3. Theorem: Let $\phi\left(\theta_{1}, \theta_{2}\right)$ be the moment-generating function of (X, Y).

The moment-generating function of X is given by $\phi_{1}\left(\theta_{1}\right)$ and that of Y is $\phi_{2}\left(\theta_{2}\right)$.

Then, we have the following facts:

$$
\phi_{1}\left(\theta_{1}\right)=\phi\left(\theta_{1}, 0\right), \quad \phi_{2}\left(\theta_{2}\right)=\phi\left(0, \theta_{2}\right) .
$$

$$
=\int_{-\infty}^{\infty} e^{\theta_{1} x} f_{x}(x) \mathrm{d} x=\mathrm{E}\left(e^{\theta_{1} X}\right)=\phi_{1}\left(\theta_{1}\right) .
$$

Thus, we obtain the result: $\phi\left(\theta_{1}, 0\right)=\phi_{1}\left(\theta_{1}\right)$.
Similarly, $\phi\left(0, \theta_{2}\right)=\phi_{2}\left(\theta_{2}\right)$ can be derived.

Multivariate Case: For multivariate random variables X_{1},

Proof:

Again, the definition of the moment-generating function of X and Y is represented as:
$\phi\left(\theta_{1}, \theta_{2}\right)=\mathrm{E}\left(e^{\theta_{1} X+\theta_{2} Y}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\theta_{1} x+\theta_{2} y} f_{x y}(x, y) \mathrm{d} x \mathrm{~d} y$.
When $\phi\left(\theta_{1}, \theta_{2}\right)$ is evaluated at $\theta_{2}=0, \phi\left(\theta_{1}, 0\right)$ is rewritten as follows:

$$
\begin{aligned}
\phi\left(\theta_{1}, 0\right) & =\mathrm{E}\left(e^{\theta_{1} X}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\theta_{1} x} f_{x y}(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{-\infty}^{\infty} e^{\theta_{1} x}\left(\int_{-\infty}^{\infty} f_{x y}(x, y) \mathrm{d} y\right) \mathrm{d} x
\end{aligned}
$$

4. Theorem: The moment-generating function of (X, Y) is given by $\phi\left(\theta_{1}, \theta_{2}\right)$.

Let $\phi_{1}\left(\theta_{1}\right)$ and $\phi_{2}\left(\theta_{2}\right)$ be the moment-generating functions of X and Y, respectively.

If X is independent of Y, we have:

$$
\phi\left(\theta_{1}, \theta_{2}\right)=\phi_{1}\left(\theta_{1}\right) \phi_{2}\left(\theta_{2}\right) .
$$

X_{2}, \cdots, X_{n}, the moment-generating function is defined as:

$$
\phi\left(\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right)=\mathrm{E}\left(e^{\theta_{1} X_{1}+\theta_{2} X_{2}+\cdots+\theta_{n} X_{n}}\right) .
$$

$\phi\left(\theta_{1}, \theta_{2}\right)=\mathrm{E}\left(e^{\theta_{1} X+\theta_{2} Y}\right)=\mathrm{E}\left(e^{\theta_{1} X}\right) \mathrm{E}\left(e^{\theta_{2} Y}\right)=\phi_{1}\left(\theta_{1}\right) \phi_{2}\left(\theta_{2}\right)$.

The second equality holds because X is independent of Y.

Proof:

From the definition of $\phi\left(\theta_{1}, \theta_{2}\right)$, the moment-generating function of X and Y is rewritten as follows:

1. Theorem: If the multivariate random variables X_{1}, X_{2}, \cdots, X_{n} are mutually independent,
the moment-generating function of $X_{1}, X_{2}, \cdots, X_{n}$, denoted by $\phi\left(\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right)$, is given by:

$$
\phi\left(\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right)=\phi_{1}\left(\theta_{1}\right) \phi_{2}\left(\theta_{2}\right) \cdots \phi_{n}\left(\theta_{n}\right)
$$

where $\phi_{i}(\theta)=\mathrm{E}\left(e^{\theta X_{i}}\right)$.
2. Theorem: Suppose that the multivariate random variables $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently and identically distributed.

Suppose that $X_{i} \sim N\left(\mu, \sigma^{2}\right)$.
Let us define $\hat{\mu}=\sum_{i=1}^{n} a_{i} X_{i}$, where $a_{i}, i=1,2, \cdots, n$, are assumed to be known.

Then, $\hat{\mu} \sim N\left(\mu \sum_{i=1}^{n} a_{i}, \sigma^{2} \sum_{i=1}^{n} a_{i}^{2}\right)$.

