Example 1.17b:  Suppose that X;, X, - - -, X,, are mutually
independently and identically distributed as Bernoulli ran-

dom variables with parameter p.
We derive the maximum likelihood estimators of p.

The joint density (or the likelihood function) of X, X, ---,
X, is:

fex,xsp) = [ | fasp =] [ pra-p'
i=1 i=1

= pEe (1= p) R = U(p).

331

‘We obtain the maximum likelihood estimates as follows:

Replacing x; by X; fori = 1,2,---,n, the maximum likeli-

- 1
hood estimator of p is givenby p = X = — Z X;.
n

i=1
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@ Next, we check whether p is efficient.
From Cramer-Rao inequality,
1

d*1 X; '
(L)

V(p) = -

f&X;p)=p*d-p'*

log f(X; p) = Xlog(p) + (1 = X)log(1 - p)
dlog f(X;p) _ X 1-X

dp p 1-p
ClogfX;p) X 1-X
dp? - p2 (1-pp
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The log-likelihood function is given by:

n

logl(p) = () x) log(p) + (n = ), x;)log(1 = p).
i=1

i=1
For maximization of the likelihood function, differentiating

the log-likelihood function log I(p) with respect to p , the

first derivatives should be equal to zero, i.e.,

dlog Ip) 1 Z

n

(n—Zx»

i=1

:ﬁ;_L(l_})zo
p l-p

Let p be the solution which satisfies the above equation.
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@ We check whether p is unbiased.
_ 1 n 1 n
Ep)=EX)=E(- ) X)=- ) EX) =
(p) = EX) (nzl ) n;() p

1
Remember that E(X;) = inp"’(l - p)'™% = p, where x;
X,‘ZO
takes O or 1.

Thus, p is an unbiased estimator of p.
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We need to check whether the equality holds.
V(p) = V(= ZX) = —V(ZX) - ZV(X)
_ _pd-p)
= ;;pu -p) =
Note as follows:

V(X)) = B(X; - p)) = Z(x, p’p (1 =p)' ™ = p(1-p).

x;=0
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The Cramer-Rao lower bound is:

1 1
Clog f(Xip)y, o X 1-X
nE(d—pz) nE( P2 (1- p)z)
_ 1 B 1 _pl-p)
B E(XX) 1-EX), /I 1y  n 7
" ar) )
which is equal to V(p).

Thus, p is an efficient estimator of p.
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Properties of Maximum Likelihood Estimator: For small

sample (/NMZX), the MLE has the following properties.

e MLE is not necessarily unbiased in general, but we often
have the case where we can construct the unbiased estimator
by an appropriate transformation.

For instance, the MLE of o2, S *2, is not unbiased.

However, ; §*2 = §? is an unbiased estimator of o2

e If the efficient estimator exists, the maximum likelihood

estimator is efficient.
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(23) indicates that the MLE has consistency, asymptotic un-
biasedness (T R 1%E), asymptotic efficiency (T HE %)
£) and asymptotic normality (#7538 I #71%).

Asymptotic normality of the MLE comes from the central

limit theorem discussed in Section 6.3.

Even though the underlying distribution is not normal, i.e.,
even though f(x; 6) is not normal, the MLE is asymptotically

normally distributed.
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@ We check whether p is consistent.
From Chebyshev’s inequality,

E((p-p)?*) _ p(l-p)
€2 T one

P(p—-plze <

Asn — oo, P(|p— pl > €) — 0.

That is, p converges in probability to p.

Thus, p is a consistent estimator of p.
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Efficient estimator <= The variance of the estimator is

equal to the Cramer-Rao lower bound.

For large sample (K#ZEX), as n — oo, the maximum

likelihood estimator of 6, 8,, has the following property:

Vn(d, — 0 — N(0,52()), (23)
where
a*(0) = ! =-— ! :
B (810gf(X;9)>2 B 0~ log f(X;0)
30 962
340

Note that the properties of n — oo are called the asymptotic
properties, which include consistency, asymptotic normality

and so on.

By normalizing, as n — oo, we obtain as follows:

\/ﬁ(én - 9) _ én -0
o®  oO)/Vn

— N(O, 1).

\/ﬁ(@n — 0) has the distribution, which does not depend on .
\/ﬁ(@n —6) = O(1) is written, where O() is a function n.
That is, 8, — 0 = n~'2 x O(1) = O(n™"7?).
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As another representation, when n is large, we can approxi-

mate the distribution of 8, as follows:

R o*(0)
0, ~ N(6, . )-

This implies that when n — oo, 6, approaches the lower

a*(6)

bound of Cramer-Rao inequality:

This property is called an asymptotic efficiency.
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Proof of (23): By the central limit theorem (11) on p.254,

Zalogﬂx,,e) L wo

1
(0. =g) @O

a1 Xi; 0 1
where 02(6) is defined in (14), i.e., V( og f( )) _

o6 T o0)
I Xi; 6
Note that E(M) = 0.
06
Apply the central limit theorem, taking % as the

ith random variable.
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Moreover, replacing 6 in variance o>(6) by 6,, when n —>
oo, we have the following property:
6, -6
a(8,)/ \n

Practically, when n is large, we approximately use:

—s N(O, 1). (24)

6, ~ N(6,

. (0,
( . ) (25)
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By the Taylor series expansion around 6, = 6,

Zalogf(X,ﬁ)

i=1

dlog f(X;;0 & log f(X;; 0
\/-Z ogf( ), \/-Z og f( )(Qn_e)

00?
a’; log f(Xta 0) 2
5 Vi & Z 06’ e

346



