
Example 1.17b: Suppose that X1, X2, · · ·, Xn are mutually

independently and identically distributed as Bernoulli ran-

dom variables with parameter p.

We derive the maximum likelihood estimators of p.

The joint density (or the likelihood function) of X1, X2, · · ·,

Xn is:

f (x1, x2, · · · , xn; p) =

n
∏

i=1

f (xi; p) =

n
∏

i=1

pxi(1 − p)1−xi

= p
∑n

i=1 xi(1 − p)n−
∑n

i=1 xi = l(p).
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The log-likelihood function is given by:

log l(p) = (

n
∑

i=1

xi) log(p) + (n −
n

∑

i=1

xi) log(1 − p).

For maximization of the likelihood function, differentiating

the log-likelihood function log l(p) with respect to p , the

first derivatives should be equal to zero, i.e.,

d log l(p)

dp
=

1

p

n
∑

i=1

xi −
1

1 − p
(n −

n
∑

i=1

xi)

=
n

p
x − n

1 − p
(1 − x) = 0

Let p̂ be the solution which satisfies the above equation.
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We obtain the maximum likelihood estimates as follows:

p̂ = x =
1

n

n
∑

i=1

xi,

Replacing xi by Xi for i = 1, 2, · · · , n, the maximum likeli-

hood estimator of p is given by p̂ = X =
1

n

n
∑

i=1

Xi.
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We check whether p̂ is unbiased.

E(p̂) = E(X) = E(
1

n

n
∑

i=1

Xi) =
1

n

n
∑

i=1

E(Xi) = p

Remember that E(Xi) =

1
∑

xi=0

xi p
xi(1 − p)1−xi = p, where xi

takes 0 or 1.

Thus, p̂ is an unbiased estimator of p.
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Next, we check whether p̂ is efficient.

From Cramer-Rao inequality,

V( p̂) ≥ − 1

nE
(d2 log f (X; p)

dp2

)

.

f (X; p) = pX(1 − p)1−X

log f (X; p) = X log(p) + (1 − X) log(1 − p)

d log f (X; p)

dp
=

X

p
− 1 − X

1 − p

d2 log f (X; p)

dp2
= − X

p2
− 1 − X

(1 − p)2
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We need to check whether the equality holds.

V( p̂) = V(
1

n

n
∑

i=1

Xi) =
1

n2
V(

n
∑

i=1

Xi) =
1

n2

n
∑

i=1

V(Xi)

=
1

n2

n
∑

i=1

p(1 − p) =
p(1 − p)

n
,

Note as follows:

V(Xi) = E((Xi − p)2) =

1
∑

xi=0

(xi − p)2 pxi(1 − p)1−xi = p(1 − p).
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The Cramer-Rao lower bound is:

−
1

nE
(d2 log f (X; p)

dp2

)

= −
1

nE
(

− X

p2
− 1 − X

(1 − p)2

)

= −
1

n
(

−E(X)

p2
− 1 − E(X)

(1 − p)2

)

=
1

n
(1

p
+

1

1 − p

)

=
p(1 − p)

n
,

which is equal to V(p̂).

Thus, p̂ is an efficient estimator of p.
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We check whether p̂ is consistent.

From Chebyshev’s inequality,

P(| p̂ − p| ≥ ε) ≤
E((p̂ − p)2)

ε2
=

p(1 − p)

nε2
.

As n −→ ∞, P(| p̂ − p| ≥ ε) −→ 0.

That is, p̂ converges in probability to p.

Thus, p̂ is a consistent estimator of p.
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Properties of Maximum Likelihood Estimator: For small

sample ( ), the MLE has the following properties.

• MLE is not necessarily unbiased in general, but we often

have the case where we can construct the unbiased estimator

by an appropriate transformation.

For instance, the MLE of σ2, S ∗∗2, is not unbiased.

However,
n

n − 1
S ∗∗2 = S 2 is an unbiased estimator of σ2.

• If the efficient estimator exists, the maximum likelihood

estimator is efficient.
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Efficient estimator ⇐⇒ The variance of the estimator is

equal to the Cramer-Rao lower bound.

For large sample ( ), as n −→ ∞, the maximum

likelihood estimator of θ, θ̂n, has the following property:

√
n(θ̂n − θ) −→ N(0, σ2(θ)), (23)

where

σ2(θ) =
1

E

(

(∂ log f (X; θ)

∂θ

)2
) = −

1

E

(

∂2 log f (X; θ)

∂θ2

) .
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(23) indicates that the MLE has consistency, asymptotic un-

biasedness ( ), asymptotic efficiency (

) and asymptotic normality ( ).

Asymptotic normality of the MLE comes from the central

limit theorem discussed in Section 6.3.

Even though the underlying distribution is not normal, i.e.,

even though f (x; θ) is not normal, the MLE is asymptotically

normally distributed.
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Note that the properties of n −→ ∞ are called the asymptotic

properties, which include consistency, asymptotic normality

and so on.

By normalizing, as n −→ ∞, we obtain as follows:

√
n(θ̂n − θ)
σ(θ)

=
θ̂n − θ
σ(θ)/

√
n
−→ N(0, 1).

√
n(θ̂n − θ) has the distribution, which does not depend on n.
√

n(θ̂n − θ) = O(1) is written, where O() is a function n.

That is, θ̂n − θ = n−1/2 × O(1) = O(n−1/2).
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As another representation, when n is large, we can approxi-

mate the distribution of θ̂n as follows:

θ̂n ∼ N
(

θ,
σ2(θ)

n

)

.

This implies that when n −→ ∞, θ̂n approaches the lower

bound of Cramer-Rao inequality:
σ2(θ)

n
.

This property is called an asymptotic efficiency.
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Moreover, replacing θ in variance σ2(θ) by θ̂n, when n −→

∞, we have the following property:

θ̂n − θ
σ(θ̂n)/

√
n
−→ N(0, 1). (24)

Practically, when n is large, we approximately use:

θ̂n ∼ N
(

θ,
σ2(θ̂n)

n

)

. (25)

344

Proof of (23): By the central limit theorem (11) on p.254,

1
√

n

n
∑

i=1

∂ log f (Xi; θ)

∂θ
−→ N

(

0,
1

σ2(θ)

)

, (26)

whereσ2(θ) is defined in (14), i.e., V
(∂ log f (Xi; θ)

∂θ

)

=
1

σ2(θ)
.

Note that E
(∂ log f (Xi; θ)

∂θ

)

= 0.

Apply the central limit theorem, taking
∂ log f (Xi; θ)

∂θ
as the

ith random variable.
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By the Taylor series expansion around θ̂n = θ,

0 =
1
√

n

n
∑

i=1

∂ log f (Xi; θ̂n)

∂θ

=
1
√

n

n
∑

i=1

∂ log f (Xi; θ)

∂θ
+

1
√

n

n
∑

i=1

∂2 log f (Xi; θ)

∂θ2
(θ̂n − θ)

+
1

2!

1
√

n

n
∑

i=1

∂3 log f (Xi; θ)

∂θ3
(θ̂n − θ)2

+ · · ·
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