The region that H_0 is unlikely to occur and accordingly H_0 is rejected is called the **rejection region** (棄却域) or the **critical region**, denoted by *R*.

Conversely, the region that H_0 is likely to occur and accordingly H_0 is accepted is called the **acceptance region** (採択 域), denoted by *A*.

Using the rejection region *R* and the acceptance region *A*, the type I and II errors and the power are formulated as follows. Suppose that the test statistic is give by $T = T(X_1, X_2, \dots, X_n)$.

The probability of committing a **type I error** (第一種の誤 り), i.e., the **significance level** (有意水準) α , is given by:

$$P(T(X_1, X_2, \cdots, X_n) \in R | H_0 \text{ is true}) = \alpha,$$

which is the probability that rejects H_0 when H_0 is true.

Conventionally, the significance level $\alpha = 0.1, 0.05, 0.01$ is chosen in practice.

375

The probability of committing a **type II error** (第二種の誤り), i.e., β , is represented as:

$$P(T(X_1, X_2, \cdots, X_n) \in A | H_0 \text{ is not true}) = \beta,$$

which corresponds to the probability that accepts H_0 when H_0 is not true.

The **power** (検出力, または, 検定力) is defined as $1 - \beta$,

 $P(T(X_1, X_2, \cdots, X_n) \in R | H_0 \text{ is not true}) = 1 - \beta,$

which is the probability that rejects H_0 when H_0 is not true.

8.2 Power Function (検出力関数)

Let X_1, X_2, \dots, X_n be mutually independently, identically and normally distributed with mean μ and variance σ^2 .

Assume that σ^2 is known.

In Figure 3, we consider: the null hypothesis H_0 : $\mu = \mu_0$, the alternative hypothesis H_1 : $\mu = \mu_1$, where $\mu_1 > \mu_0$ is taken.

377

The dark shadow area (probability α) corresponds to the probability of a **type I error**, i.e., the **significance level**, while the light shadow area (probability β) indicates the probability of a **type II error**.

The probability of the right-hand side of f^* in the distribution under H_1 represents the **power** of the test, i.e., $1 - \beta$. The distribution of sample mean \overline{X} is given by:

$$\overline{X} \sim N\Big(\mu, \frac{\sigma^2}{n}\Big).$$

By normalization, we have:

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Therefore, under the null hypothesis H_0 : $\mu = \mu_0$, we obtain:

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1),$$

where μ is replaced by μ_0 .

380

Since the significance level α is the probability which rejects H_0 when H_0 is true, it is given by:

$$\alpha = P(\overline{X} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}),$$

where z_{α} denotes $100 \times \alpha$ percent point of N(0, 1).

Therefore, the rejection region is given by: $\overline{X} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$.

381

Since the power $1 - \beta$ is the probability which rejects H_0 when H_1 is true, it is given by:

$$1 - \beta = P\left(\overline{X} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}\right) = P\left(\frac{\overline{X} - \mu_1}{\sigma/\sqrt{n}} > \frac{\mu_0 - \mu_1}{\sigma/\sqrt{n}} + z_\alpha\right)$$
$$= 1 - P\left(\frac{\overline{X} - \mu_1}{\sigma/\sqrt{n}} < \frac{\mu_0 - \mu_1}{\sigma/\sqrt{n}} + z_\alpha\right) = 1 - F\left(\frac{\mu_0 - \mu_1}{\sigma/\sqrt{n}} + z_\alpha\right),$$

where $F(\cdot)$ represents the standard normal cumulative distribution function, which is given by:

$$F(x) = \int_{-\infty}^{x} (2\pi)^{-1/2} \exp(-\frac{1}{2}t^2) dt.$$

The power function is a function of μ_1 , given μ_0 and α .

8.3 Small Sample Test (小標本検定)

8.3.1 Testing Hypothesis on Mean

Known σ^2 : Let X_1, X_2, \dots, X_n be mutually independently, identically and normally distributed with μ and σ^2 . Consider testing the null hypothesis H_0 : $\mu = \mu_0$.

When the null hypothesis H_0 is true, the distribution of \overline{X} is:

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1).$$

Therefore, the test statistic is given by: $\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$. Depending on the alternative hypothesis, we have the three cases.

