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English Class from This Year!!

Too bad!! (for you and me)

Econometrics I —> Statistics

Econometrics II —> Econometrics

TA session: Tue, 3rd class (13:00 – 14:30), Room #4, 4/17 –,

by Mr. Kinoshita (2nd year of the doctor course)
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You can get this lecture note from:

www2.econ.osaka-u.ac.jp/˜tanizaki/class/2012

Some Textbooks

• ( 1966 )

• ( 1966 )

•H. Tanizaki, 2004, Computational Methods in Statistics and Econometrics (STATIS-

TICS: textbooks and monographs, Vol.172), Mercel Dekker.

3

• R.V. Hogg, J.W. McKean and A.T. Craig, 2005, Introduction to Mathematical

Statistics (Sixth edition), Pearson Prentice Hall.

More elementary statistics:

Undergraduate, Tue., 3rd class, Room #5, Prof. Oya

Graduate, Tue., 6th class, Room #1, Prof. Fukushige
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1 Event and Probability

1.1 Event ( )

We consider an experiment ( ) whose outcome is not known in advance but

an event occurs with probability, which is sometimes called a random experiment

( ).

The sample space ( ) of an experiment is a set of all possible outcomes.
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Each outcome of a sample space is called an element ( ) of the sample

space or a sample point ( ), which represents each outcome obtained by the

experiment.

An event ( ) is any collection of outcomes contained in the sample space, or

equivalently a subset of the sample space.
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An elementary event ( ) consists of exactly one element and a compound

event ( ) consists of more than one element.

Sample space is denoted by Ω and sample point is given by ω.

Suppose that event A is a subset of sample space Ω.

Let ω be a sample point in event A.

Then, we say that a sample point ω is contained in a sample space A, which is

denoted by ω ∈ A.

The event which does not belong to event A is called the complementary event (

) of A, which is denoted by Ac.
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The event which does not have any sample point is called the empty event (

), denoted by φ.

Conversely, the event which includes all possible sample points is called the whole

event ( ), represented by Ω, which is equivalent to a sample space (

).
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Next, consider two events A and B.

The event which belongs to either event A or event B is called the sum event (

), which is denoted by A ∪ B.

The event which belongs to both event A and event B is called the product event

( ), denoted by A ∩ B.

When A ∩ B = φ, we say that events A and B are exclusive ( ).
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Example 1.1: Consider an experiment of casting a die ( ).

We have six sample points, which are denoted by ω1 = {1}, ω2 = {2}, ω3 = {3},

ω4 = {4}, ω5 = {5} and ω6 = {6}, where ωi represents the sample point that we have

i.

In this experiment, the sample space is given by Ω = {ω1, ω2, ω3, ω4, ω5, ω6}.

Let A be the event that we have even numbers and B be the event that we have

multiples of three.

Then, we can write as A = {ω2, ω4, ω6} and B = {ω3, ω6}.

The complementary event of A is given by Ac = {ω1, ω3, ω5}, which is the event
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that we have odd numbers.

The sum event of A and B is written as A ∪ B = {ω2, ω3, ω4, ω6}, while the product

event is A ∩ B = {ω6}.

Since A ∩ Ac = φ, we have the fact that A and Ac are exclusive.
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Example 1.2: Cast a coin three times. In this case, we have the following eight

sample points:

ω1 = (H,H,H), ω2 = (H,H,T), ω3 = (H,T,H),

ω4 = (H,T,T), ω5 = (T,H,H), ω6 = (T,H,T),

ω7 = (T,T,H), ω8 = (T,T,T)

where H represents head ( ) while T indicates tail ( ).

For example, (H,T,H) means that the first flip lands head, the second flip is tail and

the third one is head.
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Therefore, the sample space of this experiment can be written as:

Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}.

Let A be the event that we have two heads, B be the event that we obtain at least

one tail, C be the event that we have head in the second flip, and D be an event that

we obtain tail in the third flip.

Then, the events A, B, C and D are give by:

A = {ω2, ω3, ω5}, B = {ω2, ω3, ω4, ω5, ω6, ω7, ω8},

C = {ω1, ω2, ω5, ω6}, D = {ω2, ω4, ω6, ω8}.
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Since A is a subset of B, denoted by A ⊂ B, a sum event is A ∪ B = B, while a

product event is A ∩ B = A.

Moreover, we obtain C ∩ D = {ω2, ω6} and C ∪ D = {ω1, ω2, ω4, ω5, ω6, ω8}.
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1.2 Probability

Let n(A) be the number of sample points in A.

We have n(A) ≤ n(B) when A ⊆ B.

Each sample point is equally likely to occur.

In the case of Example 1.1 (Section 1.1), each of the six possible outcomes has

probability 1/6 and in Example 1.2 (Section 1.1), each of the eight possible out-

comes has probability 1/8.
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Thus, the probability which the event A occurs is defined as:

P(A) =
n(A)

n(Ω)
.

In Example 1.1, P(A) = 3/6 and P(A ∩ B) = 1/6 are obtained, because n(Ω) = 6,

n(A) = 3 and n(A ∩ B) = 1.

Similarly, in Example 1.2, we have P(C) = 4/8, P(A ∩ B) = P(A) = 3/8 and so on.

Note that we obtain P(A) ≤ P(B) because of A ⊆ B.
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It is known that we have the following three properties on probability:

0 ≤ P(A) ≤ 1, (1)

P(Ω) = 1, (2)

P(φ) = 0. (3)
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φ ⊆ A ⊆ Ω implies n(φ) ≤ n(A) ≤ n(Ω).

Therefore, we have:

n(φ)

n(Ω)
≤ n(A)

n(Ω)
≤ n(Ω)

n(Ω)
= 1.

Dividing by n(Ω), we obtain:

P(φ) ≤ P(A) ≤ P(Ω) = 1.

Because φ has no sample point, the number of the sample point is given by n(φ) = 0

and accordingly we have P(φ) = 0.

Therefore, 0 ≤ P(A) ≤ 1 is obtained as in (1).
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When events A and B are exclusive, i.e., when A ∩ B = φ, then P(A ∪ B) = P(A) +

P(B) holds.

Moreover, since A and Ac are exclusive, P(Ac) = 1 − P(A) is obtained.

Note that P(A ∪ Ac) = P(Ω) = 1 holds.

Generally, unless A and B are not exclusive, we have the following formula:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B),

which is known as the addition rule ( ).

In Example 1.1, each probability is given by P(A ∪ B) = 2/3, P(A) = 1/2, P(B) =

1/3 and P(A ∩ B) = 1/6.

19

Thus, in the example we can verify that the above addition rule holds.
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The probability which event A occurs, given that event B has occurred, is called the

conditional probability ( ), i.e.,

P(A|B) =
n(A ∩ B)

n(B)
=

P(A ∩ B)

P(B)
,

or equivalently,

P(A ∩ B) = P(A|B)P(B),

which is called the multiplication rule ( ).

21

When event A is independent ( ) of event B, we have P(A ∩ B) = P(A)P(B),

which implies that P(A|B) = P(A).

Conversely, P(A ∩ B) = P(A)P(B) implies that A is independent of B.

22

In Example 1.2, because of P(A ∩ C) = 1/4 and P(C) = 1/2, the conditional

probability P(A|C) = 1/2 is obtained.

From P(A) = 3/8, we have P(A ∩C) , P(A)P(C).

Therefore, A is not independent of C.

As for C and D, since we have P(C) = 1/2, P(D) = 1/2 and P(C ∩ D) = 1/4, we

can show that C is independent of D.

23

2 Random Variable and Distribution

2.1 Univariate Random Variable and Distribution

The random variable ( ) X is defined as the real value function on sample

space Ω.

Since X is a function of a sample point ω, it is written as X = X(ω).

Suppose that X(ω) takes a real value on the interval I.

24



That is, X depends on a set of the sample point ω, i.e., {ω; X(ω) ∈ I}, which is

simply written as {X ∈ I}.

In Example 1.1 (Section 1.1), suppose that X is a random variable which takes the

number of spots up on the die.

Then, X is a function of ω and takes the following values:

X(ω1) = 1, X(ω2) = 2, X(ω3) = 3,

X(ω4) = 4, X(ω5) = 5, X(ω6) = 6.

25

Next, suppose that X is a random variable which takes 1 for odd numbers and 0 for

even numbers on the die.

Then, X is a function of ω and takes the following values:

X(ω1) = 1, X(ω2) = 0, X(ω3) = 1,

X(ω4) = 0, X(ω5) = 1, X(ω6) = 0.

26

In Example 1.2 (Section 1.1), suppose that X is a random variable which takes the

number of heads.

Depending on the sample point ωi, X takes the following values:

X(ω1) = 3, X(ω2) = 2, X(ω3) = 2, X(ω4) = 1,

X(ω5) = 2, X(ω6) = 1, X(ω7) = 1, X(ω8) = 0.

Thus, the random variable depends on a sample point.

27

There are two kinds of random variables.

One is a discrete random variable ( ), while another is a continu-

ous random variable ( ).

28

Discrete Random Variable ( ) and Probability Function (

): Suppose that the discrete random variable X takes x1, x2, · · ·, where x1 <

x2 < · · · is assumed.

Consider the probability that X takes xi, i.e., P(X = xi) = pi, which is a function of

xi.

That is, a function of xi, say f (xi), is associated with P(X = xi) = pi.

29

The function f (xi) represents the probability in the case where X takes xi.

Therefore, we have the following relation:

P(X = xi) = pi = f (xi), i = 1, 2, · · · ,

where f (xi) is called the probability function ( ) of X.

30



More formally, the function f (xi) which has the following properties is defined as

the probability function.

f (xi) ≥ 0, i = 1, 2, · · · ,
∑

i

f (xi) = 1.

Furthermore, for a set A, we can write a probability as the following equation:

P(X ∈ A) =
∑

xi∈A

f (xi).

31

Several functional forms of f (xi) are as follows.

Discrete uniform distribution ( ):

f (x) =



1

N
, x = 1, 2, · · · ,N

0, otherwise

where N = 1, 2, · · ·.

Bernoulli distribution ( ):

f (x) =


px(1 − p)1−x, x = 0, 1

0, otherwise

where 0 ≤ p ≤ 1.
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Binomial distribution ( ):

f (x) =



(
n

x

)
px(1 − p)n−x, x = 0, 1, 2, · · · , n

0, otherwise,

where 0 ≤ p ≤ 1 and n = 1, 2, · · ·.

(a + b)n =

n∑

x=0

nCxa
xbn−x −→ Binomial Theorem ( )

nCx =

(
n

x

)
=

n!

x!(n − x)!
n! = 1 · 2 · · · n (factorial of n)

X ∼ B(n, p)
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Poisson distribution ( ):

f (x) =



e−λλx

x!
, x = 0, 1, · · ·

0, otherwise,

where λ > 0.

34

Review e

Note that the definition of e is given by:

e = lim
x→0

(1 + x)
1
x = lim

h→∞

(
1 +

1

h

)h

= 2.71828182845905.

Notation

exp(x) = ex

35

Review Taylor series expansion about x0

f (x) = f (x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)2 + · · · + f (k)(x0)

k!
(x − x0)k + · · ·

where the kth derivative of f (x) is f (k)(x).

Taylor series expansion of f (x) = ex about x = 0

ex = 1 + x +
1

2!
x2 +

1

3!
x3 + · · · =

∞∑

k=0

xk

k!

where f (k)(x) = ex. Set x = λ and k = x.

1 =

∞∑

k=0

e−λλx

x!
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Geometric distribution ( ):

f (x) =


p(1 − p)x, x = 0, 1, · · ·

0, otherwise,

where 0 < p ≤ 1.

