Law of Large Numbers 2: Assume that X_1, X_2, \dots, X_n are mutually independently and identically distributed with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma^2 < \infty$ for all *i*. Then, for any positive value ϵ , as $n \longrightarrow \infty$, we have the following result:

$$P(|\overline{X}_n - \mu| > \epsilon) \longrightarrow 0,$$

where $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. We say that \overline{X}_n converges in probability to μ .

240

Proof:

Using (10), Chebyshev's inequality is represented as follows:

$$P(|\overline{X}_n - \mathbb{E}(\overline{X}_n)| > \epsilon) \le \frac{\mathcal{V}(\overline{X}_n)}{\epsilon^2}$$

where *X* in (10) is replaced by \overline{X}_n . We know $E(\overline{X}_n) = \mu$ and $V(\overline{X}_n) = \frac{\sigma^2}{n}$, which are substituted into the above inequality.

Then, we obtain:

$$P(|\overline{X}_n - \mu| > \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$
241

Accordingly, when $n \longrightarrow \infty$, the following equation holds:

$$P(|\overline{X}_n - \mu| > \epsilon) \le \frac{\sigma^2}{n\epsilon^2} \longrightarrow 0.$$

That is, $\overline{X}_n \longrightarrow \mu$ is obtained as $n \longrightarrow \infty$, which is written as: plim $\overline{X}_n = \mu$.

This theorem is called the law of large numbers.

The condition $P(|\overline{X}_n - \mu| > \epsilon) \longrightarrow 0$ or equivalently $P(|\overline{X}_n - \mu| < \epsilon) \longrightarrow 1$ is used as the definition of **convergence in probability** (確率収束).

In this case, we say that \overline{X}_n converges in probability to μ .

Theorem: In the case where X_1, X_2, \dots, X_n are not identically distributed and they are not mutually independently distributed, define:

$$m_n = \mathrm{E}(\sum_{i=1}^n X_i), \qquad V_n = \mathrm{V}(\sum_{i=1}^n X_i),$$

and assume that

$$\frac{m_n}{n} = \frac{1}{n} \mathbb{E}(\sum_{i=1}^n X_i) < \infty, \qquad \frac{V_n}{n} = \frac{1}{n} \mathbb{V}(\sum_{i=1}^n X_i) < \infty,$$
$$\frac{V_n}{n^2} \longrightarrow 0, \quad \text{as } n \longrightarrow \infty.$$

243

Then, we obtain the following result:

$$\frac{\sum_{i=1}^n X_i - m_n}{n} \longrightarrow 0.$$

That is, \overline{X}_n converges in probability to $\lim_{n\to\infty} \frac{m_n}{n}$. This theorem is also called the law of large numbers.

Proof:

Remember Chebyshev's inequality:

$$P(|X - E(X)| > \epsilon) \le \frac{V(X)}{\epsilon^2},$$

Replace X, E(X) and V(X) by \overline{X}_n , E(\overline{X}_n) = $\frac{m_n}{n}$ and V(\overline{X}_n) = $\frac{V_n}{n^2}$. Then, we obtain:

$$P(|\overline{X}_n - \frac{m_n}{n}| > \epsilon) \le \frac{V_n}{n^2 \epsilon^2}.$$

As n goes to infinity,

$$P(|\overline{X}_n - \frac{m_n}{n}| > \epsilon) \le \frac{V_n}{n^2 \epsilon^2} \longrightarrow 0$$

Therefore, $\overline{X}_n \longrightarrow \lim_{n \to \infty} \frac{m_n}{n}$ as $n \longrightarrow \infty$.

Proof:

Define $Y_i = \frac{X_i - \mu}{\sigma}$. We can rewrite as follows:

$$\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu}{\sigma} = \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i$$

246

Since Y_1, Y_2, \dots, Y_n are mutually independently and identically distributed, the moment-generating function of Y_i is identical for all *i*, which is denoted by $\phi(\theta)$.

(*) Remark:

O(x) implies that it is a polynomial function of x and the

higher-order terms but it is dominated by x.