- 1. The alternative hypothesis H_1 : $\mu < \mu_0$ (one-sided test, 片側検定): We have: $P(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} < -z_{\alpha}) = \alpha$. Therefore, when $\frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} < -z_{\alpha}$, we reject the null hypothesis H_0 : $\mu = \mu_0$ at the significance level α .
- 2. The alternative hypothesis $H_1: \mu > \mu_0$ (one-sided test, 片側検定): We have: $P(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} > z_{\alpha}) = \alpha$. Therefore, when $\frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} > z_{\alpha}$, we reject the null hypothesis $H_0: \mu = \mu_0$ at the significance level α .
- 3. The alternative hypothesis $H_1 : \mu \neq \mu_0$ (two-sided test, 両側検定): We have: $P\left(\left|\frac{\overline{X} \mu_0}{\sigma/\sqrt{n}}\right| > z_{\alpha/2}\right) = \alpha$. Therefore, when $\left|\frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}\right| > z_{\alpha/2}$, we reject the null hypothesis $H_0 : \mu = \mu_0$ at the significance level α .

Unknown σ^2 : Let X_1, X_2, \dots, X_n be mutually independently, identically and normally distributed with μ and σ^2 . Test the null hypothesis H_0 : $\mu = \mu_0$.

When the null hypothesis H_0 is true, the distribution of \overline{X} is given by:

$$\frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(n-1).$$

Therefore, the test statistic is given by: $\frac{\overline{X} - \mu_0}{S / \sqrt{n}}$.

386

8.3.2 Testing Hypothesis on Variance

Testing Hypothesis on Variance: Let X_1, X_2, \dots, X_n be mutually independently, identically and normally distributed with μ and σ^2 .

Test the null hypothesis H_0 : $\sigma^2 = \sigma_0^2$.

When the null hypothesis H_0 is true, the distribution of S^2 is given by:

$$\frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1)$$

Testing Equality of Two Variances: Let X_1, X_2, \dots, X_n be mutually independently, identically and normally distributed with μ_x and σ_x^2 .

Let Y_1, Y_2, \dots, Y_m be mutually independently, identically and normally distributed with μ_y and σ_y^2 .

Test the null hypothesis H_0 : $\sigma_x^2 = \sigma_y^2$.

$$\frac{(n-1)S_x^2}{\sigma_x^2} \sim \chi^2(n-1), \quad \text{where } S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
$$\frac{(m-1)S_y^2}{\sigma_y^2} \sim \chi^2(m-1), \quad \text{where } S_y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \overline{Y})^2$$

Both are independent.

Then, the ratio of two χ^2 random variables divided by degrees of freedom is:

$$\frac{\frac{(n-1)S_x^2}{\sigma_x^2}}{\frac{(m-1)S_y^2}{\sigma_y^2}} \sim F(n-1,m-1)$$

Therefore, under the null hypothesis $H_0: \sigma_x^2 = \sigma_y^2$,

$$\frac{S_x^2}{S_y^2} \sim F(n-1,m-1)$$

389

Large Sample Test (大標本検定)

• Wald Test (ワルド検定)

8.4

- Likelihood Ratio Test (尤度比検定)
- Lagrange Multiplier Test (ラグランジェ乗数検定)

 \longrightarrow Skipped in this class.

390

From (24), under the null hypothesis H_0 : $\theta = \theta_0$ (scalar case), as $n \longrightarrow \infty$, the maximum likelihood estimator $\hat{\theta}_n$ is distributed as:

$$\frac{\hat{\theta}_n - \theta_0}{\sigma(\hat{\theta}_n)/\sqrt{n}} \longrightarrow N(0, 1).$$

Or, equivalently,

8.4.1 Wald Test (ワルド検定)

$$\left(\frac{\hat{\theta}_n - \theta_0}{\sigma(\hat{\theta}_n)/\sqrt{n}}\right)^2 \longrightarrow \chi^2(1)$$

For H_0 : $\theta = \theta_0$ and H_1 : $\theta \neq \theta_0$, replacing X_1, \dots, X_n in $\hat{\theta}_n$ by the observed values x_1, \dots, x_n , the testing procedure is as follows.

When we have: $\left(\frac{\hat{\theta}_n - \theta_0}{\sigma(\hat{\theta}_n)/\sqrt{n}}\right)^2 > \chi^2_{\alpha}(1)$, we reject the null hypothesis H_0 at the significance level α .

 $\chi^2_{\alpha}(1)$ denotes the $100 \times \alpha \%$ point of the χ^2 distribution with one degree of freedom.

This testing procedure is called the Wald test (ワルド検定).

392

Example 1.18: X_1, X_2, \dots, X_n are mutually independently, identically and exponentially distributed.

Consider the following exponential probability density function:

 $f(x;\gamma)=\gamma e^{-\gamma x},$

for $0 < x < \infty$.