Let $\phi_{\hat{\mu}}$ be the moment-generating function of $\hat{\mu}$.

$$
\begin{aligned}
\phi_{\hat{\mu}}(\theta) & =\mathrm{E}\left(e^{\theta \hat{\mu}}\right)=\mathrm{E}\left(e^{\theta \sum_{i=1}^{n} a_{i} X_{i}}\right)=\prod_{i=1}^{n} \mathrm{E}\left(e^{\theta a_{i} X_{i}}\right) \\
& =\prod_{i=1}^{n} \phi_{x}\left(a_{i} \theta\right)=\prod_{i=1}^{n} \exp \left(\mu a_{i} \theta+\frac{1}{2} \sigma^{2} a_{i}^{2} \theta^{2}\right) \\
& =\exp \left(\mu \sum_{i=1}^{n} a_{i} \theta+\frac{1}{2} \sigma^{2} \sum_{i=1}^{n} a_{i}^{2} \theta^{2}\right)
\end{aligned}
$$

which is equivalent to the moment-generating function of the normal distribution with mean $\mu \sum_{i=1}^{n} a_{i}$ and variance $\sigma^{2} \sum_{i=1}^{n} a_{i}^{2}$, where μ and σ^{2} in $\phi_{x}(\theta)$ is simply

Proof:

From the definition of the moment-generating function in the multivariate cases, we obtain the following:

$$
\begin{aligned}
\phi\left(\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right) & =\mathrm{E}\left(e^{\theta_{1} X_{1}+\theta_{2} X_{2}+\cdots+\theta_{n} X_{n}}\right) \\
& =\mathrm{E}\left(e^{\theta_{1} X_{1}}\right) \mathrm{E}\left(e^{\theta_{2} X_{2}}\right) \cdots \mathrm{E}\left(e^{\theta_{n} X_{n}}\right) \\
& =\phi_{1}\left(\theta_{1}\right) \phi_{2}\left(\theta_{2}\right) \cdots \phi_{n}\left(\theta_{n}\right) .
\end{aligned}
$$

Proof:

From Example 1.8 (p.111) and Example 1.9 (p.147), it is shown that the moment-generating function of X is given by: $\phi_{x}(\theta)=\exp \left(\mu \theta+\frac{1}{2} \sigma^{2} \theta^{2}\right)$, when X is normally distributed as $X \sim N\left(\mu, \sigma^{2}\right)$.

224
replaced by $\mu \sum_{i=1}^{n} a_{i}$ and $\sigma^{2} \sum_{i=1}^{n} a_{i}^{2}$ in $\phi_{\hat{\mu}}(\theta)$, respectively.

Moreover, note as follows.
When $a_{i}=1 / n$ is taken for all $i=1,2, \cdots, n$, i.e., when $\hat{\mu}=\bar{X}$ is taken, $\hat{\mu}=\bar{X}$ is normally distributed as: $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$.

6 Law of Large Numbers（対数の法
 則）and Central Limit Theorem（中心極限定理）

6．1 Chebyshev’s Inequality（チェビシェフの不等式）

Proof：

We define the discrete random variable U as follows：

$$
U= \begin{cases}1, & \text { if } g(X) \geq k \\ 0, & \text { if } g(X)<k\end{cases}
$$

Thus，the discrete random variable U takes 0 or 1 ．
Suppose that the probability function of U is given by：

$$
f(u)=P(U=u)
$$

where $P(U=u)$ is represented as：

$$
P(U=1)=P(g(X) \geq k)
$$

where $\mathrm{E}(U)$ is given by：

$$
\begin{align*}
\mathrm{E}(U) & =\sum_{u=0}^{1} u P(U=u)=1 \times P(U=1)+0 \times P(U=0) \\
& =P(U=1)=P(g(X) \geq k) \tag{8}
\end{align*}
$$

Accordingly，substituting equation（8）into equation（7），we have the following inequality：

$$
P(g(X) \geq k) \leq \frac{\mathrm{E}(g(X))}{k}
$$

Theorem：Let $g(X)$ be a nonnegative function of the ran－ dom variable X ，i．e．，$g(X) \geq 0$ ．
If $\mathrm{E}(g(X))$ exists，then we have：

$$
\begin{equation*}
P(g(X) \geq k) \leq \frac{\mathrm{E}(g(X))}{k} \tag{6}
\end{equation*}
$$

for a positive constant value k ．

$$
P(U=0)=P(g(X)<k) .
$$

Then，in spite of the value which U takes，the following equation always holds：

$$
g(X) \geq k U
$$

which implies that we have $g(X) \geq k$ when $U=1$ and $g(X) \geq$ 0 when $U=0$ ，where k is a positive constant value．
Therefore，taking the expectation on both sides，we obtain：

$$
\begin{equation*}
\mathrm{E}(g(X)) \geq k \mathrm{E}(U) \tag{7}
\end{equation*}
$$

