(xi) fy(y j)

=
(∑

i

xi fx(xi)
)(∑

j

y j fy(y j)
)
= E(X)E(Y).

If X is independent of Y , the second equality holds,

i.e., fxy(xi, y j) = fx(xi) fy(y j).
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For continuous random variables X and Y ,

E(XY) =

∫ ∞

−∞

∫ ∞

−∞
xy fxy(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
xy fx(x) fy(y) dx dy

=
(∫ ∞

−∞
x fx(x) dx

)(∫ ∞

−∞
y fy(y) dy

)
= E(X)E(Y).

When X is independent of Y , we have fxy(x, y) = fx(x) fy(y)

in the second equality.
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3. Theorem: Cov(X,Y) = E(XY) − E(X)E(Y).

Proof:

For both discrete and continuous random variables, we

can rewrite as follows:

Cov(X,Y) = E((X − μx)(Y − μy))

= E(XY − μxY − μyX + μxμy)

= E(XY) − E(μxY) − E(μyX) + μxμy

= E(XY) − μxE(Y) − μyE(X) + μxμy
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= E(XY) − μxμy − μyμx + μxμy

= E(XY) − μxμy

= E(XY) − E(X)E(Y).

In the fourth equality, the theorem in Section 3.1 is

used, i.e., E(μxY) = μxE(Y) and E(μyX) = μyE(X).
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4. Theorem: Cov(X,Y) = 0, when X is independent of

Y .

Proof:

From the above two theorems, we have E(XY) = E(X)E(Y)

when X is independent of Y and Cov(X,Y) = E(XY) −
E(X)E(Y).

Therefore, Cov(X,Y) = 0 is obtained when X is inde-

pendent of Y .
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5. Definition: The correlation coefficient ( )

between X and Y , denoted by ρxy, is defined as:

ρxy =
Cov(X,Y)√
V(X)

√
V(Y)

=
Cov(X,Y)

σxσy
.

ρxy > 0 =⇒ positive correlation between X and Y

ρxy −→ 1 =⇒ strong positive correlation

ρxy < 0 =⇒ negative correlation between X and Y

ρxy −→ −1 =⇒ strong negative correlation
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6. Theorem: ρxy = 0, when X is independent of Y .

Proof:

When X is independent of Y , we have Cov(X,Y) = 0.

We obtain the result ρxy =
Cov(X,Y)√
V(X)

√
V(Y)

= 0.

However, note that ρxy = 0 does not mean the indepen-

dence between X and Y .
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7. Theorem: V(X ± Y) = V(X) ± 2Cov(X,Y) + V(Y).

Proof:

For both discrete and continuous random variables, V(X±
Y) is rewritten as follows:

V(X ± Y) = E
(
((X ± Y) − E(X ± Y))2

)

= E
(
((X − μx) ± (Y − μy))

2
)

= E((X − μx)
2 ± 2(X − μx)(Y − μy) + (Y − μy)

2)
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= E((X − μx)
2) ± 2E((X − μx)(Y − μy))

+E((Y − μy)
2)

= V(X) ± 2Cov(X,Y) + V(Y).
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8. Theorem: −1 ≤ ρxy ≤ 1.

Proof:

Consider the following function of t: f (t) = V(Xt−Y),

which is always greater than or equal to zero because

of the definition of variance. Therefore, for all t, we

have f (t) ≥ 0. f (t) is rewritten as follows:
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f (t) = V(Xt − Y) = V(Xt) − 2Cov(Xt,Y) + V(Y)

= t2V(X) − 2tCov(X,Y) + V(Y)

= V(X)
(
t − Cov(X,Y)

V(X)

)2
+ V(Y) − (Cov(X,Y))2

V(X)
.

In order to have f (t) ≥ 0 for all t, we need the follow-

ing condition:

V(Y) − (Cov(X,Y))2

V(X)
≥ 0,

because the first term in the last equality is nonnega-
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tive, which implies:

(Cov(X,Y))2

V(X)V(Y)
≤ 1.

Therefore, we have:

−1 ≤ Cov(X,Y)√
V(X)

√
V(Y)

≤ 1.

From the definition of correlation coefficient, i.e., ρxy =

Cov(X,Y)√
V(X)

√
V(Y)

, we obtain the result: −1 ≤ ρxy ≤ 1.
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9. Theorem: V(X ± Y) = V(X) +V(Y), when X is inde-

pendent of Y .