Negative binomial distribution ( ):

f (x) =



(
r + x − 1

x

)
pr(1 − p)x, x = 0, 1, · · ·

0, otherwise,

where 0 < p ≤ 1 and r > 0.
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Taylor series expansion of f (x) = (1 − x)−r about x = 0

f (x) = 1 + rx +
r(r + 1)

2!
x2 +

r(r + 1)(r + 2)

3!
x3 + · · · +

(
r + k − 1

k

)
xk + · · ·

where f (k)(x) =

(
r + k − 1

k

)
xk.

(1 − x)−r =

∞∑

k=0

(
r + k − 1

k

)
xk

Set x = 1 − p and k = x

p−r =

∞∑

x=0

(
r + x − 1

x

)
(1 − p)x, i.e., 1 =

∞∑

x=0

(
r + x − 1

x

)
pr(1 − p)x
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Hypergeometric distribution ( ):

f (x) =





K

x





M − K

n − x




M

n



, x = 0, 1, · · · , n

0, otherwise,

where M = 1, 2, · · ·, K = 0, 1, · · · , M, and n = 1, 2, · · · ,M.
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In Example 1.2 (Section 1.1), all the possible values of X are 0, 1, 2 and 3. (note

that X denotes the number of heads when a coin is cast three times).

That is, x1 = 0, x2 = 1, x3 = 2 and x4 = 3 are assigned in this case.

40

The probability that X takes x1, x2, x3 or x4 is given by:

P(X = 0) = f (0) = P({ω8}) =
1

8
,

P(X = 1) = f (1) = P({ω4, ω6, ω7})

= P({ω4}) + P({ω6}) + P({ω7}) =
3

8
,

P(X = 2) = f (2) = P({ω2, ω3, ω5})

= P({ω2}) + P({ω3}) + P({ω5}) =
3

8
,

P(X = 3) = f (3) = P({ω1}) =
1

8
,

which can be written as:

41

P(X = x) = f (x) =
3!

x!(3 − x)!

(1

2

)x(1

2

)3−x
, x = 0, 1, 2, 3.

For P(X = 1) and P(X = 2), note that each sample point is mutually exclusive.

The above probability function is called the binomial distribution ( ).

Thus, it is easy to check f (x) ≥ 0 and
∑

x f (x) = 1 in Example 1.2.
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Continuous Random Variable ( ) and Probability Density Func-

tion ( ): Whereas a discrete random variable assumes at most a

countable set of possible values, a continuous random variable X takes any real

number within an interval I.

For the interval I, the probability which X is contained in A is defined as:

P(X ∈ I) =

∫

I

f (x) dx.

43

For example, let I be the interval between a and b for a < b.

Then, we can rewrite P(X ∈ I) as follows:

P(a < X < b) =

∫ b

a

f (x) dx,

where f (x) is called the probability density function ( ) of X, or

simply the density function ( ) of X.

44

In order for f (x) to be a probability density function, f (x) has to satisfy the follow-

ing properties:

f (x) ≥ 0,∫ ∞

−∞
f (x) dx = 1.

45

Some functional forms of f (x) are as follows:

Uniform distribution ( ):

f (x) =



1

b − a
, a < x < b

0, otherwise,

where −∞ < a < b < ∞.

X ∼ U(a, b)

46

Normmal distribution ( ):

f (x) =
1

√
2πσ2

exp
(
− 1

2σ2
(x − µ)2

)
, −∞ < x < ∞

where −∞ < µ < ∞ and σ > 0.

X ∼ N(µ, σ2)

N(0, 1) = Standard normal distribution

47

Exponential distribution ( ):

f (x) =


λe−λx, x > 0

0, otherwise,

where λ > 0
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Gamma distribution ( ):

f (x) =



λr

Γ(r)
xr−1e−λx, x > 0

0, otherwise,

where λ > 0 and r > 0.

Gamma dist. with r = 1 ⇐⇒ Exponential dist.

Gamma function: Γ(a) =

∫ ∞

0

xa−1e−xdx, a > 0

Γ(a + 1) = aΓ(a) —> Use integration by parts ( )

Γ(n + 1) = n! for integer n

Γ(n +
1

2
) =

1 · 3 · 5 · · · (2n − 1)

2n

√
π, Γ(

1

2
) = 2Γ(

3

2
) =

√
π

49

Beta distribution ( ):

f (x) =



1

B(a, b)
xa−1(1 − x)b−1, 0 < x < 1

0, otherwise,

where a > 0 and b > 0.

Beta function: B(a, b) =

∫ 1

0

xa−1(1 − x)b−1dx

=
Γ(a)Γ(b)

Γ(a + b)

B(a, b) = B(b, a)

50

Cauchy distribution ( ):

f (x) =
1

πβ(1 + (x − α)2/β2)
, −∞ < x < ∞

where −∞ < α < ∞ and β > 0.

Log-normal distribution ( ):

f (x) =



1

x
√

2πσ2
exp

(
− 1

2σ2
(ln x − µ)2

)
, 0 < x < ∞

0, otherwise,

where −∞ < µ < ∞ and σ > 0.
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Double exponentioal distribution ( ), or Laplace distribution (

):

f (x) =
1

2β
exp

(
−|x − α|

β

)
, −∞ < x < ∞

where −∞ < α < ∞ and β > 0.

Weibull distribution ( ):

f (x) =


abxb−1 exp(−axb), x > 0

0, otherwise,

where a > 0 and b > 0.
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Logistic distribution ( ):

F(x) = (1 + e−(x−α)/β)−1, −∞ < x < ∞

where −∞ < α < ∞ and β > 0.

Pareto distribution ( ):

f (x) =



θxθ
0

xθ+1
, x > x0

0, otherwise,

where x0 > 0 and θ > 0.
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Gumbel distribution ( ), or Extreme value distribution ( ):

F(x) = exp(−e−(x−α)/β), −∞ < x < ∞

where −∞ < α < ∞ and β > 0.
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t distribution (t ):

f (x) =
Γ( k+1

2
)

Γ( k
2
)

1
√

kπ

(
1 +

x2

k

)−(k+1)/2
, −∞ < x < ∞

where k > 0.

X ∼ t(k) —> t dist. with k degrees of freedom ( )

t(1) ⇐⇒ Cauchy dist.

t(∞) ⇐⇒ N(0, 1)
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F distribution (F ):

f (x) =



Γ(m+n
2

)

Γ(m
2

)Γ( n
2
)

(m

n

)m/2 xm/2−1

(1 + m
n

x)(m+n)/2
, x > 0

0, otherwise,

where m, n = 1, 2, · · ·.

X ∼ F(m, n) —> F dist. with (m, n) degrees of freedom

56

Chi-square distribution ( ):

f (x) =



1

Γ( k
2
)2k/2

xk/2−1e−x/2, x > 0

0, otherwise,

where k = 1, 2, · · ·.

X ∼ χ2(k) —> χ2 dist. with k degrees of freedom
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For a continuous random variable, note as follows:

P(X = x) =

∫ x

x

f (t) dt = 0.

In the case of discrete random variables, P(X = xi) represents the probability which

X takes xi, i.e., pi = f (xi).

Thus, the probability function f (xi) itself implies probability.

However, in the case of continuous random variables, P(a < X < b) indicates the

probability which X lies on the interval (a, b).
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Example 1.3: As an example, consider the following function:

f (x) =


1, for 0 < x < 1,

0, otherwise.

Clearly, since f (x) ≥ 0 for −∞ < x < ∞ and
∫ ∞
−∞ f (x) dx =

∫ 1

0
f (x) dx = [x]1

0
= 1,

the above function can be a probability density function.

In fact, it is called a uniform distribution.
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Example 1.4: As another example, consider the following function:

f (x) =
1
√

2π
e−

1
2

x2

,

for −∞ < x < ∞.

Clearly, we have f (x) ≥ 0 for all x.

We check whether
∫ ∞
−∞ f (x) dx = 1.

First of all, we define I as I =
∫ ∞
−∞ f (x) dx.

To show I = 1, we may prove I2 = 1 because of f (x) > 0 for all x, which is shown

as follows:
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I2 =
(∫ ∞

−∞
f (x) dx

)2
=

(∫ ∞

−∞
f (x) dx

)(∫ ∞

−∞
f (y) dy

)

=
(∫ ∞

−∞

1
√

2π
exp(−1

2
x2) dx

)(∫ ∞

−∞

1
√

2π
exp(−1

2
y2) dy

)

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
exp

(
−1

2
(x2 + y2)

)
dx dy

=
1

2π

∫ 2π

0

∫ ∞

0

exp(−1

2
r2)r dr dθ

=
1

2π

∫ 2π

0

∫ ∞

0

exp(−s) ds dθ =
1

2π
2π[− exp(−s)]∞0 = 1.
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Review Integration by Substitution ( ):

Univariate (1 ) Case: For a function of x, f (x), we perform integration by

substitution, using x = ψ(y).

Then, it is easy to obtain the following formula:

∫
f (x) dx =

∫
ψ′(y) f (ψ(y)) dy,

which formula is called the integration by substitution.
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Proof:

Let F(x) be the integration of f (x), i.e.,

F(x) =

∫ x

−∞
f (t) dt,

which implies that F′(x) = f (x).

Differentiating F(x) = F(ψ(y)) with respect to y, we have:

f (x) ≡ dF(ψ(y))

dy
=

dF(x)

dx

dx

dy
= f (x)ψ′(y) = f (ψ(y))ψ′(y).
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Bivariate (2 ) Case: For f (x, y), define x = ψ1(u, v) and y = ψ2(u, v).

∫∫
f (x, y) dx dy =

∫∫
J f (ψ1(u, v), ψ2(u, v)) du dv,

where J is called the Jacobian ( ), which represents the following de-

terminant ( ):

J =

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.

End of Review
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Go back to the Integration

In the fifth equality, integration by substitution ( ) is used.

The polar coordinate transformation ( ) is used as x = r cos θ and y =

r sin θ.

Note that 0 ≤ r < +∞ and 0 ≤ θ < 2π.

The Jacobian is given by:

J =

∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣ = r.
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In the inner integration of the sixth equality, again, integration by substitution is

utilized, where transformation is s =
1

2
r2.

Thus, we obtain the result I2 = 1 and accordingly we have I = 1 because of f (x) ≥

0.

Therefore, f (x) = e−
1
2

x2

/
√

2π is also taken as a probability density function.

Actually, this density function is called the standard normal probability density

function ( ).

66



Distribution Function: The distribution function ( ) or the cumulative

distribution function ( ), denoted by F(x), is defined as:

P(X ≤ x) = F(x),

which represents the probability less than x.
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The properties of the distribution function F(x) are given by:

F(x1) ≤ F(x2), for x1 < x2, — > nondecreasing function

P(a < X ≤ b) = F(b) − F(a), for a < b,

F(−∞) = 0, F(+∞) = 1.

The difference between the discrete and continuous random variables is given by:
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1. Discrete random variable (Figure 1):

• F(x) =

r∑

i=1

f (xi) =

r∑

i=1

pi,

where r denotes the integer which satisfies xr ≤ x < xr+1.

• F(xi) − F(xi − ε) = f (xi) = pi,

where ε is a small positive number less than xi − xi−1.
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2. Continuous random variable (Figure 2):

• F(x) =

∫ x

−∞
f (t) dt,

• F′(x) = f (x).

f (x) and F(x) are displayed in Figure 1 for a discrete random variable and Figure 2

for a continuous random variable.
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Figure 1: Probability Function f (x) and Distribution Function F(x)— Discrete Case

X
x1 x2 x3 ............. xr x xr+1 .............

