Properties of X: From Theorem on p-138, mean and vari-

ance of X are obtained as follows:

0_2

EX)=n, VX =—

—.
Properties of $*2, $? and $**?: The expectation of S*? is:

B =B Y00 w) = 5 D (- )
i=1 1

i=

:’l’,«Zn;‘V(Xi): %Zo—zzaz.
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=~ ! 1E(;(X,- ~ )’ = n(X - )
1 v —
= (- %) - —B((X - ")
n n o’
:n—lo-z_n—IY: ’

SLXi—w = n(X — ) is used in the sixth equality.

E(% i(x,« - u)z) =ES*?) = ¢? and

2
E(X-p)?) =VX) = 7 are required in the eighth equality.
n
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7.4 Point Estimation: Optimality
6 denotes the parameter to be estimated.

9,,(X1, X5, -+, X,,) represents the estimator of 6, while @n(xl,

Xy, - -+, X,) indicates the estimate of 6.

Hereafter, in the case of no confusion, 9,,(X1, X, -+, X)) is

simply written as 6.

As discussed above, there are numerous candidates of the

estimator 6,.
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Next, the expectation of S is given by:

E(S?)

1 n n

=B 2= 7) = R - )

i=1 =1
1 n _
= mE(;«xi —w = (X - p)’)

1 n _ _
= — 1E(;«x,- - 1) = 20X = (X - ) + (X = p)))

= B0 2K ) Y X~ )+ X~ )
i=1 i=1

n-—1
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Finally, the expectation of S **2 is represented by:

n

E(S™?) = E(% DX -X7) = B(% ! ﬁ > -%7)
i=1

n
i=1

1 1 1
P =By = ot 2 o
n n

=E(

Summarizing the above results, we obtain as follows:

-1
ES?) =c?,  ESH=02  ES*H="""5%02
n
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The desired properties of 6, are:
e unbiasedness (TR 14E),
o efficiency (E%h1%).
e consistency (—E1%) and

o sufficiency (+%1%). «— Not discussed in this class.
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Unbiasedness (A~{@1£): One of the desirable features that

the estimator of the parameter should have is given by:
E(,) = 6. (12)

which implies that 8, is distributed around 6.

When (12) holds, 6, is called the unbiased estimator (F~{&

HE=S) of 6.

E(#,) — 0 is defined as bias (& V).
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2. The estimators of o are:

1 < — 1 < —
§2=—— ) (X, - X), §S#2= 2% (X;-X)%.
. ”—1;( ) . nzl( )

Since we have obtained E(X) = y and E(S?) = 0%, X and S?
are unbiased estimators of ¢ and 2.

We have obtained the result E(S **?) # ¢ and therefore S **2
is not an unbiased estimator of o2.

According to the criterion of unbiasedness, S ? is preferred to

S 2 for estimation of 2.
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Suppose that X;, X5, - - -, X,, are mutually independently and
identically distributed and the distribution of X; is f(x;; ).
For any unbiased estimator of 6, denoted by 9,,, it is known

that we have the following inequality:

V(6,) > @ )
where o (6) = E((@)Z) ) V((@))
90 00
_ m , (14)
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As an example of unbiasedness, consider the case of § =

(u, ).

Suppose that X;, X5, - - -, X, are mutually independently and

identically distributed with mean y and variance o>

Consider the following estimators of u and 0.

1. The estimator of y is:
l n

n i=1

L] X: X,'.
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Efficiency (B%h14): Consider two estimators, 6, and 6,.
Both are assumed to be unbiased.

That is, E(§,) = 0 and E(8,) = 6.

When V(@n) < V(@,), we say that 0, is more efficient than 5,,
The unbiased estimator with the least variance is known as
the efficient estimator (EX#E ).

We have the case where an efficient estimator does not exist.
In order to find the efficient estimator, we utilize Cramer-

Rao inequality (¥ 5 * —JL + SADFERK).
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which is known as the Cramer-Rao inequality (¥ 5 * —
- SHEDFRER).

When there exists the unbiased estimator 8, such that the
equality in (13) holds, 6, becomes the unbiased estimator

with minimum variance, which is the efficient estimator (5§

MEES).
2
) is called the Cramer-Rao lower bound (9 5 A —)L*

n
4 DTR).
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Proof of the Cramer-Rao inequality: We prove the above

inequality and the equalities in o-(6).

The likelihood function (ZERED) 1(6; x) = 1(6; x, x2, - - -,

X,) is a joint density of X;, X, - - -, X,.
That is, [(6; x) = 1(6; x1, X2, - -+, x,) = [1iey f(xi36)

See Section 7.5 for the likelihood function (A ERE%0).
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Differentiating both sides of equation (15) with respect to 6,

we obtain the following equation:

Ozfal(G;x) dx=f 1 81(0;x)l(9;x) dx

00 1(6;x) 00
_ [ 0loglB;x), _ _(0logl(6; X)
_ f SO0 0 de = B(E ), (16)
ologl(0;X) .
which implies that the expectation of % is equal to
Zero.
dl 1
In the third equality, note that 08T _ -.
X
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log x
dx

1
In the second equality, = — is utilized.
X

dlogl(; X)

The third equality holds because of E( 50

) = 0 from
equation (16).

