
Properties of X: From Theorem on p.138, mean and vari-

ance of X are obtained as follows:

E(X) = µ, V(X) =
σ2

n
.

Properties of S
∗2, S

2 and S
∗∗2: The expectation of S ∗2 is:

E(S ∗2) = E
(1

n

n∑

i=1

(Xi − µ)
2
)
=

1

n

n∑

i=1

E
(
(Xi − µ)

2
)

=
1

n

n∑

i=1

V(Xi) =
1

n

n∑

i=1

σ2
= σ2.
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Next, the expectation of S 2 is given by:

E(S 2)

= E
( 1

n − 1

n∑

i=1

(Xi − X)2
)
=

1

n − 1
E
( n∑

i=1

(Xi − X)2
)

=
1

n − 1
E
( n∑

i=1

((Xi − µ) − (X − µ))2
)

=
1

n − 1
E
( n∑

i=1

((Xi − µ)
2
− 2(Xi − µ)(X − µ) + (X − µ)2)

)

=
1

n − 1
E
( n∑

i=1

(Xi − µ)
2
− 2(X − µ)

n∑

i=1

(Xi − µ) + n(X − µ)2
)
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=
1

n − 1
E
( n∑

i=1

(Xi − µ)
2
− n(X − µ)2

)

=
n

n − 1
E
(1

n

n∑

i=1

(Xi − µ)
2
)
−

n

n − 1
E((X − µ)2)

=
n

n − 1
σ2

−
n

n − 1

σ2

n
= σ2.

∑n
i=1(Xi − µ) = n(X − µ) is used in the sixth equality.

E
(1

n

n∑

i=1

(Xi − µ)
2
)
= E(S ∗2) = σ2 and

E((X − µ)2) = V(X) =
σ2

n
are required in the eighth equality.
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Finally, the expectation of S ∗∗2 is represented by:

E(S ∗∗2) = E
(1

n

n∑

i=1

(Xi − X)2
)
= E

(n − 1

n

1

n − 1

n∑

i=1

(Xi − X)2
)

= E
(n − 1

n
S 2

)
=

n − 1

n
E(S 2) =

n − 1

n
σ2
, σ2.

Summarizing the above results, we obtain as follows:

E(S ∗2) = σ2, E(S 2) = σ2, E(S ∗∗2) =
n − 1

n
σ2
, σ2.
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7.4 Point Estimation: Optimality

θ denotes the parameter to be estimated.

θ̂n(X1, X2, · · ·, Xn) represents the estimator of θ, while θ̂n(x1,

x2, · · ·, xn) indicates the estimate of θ.

Hereafter, in the case of no confusion, θ̂n(X1, X2, · · ·, Xn) is

simply written as θ̂n.

As discussed above, there are numerous candidates of the

estimator θ̂n.
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The desired properties of θ̂n are:

• unbiasedness ( ),

• efficiency ( ).

• consistency ( ) and

• sufficiency ( ). ←− Not discussed in this class.
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Unbiasedness ( ): One of the desirable features that

the estimator of the parameter should have is given by:

E(θ̂n) = θ, (12)

which implies that θ̂n is distributed around θ.

When (12) holds, θ̂n is called the unbiased estimator (

) of θ.

E(θ̂n) − θ is defined as bias ( ).
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As an example of unbiasedness, consider the case of θ =

(µ, σ2).

Suppose that X1, X2, · · ·, Xn are mutually independently and

identically distributed with mean µ and variance σ2.

Consider the following estimators of µ and σ2.

1. The estimator of µ is:

• X =
1

n

n∑

i=1

Xi.
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2. The estimators of σ2 are:

• S 2
=

1

n − 1

n∑

i=1

(Xi − X)2, • S ∗∗2
=

1

n

n∑

i=1

(Xi − X)2.

Since we have obtained E(X) = µ and E(S 2) = σ2, X and S 2

are unbiased estimators of µ and σ2.

We have obtained the result E(S ∗∗2) , σ2 and therefore S ∗∗2

is not an unbiased estimator of σ2.

According to the criterion of unbiasedness, S 2 is preferred to

S ∗∗2 for estimation of σ2.
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Efficiency ( ): Consider two estimators, θ̂n and θ̃n.

Both are assumed to be unbiased.