•
•

•
•

•
............. .............



B
BBN

f (xr)

︷                                         ︸︸                                         ︷
F(x) =

∑r
i=1 f (xi)���

Note that r is the integer which satisfies xr ≤ x < xr+1.
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Figure 2: Density Function f (x) and Distribution Function F(x) — Continuous

Case

x
X

!
!	

f (x)

@
@R

F(x) =
∫ x

−∞ f (t)dt
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2.2 Multivariate Random Variable ( ) and Distri-

bution

We consider two random variables X and Y in this section. It is easy to extend to

more than two random variables.

Discrete Random Variables: Suppose that discrete random variables X and Y

take x1, x2, · · · and y1, y2, · · ·, respectively. The probability which event {ω; X(ω) =

xi and Y(ω) = y j} occurs is given by:

P(X = xi,Y = y j) = fxy(xi, y j),

73

where fxy(xi, y j) represents the joint probability function ( ) of X and

Y . In order for fxy(xi, y j) to be a joint probability function, fxy(xi, y j) has to satisfies

the following properties:

fxy(xi, y j) ≥ 0, i, j = 1, 2, · · ·
∑

i

∑

j

fxy(xi, y j) = 1.

Define fx(xi) and fy(y j) as:

fx(xi) =
∑

j

fxy(xi, y j), i = 1, 2, · · · ,
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fy(y j) =
∑

i

fxy(xi, y j), j = 1, 2, · · · .

Then, fx(xi) and fy(y j) are called the marginal probability functions (

) of X and Y .

fx(xi) and fy(y j) also have the properties of the probability functions, i.e.,

fx(xi) ≥ 0 and
∑

i fx(xi) = 1, and fy(y j) ≥ 0 and
∑

j fy(y j) = 1.
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Continuous Random Variables: Consider two continuous random variables X

and Y . For a domain D, the probability which event {ω; (X(ω),Y(ω)) ∈ D} occurs

is given by:

P((X, Y) ∈ D) =

∫∫

D

fxy(x, y) dx dy,

where fxy(x, y) is called the joint probability density function (

) of X and Y or the joint density function of X and Y .

76

fxy(x, y) has to satisfy the following properties:

fxy(x, y) ≥ 0,∫ ∞

−∞

∫ ∞

−∞
fxy(x, y) dx dy = 1.

Define fx(x) and fy(y) as:

fx(x) =

∫ ∞

−∞
fxy(x, y) dy, for all x and y,

fy(y) =

∫ ∞

−∞
fxy(x, y) dx,

where fx(x) and fy(y) are called the marginal probability density functions (
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) of X and Y or the marginal density functions ( ) of

X and Y .

For example, consider the event {ω; a < X(ω) < b, c < Y(ω) < d}, which is a

specific case of the domain D. Then, the probability that we have the event {ω; a <

X(ω) < b, c < Y(ω) < d} is written as:

P(a < X < b, c < Y < d) =

∫ b

a

∫ d

c

fxy(x, y) dx dy.
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The mixture of discrete and continuous RVs is also possible. For example, let X be

a discrete RV and Y be a continuous RV. X takes x1, x2, · · ·. The probability which

both X takes xi and Y takes real numbers within the interval I is given by:

P(X = xi,Y ∈ I) =

∫

I

fxy(xi, y) dy.

Then, we have the following properties:

fxy(xi, y) ≥ 0, for all y and i = 1, 2, · · ·,
∑

i

∫ ∞

−∞
fxy(xi, y) dy = 1.
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The marginal probability function of X is given by:

fx(xi) =

∫ ∞

−∞
fxy(xi, y) dy,

for i = 1, 2, · · ·. The marginal probability density function of Y is:

fy(y) =
∑

i

fxy(xi, y).
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2.3 Conditional Distribution

Discrete Random Variable: The conditional probability function (

) of X given Y = y j is represented as:

P(X = xi|Y = y j) = fx|y(xi|y j) =
fxy(xi, y j)

fy(y j)
=

fxy(xi, y j)∑
i fxy(xi, y j)

.

The second equality indicates the definition of the conditional probability.
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The features of the conditional probability function fx|y(xi|y j) are:

fx|y(xi|y j) ≥ 0, i = 1, 2, · · · ,
∑

i

fx|y(xi|y j) = 1, for any j.
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Continuous Random Variable: The conditional probability density function

( ) of X given Y = y (or the conditional density function (

) of X given Y = y) is:

fx|y(x|y) =
fxy(x, y)

fy(y)
=

fxy(x, y)∫ ∞
−∞ fxy(x, y) dx

.
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The properties of the conditional probability density function fx|y(x|y) are given by:

fx|y(x|y) ≥ 0,∫ ∞

−∞
fx|y(x|y) dx = 1, for any Y = y.
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Independence of Random Variables: For discrete random variables X and Y ,

we say that X is independent ( ) (or stochastically independent (

)) of Y if and only if fxy(xi, y j) = fx(xi) fy(y j).

Similarly, for continuous random variables X and Y , we say that X is independent

of Y if and only if fxy(x, y) = fx(x) fy(y).

When X and Y are stochastically independent, g(X) and h(Y) are also stochastically

independent, where g(X) and h(Y) are functions of X and Y .
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3 Mathematical Expectation

3.1 Univariate Random Variable

Definition of Mathematical Expectation ( ): Let g(X) be a function

of random variable X. The mathematical expectation of g(X), denoted by E(g(X)),

is defined as follows:
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E(g(X)) =



∑

i

g(xi)pi =
∑

i

g(xi) f (xi), (Discrete RV),

∫ ∞

−∞
g(x) f (x) dx, (Continuous RV).

The following three functional forms of g(X) are important.

87

1. g(X) = X.

The expectation of X, E(X), is known as mean ( ) of random variable X.

E(X) =



∑

i

xi f (xi), (Discrete RV),

∫ ∞

−∞
x f (x) dx, (Continuous RV),

= µ, (or µx).

When a distribution of X is symmetric, mean indicates the center of the dis-

tribution.

2. g(X) = (X − µ)2.
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The expectation of (X − µ)2 is known as variance ( ) of random variable

X, which is denoted by V(X).

V(X) = E((X − µ)2)

=



∑

i

(xi − µ)2 f (xi), (Discrete RV),

∫ ∞

−∞
(x − µ)2 f (x) dx, (Continuous RV),

= σ2, (or σ2
x).
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If X is broadly distributed, σ2 = V(X) becomes large. Conversely, if the

distribution is concentrated on the center, σ2 becomes small. Note that σ =
√

V(X) is called the standard deviation ( ).
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3. g(X) = eθX.

The expectation of eθX is called the moment-generating function (

), which is denoted by φ(θ).

φ(θ) = E(eθX)

=



∑

i

eθxi f (xi), (Discrete RV),

∫ ∞

−∞
eθx f (x) dx, (Continuous RV).
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Some Formulas of Mean and Variance:

1. Theorem: E(aX + b) = aE(X) + b, where a and b are constant.

Proof:

When X is a discrete random variable,

E(aX + b) =
∑

i

(axi + b) f (xi)

= a
∑

i

xi f (xi) + b
∑

i

f (xi)

= aE(X) + b.
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Note that we have
∑

i xi f (xi) = E(X) from the definition of mean and
∑

i f (xi) =

1 because f (xi) is a probability function.

If X is a continuous random variable,

E(aX + b) =

∫ ∞

−∞
(ax + b) f (x) dx

= a

∫ ∞

−∞
x f (x) dx + b

∫ ∞

−∞
f (x) dx

= aE(X) + b.

Similarly, note that we have
∫ ∞
−∞ x f (x) dx = E(X) from the definition of mean

and
∫ ∞
−∞ f (x) dx = 1 because f (x) is a probability density function.
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2. Theorem: V(X) = E(X2) − µ2, where µ = E(X).

Proof:

V(X) is rewritten as follows:

V(X) = E((X − µ)2) = E(X2 − 2µX − µ2)

= E(X2) − 2µE(X) + µ2 = E(X2) − µ2.

The first equality is due to the definition of variance.

3. Theorem: V(aX + b) = a2V(X), where a and b are constant.

Proof:
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From the definition of the mathematical expectation, V(aX+b) is represented

as:

V(aX + b) = E
(
((aX + b) − E(aX + b))2

)

= E
(
(aX − aµ)2

)
= E(a2(X − µ)2)

= a2E((X − µ)2) = a2V(X)

The first and the fifth equalities are from the definition of variance. We use

E(aX + b) = aµ + b in the second equality.

4. Theorem: The random variable X is assumed to be distributed with mean
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E(X) = µ and variance V(X) = σ2. Define Z =
X − µ
σ

. Then, we have

E(Z) = 0 and V(Z) = 1.
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Proof:

E(X) and V(X) are obtained as:

E(Z) = E
(X − µ

σ

)
=

E(X) − µ
σ

= 0,

V(Z) = V
( 1

σ
X − µ

σ

)
=

1

σ2
V(X) = 1.

The transformation from X to Z is known as normalization ( ) or stan-

dardization ( ).
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Example 1.5: In Example 1.2 of flipping a coin three times (Section 1.1), we

see in Section 2.1 that the probability function is written as the following binomial

distribution:

P(X = x) = f (x) =
n!

x!(n − x)!
px(1 − p)n−x,

for x = 0, 1, 2, · · · , n,

where n = 3 and p = 1/2.

When X has the binomial distribution above, we obtain E(X), V(X) and φ(θ) as

follows.
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First, µ = E(X) is computed as:

µ = E(X) =

n∑

x=0

x f (x) =

n∑

x=1

x f (x) =

n∑

x=1

x
n!

x!(n − x)!
px(1 − p)n−x

=

n∑

x=1

n!

(x − 1)!(n − x)!
px(1 − p)n−x

= np

n∑

x=1

(n − 1)!

(x − 1)!(n − x)!
px−1(1 − p)n−x

= np

n′∑

x′=0

n′!

x′!(n′ − x′)!
px′(1 − p)n′−x′ = np,

where n′ = n − 1 and x′ = x − 1 are set.
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Second, in order to obtain σ2 = V(X), we rewrite V(X) as:

σ2 = V(X) = E(X2) − µ2 = E(X(X − 1)) + µ − µ2.

E(X(X − 1)) is given by:

E(X(X − 1)) =

n∑

x=0

x(x − 1) f (x) =

n∑

x=2

x(x − 1) f (x)

=

n∑

x=2

x(x − 1)
n!

x!(n − x)!
px(1 − p)n−x

=

n∑

x=2

n!

(x − 2)!(n − x)!
px(1 − p)n−x

100

= n(n − 1)p2

n∑

x=2

(n − 2)!

(x − 2)!(n − x)!
px−2(1 − p)n−x

= n(n − 1)p2

n′∑

x′=0

n′!

x′!(n′ − x′)!
px′(1 − p)n′−x′

= n(n − 1)p2,

where n′ = n − 2 and x′ = x − 2 are re-defined.
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Therefore, σ2 = V(X) is obtained as:

σ2 = V(X) = E(X(X − 1)) + µ − µ2

= n(n − 1)p2 + np − n2 p2 = −np2 + np = np(1 − p).
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Finally, the moment-generating function φ(θ) is represented as:

φ(θ) = E(eθX) =

n∑

x=0

eθx n!

x!(n − x)!
px(1 − p)n−p

=

n∑

x=0

n!

x!(n − x)!
(peθ)x(1 − p)n−p = (peθ + 1 − p)n.

