
Proof of (23): By the central limit theorem (11) on p.254,

1
√

n

n
∑

i=1

∂ log f (Xi; θ)

∂θ
−→ N

(

0,
1

σ2(θ)

)

, (26)

whereσ2(θ) is defined in (14), i.e., V
(∂ log f (Xi; θ)

∂θ

)

=

1

σ2(θ)
.

Note that E
(∂ log f (Xi; θ)

∂θ

)

= 0.

Apply the central limit theorem, taking
∂ log f (Xi; θ)

∂θ
as the

ith random variable.
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By the Taylor series expansion around θ̂n = θ,

0 =
1
√

n

n
∑

i=1

∂ log f (Xi; θ̂n)

∂θ

=

1
√

n

n
∑

i=1

∂ log f (Xi; θ)

∂θ
+

1
√

n

n
∑

i=1

∂2 log f (Xi; θ)

∂θ2
(θ̂n − θ)

+

1

2!

1
√

n

n
∑

i=1

∂3 log f (Xi; θ)

∂θ3
(θ̂n − θ)

2
+ · · ·
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The third and above terms in the right-hand side are:

1

2!

1
√

n

n
∑

i=1

∂3 log f (Xi; θ)

∂θ3
(θ̂n − θ)

2
+ · · · −→ 0.

It can be shown that the sum of the above terms is equal to

O(n−1/2).

Note that
1

n

n
∑

i=1

∂3 log f (Xi; θ)

∂θ3
−→ E

(∂3 log f (Xi; θ)

∂θ3

)

from

Chebyshev’s inequality.

In addition, for now, we consider
√

n(θ̂n − θ)2 −→ 0 as n −→

∞. Actually, we obtain
√

n(θ̂n − θ)2
= O(n−1/2) from θ̂n −

θ = O(n−1/2).
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Therefore,

1
√

n

n
∑

i=1

∂ log f (Xi; θ)

∂θ
≈ −

1
√

n

n
∑

i=1

∂2 log f (Xi; θ)

∂θ2
(θ̂n − θ)

which implies that the asy. dist. of
1
√

n

n
∑

i=1

∂ log f (Xi; θ)

∂θ
is

equivalent to that of −
1
√

n

n
∑

i=1

∂2 log f (Xi; θ)

∂θ2
(θ̂n − θ).
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From (26) and the above equations, we obtain:

−
1

n

n
∑

i=1

∂2 log f (Xi; θ)

∂θ2

√
n(θ̂n − θ) −→ N

(

0,
1

σ2(θ)

)

.

The law of large numbers indicates as follows:

−
1

n

n
∑

i=1

∂2 log f (Xi; θ)

∂θ2
−→ −E

(∂2 log f (Xi; θ)

∂θ2

)

=

1

σ2(θ)
,

where the last equality comes from (14).
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Thus, we have the following relationship:

−
1

n

n
∑

i=1

∂2 log f (Xi; θ)

∂θ2

√
n(θ̂n − θ) −→

1

σ2(θ)

√
n(θ̂n − θ)

−→ N
(

0,
1

σ2(θ)

)

Therefore, the asymptotic normality of the maximum likeli-

hood estimator is obtained as follows:

√
n(θ̂n − θ) −→ N(0, σ2(θ)).

Thus, (23) is obtained.
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7.5.2 Least Squares Estimation Method ( )

X1, X2, · · ·, Xn are mutually independently distributed with

mean µ.

x1, x2, · · ·, xn are generated from X1, X2, · · ·, Xn, respectively.

Solve the following problem:

min
µ

S (µ), where S (µ) =

n
∑

i=1

(xi − µ)
2.

Let µ̂ be the least squares estimate of µ.

dS (µ)

dµ
= 0 =⇒ µ̂ =

1

n

n
∑

i=1

xi
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The least squares estimator is given by:

µ̂ =
1

n

n
∑

i=1

Xi,

which is equivalent to MLE.
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7.5.3 Method of Moment ( )

The distribution of Xi is f (x; θ).