In this case, $O(\theta^3)$ is a function of θ^3 , θ^4 , \cdots .

Since the moment-generating function is conventionally evaluated at $\theta = 0$, θ^3 is the largest value of θ^3 , θ^4 , \cdots and accordingly $O(\theta^3)$ is dominated by θ^3 (in other words, θ^4 , θ^5 , \cdots are small enough, compared with θ^3).

250

Define Z as:

$$Z = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_i.$$

Then, the moment-generating function of Z, i.e., $\phi_z(\theta)$, is given by:

$$\begin{split} \phi_z(\theta) &= \mathrm{E}(e^{Z\theta}) = \mathrm{E}\Big(e^{\frac{\theta}{\sqrt{n}}\sum_{i=1}^n Y_i}\Big) = \prod_{i=1}^n \mathrm{E}\Big(e^{\frac{\theta}{\sqrt{n}}Y_i}\Big) = \Big(\phi(\frac{\theta}{\sqrt{n}})\Big)^n \\ &= \Big(1 + \frac{1}{2}\frac{\theta^2}{n} + O(\frac{\theta^3}{n^{\frac{3}{2}}})\Big)^n = \Big(1 + \frac{1}{2}\frac{\theta^2}{n} + O(n^{-\frac{3}{2}})\Big)^n. \end{split}$$

We consider that *n* goes to infinity.

Therefore, $O(\frac{\theta^3}{n^{\frac{3}{2}}})$ indicates a function of $n^{-\frac{3}{2}}$.

6.3 Central Limit Theorem (中心極限定理) andConvergence in Distribution (分布収束)

Central Limit Theorem: X_1, X_2, \dots, X_n are mutually independently and identically distributed with $E(X_i) = \mu$ and $V(X_i) = \sigma^2$ for all *i*. Both μ and σ^2 are finite.

Under the above assumptions, when $n \longrightarrow \infty$, we have:

$$P\left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} < x\right) \longrightarrow \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} \,\mathrm{d}u,$$

which is called the **central limit theorem**.

Using $E(Y_i) = 0$ and $V(Y_i) = 1$, the moment-generating function of Y_i , $\phi(\theta)$, is rewritten as:

$$\begin{split} \phi(\theta) &= \mathrm{E}(e^{Y_i\theta}) = \mathrm{E}\Big(1 + Y_i\theta + \frac{1}{2}Y_i^2\theta^2 + \frac{1}{3!}Y_i^3\theta^3\cdots\Big)\\ &= 1 + \frac{1}{2}\theta^2 + O(\theta^3). \end{split}$$

In the second equality, $e^{Y_i\theta}$ is approximated by the Taylor series expansion around $\theta = 0$.

249

Moreover, consider $x = \frac{1}{2}\frac{\theta^2}{n} + O(n^{-\frac{3}{2}})$. Multiply n/x on both sides of $x = \frac{1}{2}\frac{\theta^2}{n} + O(n^{-\frac{3}{2}})$. Then, we obtain $n = \frac{1}{x}(\frac{1}{2}\theta^2 + O(n^{-\frac{1}{2}}))$. Substitute $n = \frac{1}{x}(\frac{1}{2}\theta^2 + O(n^{-\frac{1}{2}}))$ into the moment-generating function of *Z*, i.e., $\phi_z(\theta)$. Then, we obtain:

$$\begin{split} \phi_z(\theta) &= \left(1 + \frac{1}{2}\frac{\theta^2}{n} + O(n^{-\frac{3}{2}})\right)^n = (1+x)^{\frac{1}{x}\left(\frac{\theta^2}{2} + O(n^{-\frac{1}{2}})\right)} \\ &= \left((1+x)^{\frac{1}{x}}\right)^{\frac{\theta^2}{2} + O(n^{-\frac{1}{2}})} \longrightarrow e^{\frac{\theta^2}{2}}. \end{split}$$

252

Note that $x \longrightarrow 0$ when $n \longrightarrow \infty$ and that $\lim_{x \to 0} (1 + x)^{1/x} = e$ as in Section 2.3 (p.35).