In the last equality, we utilize the following formula:

(a + b)n =

n∑

x=0

n!

x!(n − x)!
axbn−x,

which is called the binomial theorem.

103

Example 1.6: As an example of continuous random variables, in Section 2.1 the

uniform distribution is introduced, which is given by:

f (x) =


1, for 0 < x < 1,

0, otherwise.

When X has the uniform distribution above, E(X), V(X) and φ(θ) are computed as

follows:

µ = E(X) =

∫ ∞

−∞
x f (x) dx =

∫ 1

0

x dx =
[1

2
x2

]1

0
=

1

2
,
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σ2 = V(X) = E(X2) − µ2 =

∫ ∞

−∞
x2 f (x) dx − µ2

=

∫ 1

0

x2 dx − µ2 =
[1

3
x3

]1

0
−

(1

2

)2
=

1

12
,

φ(θ) = E(eθX) =

∫ ∞

−∞
eθx f (x) dx =

∫ 1

0

eθx dx

= [
1

θ
eθx]1

0 =
1

θ
(eθ − 1).
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Example 1.7: As another example of continuous random variables, we take the

standard normal distribution:

f (x) =
1
√

2π
e−

1
2

x2

, for −∞ < x < ∞

When X has a standard normal distribution, i.e., when X ∼ N(0, 1), E(X), V(X) and

φ(θ) are as follows.
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E(X) is obtained as:

E(X) =

∫ ∞

−∞
x f (x) dx =

1
√

2π

∫ ∞

−∞
xe−

1
2

x2

dx

=
1
√

2π

[
−e−

1
2

x2
]∞
−∞
= 0,

because lim
x→±∞

−e−
1
2

x2

= 0.
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V(X) is computed as follows:

V(X) = E(X2) =

∫ ∞

−∞
x2 f (x) dx

=

∫ ∞

−∞
x2 1
√

2π
e−

1
2

x2

dx

=
1
√

2π

∫ ∞

−∞
x

d(−e−
1
2

x2

)

dx
dx

=
1
√

2π

[
x(−e−

1
2

x2

)
]∞
−∞
+

1
√

2π

∫ ∞

−∞
e−

1
2

x2

dx

=

∫ ∞

−∞

1
√

2π
e−

1
2

x2

dx = 1.
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The first equality holds because of E(X) = 0.

In the fifth equality, use the following integration formula, called the integration

by parts: ∫ b

a

h(x)g′(x) dx =
[
h(x)g(x)

]b

a
−

∫ b

a

h′(x)g(x) dx,

where we take h(x) = x and g(x) = −e−
1
2

x2

in this case.

In the sixth equality, lim
x→±∞

−xe−
1
2

x2

= 0 is utilized.

The last equality is because the integration of the standard normal probability den-

sity function is equal to one.
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φ(θ) is derived as follows:

φ(θ) =

∫ ∞

−∞
eθx f (x) dx =

∫ ∞

−∞
eθx 1

√
2π

e−
1
2

x2

dx

=

∫ ∞

−∞

1
√

2π
e−

1
2

x2+θx dx =

∫ ∞

−∞

1
√

2π
e−

1
2
((x−θ)2−θ2) dx

= e
1
2
θ2

∫ ∞

−∞

1
√

2π
e−

1
2

(x−θ)2

dx = e
1
2
θ2

.

The last equality holds because the integration indicates the normal density with

mean θ and variance one.
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Example 1.8: When the moment-generating function of X is given by φx(θ) =

e
1
2
θ2

(i.e., X has a standard normal distribution), we want to obtain the moment-

generating function of Y = µ + σX.

Let φx(θ) and φy(θ) be the moment-generating functions of X and Y , respectively.

Then, the moment-generating function of Y is obtained as follows:

φy(θ) = E(eθY) = E(eθ(µ+σX)) = eθµE(eθσX) = eθµφx(θσ)

= eθµe
1
2
σ2θ2

= exp(µθ +
1

2
σ2θ2).
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Example 1.8(b): When X ∼ N(µ, σ2), what is the moment-generating function of

X?

φ(θ) =

∫ ∞

−∞
eθx f (x) dx

=

∫ ∞

−∞
eθx 1

√
2πσ2

exp
(
− 1

2σ2
(x − µ)2

)
dx

=

∫ ∞

−∞

1
√

2πσ2
exp

(
θx − 1

2σ2
(x − µ)2

)
dx

= exp(µθ +
1

2
σ2θ2)

∫ ∞

−∞

1
√

2πσ2
exp

( 1

2σ2
(x − µ − σ2θ)2

)
dx

= exp(µθ +
1

2
σ2θ2).
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3.2 Bivariate Random Variable

Definition: Let g(X,Y) be a function of random variables X and Y . The mathe-

matical expectation of g(X,Y), denoted by E(g(X,Y)), is defined as:

E(g(X,Y)) =



∑

i

∑

j

g(xi, y j) f (xi, y j), (Discrete),

∫ ∞

−∞

∫ ∞

−∞
g(x, y) f (x, y) dx dy, (Continuous).

The following four functional forms are important, i.e., mean, variance, covariance

and the moment-generating function.

1. g(X, Y) = X:
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The expectation of random variable X, i.e., E(X), is given by:

E(X) =



∑

i

∑

j

xi f (xi, y j), (Discrete),

∫ ∞

−∞

∫ ∞

−∞
x f (x, y) dx dy, (Continuous),

= µx.

The case of g(X,Y) = Y is exactly the same formulation as above, i.e., E(Y) =

µy.

2. g(X, Y) = (X − µx)2:
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The expectation of (X − µx)
2 is known as variance of X.

V(X) = E((X − µx)
2)

=



∑

i

∑

j

(xi − µx)
2 f (xi, y j), (Discrete)

∫ ∞

−∞

∫ ∞

−∞
(x − µx)

2 f (x, y) dx dy, (Continuous)

= σ2
x.

The variance of Y is also obtained in the same way, i.e., V(Y) = σ2
y .

3. g(X, Y) = (X − µx)(Y − µy):
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The expectation of (X − µx)(Y − µy) is known as covariance ( ) of X

and Y , which is denoted by Cov(X,Y) and written as:
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Cov(X,Y) = E((X − µx)(Y − µy))

=



∑

i

∑

j

(xi − µx)(y j − µy) f (xi, y j),

(Discrete),
∫ ∞

−∞

∫ ∞

−∞
(x − µx)(y − µy) f (x, y) dx dy,

(Continuous).

Thus, covariance is defined in the case of bivariate random variables.
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4. g(X, Y) = eθ1 X+θ2Y:

The mathematical expectation of eθ1X+θ2Y is called the moment-generating

function, which is denoted by:

φ(θ1, θ2) = E(eθ1X+θ2Y)

=



∑

i

∑

j

eθ1 xi+θ2y j f (xi, y j), (Discrete)

∫ ∞

−∞

∫ ∞

−∞
eθ1 x+θ2y f (x, y) dx dy, (Continuous)

In Section 5, the moment-generating function in the multivariate cases is dis-

cussed in more detail.
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Some Formulas of Mean and Variance: We consider two random variables X

and Y .

1. Theorem: E(X + Y) = E(X) + E(Y).

Proof:

For discrete random variables X and Y , it is given by:

E(X + Y) =
∑

i

∑

j

(xi + y j) fxy(xi, y j)

=
∑

i

∑

j

xi fxy(xi, y j) +
∑

i

∑

j

y j fxy(xi, y j)

= E(X) + E(Y).
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For continuous random variables X and Y , we can show:

E(X + Y) =

∫ ∞

−∞

∫ ∞

−∞
(x + y) fxy(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
x fxy(x, y) dx dy

+

∫ ∞

−∞

∫ ∞

−∞
y fxy(x, y) dx dy

= E(X) + E(Y).
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2. Theorem: E(XY) = E(X)E(Y), when X is independent of Y .

Proof:

For discrete random variables X and Y ,

E(XY) =
∑

i

∑

j

xiy j fxy(xi, y j) =
∑

i

∑

j

xiy j fx(xi) fy(y j)

=
(∑

i

xi fx(xi)
)(∑

j

y j fy(y j)
)
= E(X)E(Y).

If X is independent of Y , the second equality holds, i.e., fxy(xi, y j) = fx(xi) fy(y j).
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For continuous random variables X and Y ,

E(XY) =

∫ ∞

−∞

∫ ∞

−∞
xy fxy(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
xy fx(x) fy(y) dx dy

=
(∫ ∞

−∞
x fx(x) dx

)(∫ ∞

−∞
y fy(y) dy

)
= E(X)E(Y).

When X is independent of Y , we have fxy(x, y) = fx(x) fy(y) in the second

equality.
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3. Theorem: Cov(X,Y) = E(XY) − E(X)E(Y).

Proof:

For both discrete and continuous random variables, we can rewrite as follows:

Cov(X,Y) = E((X − µx)(Y − µy))

= E(XY − µxY − µyX + µxµy)

= E(XY) − E(µxY) − E(µyX) + µxµy

= E(XY) − µxE(Y) − µyE(X) + µxµy

= E(XY) − µxµy − µyµx + µxµy
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= E(XY) − µxµy

= E(XY) − E(X)E(Y).

In the fourth equality, the theorem in Section 3.1 is used, i.e., E(µxY) =

µxE(Y) and E(µyX) = µyE(X).
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4. Theorem: Cov(X,Y) = 0, when X is independent of Y .

Proof:

From the above two theorems, we have E(XY) = E(X)E(Y) when X is inde-

pendent of Y and Cov(X,Y) = E(XY) − E(X)E(Y).

Therefore, Cov(X,Y) = 0 is obtained when X is independent of Y .

125

5. Definition: The correlation coefficient ( ) between X and Y , de-

noted by ρxy, is defined as:

ρxy =
Cov(X,Y)

√
V(X)

√
V(Y)

=
Cov(X,Y)

σxσy

.

ρxy > 0 =⇒ positive correlation between X and Y

ρxy −→ 1 =⇒ strong positive correlation

ρxy < 0 =⇒ negative correlation between X and Y

ρxy −→ −1 =⇒ strong negative correlation
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6. Theorem: ρxy = 0, when X is independent of Y .

Proof:

When X is independent of Y , we have Cov(X,Y) = 0.

We obtain the result ρxy =
Cov(X,Y)

√
V(X)

√
V(Y)

= 0.

However, note that ρxy = 0 does not mean the independence between X and

Y .
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7. Theorem: V(X ± Y) = V(X) ± 2Cov(X,Y) + V(Y).

Proof:

For both discrete and continuous random variables, V(X ± Y) is rewritten as

follows:

V(X ± Y) = E
(
((X ± Y) − E(X ± Y))2

)

= E
(
((X − µx) ± (Y − µy))

2
)

= E((X − µx)
2 ± 2(X − µx)(Y − µy) + (Y − µy)

2)
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= E((X − µx)
2) ± 2E((X − µx)(Y − µy))

+E((Y − µy)
2)

= V(X) ± 2Cov(X,Y) + V(Y).

129

8. Theorem: −1 ≤ ρxy ≤ 1.

Proof:

Consider the following function of t: f (t) = V(Xt − Y), which is always

greater than or equal to zero because of the definition of variance. Therefore,

for all t, we have f (t) ≥ 0. f (t) is rewritten as follows:
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f (t) = V(Xt − Y) = V(Xt) − 2Cov(Xt,Y) + V(Y)

= t2V(X) − 2tCov(X,Y) + V(Y)

= V(X)
(
t − Cov(X,Y)

V(X)

)2
+ V(Y) −

(Cov(X,Y))2

V(X)
.

