Law of Large Numbers 2：Assume that $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently and identically distributed with mean $\mathrm{E}\left(X_{i}\right)=\mu$ and variance $\mathrm{V}\left(X_{i}\right)=\sigma^{2}<\infty$ for all i ．
Then，for any positive value ϵ ，as $n \longrightarrow \infty$ ，we have the following result：

$$
P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) \longrightarrow 0
$$

where $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ ．
We say that \bar{X}_{n} converges in probability to μ ．

Accordingly，when $n \longrightarrow \infty$ ，the following equation holds：

$$
P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) \leq \frac{\sigma^{2}}{n \epsilon^{2}} \longrightarrow 0 .
$$

That is， $\bar{X}_{n} \longrightarrow \mu$ is obtained as $n \longrightarrow \infty$ ，which is written as： $\operatorname{plim} \bar{X}_{n}=\mu$ ．
This theorem is called the law of large numbers．
The condition $P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) \longrightarrow 0$ or equivalently $P\left(\mid \bar{X}_{n}-\right.$ $\mu \mid<\epsilon) \longrightarrow 1$ is used as the definition of convergence in probability（確率収束）
In this case，we say that \bar{X}_{n} converges in probability to μ ．

Proof：

Remember Chebyshev＇s inequality：

$$
P(|X-\mathrm{E}(X)|>\epsilon) \leq \frac{\mathrm{V}(X)}{\epsilon^{2}}
$$

Replace $X, \mathrm{E}(X)$ and $\mathrm{V}(X)$
by $\bar{X}_{n}, \mathrm{E}\left(\bar{X}_{n}\right)=\frac{m_{n}}{n}$ and $\mathrm{V}\left(\bar{X}_{n}\right)=\frac{V_{n}}{n^{2}}$ ．
Then，we obtain：

$$
P\left(\left|\bar{X}_{n}-\frac{m_{n}}{n}\right|>\epsilon\right) \leq \frac{V_{n}}{n^{2} \epsilon^{2}} .
$$

As n goes to infinity,

$$
P\left(\left|\bar{X}_{n}-\frac{m_{n}}{n}\right|>\epsilon\right) \leq \frac{V_{n}}{n^{2} \epsilon^{2}} \longrightarrow 0 .
$$

Therefore, $\bar{X}_{n} \longrightarrow \lim _{n \rightarrow \infty} \frac{m_{n}}{n}$ as $n \longrightarrow \infty$.

Proof:

Define $Y_{i}=\frac{X_{i}-\mu}{\sigma}$. We can rewrite as follows:

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{X_{i}-\mu}{\sigma}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i} .
$$

Since $Y_{1}, Y_{2}, \cdots, Y_{n}$ are mutually independently and identically distributed, the moment-generating function of Y_{i} is identical for all i, which is denoted by $\phi(\theta)$.

Define Z as:

$$
Z=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i} .
$$

Then, the moment-generating function of Z, i.e., $\phi_{z}(\theta)$, is given by:

$$
\begin{aligned}
\phi_{z}(\theta) & =\mathrm{E}\left(e^{Z \theta}\right)=\mathrm{E}\left(e^{\frac{\theta}{\sqrt{n}} \sum_{i=1}^{n} Y_{i}}\right)=\prod_{i=1}^{n} \mathrm{E}\left(e^{\frac{\theta}{\sqrt{n}} Y_{i}}\right)=\left(\phi\left(\frac{\theta}{\sqrt{n}}\right)\right)^{n} \\
& =\left(1+\frac{1}{2} \frac{\theta^{2}}{n}+O\left(\frac{\theta^{3}}{n^{\frac{3}{2}}}\right)\right)^{n}=\left(1+\frac{1}{2} \frac{\theta^{2}}{n}+O\left(n^{-\frac{3}{2}}\right)\right)^{n} .
\end{aligned}
$$

We consider that n goes to infinity.
Therefore, $O\left(\frac{\theta^{3}}{n^{\frac{3}{2}}}\right)$ indicates a function of $n^{-\frac{3}{2}}$.