Proof:

From the theorem above, V(X±Y) = V(X)±2Cov(X,Y)+

V(Y) generally holds. When random variables X and

Y are independent, we have Cov(X,Y) = 0. Therefore,

V(X+Y) = V(X)+V(Y) holds, when X is independent

of Y .
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10. Theorem: For n random variables X1, X2, · · ·, Xn,

E(
∑

i

aiXi) =
∑

i

aiμi,

V(
∑

i

aiXi) =
∑

i

∑
j

aia jCov(Xi, Xj),

where E(Xi) = μi and ai is a constant value. Espe-

cially, when X1, X2, · · ·, Xn are mutually independent,

we have the following:

V(
∑

i

aiXi) =
∑

i

a2
i V(Xi).
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Proof:

For mean of
∑

i aiXi, the following representation is

obtained.

E(
∑

i

aiXi) =
∑

i

E(aiXi) =
∑

i

aiE(Xi) =
∑

i

aiμi.

The first and second equalities come from the previous

theorems on mean.
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For variance of
∑

i aiXi, we can rewrite as follows:

V(
∑

i

aiXi) = E
(∑

i

ai(Xi − μi)
)2

= E
(∑

i

ai(Xi − μi)
)(∑

j

a j(Xj − μ j)
)

= E
(∑

i

∑
j

aia j(Xi − μi)(Xj − μ j)
)

=
∑

i

∑
j

aia jE
(
(Xi − μi)(Xj − μ j)

)

=
∑

i

∑
j

aia jCov(Xi, Xj).

When X1, X2, · · ·, Xn are mutually independent, we
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obtain Cov(Xi, Xj) = 0 for all i � j from the previous

theorem. Therefore, we obtain:

V(
∑

i

aiXi) =
∑

i

a2
i V(Xi).

Note that Cov(Xi, Xi) = E((Xi − μ)2) = V(Xi).
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11. Theorem: n random variables X1, X2, · · ·, Xn are mu-

tually independently and identically distributed with

mean μ and variance σ2. That is, for all i = 1, 2, · · · , n,

E(Xi) = μ and V(Xi) = σ
2 are assumed. Consider

arithmetic average X = (1/n)
∑n

i=1 Xi. Then, mean and

variance of X are given by:

E(X) = μ, V(X) =
σ2

n
.
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Proof:

The mathematical expectation of X is given by:

E(X) = E(
1

n

n∑
i=1

Xi) =
1

n
E(

n∑
i=1

Xi) =
1

n

n∑
i=1

E(Xi)

=
1

n

n∑
i=1

μ =
1

n
nμ = μ.

E(aX) = aE(X) in the second equality and E(X + Y) =

E(X) + E(Y) in the third equality are utilized, where X

and Y are random variables and a is a constant value.
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The variance of X is computed as follows:

V(X) = V(
1

n

n∑
i=1

Xi) =
1

n2
V(

n∑
i=1

Xi) =
1

n2

n∑
i=1

V(Xi)

=
1

n2

n∑
i=1

σ2 =
1

n2
nσ2 =

σ2

n
.

We use V(aX) = a2V(X) in the second equality and

V(X+Y) = V(X)+V(Y) for X independent of Y in the

third equality, where X and Y denote random variables

and a is a constant value.

140

4 Transformation of Variables (

)

Transformation of variables is used in the case of continu-

ous random variables. Based on a distribution of a random

variable, a distribution of the transformed random variable is

derived. In other words, when a distribution of X is known,

we can find a distribution of Y using the transformation of

variables, where Y is a function of X.
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4.1 Univariate Case

Distribution of Y = ψ−1(X): Let fx(x) be the probability

density function of continuous random variable X and X =

ψ(Y) be a one-to-one ( ) transformation. Then, the

probability density function of Y , i.e., fy(y), is given by:

fy(y) = |ψ′(y)| fx

(
ψ(y)
)
.

We can derive the above transformation of variables from X

to Y as follows. Let fx(x) and Fx(x) be the probability den-
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sity function and the distribution function of X, respectively.

Note that Fx(x) = P(X ≤ x) and fx(x) = F′x(x).

When X = ψ(Y), we want to obtain the probability density

function of Y . Let fy(y) and Fy(y) be the probability density

function and the distribution function of Y , respectively.