In order to have f (t) ≥ 0 for all t, we need the following condition:

V(Y) −
(Cov(X,Y))2

V(X)
≥ 0,

because the first term in the last equality is nonnegative, which implies:

(Cov(X,Y))2

V(X)V(Y)
≤ 1.
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Therefore, we have:

−1 ≤ Cov(X,Y)
√

V(X)
√

V(Y)
≤ 1.

From the definition of correlation coefficient, i.e., ρxy =
Cov(X,Y)

√
V(X)

√
V(Y)

, we

obtain the result: −1 ≤ ρxy ≤ 1.
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9. Theorem: V(X ± Y) = V(X) + V(Y), when X is independent of Y .

Proof:

From the theorem above, V(X ± Y) = V(X) ± 2Cov(X, Y) + V(Y) generally

holds. When random variables X and Y are independent, we have Cov(X,Y) =

0. Therefore, V(X + Y) = V(X) + V(Y) holds, when X is independent of Y .

10. Theorem: For n random variables X1, X2, · · ·, Xn,

E(
∑

i

aiXi) =
∑

i

aiµi,
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V(
∑

i

aiXi) =
∑

i

∑

j

aia jCov(Xi, X j),

where E(Xi) = µi and ai is a constant value. Especially, when X1, X2, · · ·, Xn

are mutually independent, we have the following:

V(
∑

i

aiXi) =
∑

i

a2
i V(Xi).

Proof:

For mean of
∑

i aiXi, the following representation is obtained.

E(
∑

i

aiXi) =
∑

i

E(aiXi) =
∑

i

aiE(Xi) =
∑

i

aiµi.
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The first and second equalities come from the previous theorems on mean.
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For variance of
∑

i aiXi, we can rewrite as follows:

V(
∑

i

aiXi) = E
(∑

i

ai(Xi − µi)
)2

= E
(∑

i

ai(Xi − µi)
)(∑

j

a j(X j − µ j)
)

= E
(∑

i

∑

j

aia j(Xi − µi)(X j − µ j)
)

=
∑

i

∑

j

aia jE
(
(Xi − µi)(X j − µ j)

)

=
∑

i

∑

j

aia jCov(Xi, X j).

When X1, X2, · · ·, Xn are mutually independent, we obtain Cov(Xi, X j) = 0
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for all i , j from the previous theorem. Therefore, we obtain:

V(
∑

i

aiXi) =
∑

i

a2
i V(Xi).

Note that Cov(Xi, Xi) = E((Xi − µ)2) = V(Xi).
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11. Theorem: n random variables X1, X2, · · ·, Xn are mutually independently

and identically distributed with mean µ and variance σ2. That is, for all i =

1, 2, · · · , n, E(Xi) = µ and V(Xi) = σ2 are assumed. Consider arithmetic

average X = (1/n)
∑n

i=1 Xi. Then, mean and variance of X are given by:

E(X) = µ, V(X) =
σ2

n
.
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Proof:

The mathematical expectation of X is given by:

E(X) = E(
1

n

n∑

i=1

Xi) =
1

n
E(

n∑

i=1

Xi) =
1

n

n∑

i=1

E(Xi)

=
1

n

n∑

i=1

µ =
1

n
nµ = µ.

E(aX) = aE(X) in the second equality and E(X+Y) = E(X)+E(Y) in the third

equality are utilized, where X and Y are random variables and a is a constant

value.
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The variance of X is computed as follows:

V(X) = V(
1

n

n∑

i=1

Xi) =
1

n2
V(

n∑

i=1

Xi) =
1

n2

n∑

i=1

V(Xi)

=
1

n2

n∑

i=1

σ2 =
1

n2
nσ2 =

σ2

n
.

We use V(aX) = a2V(X) in the second equality and V(X + Y) = V(X)+V(Y)

for X independent of Y in the third equality, where X and Y denote random

variables and a is a constant value.
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4 Transformation of Variables ( )

Transformation of variables is used in the case of continuous random variables.

Based on a distribution of a random variable, a distribution of the transformed ran-

dom variable is derived. In other words, when a distribution of X is known, we can

find a distribution of Y using the transformation of variables, where Y is a function

of X.
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4.1 Univariate Case

Distribution of Y = ψ−1(X): Let fx(x) be the probability density function of con-

tinuous random variable X and X = ψ(Y) be a one-to-one ( ) transformation.

Then, the probability density function of Y , i.e., fy(y), is given by:

fy(y) = |ψ′(y)| fx

(
ψ(y)

)
.

We can derive the above transformation of variables from X to Y as follows. Let

fx(x) and Fx(x) be the probability density function and the distribution function of

X, respectively. Note that Fx(x) = P(X ≤ x) and fx(x) = F′
x(x).

142

When X = ψ(Y), we want to obtain the probability density function of Y . Let fy(y)

and Fy(y) be the probability density function and the distribution function of Y ,

respectively.

In the case of ψ′(X) > 0, the distribution function of Y , Fy(y), is rewritten as follows:

Fy(y) = P(Y ≤ y) = P
(
ψ(Y) ≤ ψ(y)

)

= P
(
X ≤ ψ(y)

)
= Fx

(
ψ(y)

)
.

The first equality is the definition of the cumulative distribution function. The sec-

ond equality holds because of ψ′(Y) > 0. Therefore, differentiating Fy(y) with
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respect to y, we can obtain the following expression:

fy(y) = F′
y(y) = ψ′(y)F′

x

(
ψ(y)

)
= ψ′(y) fx

(
ψ(y)

)
. (4)
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Next, in the case of ψ′(X) < 0, the distribution function of Y , Fy(y), is rewritten as

follows:

Fy(y) = P(Y ≤ y) = P
(
ψ(Y) ≥ ψ(y)

)
= P

(
X ≥ ψ(y)

)

= 1 − P
(
X < ψ(y)

)
= 1 − Fx

(
ψ(y)

)
.

Thus, in the case of ψ′(X) < 0, pay attention to the second equality, where the

inequality sign is reversed. Differentiating Fy(y) with respect to y, we obtain the

following result:

fy(y) = F′
y(y) = −ψ′(y)F′

x

(
ψ(y)

)
= −ψ′(y) fx

(
ψ(y)

)
. (5)
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Note that −ψ′(y) > 0.

Thus, summarizing the above two cases, i.e., ψ′(X) > 0 and ψ′(X) < 0, equations

(4) and (5) indicate the following result:

fy(y) = |ψ′(y)| fx

(
ψ(y)

)
,

which is called the transformation of variables.
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Example 1.9: When X ∼ N(0, 1), we derive the probability density function of

Y = µ + σX.

Since we have:

X = ψ(Y) =
Y − µ
σ

,

ψ′(y) = 1/σ is obtained. Therefore, fy(y) is given by:

fy(y) = |ψ′(y)| fx

(
ψ(y)

)
=

1

σ
√

2π
exp

(
− 1

2σ2
(y − µ)2

)
,

which indicates the normal distribution with mean µ and variance σ2, denoted by

N(µ, σ2).
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On Distribution of Y = X2: As an example, when we know the distribution

function of X as Fx(x), we want to obtain the distribution function of Y , Fy(y),

where Y = X2. Using Fx(x), Fy(y) is rewritten as follows:

Fy(y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤ √
y)

= Fx(
√

y) − Fx(−
√

y).

The probability density function of Y is obtained as follows:

fy(y) = F′
y(y) =

1

2
√

y

(
fx(
√

y) + fx(−
√

y)
)
.
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Example: χ2(1) Distribution: Define Y = X2, where X ∼ N(0, 1). Then, Y ∼

χ2(1).

proof:

fy(y) =
1

2
√

y

(
fx(
√

y) + fx(−
√

y)
)

=
1
√

2π
y−1/2 exp

(
−1

2
y
)

which is χ2(1) distribution, where

fx(x) =
1
√

2π
exp

(
−1

2
x2

)

fx(
√

y) = fx(−
√

y) =
1
√

2π
exp

(
−1

2
y
)

149

Note that the χ2(n) distribution is:

fx(x) =
1

2
n
2Γ( n

2
)
x

n
2
−1 exp(− x

2
), x > 0,

where Γ( n
2
) =

√
π
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4.2 Multivariate Cases

Bivariate Case: Let fxy(x, y) be a joint probability density function of X and Y .

Let X = ψ1(U,V) and Y = ψ2(U,V) be a one-to-one transformation from (X,Y) to

(U,V). Then, we obtain a joint probability density function of U and V , denoted by

fuv(u, v), as follows:

fuv(u, v) = |J| fxy

(
ψ1(u, v), ψ2(u, v)

)
,
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where J is called the Jacobian of the transformation, which is defined as:

J =

∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣∣
.
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Multivariate Case: Let fx(x1, x2, · · · , xn) be a joint probability density function

of X1, X2, · · · Xn. Suppose that a one-to-one transformation from (X1, X2, · · · , Xn) to

(Y1,Y2, · · · ,Yn) is given by:

X1 = ψ1(Y1, Y2, · · · ,Yn),

X2 = ψ2(Y1, Y2, · · · ,Yn),

...

Xn = ψn(Y1, Y2, · · · ,Yn).
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Then, we obtain a joint probability density function of Y1, Y2, · · ·, Yn, denoted by

fy(y1, y2, · · · , yn), as follows:

fy(y1, y2, · · · , yn)

= |J| fx

(
ψ1(y1, · · · , yn), ψ2(y1, · · · , yn), · · · , ψn(y1, · · · , yn)

)
,
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where J is called the Jacobian of the transformation, which is defined as:

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂y1

∂x1

∂y2

· · · ∂x1

∂yn

∂x2

∂y1

∂x2

∂y2

· · · ∂x2

∂yn

...
...

. . .
...

∂xn

∂y1

∂xn

∂y2

· · · ∂xn

∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Example: Normal Distribution: X ∼ N(µ1, σ
2
1
) and Y ∼ N(µ2, σ

2
2
). X is

independent of Y .

Then, X + Y ∼ N(µ1 + µ2, σ
2
1
+ σ2

2
)

Proof:

The density functions of X and Y are:

fx(x) =
1

√
2πσ2

1

exp

(
− 1

2σ2
1

(x − µ1)2

)

fy(y) =
1

√
2πσ2

2

exp

(
− 1

2σ2
2

(y − µ2)2

)
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The joint density of X and Y is:

fxy(x, y) = fx(x) fy(y)

=
1

2πσ1σ2

exp

(
− 1

2σ2
1

(x − µ1)2 − 1

2σ2
2

(y − µ2)2

)

Define U = X + Y and V = Y . We obtain the joint distribution of U and V .

