Properties of \bar{X} ：From Theorem on p．138，mean and vari－ ance of \bar{X} are obtained as follows：

$$
\mathrm{E}(\bar{X})=\mu, \quad \mathrm{V}(\bar{X})=\frac{\sigma^{2}}{n}
$$

Properties of $S^{* 2}, S^{2}$ and $S^{* * 2}$ ：The expectation of $S^{* 2}$ is：

$$
\begin{aligned}
\mathrm{E}\left(S^{* 2}\right) & =\mathrm{E}\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left(\left(X_{i}-\mu\right)^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathrm{~V}\left(X_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \sigma^{2}=\sigma^{2}
\end{aligned}
$$

$=\frac{1}{n-1} \mathrm{E}\left(\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-n(\bar{X}-\mu)^{2}\right)$
$=\frac{n}{n-1} \mathrm{E}\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right)-\frac{n}{n-1} \mathrm{E}\left((\bar{X}-\mu)^{2}\right)$
$=\frac{n}{n-1} \sigma^{2}-\frac{n}{n-1} \frac{\sigma^{2}}{n}=\sigma^{2}$ ．
$\sum_{i=1}^{n}\left(X_{i}-\mu\right)=n(\bar{X}-\mu)$ is used in the sixth equality．
$\mathrm{E}\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right)=\mathrm{E}\left(S^{* 2}\right)=\sigma^{2}$ and
$\mathrm{E}\left((\bar{X}-\mu)^{2}\right)=\mathrm{V}(\bar{X})=\frac{\sigma^{2}}{n}$ are required in the eighth equality．

The desired properties of $\hat{\theta}_{n}$ are：

- unbiasedness（不偏性），
- efficiency（有効性）．
- consistency（一致性）and
- sufficiency（十分性）．\longleftarrow Not discussed in this class．

Next，the expectation of S^{2} is given by：

$$
\begin{aligned}
& \mathrm{E}\left(S^{2}\right) \\
= & \mathrm{E}\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)=\frac{1}{n-1} \mathrm{E}\left(\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right) \\
= & \frac{1}{n-1} \mathrm{E}\left(\sum_{i=1}^{n}\left(\left(X_{i}-\mu\right)-(\bar{X}-\mu)\right)^{2}\right) \\
= & \frac{1}{n-1} \mathrm{E}\left(\sum_{i=1}^{n}\left(\left(X_{i}-\mu\right)^{2}-2\left(X_{i}-\mu\right)(\bar{X}-\mu)+(\bar{X}-\mu)^{2}\right)\right) \\
= & \frac{1}{n-1} \mathrm{E}\left(\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-2(\bar{X}-\mu) \sum_{i=1}^{n}\left(X_{i}-\mu\right)+n(\bar{X}-\mu)^{2}\right)
\end{aligned}
$$

Finally，the expectation of $S^{* * 2}$ is represented by：

$$
\begin{aligned}
\mathrm{E}\left(S^{* * 2}\right) & =\mathrm{E}\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)=\mathrm{E}\left(\frac{n-1}{n} \frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right) \\
& =\mathrm{E}\left(\frac{n-1}{n} S^{2}\right)=\frac{n-1}{n} \mathrm{E}\left(S^{2}\right)=\frac{n-1}{n} \sigma^{2} \neq \sigma^{2} .
\end{aligned}
$$

Summarizing the above results，we obtain as follows：
$\mathrm{E}\left(S^{* 2}\right)=\sigma^{2}, \quad \mathrm{E}\left(S^{2}\right)=\sigma^{2}, \quad \mathrm{E}\left(S^{* * 2}\right)=\frac{n-1}{n} \sigma^{2} \neq \sigma^{2}$.

7．4 Point Estimation：Optimality

θ denotes the parameter to be estimated．
$\hat{\theta}_{n}\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ represents the estimator of θ ，while $\hat{\theta}_{n}\left(x_{1}\right.$ ， x_{2}, \cdots, x_{n} ）indicates the estimate of θ ．

Hereafter，in the case of no confusion，$\hat{\theta}_{n}\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ is
simply written as $\hat{\theta}_{n}$ ．
As discussed above，there are numerous candidates of the estimator $\hat{\theta}_{n}$ ．

Unbiasedness（不偏性）：One of the desirable features that the estimator of the parameter should have is given by：

$$
\begin{equation*}
\mathrm{E}\left(\hat{\theta}_{n}\right)=\theta, \tag{12}
\end{equation*}
$$

which implies that $\hat{\theta}_{n}$ is distributed around θ ．

When（12）holds，$\hat{\theta}_{n}$ is called the unbiased estimator（不偏推定量）of θ ．
$\mathrm{E}\left(\hat{\theta}_{n}\right)-\theta$ is defined as bias（偏り）．

276

2．The estimators of σ^{2} are：
－$S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}, \quad \quad$－$S^{* * 2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ ．
Since we have obtained $\mathrm{E}(\bar{X})=\mu$ and $\mathrm{E}\left(S^{2}\right)=\sigma^{2}, \bar{X}$ and S^{2} are unbiased estimators of μ and σ^{2} ．

