
The region that H0 is unlikely to occur and accordingly H0 is

rejected is called the rejection region ( ) or the criti-

cal region, denoted by R.

Conversely, the region that H0 is likely to occur and accord-

ingly H0 is accepted is called the acceptance region (

), denoted by A.

Using the rejection region R and the acceptance region A, the

type I and II errors and the power are formulated as follows.

Suppose that the test statistic is give by T = T (X1, X2, · · · , Xn).
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The probability of committing a type I error (

), i.e., the significance level ( ) α, is given by:

P(T (X1, X2, · · · , Xn) ∈ R|H0 is true) = α,

which is the probability that rejects H0 when H0 is true.

Conventionally, the significance level α = 0.1, 0.05, 0.01 is

chosen in practice.
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The probability of committing a type II error (

), i.e., β, is represented as:

P(T (X1, X2, · · · , Xn) ∈ A|H0 is not true) = β,

which corresponds to the probability that accepts H0 when

H0 is not true.

The power ( ) is defined as 1 − β,

P(T (X1, X2, · · · , Xn) ∈ R|H0 is not true) = 1 − β,

which is the probability that rejects H0 when H0 is not true.
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8.2 Power Function ( )

Let X1, X2, · · ·, Xn be mutually independently, identically and

normally distributed with mean µ and variance σ2.

Assume that σ2 is known.

In Figure 3, we consider:

the null hypothesis H0 : µ = µ0,

the alternative hypothesis H1 : µ = µ1,

where µ1 > µ0 is taken.
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Figure 3: Type I Error (α) and Type II Error (β)
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The dark shadow area (probability α) corresponds to the prob-

ability of a type I error, i.e., the significance level, while the

light shadow area (probability β) indicates the probability of

a type II error.

The probability of the right-hand side of f ∗ in the distribution

under H1 represents the power of the test, i.e., 1 − β.
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The distribution of sample mean X is given by:

X ∼ N
(
µ,
σ2

n

)
.

By normalization, we have:

X − µ
σ/
√

n
∼ N(0, 1).

Therefore, under the null hypothesis H0 : µ = µ0, we obtain:

X − µ0

σ/
√

n
∼ N(0, 1),

where µ is replaced by µ0.
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Since the significance level α is the probability which rejects

H0 when H0 is true, it is given by:

α = P
(
X > µ0 + zα

σ
√

n

)
,

where zα denotes 100 × α percent point of N(0, 1).

Therefore, the rejection region is given by: X > µ0 + zα
σ
√

n
.
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Since the power 1 − β is the probability which rejects H0

when H1 is true, it is given by:

1 − β = P
(
X > µ0 + zα

σ
√

n

)
= P

(X − µ1

σ/
√

n
>
µ0 − µ1

σ/
√

n
+ zα

)

= 1 − P
(X − µ1

σ/
√

n
<
µ0 − µ1

σ/
√

n
+ zα

)
= 1 − F

(µ0 − µ1

σ/
√

n
+ zα

)
,

where F(·) represents the standard normal cumulative distri-

bution function, which is given by:

F(x) =

∫ x

−∞
(2π)−1/2 exp(−1

2
t2) dt.

The power function is a function of µ1, given µ0 and α.
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8.3 Small Sample Test ( )

8.3.1 Testing Hypothesis on Mean

Known σ2: Let X1, X2, · · ·, Xn be mutually independently,

identically and normally distributed with µ and σ2.

Consider testing the null hypothesis H0 : µ = µ0.

When the null hypothesis H0 is true, the distribution of X is:

X − µ0

σ/
√

n
∼ N(0, 1).
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Therefore, the test statistic is given by:
X − µ0

σ/
√

n
.

Depending on the alternative hypothesis, we have the three

cases.

1. The alternative hypothesis H1 : µ < µ0 (one-sided

test ): We have: P
(X − µ0

σ/
√

n
< −zα

)
=

α. Therefore, when
x − µ0

σ/
√

n
< −zα, we reject the null

hypothesis H0 : µ = µ0 at the significance level α.
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2. The alternative hypothesis H1 : µ > µ0 (one-sided

test ): We have: P
(X − µ0

σ/
√

n
> zα

)
= α.

Therefore, when
x − µ0

σ/
√

n
> zα, we reject the null hy-

pothesis H0 : µ = µ0 at the significance level α.

3. The alternative hypothesis H1 : µ , µ0 (two-sided

test ): We have: P
(∣∣∣∣∣∣

X − µ0

σ/
√

n

∣∣∣∣∣∣ > zα/2
)
= α.