In the case of ψ′(X) > 0, the distribution function of Y , Fy(y),

is rewritten as follows:

Fy(y) = P(Y ≤ y) = P
(
ψ(Y) ≤ ψ(y)

)

= P
(
X ≤ ψ(y)

)
= Fx

(
ψ(y)
)
.
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The first equality is the definition of the cumulative distribu-

tion function. The second equality holds because of ψ′(Y) >

0. Therefore, differentiating Fy(y) with respect to y, we can

obtain the following expression:

fy(y) = F′y(y) = ψ′(y)F′x
(
ψ(y)
)
= ψ′(y) fx

(
ψ(y)
)
. (4)
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Next, in the case of ψ′(X) < 0, the distribution function of Y ,

Fy(y), is rewritten as follows:

Fy(y) = P(Y ≤ y) = P
(
ψ(Y) ≥ ψ(y)

)
= P
(
X ≥ ψ(y)

)

= 1 − P
(
X < ψ(y)

)
= 1 − Fx

(
ψ(y)
)
.

Thus, in the case of ψ′(X) < 0, pay attention to the second

equality, where the inequality sign is reversed. Differentiat-

ing Fy(y) with respect to y, we obtain the following result:

fy(y) = F′y(y) = −ψ′(y)F′x
(
ψ(y)
)
= −ψ′(y) fx

(
ψ(y)
)
. (5)
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Note that −ψ′(y) > 0.

Thus, summarizing the above two cases, i.e., ψ′(X) > 0 and

ψ′(X) < 0, equations (4) and (5) indicate the following result:

fy(y) = |ψ′(y)| fx

(
ψ(y)
)
,

which is called the transformation of variables.
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Example 1.9: When X ∼ N(0, 1), we derive the probabil-

ity density function of Y = μ + σX.

Since we have:

X = ψ(Y) =
Y − μ
σ
,

ψ′(y) = 1/σ is obtained. Therefore, fy(y) is given by:

fy(y) = |ψ′(y)| fx

(
ψ(y)
)
=

1

σ
√

2π
exp
(
− 1

2σ2
(y − μ)2

)
,

which indicates the normal distribution with mean μ and vari-

ance σ2, denoted by N(μ, σ2).
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On Distribution of Y = X2: As an example, when we

know the distribution function of X as Fx(x), we want to ob-

tain the distribution function of Y , Fy(y), where Y = X2.

Using Fx(x), Fy(y) is rewritten as follows:

Fy(y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤ √y)

= Fx(
√

y) − Fx(−√y).

The probability density function of Y is obtained as follows:

fy(y) = F′y(y) =
1

2
√

y

(
fx(
√

y) + fx(−√y)
)
.
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4.2 Multivariate Cases

Bivariate Case: Let fxy(x, y) be a joint probability density

function of X and Y . Let X = ψ1(U,V) and Y = ψ2(U,V)

be a one-to-one transformation from (X,Y) to (U,V). Then,

we obtain a joint probability density function of U and V ,

denoted by fuv(u, v), as follows:

fuv(u, v) = |J| fxy

(
ψ1(u, v), ψ2(u, v)

)
,
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where J is called the Jacobian of the transformation, which

is defined as:

J =

∣∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣∣∣
.
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Multivariate Case: Let fx(x1, x2, · · · , xn) be a joint proba-

bility density function of X1, X2, · · · Xn. Suppose that a one-

to-one transformation from (X1, X2, · · · , Xn) to (Y1,Y2, · · · , Yn)

is given by:

X1 = ψ1(Y1, Y2, · · · ,Yn),

X2 = ψ2(Y1, Y2, · · · ,Yn),

...

Xn = ψn(Y1, Y2, · · · ,Yn).
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Then, we obtain a joint probability density function of Y1,

Y2, · · ·, Yn, denoted by fy(y1, y2, · · · , yn), as follows:

fy(y1, y2, · · · , yn)

= |J| fx

(
ψ1(y1, · · · , yn), ψ2(y1, · · · , yn), · · · , ψn(y1, · · · , yn)

)
,
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where J is called the Jacobian of the transformation, which

is defined as:

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂y1

∂x1

∂y2

· · · ∂x1

∂yn

∂x2

∂y1

∂x2

∂y2

· · · ∂x2

∂yn

...
...
. . .

...

∂xn

∂y1

∂xn

∂y2

· · · ∂xn

∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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