Let µ′
k

be the kth moment.

From the definition of the kth moment,

E(Xk) = µ′k

where µ′
k

depends on θ.

Let µ̂′
k

be the estimate of the kth moment.

E(Xk) ≈
1

n

n
∑

i=1

xk
i = µ̂

′
k
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The estimator of µ′
k

is:

µ̂′k =
1

n

n
∑

i=1

Xk
i

Example: θ = (µ, σ2): Because we have two parameters,

we use the 1st and 2nd moments.

µ′
1
= E(X) = µ

µ′
2
= E(X2) = V(X) + (E(X))2

= σ2
+ µ2
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Estimates:

µ̂ =
1

n

n
∑

i=1

xi = x σ̂2
+ µ̂2

=

1

n

n
∑

i=1

x2
i

σ̂2
=

1

n

n
∑

i=1

x2
i − µ̂

2
=

1

n

n
∑

i=1

x2
i − x

2
=

1

n

n
∑

i=1

(xi − x)2

Estimators:

µ̂ =
1

n

n
∑

i=1

Xi = X σ̂2
=

1

n

n
∑

i=1

(Xi − X)2
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7.6 Interval Estimation

In Sections 7.1 – 7.5.1, the point estimation is discussed.

It is important to know where the true parameter value of θ

is likely to lie.

Suppose that the population distribution is given by f (x; θ).
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Using the random sample X1, X2, · · ·, Xn drawn from the

population distribution, we construct the two statistics, say,

θU(X1, X2, · · ·, Xn) and θL(X1, X2, · · ·, Xn), where

P(θL(X1, X2, · · · , Xn) < θ < θU(X1, X2, · · · , Xn)) = 1 − α.

(27)

(27) implies that θ lies on the interval
(

θL(X1, X2, · · ·, Xn),

θU(X1, X2, · · ·, Xn)
)

with probability 1 − α.
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Now, we replace the random variables X1, X2, · · ·, Xn by the

experimental values x1, x2, · · ·, xn.

Then, we say that the interval:

(

θL(x1, x2, · · · , xn), θU(x1, x2, · · · , xn)
)

is called the 100× (1− α)% confidence interval ( )

of θ.

Thus, estimating the interval is known as the interval esti-

mation ( ), which is distinguished from the point

estimation.
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In the interval, θL(x1, x2, · · ·, xn) is known as the lower

bound of the confidence interval, while θU(x1, x2, · · ·, xn)

is the upper bound of the confidence interval.

Given probability α, the θL(X1, X2, · · ·, Xn) and θU(X1, X2,

· · ·, Xn) which satisfies equation (27) are not unique.

For estimation of the unknown parameter θ, it is more opti-

mal to minimize the width of the confidence interval.

Therefore, we should choose θL and θU which minimizes the

width θU(X1, X2, · · ·, Xn) − θL(X1, X2, · · ·, Xn).
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Interval Estimation of X: Let X1, X2, · · ·, Xn be mutually

independently and identically distributed random variables.

Xi has a distribution with mean µ and variance σ2.

From the central limit theorem,

X − µ

σ/
√

n
−→ N(0, 1).

Replacing σ2 by its estimator S 2 (or S ∗∗2),

X − µ

S/
√

n
−→ N(0, 1).
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Therefore, when n is large enough,

P(z∗ <
X − µ

S/
√

n
< z∗∗) = 1 − α,

where z∗ and z∗∗ (z∗ < z∗∗) are percent points from the stan-

dard normal density function.

Solving the inequality above with respect to µ, the following

expression is obtained.

P
(

X − z∗∗
S
√

n
< µ < X − z∗

S
√

n

)

= 1 − α,

where θ̂L and θ̂U correspond to X − z∗∗
S
√

n
and X − z∗

S
√

n
,
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respectively.