Furthermore, we have $O(n^{-\frac{1}{2}}) \longrightarrow 0$ as $n \longrightarrow \infty$.

Since $\phi_z(\theta) = e^{\frac{\theta^2}{2}}$ is the moment-generating function of the standard normal distribution (see p.110 in Section 3.1 for the moment-generating function of the standard normal probability density), we have:

$$P\left(\frac{\overline{X}_n-\mu}{\sigma/\sqrt{n}}< x\right) \longrightarrow \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} \,\mathrm{d}u,$$

253

or equivalently,

$$\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1).$$

We say that $\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}}$ converges in distribution to N(0, 1). ⇒ Convergence in distribution (分布収束)

The following expression is also possible:

$$\sqrt{n}(\overline{X}_n - \mu) \longrightarrow N(0, \sigma^2).$$
 (11)

Corollary 1: When $E(X_i) = \mu$, $V(X_i) = \sigma^2$ and $\overline{X}_n = (1/n) \sum_{i=1}^n X_i$, note that

$$\frac{\overline{X}_n - \mathrm{E}(\overline{X}_n)}{\sqrt{\mathrm{V}(\overline{X}_n)}} = \frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}}.$$

Therefore, we can rewrite the above theorem as:

$$P\left(\frac{\overline{X}_n - \mathrm{E}(\overline{X}_n)}{\sqrt{\mathrm{V}(\overline{X}_n)}} < x\right) \longrightarrow \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} \,\mathrm{d}u.$$

255

Corollary 2: Consider the case where X_1, X_2, \dots, X_n are not identically distributed and they are not mutually independently distributed.

Assume that

$$\lim_{n\to\infty} n \operatorname{V}(\overline{X_n}) = \sigma^2 < \infty, \quad \text{where } \overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i.$$

Then, when $n \longrightarrow \infty$, we have:

$$P\left(\frac{\overline{X_n} - \operatorname{E}(\overline{X_n})}{\sqrt{\operatorname{V}(\overline{X_n})}} < x\right) \longrightarrow \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} \,\mathrm{d}u.$$

Summary: Let $X_1, X_2, \dots, X_n, \dots$ be a sequence of random variables. Let *X* be a random variable. Let F_n be the distribution function of X_n and *F* be that of *X*.

- X_n converges in probability to X if $\lim_{n \to \infty} P(|X_n X| \ge \epsilon) = 0$ or $\lim_{n \to \infty} P(|X_n - X| < \epsilon) = 1$ for all $\epsilon > 0$. Equivalently, we write $X_n \xrightarrow{P} X$.
- X_n converges in distribution to X (or F) if $\lim_{n \to \infty} F_n(x) = F(x)$ for all x.

Equivalently, we write $X_n \xrightarrow{D} X$ or $X_n \xrightarrow{D} F$.

7 Statistical Inference

7.1 Point Estimation (点推定)

Suppose that the underlying distribution is known but the parameter θ included in the distribution is not known. The distribution function of population is given by $f(x; \theta)$. Let x_1, x_2, \dots, x_n be the *n* observed data drawn from the population distribution.

258

Consider estimating the parameter θ using the *n* observed data.

Let $\hat{\theta}_n(x_1, x_2, \dots, x_n)$ be a function of the observed data x_1 , x_2, \dots, x_n .

 $\hat{\theta}_n(x_1, x_2, \dots, x_n)$ is constructed to estimate the parameter θ .

 $\hat{\theta}_n(x_1, x_2, \dots, x_n)$ takes a certain value given the *n* observed data.

 $\hat{\theta}_n(x_1, x_2, \dots, x_n)$ is called the **point estimate** of θ , or simply the **estimate** of θ .

259

Example 1.11: Consider the case of $\theta = (\mu, \sigma^2)$, where the unknown parameters contained in population is given by mean and variance.