Using the Wald test, we want to test the null hypothesis H_0 : $\gamma = \gamma_0$ against the alternative hypothesis H_1 : $\gamma \neq \gamma_0$.

393

Generally, as $n \rightarrow \infty$, the distribution of the maximum likelihood estimator of the parameter γ , $\hat{\gamma}_n$, is asymptotically represented as:

$$\frac{\hat{\gamma}_n - \gamma}{\sigma(\hat{\gamma}_n)/\sqrt{n}} \longrightarrow N(0, 1),$$

or, equivalently

$$\left(\frac{\hat{\gamma}_n-\gamma}{\sigma(\hat{\gamma}_n)/\sqrt{n}}\right)^2 \longrightarrow \chi^2(1),$$

where

$$\sigma^{2}(\gamma) = \left(E\left(\left(\frac{d\log f(X;\gamma)}{d\gamma}\right)^{2}\right) \right)^{-1} = -\left(E\left(\frac{d^{2}\log f(X;\gamma)}{d\gamma^{2}}\right) \right)^{-1}$$
394

Therefore, under the null hypothesis H_0 : $\gamma = \gamma_0$, when *n* is large enough, we have the following distribution:

$$\left(\frac{\hat{\gamma}_n - \gamma_0}{\sigma(\hat{\gamma}_n)/\sqrt{n}}\right)^2 \longrightarrow \chi^2(1).$$

As for the null hypothesis H_0 : $\gamma = \gamma_0$ against the alternative hypothesis H_1 : $\gamma \neq \gamma_0$, if we have:

$$\left(\frac{\hat{\gamma}_n - \gamma_0}{\sigma(\hat{\gamma}_n)/\sqrt{n}}\right)^2 > \chi_{\alpha}^2(1),$$

we can reject H_0 at the significance level α . We need to derive $\sigma^2(\gamma)$ and $\hat{\gamma}_n$ for the testing procedure.

395

First, $\sigma^2(\gamma)$ is given by:

$$\sigma^{2}(\gamma) = -\left(\mathrm{E}\left(\frac{\mathrm{d}^{2}\log f(X;\gamma)}{\mathrm{d}\gamma^{2}}\right)\right)^{-1} = \gamma^{2}.$$

Note that the first- and the second-derivatives of log $f(X; \gamma)$ with respect to γ are given by:

$$\frac{d\log f(X;\gamma)}{d\gamma} = \frac{1}{\gamma} - X, \qquad \frac{d^2\log f(X;\gamma)}{d\gamma^2} = -\frac{1}{\gamma^2}.$$

Next, the maximum likelihood estimator of γ , i.e., $\hat{\gamma}_n$, is obtained as follows.

Since X_1, X_2, \dots, X_n are mutually independently and identically distributed, the likelihood function $l(\gamma)$ is given by:

$$l(\gamma) = \prod_{i=1}^{n} f(x_i; \gamma) = \prod_{i=1}^{n} \gamma e^{-\gamma x_i} = \gamma^n e^{-\gamma \sum x_i}.$$

Therefore, the log-likelihood function is written as:

$$\log l(\gamma) = n \log(\gamma) - \gamma \sum_{i=1}^{n} x_i.$$

We obtain the value of γ which maximizes $\log l(\gamma)$.

Solving the following equation:

$$\frac{\mathrm{d}\log l(\gamma)}{\mathrm{d}\gamma} = \frac{n}{\gamma} - \sum_{i=1}^{n} x_i = 0,$$

the MLE of γ , $\hat{\gamma}_n$, is represented as:

$$\hat{\gamma}_n = \frac{n}{\sum_{i=1}^n X_i} = \frac{1}{\overline{X}}.$$

Then, we have the following:

$$\frac{\hat{\gamma}_n - \gamma}{\sigma(\hat{\gamma}_n)/\sqrt{n}} = \frac{\hat{\gamma}_n - \gamma}{\hat{\gamma}_n/\sqrt{n}} \longrightarrow N(0, 1),$$

where $\hat{\gamma}_n$ is given by $1/\overline{X}$.

398

Or, equivalently,

$$\left(\frac{\hat{\gamma}_n - \gamma}{\sigma(\hat{\gamma}_n)/\sqrt{n}}\right)^2 = \left(\frac{\hat{\gamma}_n - \gamma}{\hat{\gamma}_n/\sqrt{n}}\right)^2 \longrightarrow \chi^2(1).$$

For $H_0: \gamma = \gamma_0$ and $H_1: \gamma \neq \gamma_0$, when we have:

$$\left(\frac{\hat{\gamma}_n - \gamma_0}{\hat{\gamma}_n / \sqrt{n}}\right)^2 > \chi_\alpha^2(1).$$

we reject H_0 at the significance level α .