Using X = U − V and Y = V , the Jacobian is:

J =

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 −1

0 1

∣∣∣∣∣∣ = 1
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The joint density function of U and V , fuv(u, v), is given by:

fuv(u, v) = |J| fxy(u − v, v)

=
1

2πσ1σ2

exp

(
− 1

2σ2
1

(u − v − µ1)2 − 1

2σ2
2

(v − µ2)2

)

The marginal density function of U is:

fu(u) =

∫
fuv(u, v)dv

=

∫
1

2πσ1σ2

exp
(
− 1

2σ2
1

(u − v − µ1)2 − 1

2σ2
2

(v − µ2)2
)
dv
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=

∫
1

2πσ1σ2

exp

(
− 1

2σ2
1

((v − µ2) − (u − µ1 − µ2))2

− 1

2σ2
2

(v − µ2)2

)
dv

=

∫
1

2πσ1σ2

exp

(
− 1

2/(1/σ2
1
+ 1/σ2

2
)
((v − µ2)

−
σ2

2

σ2
1
+ σ2

2

(u − µ1 − µ2))2 − 1

2(σ2
1
+ σ2

2
)
(u − µ1 − µ2)2

)
dv
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=

∫
1

√
2π/(1/σ2

1
+ 1/σ2

2
)

× exp

(
− 1

2/(1/σ2
1
+ 1/σ2

2
)
((v − µ2) −

σ2
2

σ2
1
+ σ2

2

(u − µ1 − µ2))2

)

× 1
√

2π(σ2
1
+ σ2

2
)

exp

(
− 1

2(σ2
1
+ σ2

2
)
(u − µ1 − µ2)2

)
dv
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=

∫
1

√
2π/(1/σ2

1
+ 1/σ2

2
)

× exp

(
− 1

2/(1/σ2
1
+ 1/σ2

2
)
((v − µ2)

−
σ2

2

σ2
1
+ σ2

2

(u − µ1 − µ2))2

)
dv

× 1
√

2π(σ2
1
+ σ2

2
)

exp

(
− 1

2(σ2
1
+ σ2

2
)
(u − µ1 − µ2)2

)

=
1

√
2π(σ2

1
+ σ2

2
)

exp

(
− 1

2(σ2
1
+ σ2

2
)
(u − µ1 − µ2)2

)
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Example: χ2 Distribution: X ∼ χ2(n) and Y ∼ χ2(m). X is independent of Y .

Then, X + Y ∼ χ2(n + m).

Proof:

The density functions of X and Y are:

fx(x) =
1

2
n
2Γ( n

2
)
x

n
2
−1 exp(− x

2
), x > 0

fy(y) =
1

2
m
2 Γ(m

2
)
y

m
2
−1 exp(−y

2
), y > 0

The joint density function of X and Y is:

fxy(x, y) = fx(x) fy(y)
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=
1

2
n
2Γ( n

2
)
x

n
2
−1 exp(− x

2
)

1

2
m
2 Γ(m

2
)
y

m
2
−1 exp(−y

2
)

= Cx
n
2
−1y

m
2
−1 exp(− x + y

2
)

where C =
1

2
n+m

2 Γ( n
2
)Γ(m

2
)
.

From X = U − V and Y = V , the Jacobian is:

J =

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 −1

0 1

∣∣∣∣∣∣ = 1
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The joint density function of U and V , fuv(u, v), is given by:

fuv(u, v) = |J| fxy(u − v, v)

= C(u − v)
n
2
−1v

m
2
−1 exp(−u

2
)

The marginal density function of U is:

fu(u) =

∫
fuv(u, v)dv

= C exp(−u

2
)

∫ ∞

0

(u − v)
n
2
−1v

m
2
−1dv

= C exp(−u

2
)

∫ ∞

0

(u − uw)
n
2
−1(uw)

m
2
−1udw
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= Cu
n+m

2
−1 exp(−u

2
)

∫ 1

0

(1 − w)
n
2
−1w

m
2
−1dw

= CB(
n

2
,

m

2
)u

n+m
2
−1 exp(−u

2
)

=
1

2
n+m

2 Γ( n
2
)Γ(m

2
)

Γ( n
2
)Γ(m

2
)

Γ(n+m
2

)
u

n+m
2
−1 exp(−u

2
)

=
1

2
n+m

2 Γ( n+m
2

)
u

n+m
2
−1 exp(−u

2
)

Beta function B(n,m) is:

B(n,m) =

∫ ∞

0

(1 − x)n−1xm−1dx =
Γ(n)Γ(m)

Γ(n + m)
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Example: t Distribution: X ∼ N(0, 1) and Y ∼ χ2(n). X is independent of Y .

Then, U =
X

√
Y/n

∼ t(n)

Note that the density function of t(n) is:

fu(x) =
Γ(n+1

2
)

Γ( n
2
)

1
√

nπ

(
1 +

x2

n

)− n+1
2
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Proof: The density functions of X and Y are:

fx(x) =
1
√

2π
exp(−1

2
x2), −∞ < x < ∞

fy(y) =
1

2
n
2Γ( n

2
)
y

n
2
−1 exp(−y

2
), y > 0

The joint density functions of X and Y , fxy(x, y), is:

fxy(x, y) = fx(x) fy(y)

=
1
√

2π
exp(−1

2
x2)

1

2
n
2Γ( n

2
)
y

n
2
−1 exp(−y

2
)

=
1
√

2π

1

2
n
2Γ(n

2
)
y

n
2
−1 exp(−y

2
− 1

2
x2)
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From X = U

√
V

n
and Y = V , the Jacobian is:

J =

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣

√
v

n

u

2
√

nv
0 1

∣∣∣∣∣∣ =
√

v

n

The joint density function of U and V , fuv(u, v), is:

fuv(u, v) = |J| fxy(u

√
v

n
, v)

=

√
v

n

1
√

2π
exp(−1

2

u2v

n
)

1

2
n
2Γ(n

2
)
v

n
2
−1 exp(−v

2
)

= Cv
n−1

2 exp

(
− v

2
(1 +

u2

n
)

)
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where C =
1
√

n

1
√
π

1

2
n+1

2 Γ( n
2
)
.

The marginal density function of U is:

fu(u) =

∫
fuv(u, v)dv

= C

∫
v

n−1
2 exp

(
− v

2
(1 +

u2

n
)

)
dv

= C

∫ (
w(1 +

u2

n
)−1

) n−1
2

exp(−1

2
w)

(
1 +

u2

n

)−1

dw

= C

(
1 +

u2

n

)− n+1
2

∫
w

n+1
2
−1 exp(−1

2
w)dw
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= C

(
1 +

u2

n

)− n+1
2

2
n+1

2 Γ(
n + 1

2
)

×
∫

1

2
n+1

2 Γ( n+1
2

)
w

n+1
2
−1 exp(−1

2
w)dw

= C

(
1 +

u2

n

)− n+1
2

2
n+1

2 Γ(
n + 1

2
)

=
1
√
π

1

2
n+1

2 Γ( n
2
)

1
√

n
2

n+1
2 Γ(

n + 1

2
)

(
1 +

u2

n

)− n+1
2

=
Γ( n+1

2
)

Γ(n
2
)

1
√

nπ

(
1 +

u2

n

)− n+1
2
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Use integration by substitution by w = v(1 +
u2

n
).

Note that f (w) =
1

2
n+1

2 Γ( n+1
2

)
w

n+1
2
−1 exp(−1

2
w) is the density function of χ2(n + 1).
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Example: Cauchy Distribution: X ∼ N(0, 1) and Y ∼ N(0, 1). X is indepen-

dent of Y .

Then, U =
X

Y
is Cauchy.

Note that the density function of U, fu(u), is:

f (u) =
1

π(1 + u2)
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Proof: The density functions of X and Y are:

fx(x) =
1
√

2π
exp(−1

2
x2), −∞ < x < ∞

fy(y) =
1
√

2π
exp(−1

2
y2), −∞ < y < ∞

The joint density function of X and Y is:

fxy(x, y) = fx(x) fy(y)

=
1
√

2π
exp(−1

2
x2)

1
√

2π
exp(−1

2
y2)

=
1

2π
exp(−1

2
(x2 + y2))
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Transformation of variables by u =
x

y
and v = y.

From x = uv and y = v, the Jacobian is:

J =

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
v u

0 1

∣∣∣∣∣∣ = v

The joint density function of U and V , fuv(u, v), is:

fuv(u, v) = |J| fxy(uv, v)

= |v| 1

2π
exp(−1

2
v2(1 + u2))
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The marginal density function of U is:

fu(u) =

∫
fuv(u, v)dv

=
1

2π

∫ ∞

−∞
|v| exp(−1

2
v2(1 + u2))dv

=
1

π

∫ ∞

0

v exp(−1

2
v2(1 + u2))dv

=
1

π

[
− 1

1 + u2
exp(−1

2
v2(1 + u2))

]∞

v=0

=
1

π(1 + u2)
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5 Moment-Generating Function ( )

5.1 Univariate Case

As discussed in Section 3.1, the moment-generating function is defined as φ(θ) =

E(eθX).

For a random variable X, µ′n ≡ E(Xn) is called the nth moment (n ) of X.
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1. Theorem: φ(n)(0) = µ′n ≡ E(Xn).

Proof:

First, from the definition of the moment-generating function, φ(θ) is written

as:

φ(θ) = E(eθX) =

∫ ∞

−∞
eθx f (x) dx.

The nth derivative of φ(θ), denoted by φ(n)(θ), is:

φ(n)(θ) =

∫ ∞

−∞
xneθx f (x) dx.

177

Evaluating φ(n)(θ) at θ = 0, we obtain:

φ(n)(0) =

∫ ∞

−∞
xn f (x) dx = E(Xn) ≡ µ′n,

where the second equality comes from the definition of the mathematical ex-

pectation.
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2. Remark: The moment-generating function is a weighted sum of all the

moments.

φ(θ) = E(eθX) = E
( ∞∑

n=0

1

n!
f (n)(0)θn

)

= E
( ∞∑

n=0

1

n!
Xnθn

)
=

∞∑

n=0

1

n!
E(Xn)θn

where f (θ) = eθX. f (θ) =

∞∑

n=0

1

n!
f (n)(0)θn

Note that f (n)(θ) = XneθX.
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3. Remark: φ(θ) does not exist, if E(Xn) for some n does not exist.

φ(θ) is finite. ⇐⇒ All the moments exist.
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4. Remark: Let X and Y be two random variables. Suppose that both moment-

generating functions exist. When the moment-generating function of X is

equivalent to that of Y , we have the fact that X has the same distribution as Y .

φx(θ) = φy(θ) ⇐⇒ E(Xn) = E(Yn) for all n

⇐⇒ fx(t) = fy(t)
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5. Theorem: Let φ(θ) be the moment-generating function of X. Then, the

moment-generating function of Y , where Y = aX + b, is given by ebθφ(aθ).

Proof:

Let φy(θ) be the moment-generating function of Y . Then, φy(θ) is rewritten as

follows:

φy(θ) = E(eθY) = E(eθ(aX+b)) = ebθE(eaθX) = ebθφ(aθ).

φ(θ) represents the moment-generating function of X.
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6. Theorem: Let φ1(θ), φ2(θ), · · ·, φn(θ) be the moment-generating functions

of X1, X2, · · ·, Xn, which are mutually independently distributed random vari-

ables. Define Y = X1 + X2 + · · · + Xn. Then, the moment-generating function

of Y is given by φ1(θ)φ2(θ) · · · φn(θ), i.e.,

φy(θ) = E(eθY) = φ1(θ)φ2(θ) · · · φn(θ),

where φy(θ) represents the moment-generating function of Y .
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Proof:

The moment-generating function of Y , i.e., φy(θ), is rewritten as:

φy(θ) = E(eθY) = E(eθ(X1+X2+···+Xn))

= E(eθX1)E(eθX2) · · ·E(eθXn)

= φ1(θ)φ2(θ) · · · φn(θ).

The third equality holds because X1, X2, · · ·, Xn are mutually independently

distributed random variables.
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7. Theorem: When X1, X2, · · ·, Xn are mutually independently and identically

distributed and the moment-generating function of Xi is given by φ(θ) for

all i, the moment-generating function of Y is represented by
(
φ(θ)

)n
, where

Y = X1 + X2 + · · · + Xn.

185

Proof:

Using the above theorem, we have the following:

φy(θ) = φ1(θ)φ2(θ) · · · φn(θ)

= φ(θ)φ(θ) · · · φ(θ) =
(
φ(θ)

)n
.