That is, E(θ̂n) = θ and E(̃θn) = θ.

When V(θ̂n) < V(̃θn), we say that θ̂n is more efficient than θ̃n.

The unbiased estimator with the least variance is known as

the efficient estimator ( ).

We have the case where an efficient estimator does not exist.

In order to find the efficient estimator, we utilize Cramer-

Rao inequality ( ).
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Suppose that X1, X2, · · ·, Xn are mutually independently and

identically distributed and the distribution of Xi is f (xi; θ).

For any unbiased estimator of θ, denoted by θ̂n, it is known

that we have the following inequality:

V(θ̂n) ≥
σ2(θ)

n
, (13)

where σ2(θ) =
1

E

((∂ log f (X; θ)

∂θ

)2
) = 1

V

((∂ log f (X; θ)

∂θ

))

= −
1

E
(∂2 log f (X; θ)

∂θ2

) , (14)
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which is known as the Cramer-Rao inequality (

).

When there exists the unbiased estimator θ̂n such that the

equality in (13) holds, θ̂n becomes the unbiased estimator

with minimum variance, which is the efficient estimator (

).

σ2(θ)

n
is called the Cramer-Rao lower bound (

).
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Proof of the Cramer-Rao inequality: We prove the above

inequality and the equalities in σ2(θ).

The likelihood function ( ) l(θ; x) = l(θ; x1, x2, · · ·,

xn) is a joint density of X1, X2, · · ·, Xn.

That is, l(θ; x) = l(θ; x1, x2, · · ·, xn) =
∏n

i=1 f (xi; θ)

See Section 7.5 for the likelihood function ( ).
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The integration of l(θ; x1, x2, · · ·, xn) with respect to x1, x2,

· · ·, xn is equal to one.

That is, we have the following equation:

1 =

∫
l(θ; x) dx, (15)

where the likelihood function l(θ; x) is given by l(θ; x) =
∏n

i=1 f (xi; θ) and
∫
· · · dx implies n-tuple integral.
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Differentiating both sides of equation (15) with respect to θ,

we obtain the following equation:

0 =

∫
∂l(θ; x)

∂θ
dx =

∫
1

l(θ; x)

∂l(θ; x)

∂θ
l(θ; x) dx

=

∫
∂ log l(θ; x)

∂θ
l(θ; x) dx = E

(∂ log l(θ; X)

∂θ

)
, (16)

which implies that the expectation of
∂ log l(θ; X)

∂θ
is equal to

zero.

In the third equality, note that
d log x

dx
=

1

x
.
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Now, let θ̂n be an estimator of θ. The definition of the math-

ematical expectation of the estimator θ̂n is represented as:

E(θ̂n) =

∫
θ̂nl(θ; x) dx. (17)

Differentiating equation (17) with respect to θ on both sides,

we can rewrite as follows:

∂E(θ̂n)

∂θ
=

∫
θ̂n
∂l(θ; x)

∂θ
dx =

∫
θ̂n
∂ log l(θ; x)

∂θ
l(θ; x) dx

=

∫ (
θ̂n − E(θ̂n)

)(∂ log l(θ; x)

∂θ
− E(
∂ log l(θ; x)

∂θ
)
)
l(θ; x) dx

= Cov
(
θ̂n,
∂ log l(θ; X)

∂θ

)
. (18)
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In the second equality,
d log x

dx
=

1

x
is utilized.

The third equality holds because of E(
∂ log l(θ; X)

∂θ
) = 0 from

equation (16).

For simplicity of discussion, suppose that θ is a scalar.
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Taking the square on both sides of equation (18), we obtain

the following expression:

(∂E(θ̂n)

∂θ

)2
=

(
Cov

(
θ̂n,
∂ log l(θ; X)

∂θ

))2

= ρ2V(θ̂n)V
(∂ log l(θ; X)

∂θ

)

≤ V(θ̂n)V

(
∂ log l(θ; X)

∂θ

)
, (19)

where ρ denotes the correlation coefficient between θ̂n and

∂ log l(θ; X)

∂θ
.
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Note that we have the definition of ρ is given by:

ρ =

Cov
(
θ̂n,
∂ log l(θ; X)

∂θ

)

√
V(θ̂n)

√
V
(∂ log l(θ; X)

∂θ

) .