The length of the confidence interval is given by:

θ̂U − θ̂L =
S
√

n
(z∗∗ − z∗),

which should be minimized subject to:

∫ z∗∗

z∗
f (x) dx = 1 − α,

i.e.,

F(z∗∗) − F(z∗) = 1 − α,
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where F(·) denotes the standard normal cumulative distribu-

tion function.

Solving the minimization problem above, we can obtain the

conditions that f (z∗) = f (z∗∗) for z∗ < z∗∗ and that f (x) is

symmetric.

Therefore, we have:

−z∗ = z∗∗ = zα/2,

where zα/2 denotes the 100×α/2 percent point from the stan-

dard normal density function.
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Accordingly, replacing the estimators X and S 2 by their esti-

mates x and s2, the 100 × (1 − α)% confidence interval of µ

is approximately represented as:

(

x − zα/2
s
√

n
, x + zα/2

s
√

n

)

,

for large n.

For now, we do not impose any assumptions on the distribu-

tion of Xi.

If we assume that Xi is normal,
X − µ

S/
√

n
has a t distribution

with n − 1 degrees of freedom for any n.
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Therefore, 100 × (1 − α)% confidence interval of µ is given

by:
(

x − tα/2(n − 1)
s
√

n
, x + tα/2(n − 1)

s
√

n

)

,

where tα/2(n − 1) denotes the 100 × α/2 percent point of the

t distribution with n − 1 degrees of freedom.
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Interval Estimation of θ̂n: Let X1, X2, · · ·, Xn be mutually

independently and identically distributed random variables.

Xi has the probability density function f (xi; θ).

Suppose that θ̂n represents the maximum likelihood estima-

tor of θ.

From (25), we can approximate the 100×(1−α)% confidence

interval of θ as follows:

(

θ̂n − zα/2
σ(θ̂n)
√

n
, θ̂n + zα/2

σ(θ̂n)
√

n

)

.
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8 Testing Hypothesis ( )

8.1 Basic Concepts in Testing Hypothesis

Given the population distribution f (x; θ), we want to judge

from the observed values x1, x2, · · ·, xn whether the hypothe-

sis on the parameter θ, e.g. θ = θ0, is correct or not.

The hypothesis that we want to test is called the null hypoth-

esis ( ), which is denoted by H0 : θ = θ0.
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The hypothesis against the null hypothesis, e.g. θ , θ0, is

called the alternative hypothesis ( ), which is de-

noted by H1 : θ , θ0.
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Type I and Type II Errors ( ):

When we test the null hypothesis H0, as shown in Table 1 we

have four cases, i.e.,

(i) we accept H0 when H0 is true,

(ii) we reject H0 when H0 is true,

(iii) we accept H0 when H0 is false, and

(iv) we reject H0 when H0 is false.

(i) and (iv) are correct judgments, while (ii) and (iii) are not

correct.
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(ii) is called a type I error ( ) and (iii) is called

a type II error ( ).

The probability which a type I error occurs is called the sig-

nificance level ( ), which is denoted by α, and the

probability of committing a type II error is denoted by β.

Probability of (iv) is called the power ( ) or the power

function ( ), because it is a function of the pa-

rameter θ.
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Table 1: Type I and Type II Errors

H0 is true. H0 is false.

Acceptance of H0 Correct judgment Type II Error

(Probability β)

Rejection of H0 Type I Error Correct judgment

(1 − β = Power)

(Probability α

= Significance Level)
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Testing Procedures: The testing procedure is summarized

as follows.

1. Construct the null hypothesis (H0) on the parameter.

2. Consider an appropriate statistic, which is called a test

statistic ( ).

Derive a distribution function of the test statistic when

H0 is true.

3. From the observed data, compute the observed value

of the test statistic.
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4. Compare the distribution and the observed value of the

test statistic.

When the observed value of the test statistic is in the

tails of the distribution, we consider that H0 is not

likely to occur and we reject H0.
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