Note that φi(θ) = φ(θ) for all i.
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8. Theorem: When X1, X2, · · ·, Xn are mutually independently and identically

distributed and the moment-generating function of Xi is given by φ(θ) for

all i, the moment-generating function of X is represented by
(
φ(
θ

n
)
)n

, where

X = (1/n)
∑n

i=1 Xi.
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Proof:

Let φx(θ) be the moment-generating function of X.

φx(θ) = E(eθX) = E(e
θ
n

∑n
i=1 Xi) =

n∏

i=1

E(e
θ
n

Xi)

=

n∏

i=1

φ(
θ

n
) =

(
φ(
θ

n
)
)n
.
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Bernoulli Distribution: The probability function of Bernoulli random variable X

is:

f (x) = px(1 − p)1−x, x = 0, 1

The moment-generating function of X is:

φ(θ) = peθ + 1 − p

Mean: E(X) = φ′(0) = p

Variance: V(X) = E(X2) − (E(X))2 = φ′′(0) − p2 = p(1 − p)
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Binomial Distribution: For the binomial random variable, the moment-generating

function φ(θ) is known as:

φ(θ) = (peθ + 1 − p)n,

which is discussed in Example 1.5 (Section 3.1). Using the moment-generating

function, we check whether E(X) = np and V(X) = np(1 − p) are obtained when X

is a binomial random variable.

The first- and the second-derivatives with respect to θ are given by:

φ′(θ) = npeθ(peθ + 1 − p)n−1,
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φ′′(θ) = npeθ(peθ + 1 − p)n−1 + n(n − 1)p2e2θ(peθ + 1 − p)n−2.

Evaluating at θ = 0, we have:

E(X) = φ′(0) = np, E(X2) = φ′′(0) = np + n(n − 1)p2.

Therefore, V(X) = E(X2)− (E(X))2
= np(1− p) can be derived. Thus, we can make

sure that E(X) and V(X) are obtained from φ(θ).
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Poisson Distribution: The probability function of Poisson random variable X is:

f (x) = e−λ
λx

x!
, x = 0, 1, 2, · · ·

The moment-generating function of X is:

φ(θ) =

∞∑

x=0

eθxe−λ
λx

x!

=

∞∑

x=0

e−λeeθλe−eθλ (eθλ)x

x!

= exp(λ(eθ − 1))

192



Normal Distribution: When X ∼ N(µ, σ2), the moment-generating function of

X is given by: φ(θ) = exp(µθ + 1
2
σ2θ2) from the previous example.

Obtain E(X) and V(X), using φ(θ).

• E(X) = φ′(0) = µ

from φ′(θ) = (µ + σ2θ) exp(µθ + 1
2
σ2θ2).

• E(X2) = φ′′(0) = σ2 + µ2

from φ′′(θ) = σ2 exp(µθ + 1
2
σ2θ2) + (µ + σ2θ)2 exp(µθ + 1

2
σ2θ2).

• V(X) = E(X2) − (E(X))2 = (σ2 + µ2) − µ2 = σ2
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Cauchy Distribution: Cauchy distribution: f (x) =
1

π(1 + x2)
for −∞ < x < ∞.

E(X) =

∫
x f (x)dx =

∫
x

π(1 + x2)
dx

=
1

2π
[log(1 + x2)]∞−∞

=⇒ φ(θ) does not exists.

t(k) distrubution =⇒ E(Xk) does not exists.
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Uniform Distribution: The density function is:

f (x) =
1

b − a
, a < x < b

The moment-generating function is:

φ(θ) =

∫ ∞

−∞
eθx f (x)dx =

∫ b

a

eθx 1

b − a
dx

=

[
eθx

θ(b − a)

]b

a

=
eθb − eθa

θ(b − a)
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φ′(θ) =
θ(beθb − aeθa) − (eθb − eθa)

θ2(b − a)
Mean:

E(X) = φ′(0) ←− Use L’Hospital’s rule.

=
a + b

2

(*) f (θ) = θ(beθb − aeθa) − (eθb − eθa), g(θ) = θ2(b − a)

f ′(θ) = θ(b2eθb − a2eθa), g′(θ) = 2θ(b − a)

lim
θ→0

f (θ)

g(θ)
= lim

θ→0

f ′(θ)

g′(θ)
= lim

θ→0

θ(b2eθb − a2eθa)

2θ(b − a)
=

a + b

2
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(*) L’Hospital’s rule

For two continuous functions f (x) and g(x),

lim
x→∞

f (x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
, or lim

x→0

f (x)

g(x)
= lim

x→0

f ′(x)

g′(x)
,

L’Hospital’s rule is used when we have:

lim
x→∞

f (x)

g(x)
=
∞
∞

or
0

0
,

or

lim
x→0

f (x)

g(x)
=
∞
∞

or
0

0
.
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Variance: V(X) = E(X2) − (E(X))2

E(X2) = φ′′(0)

=
θ2(b2eθb − a2eθa) − 2θ(beθb − aeθa) + 2(eθb − eθa)

θ3(b − a)


f (θ) = θ2(b2eθb − a2eθa) − 2θ(beθb − aeθa) + 2(eθb − eθa)

g(θ) = θ3(b − a)


f ′(θ) = θ2(b3eθb − a3eθa)

g′(θ) = 3θ2(b − a)
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φ′′(0) = lim
θ→0

f (θ)

g(θ)
= lim

θ→0

f ′(θ)

g′(θ)

= lim
θ→0

θ2(b3eθb − a3eθa)

3θ2(b − a)
=

b2 + ba + a2

3

V(X) = E(X2) − (E(X))2

= φ′′(0) − (φ′(0))2 ←− L’Hospital’s rule

=
b2 + ba + a2

3
−

(a + b

2

)2
=

(b − a)2

12
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Exponential Distribution: The exponential distribution is:

f (x) = λe−λx, 0 < x

The moment-generating function is:

φ(θ) =

∫ ∞

−∞
eθx f (x)dx =

∫ ∞

0

eθxλe−λxdx

=
λ

λ − θ

∫ ∞

0

(λ − θ)e−(λ−θ)xdx =
λ

λ − θ

Use the exponential distribution with parameter λ − θ in the integration.
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1. Mean: E(X) = φ′(0)

φ′(θ) =
λ

(λ − θ)2

E(X) = φ′(0) =
1

λ

2. Variance: V(X) = E(X2) − (E(X))2

E(X2) = φ′′(0) φ′′(θ) = 2
λ

(λ − θ)3

V(X) = E(X2) − (E(X))2
= φ′′(0) − (φ′(0))2

=
2

λ2
− 1

λ2
=

1

λ2
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χ2 Distribution: The density function is:

f (x) =
1

2
n
2Γ(n

2
)
x

n
2
−1 exp(− x

2
), 0 < x

The moment-generating function is:

φ(θ) =

∫ ∞

−∞
eθx f (x)dx

=

∫ ∞

0

eθx 1

2
n
2Γ( n

2
)
x

n
2
−1 exp(− x

2
)dx

=

∫ ∞

0

1

2
n
2Γ(n

2
)
x

n
2
−1 exp

(
−1

2
(1 − 2θ)x

)
dx

=

∫ ∞

0

1

2
n
2Γ(n

2
)

(
y

1 − 2θ

) n
2
−1

exp(−1

2
y)

1

1 − 2θ
dy
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=

(
1

1 − 2θ

) n
2
∫ ∞

0

1

2
n
2Γ( n

2
)
y

n
2
−1 exp(−1

2
y)dy

=
( 1

1 − 2θ

) n
2

Use integration by substitution by y = (1 − 2θ)x

dx

dy
= (1 − 2θ)−1

Use the χ2(n) distribution in the integration.
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1. Mean: E(X) = φ′(0)

φ′(θ) = (− n
2
)(−2)(1 − 2θ)−

n
2
−1

E(X) = φ′(0) = n

2. Variance: V(X) = E(X2) − (E(X))2

E(X2) = φ′′(0)

φ′′(θ) = (− n
2
)(−n

2
− 1)(−2)2(1 − 2θ)−

n
2
−1

V(X) = E(X2) − (E(X))2
= φ′′(0) − (φ′(0))2

= n(n + 2) − n2 = 2n
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Sum of Bernoulli Random Variables: X1, X2, · · ·, Xn are mutually indepen-

dently and identically distributed as Bernoulli random variable with parameter p.

Then, the probability function of Y = X1 + X2 + · · · + Xn is B(n, p).

Proof: The moment-generating function of Xi, φi(θ), is:

φi(θ) = peθ + 1 − p
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The moment-generating function of Y , φy(θ), is:

φy(θ) = E(eθY) = E(eθ(X1+X2+···+Xn))

= E(eθX1)E(eθX2) · · ·E(eθXn) = φ1(θ)φ2(θ) · · · φn(θ)

=
(
φ(θ)

)n
= (peθ + 1 − p)n,

which is the moment-generating function of B(n, p).

Note:

In the third equality, X1, X2, · · ·, Xn are mutually independent.

In the fifth equality, X1, X2, · · ·, Xn are identically distributed.
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Sum of Two Normal Random Variables: X ∼ N(µ1, σ
2
1
) and Y ∼ N(µ2, σ

2
2
).

X is independent of Y .

Then, aX + bY ∼ N(aµ1 + bµ2, a
2σ2

1
+ b2σ2

2
), where a are b are constant.

Proof: Suppose tha the moment-generating functions of X and Y are given by

φx(θ) and φy(θ).

φx(θ) = exp
(
µ1θ +

1

2
σ2

1θ
2
)

φy(θ) = exp
(
µ2θ +

1

2
σ2

2θ
2
)
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The moment-generating function of W = aX + bY is:

φw(θ) = E(eθW) = E(eθ(aX+bY)) = E(eaθX)E(ebθY) = φx(aθ)φy(bθ)

= exp
(
µ1(aθ) +

1

2
σ2

1(aθ)2
)
× exp

(
µ2(bθ) +

1

2
σ2

2(bθ)2
)

= exp
(
(aµ1 + bµ2)θ +

1

2
(a2σ2

1 + b2σ2
2)θ2

)

which is the moment-generating function of normal distribution with mean aµ1+bµ2

and variance a2σ2 + b2σ2
2
.

Therefore, aX + bY ∼ N(aµ1 + bµ2, a
2σ2 + b2σ2

2
)
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Sum of Two χ2 Random Variables: X ∼ χ2(n) and Y ∼ χ2(m). X is indepen-

dent of Y .

Then, Z = X + Y ∼ χ2(n + m)

Proof:

Let φx(θ) and φy(θ) be the moment-generating functions of X and Y .

φx(θ) and φy(θ) are given by:

φx(θ) =
( 1

1 − 2θ

) n
2
, φy(θ) =

( 1

1 − 2θ

)m
2
.
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The moment-generating function of Z = X + Y is:

φz(θ) ≡ E(eθZ) = E(eθ(X+Y)) = E(eθX)E(eθY) = φx(θ)φy(θ)

=
( 1

1 − 2θ

) n
2
( 1

1 − 2θ

)m
2
=

( 1

1 − 2θ

) n+m
2

which is the moment-generating function of χ2(n + m) distribution. Therefore, Z ∼

χ2(n + m).

Note:

In the third equality, X and Y are independent.
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5.2 Multivariate Cases

Bivariate Case: As discussed in Section 3.2, for two random variables X and Y ,

the moment-generating function is defined as φ(θ1, θ2) = E(eθ1X+θ2Y). Some useful

and important theorems and remarks are shown as follows.
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1. Theorem: Consider two random variables X and Y . Let φ(θ1, θ2) be the

moment-generating function of X and Y . Then, we have the following result:

∂ j+kφ(0, 0)

∂θ
j

1
∂θk

2

= E(X jYk).