We have obtained the result $\mathrm{E}\left(S^{* * 2}\right) \neq \sigma^{2}$ and therefore $S^{* * 2}$ is not an unbiased estimator of σ^{2} ．
According to the criterion of unbiasedness，S^{2} is preferred to $S^{* * 2}$ for estimation of σ^{2} ．
which is known as the Cramer－Rao inequality（クラメー ル・ラオの不等式）．
When there exists the unbiased estimator $\hat{\theta}_{n}$ such that the equality in（13）holds，$\hat{\theta}_{n}$ becomes the unbiased estimator with minimum variance，which is the efficient estimator（有効推定量）．
$\frac{\sigma^{2}(\theta)}{n}$ is called the Cramer－Rao lower bound（クラメール・ ラオの下限）．

Proof of the Cramer－Rao inequality：We prove the above inequality and the equalities in $\sigma^{2}(\theta)$ ．

The likelihood function（尤度関数）$l(\theta ; x)=l\left(\theta ; x_{1}, x_{2}, \cdots\right.$, x_{n} ）is a joint density of $X_{1}, X_{2}, \cdots, X_{n}$ ．

That is，$l(\theta ; x)=l\left(\theta ; x_{1}, x_{2}, \cdots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$

See Section 7.5 for the likelihood function（尤度関数）．

Differentiating both sides of equation（15）with respect to θ ， we obtain the following equation：

$$
\begin{align*}
0 & =\int \frac{\partial l(\theta ; x)}{\partial \theta} \mathrm{d} x=\int \frac{1}{l(\theta ; x)} \frac{\partial l(\theta ; x)}{\partial \theta} l(\theta ; x) \mathrm{d} x \\
& =\int \frac{\partial \log l(\theta ; x)}{\partial \theta} l(\theta ; x) \mathrm{d} x=\mathrm{E}\left(\frac{\partial \log l(\theta ; X)}{\partial \theta}\right) \tag{16}
\end{align*}
$$

which implies that the expectation of $\frac{\partial \log l(\theta ; X)}{\partial \theta}$ is equal to zero．
In the third equality，note that $\frac{\mathrm{d} \log x}{\mathrm{~d} x}=\frac{1}{x}$ ．

In the second equality，$\frac{\mathrm{d} \log x}{\mathrm{~d} x}=\frac{1}{x}$ is utilized．

The third equality holds because of $\mathrm{E}\left(\frac{\partial \log l(\theta ; X)}{\partial \theta}\right)=0$ from equation（16）．

The integration of $l\left(\theta ; x_{1}, x_{2}, \cdots, x_{n}\right)$ with respect to x_{1}, x_{2} ， \cdots, x_{n} is equal to one．

That is，we have the following equation：

$$
\begin{equation*}
1=\int l(\theta ; x) \mathrm{d} x \tag{15}
\end{equation*}
$$

where the likelihood function $l(\theta ; x)$ is given by $l(\theta ; x)=$ $\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$ and $\int \cdots \mathrm{d} x$ implies n－tuple integral．

Now，let $\hat{\theta}_{n}$ be an estimator of θ ．The definition of the math－ ematical expectation of the estimator $\hat{\theta}_{n}$ is represented as：

$$
\begin{equation*}
\mathrm{E}\left(\hat{\theta}_{n}\right)=\int \hat{\theta}_{n} l(\theta ; x) \mathrm{d} x \tag{17}
\end{equation*}
$$

Differentiating equation（17）with respect to θ on both sides， we can rewrite as follows：

$$
\begin{align*}
\frac{\partial \mathrm{E}\left(\hat{\theta}_{n}\right)}{\partial \theta} & =\int \hat{\theta}_{n} \frac{\partial l(\theta ; x)}{\partial \theta} \mathrm{d} x=\int \hat{\theta}_{n} \frac{\partial \log l(\theta ; x)}{\partial \theta} l(\theta ; x) \mathrm{d} x \\
& =\int\left(\hat{\theta}_{n}-\mathrm{E}\left(\hat{\theta}_{n}\right)\right)\left(\frac{\partial \log l(\theta ; x)}{\partial \theta}-\mathrm{E}\left(\frac{\partial \log l(\theta ; x)}{\partial \theta}\right)\right) l(\theta ; x) \mathrm{d} x \\
& =\operatorname{Cov}\left(\hat{\theta}_{n}, \frac{\partial \log l(\theta ; X)}{\partial \theta}\right) \tag{18}
\end{align*}
$$

285

Taking the square on both sides of equation（18），we obtain the following expression：

$$
\begin{align*}
\left(\frac{\partial \mathrm{E}\left(\hat{\theta}_{n}\right)}{\partial \theta}\right)^{2} & =\left(\operatorname{Cov}\left(\hat{\theta}_{n}, \frac{\partial \log l(\theta ; X)}{\partial \theta}\right)\right)^{2}=\rho^{2} \mathrm{~V}\left(\hat{\theta}_{n}\right) \mathrm{V}\left(\frac{\partial \log l(\theta ; X)}{\partial \theta}\right) \\
& \leq \mathrm{V}\left(\hat{\theta}_{n}\right) \mathrm{V}\left(\frac{\partial \log l(\theta ; X)}{\partial \theta}\right) \tag{19}
\end{align*}
$$

where ρ denotes the correlation coefficient between $\hat{\theta}_{n}$ and $\frac{\partial \log l(\theta ; X)}{\partial \theta}$ ．