399

8.4.2 Likelihood Ratio Test (尤度比検定)

Suppose that the population distribution is given by $f(x; \theta)$, where $\theta = (\theta_1, \theta_2)$.

Consider testing the null hypothesis $\theta_1 = \theta_1^*$ against the alternative hypothesis $H_1 : \theta_1 \neq \theta_1^*$, using the observed values (x_1, \dots, x_n) corresponding to the random sample (X_1, \dots, X_n) .

Let θ_1 and θ_2 be $1 \times k_1$ and $1 \times k_2$ vectors, respectively.

 $\theta = (\theta_1, \theta_2)$ denotes a $1 \times (k_1 + k_2)$ vector.

Since we take the null hypothesis as H_0 : $\theta_1 = \theta_1^*$, the number of restrictions is given by k_1 , which is equal to the dimension of θ_1 .

The likelihood function is written as:

$$l(\theta_1, \theta_2) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2).$$

Let $(\tilde{\theta}_1, \tilde{\theta}_2)$ be the maximum likelihood estimator of (θ_1, θ_2) .

That is, $(\tilde{\theta}_1, \tilde{\theta}_2)$ indicates the solution of (θ_1, θ_2) , obtained from the following equations:

$$\frac{\partial l(\theta_1, \theta_2)}{\partial \theta_1} = 0, \quad \frac{\partial l(\theta_1, \theta_2)}{\partial \theta_2} = 0.$$

The solution $(\tilde{\theta}_1, \tilde{\theta}_2)$ is called the **unconstrained maximum likelihood estimator** (制約なし最尤推定量), because the null hypothesis $H_0: \theta_1 = \theta_1^*$ is not taken into account. Let $\hat{\theta}_2$ be the maximum likelihood estimator of θ_2 under the null hypothesis H_0 : $\theta_1 = \theta_1^*$.

That is, $\hat{\theta}_2$ is a solution of the following equation:

$$\frac{\partial l(\theta_1^*, \theta_2)}{\partial \theta_2} = 0.$$

The solution $\hat{\theta}_2$ is called the **constrained maximum likeli**hood estimator (制約つき最尤推定量) of θ_2 , because the likelihood function is maximized with respect to θ_2 subject to the constraint $\theta_1 = \theta_1^*$. Define λ as follows:

$$\lambda = \frac{l(\theta_1^*, \theta_2)}{l(\widetilde{\theta}_1, \widetilde{\theta}_2)},$$

which is called the likelihood ratio (尤度比).

As *n* goes to infinity, it is known that we have:

$$-2\log(\lambda) \longrightarrow \chi^2(k_1),$$

where k_1 denotes the number of the constraints.

404

Let $\chi^2_{\alpha}(k_1)$ be the 100 × α percent point from the chi-square distribution with k_1 degrees of freedom.

When $-2 \log(\lambda) > \chi^2_{\alpha}(k_1)$, we reject the null hypothesis H_0 : $\theta_1 = \theta_1^*$ at the significance level α .

This test is called the likelihood ratio test (尤度比検定)

If $-2\log(\lambda)$ is close to zero, we accept the null hypothesis.

When $(\theta_1^*, \hat{\theta}_2)$ is close to $(\tilde{\theta}_1, \tilde{\theta}_2), -2\log(\lambda)$ approaches zero.

405

Example 1.19: X_1, X_2, \dots, X_n are mutually independently, identically and exponentially distributed.

Consider the exponential probability density function:

$$f(x;\gamma) = \gamma e^{-\gamma x},$$

for $0 < x < \infty$.

Using the likelihood ratio test, we test the null hypothesis $H_0: \gamma = \gamma_0$ against the alternative hypothesis $H_1: \gamma \neq \gamma_0$.

The likelihood ratio is given by:

$$\lambda = \frac{l(\gamma_0)}{l(\hat{\gamma}_n)},$$

where $\hat{\gamma}_n$ is derived in Example 1.18, i.e.,

$$\hat{\gamma}_n = \frac{n}{\sum_{i=1}^n X_i} = \frac{1}{\overline{X}}.$$

Since the number of the constraint is equal to one, as the sample size n goes to infinity we have the following asymptotic distribution:

$$-2\log\lambda \longrightarrow \chi^2(1).$$

$$407$$

The likelihood ratio is computed as follows:

$$\lambda = \frac{l(\gamma_0)}{l(\hat{\gamma}_n)} = \frac{\gamma_0^n e^{-\gamma_0 \sum X_i}}{\hat{\gamma}_n^n e^{-n}}.$$

If $-2 \log \lambda > \chi_{\alpha}^2(1)$, we reject the null hypothesis $H_0: \gamma = \gamma_0$ at the significance level α . **Example 1.20:** Suppose that X_1, X_2, \dots, X_n are mutually independently, identically and normally distributed with mean μ and variance σ^2 .