A point estimate of population mean μ is given by:

$$\hat{\mu}_n(x_1, x_2, \cdots, x_n) \equiv \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i.$$

260

A point estimate of population variance σ^2 is:

$$\hat{\sigma}_n^2(x_1, x_2, \cdots, x_n) \equiv s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

An alternative point estimate of population variance σ^2 is:

$$\widetilde{\sigma}_n^2(x_1, x_2, \cdots, x_n) \equiv s^{**2} = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

261

7.2 Statistic, Estimate and Estimator (統計量, 推定值, 推定量)

The underlying distribution of population is assumed to be known, but the parameter θ , which characterizes the underlying distribution, is unknown.

The probability density function of population is given by $f(x; \theta)$.

Let X_1, X_2, \dots, X_n be a subset of population, which are regarded as the random variables and are assumed to be mutually independent.

 x_1, x_2, \dots, x_n are taken as the experimental values of the random variables X_1, X_2, \dots, X_n .

In statistics, we consider that *n*-variate random variables X_1 , X_2 , \cdots , X_n take the experimental values x_1 , x_2 , \cdots , x_n by chance.

There, the experimental values and the actually observed data series are used in the same meaning.

 $\hat{\theta}_n(x_1, x_2, \cdots, x_n)$ denotes the point estimate of θ .

In the case where the observed data x_1, x_2, \dots, x_n are replaced by the corresponding random variables X_1, X_2, \dots, X_n , a function of X_1, X_2, \dots, X_n , i.e., $\hat{\theta}(X_1, X_2, \dots, X_n)$, is called the **estimator** (推定量) of θ , which should be distinguished from the **estimate** (推定值) of θ , i.e., $\hat{\theta}(x_1, x_2, \dots, x_n)$.

264

Example 1.12: Let X_1, X_2, \dots, X_n denote a random sample of *n* from a given distribution $f(x; \theta)$. Consider the case of $\theta = (\mu, \sigma^2)$. The estimator of μ is given by $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, while the estimate of μ is $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$. The estimator of σ^2 is $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ and the estimate of σ^2 is $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$. 265

There are numerous estimators and estimates of θ .

All of $\frac{1}{n}\sum_{i=1}^{n} X_i$, $\frac{X_1 + X_n}{2}$, median of (X_1, X_2, \dots, X_n) and so on are taken as the estimators of μ .

Of course, they are called the estimates of θ when X_i is replaced by x_i for all *i*.

Both $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ and $S^{*2} = \frac{1}{n} \sum_{i=1}^2 (X_i - \overline{X})^2$ are the estimators of σ^2 .

266

We need to choose one out of the numerous estimators of θ .

The problem of choosing an optimal estimator out of the numerous estimators is discussed in Sections 7.4 and 7.5.

In addition, note as follows.

A function of random variables is called a **statistic** (統計 量). The statistic for estimation of the parameter is called an estimator.

Therefore, an estimator is a family of a statistic.

7.3 Estimation of Mean and Variance

Suppose that the population distribution is given by $f(x; \theta)$.

The random sample X_1, X_2, \dots, X_n are assumed to be drawn from the population distribution $f(x; \theta)$, where $\theta = (\mu, \sigma^2)$.

Therefore, we can assume that X_1, X_2, \dots, X_n are mutually independently and identically distributed, where "identically" implies $E(X_i) = \mu$ and $V(X_i) = \sigma^2$ for all *i*.

Consider the estimators of $\theta = (\mu, \sigma^2)$ as follows.

1. The estimator of population mean μ is:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

2. The estimators of population variance σ^2 are:

•
$$S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$
, when μ is known,
• $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$,
• $S^{**2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$,

Properties of \overline{X} : From Theorem on p.138, mean and vari-

ance of \overline{X} are obtained as follows:

$$E(\overline{X}) = \mu, \qquad V(\overline{X}) = \frac{\sigma^2}{n}.$$

Properties of S^{*2} , S^2 and S^{**2} : The expectation of S^{*2} is:

$$E(S^{*2}) = E\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}\right) = \frac{1}{n}\sum_{i=1}^{n}E\left((X_{i}-\mu)^{2}\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}V(X_{i}) = \frac{1}{n}\sum_{i=1}^{n}\sigma^{2} = \sigma^{2}.$$