Moreover, we have −1 ≤ ρ ≤ 1 (i.e., ρ2
≤ 1).

Then, the inequality (19) is obtained, which is rewritten as:

V(θ̂n) ≥

(∂E(θ̂n)

∂θ

)2

V
(∂ log l(θ; X)

∂θ

) . (20)
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When E(θ̂n) = θ, i.e., when θ̂n is an unbiased estimator of θ,

the numerator in the right-hand side of equation (20) is equal

to one.

Therefore, we have the following result:

V(θ̂n) ≥
1

V
(∂ log l(θ; X)

∂θ

) =
1

E

((∂ log l(θ; X)

∂θ

)2
) .

Note that we have V
(∂ log l(θ; X)

∂θ

)
= E

(
(
∂ log l(θ; X)

∂θ
)2
)

in

the equality above, because of E
(∂ log l(θ; X)

∂θ

)
= 0.
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Moreover, the denominator in the right-hand side of the above

inequality is rewritten as follows:

E

((∂ log l(θ; X)

∂θ

)2
)

= E

(( n∑

i=1

∂ log f (Xi; θ)

∂θ

)2
)
=

n∑

i=1

E

((∂ log f (Xi; θ)

∂θ

)2
)

= nE

((∂ log f (X; θ)

∂θ

)2
)
= n

∫
∞

−∞

(∂ log f (x; θ)

∂θ

)2
f (x; θ) dx.

In the first equality, log l(θ; X) =

n∑

i=1

log f (Xi; θ) is utilized.

290

Since Xi, i = 1, 2, · · · , n, are mutually independent, the sec-

ond equality holds.

The third equality holds because X1, X2, · · ·, Xn are identi-

cally distributed.

Therefore, we obtain the following inequality:

V(θ̂n) ≥
1

E

((∂ log l(θ; X)

∂θ

)2
) = 1

nE

((∂ log f (X; θ)

∂θ

)2
) = σ

2(θ)

n
,

which is equivalent to (13).
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Next, we prove the equalities in (14), i.e.,

−E
(∂2 log f (X; θ)

∂θ2

)
= E

((∂ log f (X; θ)

∂θ

)2
)

= V
(∂ log f (X; θ)

∂θ

)
.

Differentiating

∫
f (x; θ) dx = 1 with respect to θ, we obtain

as follows: ∫
∂ f (x; θ)

∂θ
dx = 0.

We assume that the range of x does not depend on the pa-

rameter θ and that
∂ f (x; θ)

∂θ
exists.
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The above equation is rewritten as:

∫
∂ log f (x; θ)

∂θ
f (x; θ) dx = 0, (21)

or equivalently,

E
(∂ log f (X; θ)

∂θ

)
= 0. (22)

Again, differentiating equation (21) with respect to θ,

∫
∂2 log f (x; θ)

∂θ2
f (x; θ) dx +

∫
∂ log f (x; θ)

∂θ

∂ f (x; θ)

∂θ
dx = 0,
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i.e.,

∫
∂2 log f (x; θ)

∂θ2
f (x; θ) dx +

∫ (∂ log f (x; θ)

∂θ

)2
f (x; θ) dx = 0,

i.e.,

E
(∂2 log f (x; θ)

∂θ2

)
+ E

((∂ log f (x; θ)

∂θ

)2
)
= 0.

Thus, we obtain:

−E
(∂2 log f (x; θ)

∂θ2

)
= E

((∂ log f (x; θ)

∂θ

)2
)
.
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Moreover, from equation (22), the following equation is de-

rived.

E

((∂ log f (x; θ)

∂θ

)2
)
= V

(∂ log f (x; θ)

∂θ

)
.

Therefore, we have:

− E
(∂2 log f (X; θ)

∂θ2

)
= E

((∂ log f (X; θ)

∂θ

)2
)
= V

(∂ log f (X; θ)

∂θ

)
.
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Thus, the Cramer-Rao inequality is derived as:

V(θ̂n) ≥
σ2(θ)

n
,

where

σ2(θ) =
1

E

((∂ log f (X; θ)

∂θ

)2
) = 1

V

((∂ log f (X; θ)

∂θ

))

= −
1

E
(∂2 log f (X; θ)

∂θ2

) .
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