Therefore, when

∣∣∣∣∣∣
x − µ0

σ/
√

n

∣∣∣∣∣∣ > zα/2, we reject the null hy-

pothesis H0 : µ = µ0 at the significance level α.
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Unknown σ2: Let X1, X2, · · ·, Xn be mutually indepen-

dently, identically and normally distributed with µ and σ2.

Test the null hypothesis H0 : µ = µ0.

When the null hypothesis H0 is true, the distribution of X is

given by:

X − µ0

S/
√

n
∼ t(n − 1).

Therefore, the test statistic is given by:
X − µ0

S/
√

n
.
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8.3.2 Testing Hypothesis on Variance

Testing Hypothesis on Variance: Let X1, X2, · · ·, Xn be

mutually independently, identically and normally distributed

with µ and σ2.

Test the null hypothesis H0 : σ2 = σ2
0
.

When the null hypothesis H0 is true, the distribution of S 2 is

given by:

(n − 1)S 2

σ2
0

∼ χ2(n − 1)
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Testing Equality of Two Variances: Let X1, X2, · · ·, Xn be

mutually independently, identically and normally distributed

with µx and σ2
x.

Let Y1, Y2, · · ·, Ym be mutually independently, identically and

normally distributed with µy and σ2
y .

Test the null hypothesis H0 : σ2
x = σ

2
y .

(n − 1)S 2
x

σ2
x

∼ χ2(n − 1), where S 2
x =

1

n − 1

n∑

i=1

(Xi − X)2

(m − 1)S 2
y

σ2
y

∼ χ2(m − 1), where S 2
y =

1

m − 1

m∑

i=1

(Yi − Y)2
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Both are independent.

Then, the ratio of two χ2 random variables divided by de-

grees of freedom is:

(n − 1)S 2
x

σ2
x
/(n − 1)

(m − 1)S 2
y

σ2
y
/(m − 1)

∼ F(n − 1,m − 1)

Therefore, under the null hypothesis H0 : σ2
x = σ

2
y ,

S 2
x

S 2
y

∼ F(n − 1,m − 1)
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8.4 Large Sample Test ( )

•Wald Test ( )

• Likelihood Ratio Test ( )

• Lagrange Multiplier Test ( )

−→ Skipped in this class.
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8.4.1 Wald Test ( )

From (24), under the null hypothesis H0 : θ = θ0 (scalar

case), as n −→ ∞, the maximum likelihood estimator θ̂n is

distributed as:

θ̂n − θ0
σ(θ̂n)/

√
n
−→ N(0, 1).

Or, equivalently,

( θ̂n − θ0
σ(θ̂n)/

√
n

)2
−→ χ2(1).
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For H0 : θ = θ0 and H1 : θ , θ0, replacing X1, · · ·, Xn in θ̂n

by the observed values x1, · · ·, xn, the testing procedure is as

follows.

When we have:
( θ̂n − θ0
σ(θ̂n)/

√
n

)2
> χ2

α(1), we reject the null

hypothesis H0 at the significance level α.

χ2
α(1) denotes the 100×α% point of the χ2 distribution with

one degree of freedom.

This testing procedure is called the Wald test ( ).
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Example 1.18: X1, X2, · · ·, Xn are mutually independently,

identically and exponentially distributed.

Consider the following exponential probability density func-

tion:

f (x; γ) = γe−γx,

for 0 < x < ∞.

Using the Wald test, we want to test the null hypothesis H0 :

γ = γ0 against the alternative hypothesis H1 : γ , γ0.
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Generally, as n −→ ∞, the distribution of the maximum

likelihood estimator of the parameter γ, γ̂n, is asymptotically

represented as:

γ̂n − γ
σ(γ̂n)/

√
n
−→ N(0, 1),

or, equivalently

( γ̂n − γ
σ(γ̂n)/

√
n

)2
−→ χ2(1),

where

σ2(γ) =

(
E

(( d log f (X; γ)

dγ

)2
))−1

= −
(
E
( d2 log f (X; γ)

dγ2

))−1

.
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Therefore, under the null hypothesis H0 : γ = γ0, when n is

large enough, we have the following distribution:

( γ̂n − γ0

σ(γ̂n)/
√

n

)2
−→ χ2(1).

As for the null hypothesis H0 : γ = γ0 against the alternative

hypothesis H1 : γ , γ0, if we have:

( γ̂n − γ0

σ(γ̂n)/
√

n

)2
> χ2

α(1),

we can reject H0 at the significance level α.