For simplicity of discussion，suppose that θ is a scalar．

Note that we have the definition of ρ is given by:

$$
\rho=\frac{\operatorname{Cov}\left(\hat{\theta}_{n}, \frac{\partial \log l(\theta ; X)}{\partial \theta}\right)}{\sqrt{\mathrm{V}\left(\hat{\theta}_{n}\right)} \sqrt{\mathrm{V}\left(\frac{\partial \log l(\theta ; X)}{\partial \theta}\right)}} .
$$

Moreover, we have $-1 \leq \rho \leq 1$ (i.e., $\rho^{2} \leq 1$).
Then, the inequality (19) is obtained, which is rewritten as:

$$
\begin{equation*}
\mathrm{V}\left(\hat{\theta}_{n}\right) \geq \frac{\left(\frac{\partial \mathrm{E}\left(\hat{\theta}_{n}\right)}{\partial \theta}\right)^{2}}{\mathrm{~V}\left(\frac{\partial \log l(\theta ; X)}{\partial \theta}\right)} \tag{20}
\end{equation*}
$$

Moreover, the denominator in the right-hand side of the above inequality is rewritten as follows:

$$
\begin{aligned}
& \mathrm{E}\left(\left(\frac{\partial \log l(\theta ; X)}{\partial \theta}\right)^{2}\right) \\
= & \mathrm{E}\left(\left(\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)^{2}\right)=\sum_{i=1}^{n} \mathrm{E}\left(\left(\frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}\right)^{2}\right) \\
= & n \mathrm{E}\left(\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right)^{2}\right)=n \int_{-\infty}^{\infty}\left(\frac{\partial \log f(x ; \theta)}{\partial \theta}\right)^{2} f(x ; \theta) \mathrm{d} x .
\end{aligned}
$$

In the first equality, $\log l(\theta ; X)=\sum_{i=1}^{n} \log f\left(X_{i} ; \theta\right)$ is utilized.

The above equation is rewritten as:

$$
\begin{equation*}
\int \frac{\partial \log f(x ; \theta)}{\partial \theta} f(x ; \theta) \mathrm{d} x=0 \tag{21}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\mathrm{E}\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right)=0 \tag{22}
\end{equation*}
$$

Again, differentiating equation (21) with respect to θ,

$$
\int \frac{\partial^{2} \log f(x ; \theta)}{\partial \theta^{2}} f(x ; \theta) \mathrm{d} x+\int \frac{\partial \log f(x ; \theta)}{\partial \theta} \frac{\partial f(x ; \theta)}{\partial \theta} \mathrm{d} x=0,
$$

i.e.,
$\int \frac{\partial^{2} \log f(x ; \theta)}{\partial \theta^{2}} f(x ; \theta) \mathrm{d} x+\int\left(\frac{\partial \log f(x ; \theta)}{\partial \theta}\right)^{2} f(x ; \theta) \mathrm{d} x=0$, i.e.,

$$
\mathrm{E}\left(\frac{\partial^{2} \log f(x ; \theta)}{\partial \theta^{2}}\right)+\mathrm{E}\left(\left(\frac{\partial \log f(x ; \theta)}{\partial \theta}\right)^{2}\right)=0
$$

Thus, we obtain:

$$
-\mathrm{E}\left(\frac{\partial^{2} \log f(x ; \theta)}{\partial \theta^{2}}\right)=\mathrm{E}\left(\left(\frac{\partial \log f(x ; \theta)}{\partial \theta}\right)^{2}\right)
$$

Moreover, from equation (22), the following equation is derived.

$$
\mathrm{E}\left(\left(\frac{\partial \log f(x ; \theta)}{\partial \theta}\right)^{2}\right)=\mathrm{V}\left(\frac{\partial \log f(x ; \theta)}{\partial \theta}\right)
$$

Therefore, we have:
$-\mathrm{E}\left(\frac{\partial^{2} \log f(X ; \theta)}{\partial \theta^{2}}\right)=\mathrm{E}\left(\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right)^{2}\right)=\mathrm{V}\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right)$.

Thus, the Cramer-Rao inequality is derived as:

$$
\mathrm{V}\left(\hat{\theta}_{n}\right) \geq \frac{\sigma^{2}(\theta)}{n}
$$

where

$$
\begin{aligned}
\sigma^{2}(\theta) & =\frac{1}{\mathrm{E}\left(\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right)^{2}\right)}=\frac{1}{\mathrm{~V}\left(\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right)\right)} \\
& =-\frac{1}{\mathrm{E}\left(\frac{\partial^{2} \log f(X ; \theta)}{\partial \theta^{2}}\right)}
\end{aligned}
$$