The normal probability density function with mean μ and variance σ^2 is given by:

$$f(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}.$$

By the likelihood ratio test, we test the null hypothesis H_0 : $\mu = \mu_0$ against the alternative hypothesis $H_1 : \mu \neq \mu_0$. The likelihood ratio is given by:

$$\lambda = \frac{l(\mu_0, \widetilde{\sigma}^2)}{l(\hat{\mu}, \hat{\sigma}^2)},$$

where $\tilde{\sigma}^2$ is the constrained maximum likelihood estimator with the constraint $\mu = \mu_0$, while $(\hat{\mu}, \hat{\sigma}^2)$ denotes the unconstrained maximum likelihood estimator.

In this case, since the number of the constraint is one, the asymptotic distribution is as follows:

$$-2\log\lambda \longrightarrow \chi^2(1).$$

410

We derive $l(\mu_0, \tilde{\sigma}^2)$ and $l(\hat{\mu}, \hat{\sigma}^2)$. $l(\mu, \sigma^2)$ is written as:

$$l(\mu, \sigma^2) = f(x_1, x_2, \cdots, x_n; \mu, \sigma^2) = \prod_{i=1}^n f(x_i; \mu, \sigma^2)$$
$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x_i - \mu)^2\right)$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2\right).$$

The log-likelihood function log $l(\mu, \sigma^2)$ is represented as:

$$\log l(\mu, \sigma^2) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2.$$
411

For the numerator of the likelihood ratio, under the constraint $\mu = \mu_0$, maximize log $l(\mu_0, \sigma^2)$ with respect to σ^2 .

Since we obtain the first-derivative:

$$\frac{\partial \log l(\mu_0, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu_0)^2 = 0,$$

the constrained maximum likelihood estimate $\widetilde{\sigma}^2$ is:

$$\widetilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2.$$

Therefore, replacing σ^2 by $\tilde{\sigma}^2$, $l(\mu_0, \tilde{\sigma}^2)$ is written as:

$$\begin{split} l(\mu_0, \widetilde{\sigma}^2) &= (2\pi \widetilde{\sigma}^2)^{-n/2} \exp\left(-\frac{1}{2\widetilde{\sigma}^2} \sum_{i=1}^n (x_i - \mu_0)^2\right) \\ &= (2\pi \widetilde{\sigma}^2)^{-n/2} \exp\left(-\frac{n}{2}\right). \end{split}$$

413

For the denominator of the likelihood ratio, because the unconstrained maximum likelihood estimates are obtained as:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2,$$

 $l(\hat{\mu}, \hat{\sigma}^2)$ is written as:

$$l(\hat{\mu}, \hat{\sigma}^2) = (2\pi\hat{\sigma}^2)^{-n/2} \exp\left(-\frac{1}{2\hat{\sigma}^2} \sum_{i=1}^n (x_i - \hat{\mu})^2\right)$$
$$= (2\pi\hat{\sigma}^2)^{-n/2} \exp\left(-\frac{n}{2}\right).$$

Thus, the likelihood ratio is given by:

$$\lambda = \frac{l(\mu_0, \widetilde{\sigma}^2)}{l(\hat{\mu}, \hat{\sigma}^2)} = \frac{(2\pi \widetilde{\sigma}^2)^{-n/2} \exp\left(-\frac{n}{2}\right)}{(2\pi \widehat{\sigma}^2)^{-n/2} \exp\left(-\frac{n}{2}\right)} = \left(\frac{\widetilde{\sigma}^2}{\widehat{\sigma}^2}\right)^{-n/2}.$$

n

Asymptotically, we have:

$$-2\log \lambda = n(\log \widetilde{\sigma}^2 - \log \widehat{\sigma}^2) \longrightarrow \chi^2(1).$$

When $-2 \log \lambda > \chi_{\alpha}^2(1)$, we reject the null hypothesis H_0 : $\mu = \mu_0$ at the significance level α .

Exam

July 31, 2012

60--70% from 16 exercises (in my Web) and two homeworks

416