We need to derive σ2(γ) and γ̂n for the testing procedure.
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First, σ2(γ) is given by:

σ2(γ) = −
(
E
( d2 log f (X; γ)

dγ2

))−1

= γ2.

Note that the first- and the second-derivatives of log f (X; γ)

with respect to γ are given by:

d log f (X; γ)

dγ
=

1

γ
− X,

d2 log f (X; γ)

dγ2
= −

1

γ2
.

Next, the maximum likelihood estimator of γ, i.e., γ̂n, is ob-

tained as follows.
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Since X1, X2 · · ·, Xn are mutually independently and identi-

cally distributed, the likelihood function l(γ) is given by:

l(γ) =

n∏

i=1

f (xi; γ) =

n∏

i=1

γe−γxi = γne−γ
∑

xi .

Therefore, the log-likelihood function is written as:

log l(γ) = n log(γ) − γ
n∑

i=1

xi.

We obtain the value of γ which maximizes log l(γ).
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Solving the following equation:

d log l(γ)

dγ
=

n

γ
−

n∑

i=1

xi = 0,

the MLE of γ, γ̂n, is represented as:

γ̂n =
n∑n

i=1 Xi

=
1

X
.

Then, we have the following:

γ̂n − γ
σ(γ̂n)/

√
n
=
γ̂n − γ
γ̂n/
√

n
−→ N(0, 1),

where γ̂n is given by 1/X.
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Or, equivalently,

( γ̂n − γ
σ(γ̂n)/

√
n

)2
=

( γ̂n − γ
γ̂n/
√

n

)2
−→ χ2(1).

For H0 : γ = γ0 and H1 : γ , γ0, when we have:

( γ̂n − γ0

γ̂n/
√

n

)2
> χ2

α(1),

we reject H0 at the significance level α.
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8.4.2 Likelihood Ratio Test ( )

Suppose that the population distribution is given by f (x; θ),

where θ = (θ1, θ2).

Consider testing the null hypothesis θ1 = θ
∗
1

against the alter-

native hypothesis H1 : θ1 , θ
∗
1
, using the observed values (x1,

· · ·, xn) corresponding to the random sample (X1, · · ·, Xn).

Let θ1 and θ2 be 1 × k1 and 1 × k2 vectors, respectively.

θ = (θ1, θ2) denotes a 1 × (k1 + k2) vector.
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Since we take the null hypothesis as H0 : θ1 = θ
∗
1
, the num-

ber of restrictions is given by k1, which is equal to the di-

mension of θ1.

The likelihood function is written as:

l(θ1, θ2) =

n∏

i=1

f (xi; θ1, θ2).

Let (̃θ1, θ̃2) be the maximum likelihood estimator of (θ1, θ2).
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That is, (̃θ1, θ̃2) indicates the solution of (θ1, θ2), obtained

from the following equations:

∂l(θ1, θ2)

∂θ1
= 0,

∂l(θ1, θ2)

∂θ2
= 0.

The solution (̃θ1, θ̃2) is called the unconstrained maximum

likelihood estimator ( ), because the

null hypothesis H0 : θ1 = θ
∗
1

is not taken into account.
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Let θ̂2 be the maximum likelihood estimator of θ2 under the

null hypothesis H0 : θ1 = θ
∗
1
.

That is, θ̂2 is a solution of the following equation:

∂l(θ∗
1
, θ2)

∂θ2
= 0.

The solution θ̂2 is called the constrained maximum likeli-

hood estimator ( ) of θ2, because the

likelihood function is maximized with respect to θ2 subject

to the constraint θ1 = θ
∗
1
.
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Define λ as follows:

λ =
l(θ∗

1
, θ̂2)

l(̃θ1, θ̃2)
,

which is called the likelihood ratio ( ).

As n goes to infinity, it is known that we have:

−2 log(λ) −→ χ2(k1),

where k1 denotes the number of the constraints.
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Let χ2
α(k1) be the 100 × α percent point from the chi-square

distribution with k1 degrees of freedom.

When −2 log(λ) > χ2
α(k1), we reject the null hypothesis H0 :

θ1 = θ
∗
1

at the significance level α.

This test is called the likelihood ratio test ( )

If −2 log(λ) is close to zero, we accept the null hypothesis.

When (θ∗
1
, θ̂2) is close to (̃θ1, θ̃2), −2 log(λ) approaches zero.
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Example 1.19: X1, X2, · · ·, Xn are mutually independently,

identically and exponentially distributed.