Moreover，consider $x=\frac{1}{2} \frac{\theta^{2}}{n}+O\left(n^{-\frac{3}{2}}\right)$ ．
Multiply n / x on both sides of $x=\frac{1}{2} \frac{\theta^{2}}{n}+O\left(n^{-\frac{3}{2}}\right)$ ．
Then，we obtain $n=\frac{1}{x}\left(\frac{1}{2} \theta^{2}+O\left(n^{-\frac{1}{2}}\right)\right)$ ．
Substitute $n=\frac{1}{x}\left(\frac{1}{2} \theta^{2}+O\left(n^{-\frac{1}{2}}\right)\right)$ into the moment－generating function of Z ，i．e．，$\phi_{z}(\theta)$ ．
Then，we obtain：

$$
\begin{aligned}
\phi_{z}(\theta) & =\left(1+\frac{1}{2} \frac{\theta^{2}}{n}+O\left(n^{-\frac{3}{2}}\right)\right)^{n}=(1+x)^{\frac{1}{x}\left(\frac{\theta^{2}}{2}+O\left(n^{-\frac{1}{2}}\right)\right)} \\
& =\left((1+x)^{\frac{1}{x}}\right)^{\frac{\theta^{2}}{2}+O\left(n^{-\frac{1}{2}}\right)} \longrightarrow e^{\frac{\theta^{2}}{2}} .
\end{aligned}
$$

252

or equivalently，

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \longrightarrow N(0,1)
$$

We say that $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}$ converges in distribution to $N(0,1)$ ．

\Longrightarrow Convergence in distribution（分布収束）

The following expression is also possible：

$$
\begin{equation*}
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \longrightarrow N\left(0, \sigma^{2}\right) \tag{11}
\end{equation*}
$$

Summary：Let $X_{1}, X_{2}, \cdots, X_{n}, \cdots$ be a sequence of ran－ dom variables．Let X be a random variable．Let F_{n} be the distribution function of X_{n} and F be that of X ．
－X_{n} converges in probability to X if $\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right| \geq \epsilon\right)=0$ or $\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|<\epsilon\right)=1$ for all $\epsilon>0$ ．
Equivalently，we write $X_{n} \xrightarrow{P} X$ ．
－X_{n} converges in distribution to $X($ or $F)$ if $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$ for all x ．
Equivalently，we write $X_{n} \xrightarrow{D} X$ or $X_{n} \xrightarrow{D} F$ ．

7 Statistical Inference

7．1 Point Estimation（点推定）

Suppose that the underlying distribution is known but the pa－ rameter θ included in the distribution is not known．
The distribution function of population is given by $f(x ; \theta)$ ． Let $x_{1}, x_{2}, \cdots, x_{n}$ be the n observed data drawn from the population distribution．

Example 1．11：Consider the case of $\theta=\left(\mu, \sigma^{2}\right)$ ，where the unknown parameters contained in population is given by mean and variance．

A point estimate of population mean μ is given by：

$$
\hat{\mu}_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \equiv \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} .
$$

260

7．2 Statistic，Estimate and Estimator（統計量，

推定値，推定量）

The underlying distribution of population is assumed to be known，but the parameter θ ，which characterizes the under－ lying distribution，is unknown．

The probability density function of population is given by $f(x ; \theta)$ ．

Consider estimating the parameter θ using the n observed data．
Let $\hat{\theta}_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a function of the observed data x_{1} ， x_{2}, \cdots, x_{n} ．
$\hat{\theta}_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is constructed to estimate the parameter θ ． $\hat{\theta}_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ takes a certain value given the n observed data．
$\hat{\theta}_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is called the point estimate of θ ，or simply the estimate of θ ．

A point estimate of population variance σ^{2} is：

$$
\hat{\sigma}_{n}^{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \equiv s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
$$

An alternative point estimate of population variance σ^{2} is：

$$
\widetilde{\sigma}_{n}^{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \equiv s^{* * 2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
$$