For simplicity of discussion, suppose that € is a scalar.
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The integration of /(6; xy, x,, - -, x,) with respect to xj, x,,
-+, X, 1s equal to one.

That is, we have the following equation:

1=fl(9;x) dx, 15)

where the likelihood function [(6; x) is given by I(6; x) =
[TZ, f(xi;6) and f -+ dx implies n-tuple integral.
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Now, let @,, be an estimator of 8. The definition of the math-

ematical expectation of the estimator 6, is represented as:

E@®,) = f 0,1(0; x) dx. (17)

Differentiating equation (17) with respect to 8 on both sides,

we can rewrite as follows:

D) _ f 5,200 f 5, 0108160 0 5 4y

00 90 00
. ~ \0logl(0; dlog [(0;
- f (8, - E@)( Ogag( Y g Ogag( x)))l(é);x) dx
~ Ologl(8; X)
= Cov(0),. T). (18)
285

Taking the square on both sides of equation (18), we obtain

the following expression:

A ) 2

() = (cora, ZELED) — v
dlogl(6; X)

)

dlog l(6; X))
00

< V(én)v( (19)

where p denotes the correlation coefficient between 6, and
dlogl(; X)
00 '
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Note that we have the definition of p is given by:

. 0logl(0;X)
COV(H,,, OgT)

p= .
= dlogl(6; X)
V()

Moreover, we have —1 < p < 1 (i.e., p* < 1).

Then, the inequality (19) is obtained, which is rewritten as:

OE(8,)
(S5=)

dlog 1(6; X),
V(=5 )

v, > (20)
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Moreover, the denominator in the right-hand side of the above
inequality is rewritten as follows:

dlog I(6; X)
()

dlog f(X;; 0) o ((0log f(X;;0)
:E((ZZ Ogae )Z)ZZ;E(( Ogae )2)

i=

(L)) (B0 g,

In the first equality, log /(8; X) = Z log f(X;; 0) is utilized.

i=1
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Next, we prove the equalities in (14), i.e.,
% log f(X; 0)) _E (Blogf(X; 0))2
062 - 06

dlog f(X; 9))
00 '

—E(
= V(

Differentiating f f(x;0) dx = 1 with respect to 6, we obtain

of(x;0) .
f 50 dx =0.

We assume that the range of x does not depend on the pa-
9f(x;0)
00

as follows:

rameter 0 and that exists.
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When E(@,,) =0, i.e., when 6, is an unbiased estimator of 6,
the numerator in the right-hand side of equation (20) is equal
to one.

Therefore, we have the following result:

A 1 1
V(@) > - .
dlogl(6; X) dlogl(6; X
V( Ogag ) E(( ogaé ))2)

dlogl(6; X)) _ E((Blog 1(0; X)

Note that h \Y
ote that we have ( 50 50

)2) in

ologl(0; X
the equality above, because of E(%) =0.
289
Since X;, i = 1,2,---,n, are mutually independent, the sec-

ond equality holds.
The third equality holds because X;, X, ---, X, are identi-
cally distributed.

Therefore, we obtain the following inequality:

2
Vo > 1 _ 1 _ O

06 06

E((alogl(G;X))z) nE((alogf(X;G))z) n’

which is equivalent to (13).
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The above equation is rewritten as:

IWJC(X; 6) dx = 0, @n

or equivalently,

E(W) =0. (22)

06

Again, differentiating equation (21) with respect to 6,

f 0%log f(x;6)

dlog f(x;0) df (x; 6) d
o o

06 06

f(x;0)dx + f
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=0,



i.e.,

0% log f(x;6) dlog f(x;6)\2
fo(x;é’) dx+f(T) f(x;0)dx =0,

i.e.,

E(62 ]o§g2(x; 0)) N E((alogaj;(x; 0))2) o

Thus, we obtain:

0% log f(x; 0)) _ E((alogf(x; 9))2).

~E( 362 30
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Thus, the Cramer-Rao inequality is derived as:

2
Vo = =2,
where
0) = 1 ~ 1
B dlog f(X;0)\2\ dlog f(X;0)
() ()

1
0%1 (X;0)
BT eI
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Moreover, from equation (22), the following equation is de-

rived.

00 06

Therefore, we have:

%1 X; 60 ol X; 60 ol X; 0
- p(TRETED) g (PRETEEOY) y(2hee D)

E((alogf(x; 0))2) _ V(alogf(x; 9)).
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