Consider the exponential probability density function:

f (x; γ) = γe−γx,

for 0 < x < ∞.

Using the likelihood ratio test, we test the null hypothesis

H0 : γ = γ0 against the alternative hypothesis H1 : γ , γ0.
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The likelihood ratio is given by:

λ =
l(γ0)

l(γ̂n)
,

where γ̂n is derived in Example 1.18, i.e.,

γ̂n =
n∑n

i=1 Xi

=
1

X
.

Since the number of the constraint is equal to one, as the

sample size n goes to infinity we have the following asymp-

totic distribution:

−2 log λ −→ χ2(1).
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The likelihood ratio is computed as follows:

λ =
l(γ0)

l(γ̂n)
=
γn

0
e−γ0

∑
Xi

γ̂n
ne−n

.

If −2 log λ > χ2
α(1), we reject the null hypothesis H0 : γ = γ0

at the significance level α.
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Example 1.20: Suppose that X1, X2, · · ·, Xn are mutually

independently, identically and normally distributed with mean

µ and variance σ2.

The normal probability density function with mean µ and

variance σ2 is given by:

f (x; µ, σ2) =
1

√
2πσ2

e
− 1

2σ2 (x−µ)2

.

By the likelihood ratio test, we test the null hypothesis H0 :

µ = µ0 against the alternative hypothesis H1 : µ , µ0.
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The likelihood ratio is given by:

λ =
l(µ0, σ̃

2)

l(µ̂, σ̂2)
,

where σ̃2 is the constrained maximum likelihood estimator

with the constraint µ = µ0, while (µ̂, σ̂2) denotes the uncon-

strained maximum likelihood estimator.

In this case, since the number of the constraint is one, the

asymptotic distribution is as follows:

−2 log λ −→ χ2(1).
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We derive l(µ0, σ̃
2) and l(µ̂, σ̂2). l(µ, σ2) is written as:

l(µ, σ2) = f (x1, x2, · · · , xn; µ, σ2) =

n∏

i=1

f (xi; µ, σ
2)

=

n∏

i=1

1
√

2πσ2
exp

(
− 1

2σ2
(xi − µ)2

)

= (2πσ2)−n/2 exp
(
− 1

2σ2

n∑

i=1

(xi − µ)2
)
.

The log-likelihood function log l(µ, σ2) is represented as:

log l(µ, σ2) = −n

2
log(2π) − n

2
log(σ2) − 1

2σ2

n∑

i=1

(xi − µ)2.
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For the numerator of the likelihood ratio, under the constraint

µ = µ0, maximize log l(µ0, σ
2) with respect to σ2.

Since we obtain the first-derivative:

∂ log l(µ0, σ
2)

∂σ2
= −n

2

1

σ2
+

1

2σ4

n∑

i=1

(xi − µ0)2 = 0,

the constrained maximum likelihood estimate σ̃2 is:

σ̃2 =
1

n

n∑

i=1

(xi − µ0)2.
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Therefore, replacing σ2 by σ̃2, l(µ0, σ̃
2) is written as:

l(µ0, σ̃
2) = (2πσ̃2)−n/2 exp

(
−

1

2σ̃2

n∑

i=1

(xi − µ0)2
)

= (2πσ̃2)−n/2 exp
(
−n

2

)
.
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For the denominator of the likelihood ratio, because the un-

constrained maximum likelihood estimates are obtained as:

µ̂ =
1

n

n∑

i=1

xi, σ̂2 =
1

n

n∑

i=1

(xi − µ̂)2,

l(µ̂, σ̂2) is written as:

l(µ̂, σ̂2) = (2πσ̂2)−n/2 exp
(
−

1

2σ̂2

n∑

i=1

(xi − µ̂)2
)

= (2πσ̂2)−n/2 exp
(
−n

2

)
.
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Thus, the likelihood ratio is given by:

λ =
l(µ0, σ̃

2)

l(µ̂, σ̂2)
=

(2πσ̃2)−n/2 exp
(
−n

2

)

(2πσ̂2)−n/2 exp
(
−

n

2

) =
(σ̃2

σ̂2

)−n/2
.

Asymptotically, we have:

−2 log λ = n(log σ̃2 − log σ̂2) −→ χ2(1).

When −2 log λ > χ2
α(1), we reject the null hypothesis H0 :

µ = µ0 at the significance level α.

415



Exam

July 31, 2012
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