230

Chebyshev＇s Inequality：Assume that $\mathrm{E}(X)=\mu, \mathrm{V}(X)=$ σ^{2} ，and λ is a positive constant value．Then，we have the following inequality：

$$
P(|X-\mu| \geq \lambda \sigma) \leq \frac{1}{\lambda^{2}}
$$

or equivalently，

$$
P(|X-\mu|<\lambda \sigma) \geq 1-\frac{1}{\lambda^{2}}
$$

which is called Chebyshev＇s inequality．

Proof：

Take $g(X)=(X-\mu)^{2}$ and $k=\lambda^{2} \sigma^{2}$ ．Then，we have：

$$
P\left((X-\mu)^{2} \geq \lambda^{2} \sigma^{2}\right) \leq \frac{\mathrm{E}(X-\mu)^{2}}{\lambda^{2} \sigma^{2}}
$$

which implies $P(|X-\mu| \geq \lambda \sigma) \leq \frac{1}{\lambda^{2}}$ ．
Note that $\mathrm{E}(X-\mu)^{2}=\mathrm{V}(X)=\sigma^{2}$ ．
Since we have $P(|X-\mu| \geq \lambda \sigma)+P(|X-\mu|<\lambda \sigma)=1$ ，we can derive the following inequality：

$$
\begin{equation*}
P(|X-\mu|<\lambda \sigma) \geq 1-\frac{1}{\lambda^{2}} \tag{9}
\end{equation*}
$$

Furthermore，note as follows．
Taking $\epsilon=\lambda \sigma$ ，we obtain as follows：

$$
P(|X-\mu| \geq \epsilon) \leq \frac{\sigma^{2}}{\epsilon^{2}}
$$

i．e．，

$$
\begin{equation*}
P(|X-\mathrm{E}(X)| \geq \epsilon) \leq \frac{\mathrm{V}(X)}{\epsilon^{2}} \tag{10}
\end{equation*}
$$

which inequality is used in the next section．

6．2 Law of Large Numbers（対数の法則）and

Convergence in Probability（確率収束）

Law of Large Numbers 1：Assume that $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently and identically distributed with mean $\mathrm{E}\left(X_{i}\right)=\mu$ for all i ．
Supopose that the moment－generating function of X_{i} is finite．
Define $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ ．
Then， $\bar{X}_{n} \longrightarrow \mu$ as $n \longrightarrow \infty$ ．

An Interpretation of Chebyshev＇s inequality： $1 / \lambda^{2}$ is an upper bound for the probability $P(|X-\mu| \geq \lambda \sigma)$ ． Equation（9）is rewritten as：

$$
P(\mu-\lambda \sigma<X<\mu+\lambda \sigma) \geq 1-\frac{1}{\lambda^{2}}
$$

That is，the probability that X falls within $\lambda \sigma$ units of μ is greater than or equal to $1-1 / \lambda^{2}$ ．

Taking an example of $\lambda=2$ ，the probability that X falls within two standard deviations of its mean is at least 0.75 ．

234

Remark：Equation（10）can be derived when we take $g(X)=$ $(X-\mu)^{2}, \mu=\mathrm{E}(X)$ and $k=\epsilon^{2}$ in equation（6）．
Even when we have $\mu \neq \mathrm{E}(X)$ ，the following inequality still hold：

$$
P(|X-\mu| \geq \epsilon) \leq \frac{\mathrm{E}\left((X-\mu)^{2}\right)}{\epsilon^{2}}
$$

Note that $\mathrm{E}\left((X-\mu)^{2}\right)$ represents the mean square error（MSE）． When $\mu=\mathrm{E}(X)$ ，the mean square error reduces to the vari－ ance．

Proof：The moment－generating function is written as：

$$
\begin{aligned}
\phi(\theta) & =1+\mu_{1}^{\prime} \theta+\frac{1}{2!} \mu_{2}^{\prime} \theta^{2}+\frac{1}{3!} \mu_{3}^{\prime} \theta^{3}+\cdots \\
& =1+\mu_{1}^{\prime} \theta+O\left(\theta^{2}\right)
\end{aligned}
$$

where $\mu_{k}^{\prime}=\mathrm{E}\left(X^{k}\right)$ for all k ．That is，all the moments exist．

$$
\begin{aligned}
\phi_{\bar{x}}(\theta) & =\left(\phi\left(\frac{\theta}{n}\right)\right)^{n}=\left(1+\mu_{1}^{\prime} \frac{\theta}{n}+O\left(\frac{\theta^{2}}{n^{2}}\right)\right)^{n} \\
& =\left(1+\mu_{1}^{\prime} \frac{\theta}{n}+O\left(\frac{1}{n^{2}}\right)\right)^{n}=\left((1+x)^{\frac{1}{x}}\right)^{\mu \theta+O\left(n^{-1}\right)} \\
& \longrightarrow \exp (\mu \theta) \text { as } x \longrightarrow 0,
\end{aligned}
$$

which is the following probability function:

$$
\begin{gathered}
f(x)= \begin{cases}1 & \text { if } x=\mu, \\
0 & \text { otherwise }\end{cases} \\
\phi(\theta)=\sum e^{\theta x} f(x)=e^{\theta \mu} f(\mu)=e^{\theta \mu}
\end{gathered}
$$

Law of Large Numbers 2: Assume that $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently and identically distributed with mean $\mathrm{E}\left(X_{i}\right)=\mu$ and variance $\mathrm{V}\left(X_{i}\right)=\sigma^{2}<\infty$ for all i.
Then, for any positive value ϵ, as $n \longrightarrow \infty$, we have the following result:

$$
P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) \longrightarrow 0
$$

where $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
We say that \bar{X}_{n} converges in probability to μ.