Let $X_{1}, X_{2}, \cdots, X_{n}$ be a subset of population，which are re－ garded as the random variables and are assumed to be mutu－ ally independent．
$x_{1}, x_{2}, \cdots, x_{n}$ are taken as the experimental values of the random variables $X_{1}, X_{2}, \cdots, X_{n}$ ．

In statistics，we consider that n－variate random variables X_{1} ， X_{2}, \cdots, X_{n} take the experimental values $x_{1}, x_{2}, \cdots, x_{n}$ by chance．

There，the experimental values and the actually observed data series are used in the same meaning．
$\hat{\theta}_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ denotes the point estimate of θ ．
In the case where the observed data $x_{1}, x_{2}, \cdots, x_{n}$ are re－ placed by the corresponding random variables X_{1}, X_{2}, \cdots ， X_{n} ，a function of $X_{1}, X_{2}, \cdots, X_{n}$ ，i．e．，$\hat{\theta}\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ ，is called the estimator（推定量）of θ ，which should be distin－ guished from the estimate（推定値）of θ ，i．e．，$\hat{\theta}\left(x_{1}, x_{2}, \cdots\right.$ ， x_{n} ）．

There are numerous estimators and estimates of θ ．
All of $\frac{1}{n} \sum_{i=1}^{n} X_{i}, \frac{X_{1}+X_{n}}{2}$ ，median of $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ and so on are taken as the estimators of μ ．

Of course，they are called the estimates of θ when X_{i} is re－ placed by x_{i} for all i ．

Both $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ and $S^{* 2}=\frac{1}{n} \sum_{i=1}^{2}\left(X_{i}-\bar{X}\right)^{2}$ are the estimators of σ^{2} ．

7．3 Estimation of Mean and Variance

Suppose that the population distribution is given by $f(x ; \theta)$ ．
The random sample $X_{1}, X_{2}, \cdots, X_{n}$ are assumed to be drawn from the population distribution $f(x ; \theta)$ ，where $\theta=\left(\mu, \sigma^{2}\right)$ ．

Therefore，we can assume that $X_{1}, X_{2}, \cdots, X_{n}$ are mutually in－ dependently and identically distributed，where＂identically＂ implies $\mathrm{E}\left(X_{i}\right)=\mu$ and $\mathrm{V}\left(X_{i}\right)=\sigma^{2}$ for all i.

Consider the estimators of $\theta=\left(\mu, \sigma^{2}\right)$ as follows．

Example 1．12：Let $X_{1}, X_{2}, \cdots, X_{n}$ denote a random sample of n from a given distribution $f(x ; \theta)$ ．

Consider the case of $\theta=\left(\mu, \sigma^{2}\right)$ ．
The estimator of μ is given by $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ ，while the esti－ mate of μ is $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ ．
The estimator of σ^{2} is $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ and the esti－ mate of σ^{2} is $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ ．

We need to choose one out of the numerous estimators of θ ．

The problem of choosing an optimal estimator out of the nu－ merous estimators is discussed in Sections 7.4 and 7．5．

In addition，note as follows．
A function of random variables is called a statistic（統計量）．The statistic for estimation of the parameter is called an estimator．

Therefore，an estimator is a family of a statistic．

1．The estimator of population mean μ is：
－ $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ ．
2．The estimators of population variance σ^{2} are：
－$S^{* 2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$ ，when μ is known，
－$S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ ，
－$S^{* * 2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ ，

Properties of \bar{X} : From Theorem on p.138, mean and variance of \bar{X} are obtained as follows:

$$
\mathrm{E}(\bar{X})=\mu, \quad \mathrm{V}(\bar{X})=\frac{\sigma^{2}}{n}
$$

Properties of $S^{* 2}, S^{2}$ and $S^{* * 2}$: The expectation of $S^{* 2}$ is:

$$
\begin{aligned}
\mathrm{E}\left(S^{* 2}\right) & =\mathrm{E}\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left(\left(X_{i}-\mu\right)^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathrm{~V}\left(X_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \sigma^{2}=\sigma^{2}
\end{aligned}
$$