Proof:

Let fxy(x, y) be the probability density function of X and Y . From the defini-

tion, φ(θ1, θ2) is written as:

φ(θ1, θ2) = E(eθ1X+θ2Y) =

∫ ∞

−∞

∫ ∞

−∞
eθ1 x+θ2y fxy(x, y) dx dy.
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Taking the jth derivative of φ(θ1, θ2) with respect to θ1 and at the same time

the kth derivative with respect to θ2, we have the following expression:

∂ j+kφ(θ1, θ2)

∂θ
j

1
∂θk

2

=

∫ ∞

−∞

∫ ∞

−∞
x jykeθ1 x+θ2y fxy(x, y) dx dy.

Evaluating the above equation at (θ1, θ2) = (0, 0), we can easily obtain:

∂ j+kφ(0, 0)

∂θ
j

1
∂θk

2

=

∫ ∞

−∞

∫ ∞

−∞
x jyk fxy(x, y) dx dy ≡ E(X jYk).
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2. Remark: Let (Xi,Yi) be a pair of random variables. Suppose that the

moment-generating function of (X1,Y1) is equivalent to that of (X2,Y2). Then,

(X1,Y1) has the same distribution function as (X2,Y2).
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3. Theorem: Let φ(θ1, θ2) be the moment-generating function of (X,Y).

The moment-generating function of X is given by φ1(θ1) and that of Y is

φ2(θ2).

Then, we have the following facts:

φ1(θ1) = φ(θ1, 0), φ2(θ2) = φ(0, θ2).
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Proof:

Again, the definition of the moment-generating function of X and Y is repre-

sented as:

φ(θ1, θ2) = E(eθ1X+θ2Y) =

∫ ∞

−∞

∫ ∞

−∞
eθ1 x+θ2y fxy(x, y) dx dy.

When φ(θ1, θ2) is evaluated at θ2 = 0, φ(θ1, 0) is rewritten as follows:

φ(θ1, 0) = E(eθ1X) =

∫ ∞

−∞

∫ ∞

−∞
eθ1 x fxy(x, y) dx dy

=

∫ ∞

−∞
eθ1 x

(∫ ∞

−∞
fxy(x, y) dy

)
dx
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=

∫ ∞

−∞
eθ1 x fx(x) dx = E(eθ1X) = φ1(θ1).

Thus, we obtain the result: φ(θ1, 0) = φ1(θ1).

Similarly, φ(0, θ2) = φ2(θ2) can be derived.
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4. Theorem: The moment-generating function of (X,Y) is given by φ(θ1, θ2).

Let φ1(θ1) and φ2(θ2) be the moment-generating functions of X and Y , respec-

tively.

If X is independent of Y , we have:

φ(θ1, θ2) = φ1(θ1)φ2(θ2).
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Proof:

From the definition of φ(θ1, θ2), the moment-generating function of X and Y

is rewritten as follows:

φ(θ1, θ2) = E(eθ1X+θ2Y) = E(eθ1X)E(eθ2Y) = φ1(θ1)φ2(θ2).

The second equality holds because X is independent of Y .
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Multivariate Case: For multivariate random variables X1, X2, · · ·, Xn, the moment-

generating function is defined as:

φ(θ1, θ2, · · · , θn) = E(eθ1X1+θ2X2+···+θnXn).
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1. Theorem: If the multivariate random variables X1, X2, · · ·, Xn are mutually

independent,

the moment-generating function of X1, X2, · · ·, Xn, denoted by φ(θ1, θ2, · · ·,

θn), is given by:

φ(θ1, θ2, · · · , θn) = φ1(θ1)φ2(θ2) · · · φn(θn),

where φi(θ) = E(eθXi).
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Proof:

From the definition of the moment-generating function in the multivariate

cases, we obtain the following:

φ(θ1, θ2, · · · , θn) = E(eθ1X1+θ2X2+···+θnXn)

= E(eθ1X1)E(eθ2X2) · · ·E(eθnXn)

= φ1(θ1)φ2(θ2) · · · φn(θn).
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2. Theorem: Suppose that the multivariate random variables X1, X2, · · ·, Xn are

mutually independently and identically distributed.

Suppose that Xi ∼ N(µ, σ2).

Let us define µ̂ =
∑n

i=1 aiXi, where ai, i = 1, 2, · · · , n, are assumed to be

known.

Then, µ̂ ∼ N(µ
∑n

i=1 ai, σ
2
∑n

i=1 a2
i
).
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Proof:

From Example 1.8 (p.111) and Example 1.9 (p.147), it is shown that the

moment-generating function of X is given by: φx(θ) = exp(µθ+ 1
2
σ2θ2), when

X is normally distributed as X ∼ N(µ, σ2).
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Let φµ̂ be the moment-generating function of µ̂.

φµ̂(θ) = E(eθµ̂) = E(eθ
∑n

i=1 aiXi) =

n∏

i=1

E(eθaiXi)

=

n∏

i=1

φx(aiθ) =

n∏

i=1

exp(µaiθ +
1

2
σ2a2

i θ
2)

= exp(µ

n∑

i=1

aiθ +
1

2
σ2

n∑

i=1

a2
i θ

2)

which is equivalent to the moment-generating function of the normal distri-

bution with mean µ
∑n

i=1 ai and variance σ2
∑n

i=1 a2
i
, where µ and σ2 in φx(θ)

is simply replaced by µ
∑n

i=1 ai and σ2
∑n

i=1 a2
i

in φµ̂(θ), respectively.
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Moreover, note as follows.

When ai = 1/n is taken for all i = 1, 2, · · · , n, i.e., when µ̂ = X is taken, µ̂ = X

is normally distributed as: X ∼ N(µ, σ2/n).
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6 Law of Large Numbers ( ) and Central

Limit Theorem ( )

6.1 Chebyshev’s Inequality ( )
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Theorem: Let g(X) be a nonnegative function of the random variable X, i.e.,

g(X) ≥ 0.

If E(g(X)) exists, then we have:

P(g(X) ≥ k) ≤ E(g(X))

k
, (6)

for a positive constant value k.

228



Proof:

We define the discrete random variable U as follows:

U =


1, if g(X) ≥ k,

0, if g(X) < k.

Thus, the discrete random variable U takes 0 or 1.

Suppose that the probability function of U is given by:

f (u) = P(U = u),

where P(U = u) is represented as:

P(U = 1) = P(g(X) ≥ k),
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P(U = 0) = P(g(X) < k).

Then, in spite of the value which U takes, the following equation always holds:

g(X) ≥ kU,

which implies that we have g(X) ≥ k when U = 1 and g(X) ≥ 0 when U = 0, where

k is a positive constant value.

Therefore, taking the expectation on both sides, we obtain:

E(g(X)) ≥ kE(U), (7)
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where E(U) is given by:

E(U) =

1∑

u=0

uP(U = u) = 1 × P(U = 1) + 0 × P(U = 0)

= P(U = 1) = P(g(X) ≥ k). (8)

Accordingly, substituting equation (8) into equation (7), we have the following in-

equality:

P(g(X) ≥ k) ≤ E(g(X))

k
.
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Chebyshev’s Inequality: Assume that E(X) = µ, V(X) = σ2, and λ is a positive

constant value. Then, we have the following inequality:

P(|X − µ| ≥ λσ) ≤ 1

λ2
,

or equivalently,

P(|X − µ| < λσ) ≥ 1 − 1

λ2
,

which is called Chebyshev’s inequality.
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Proof:

Take g(X) = (X − µ)2 and k = λ2σ2. Then, we have:

P((X − µ)2 ≥ λ2σ2) ≤ E(X − µ)2

λ2σ2
,

which implies P(|X − µ| ≥ λσ) ≤ 1

λ2
.

Note that E(X − µ)2 = V(X) = σ2.

Since we have P(|X − µ| ≥ λσ) + P(|X − µ| < λσ) = 1, we can derive the following

inequality:

P(|X − µ| < λσ) ≥ 1 − 1

λ2
. (9)
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An Interpretation of Chebyshev’s inequality: 1/λ2 is an upper bound for the

probability P(|X − µ| ≥ λσ).

Equation (9) is rewritten as:

P(µ − λσ < X < µ + λσ) ≥ 1 − 1

λ2
.

That is, the probability that X falls within λσ units of µ is greater than or equal to

1 − 1/λ2.

Taking an example of λ = 2, the probability that X falls within two standard devia-

tions of its mean is at least 0.75.
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Furthermore, note as follows.

Taking ε = λσ, we obtain as follows:

P(|X − µ| ≥ ε) ≤ σ2

ε2
,

i.e.,

P(|X − E(X)| ≥ ε) ≤ V(X)

ε2
, (10)

which inequality is used in the next section.
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Remark: Equation (10) can be derived when we take g(X) = (X − µ)2, µ = E(X)

and k = ε2 in equation (6).

Even when we have µ , E(X), the following inequality still hold:

P(|X − µ| ≥ ε) ≤ E((X − µ)2)

ε2
.

Note that E((X − µ)2) represents the mean square error (MSE).

When µ = E(X), the mean square error reduces to the variance.
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6.2 Law of Large Numbers ( ) and Convergence in

Probability ( )

Law of Large Numbers 1: Assume that X1, X2, · · ·, Xn are mutually indepen-

dently and identically distributed with mean E(Xi) = µ for all i.

Supopose that the moment-generating function of Xi is finite.

Define Xn =
1

n

n∑

i=1

Xi.

Then, Xn −→ µ as n −→ ∞.
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Proof: The moment-generating function is written as:

φ(θ) = 1 + µ′1θ +
1

2!
µ′2θ

2 +
1

3!
µ′3θ

3 + · · ·

= 1 + µ′1θ + O(θ2)

where µ′
k
= E(Xk) for all k. That is, all the moments exist.

φx(θ) =
(
φ
(θ
n

))n
=

(
1 + µ′1

θ

n
+ O(

θ2

n2
)
)n

=
(
1 + µ′1

θ

n
+ O(

1

n2
)
)n
=

(
(1 + x)

1
x

)µθ+O(n−1)

−→ exp(µθ) as x −→ 0,
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which is the following probability function:

f (x) =


1 if x = µ,

0 otherwise.

φ(θ) =
∑

eθx f (x) = eθµ f (µ) = eθµ
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Law of Large Numbers 2: Assume that X1, X2, · · ·, Xn are mutually indepen-

dently and identically distributed with mean E(Xi) = µ and variance V(Xi) = σ
2 <

∞ for all i.

Then, for any positive value ε, as n −→ ∞, we have the following result:

P(|Xn − µ| ≥ ε) −→ 0,

where Xn =
1

n

n∑

i=1

Xi.

We say that Xn converges in probability to µ.

240



Proof:

Using (10), Chebyshev’s inequality is represented as follows:

P(|Xn − E(Xn)| ≥ ε) ≤ V(Xn)

ε2
,

where X in (10) is replaced by Xn.

We know E(Xn) = µ and V(Xn) =
σ2

n
, which are substituted into the above inequal-

ity.

Then, we obtain:

P(|Xn − µ| ≥ ε) ≤
σ2

nε2
.
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Accordingly, when n −→ ∞, the following equation holds:

P(|Xn − µ| ≥ ε) ≤
σ2

nε2
−→ 0.

That is, Xn −→ µ is obtained as n −→ ∞, which is written as: plim Xn = µ.

This theorem is called the law of large numbers.

The condition P(|Xn − µ| ≥ ε) −→ 0 or equivalently P(|Xn − µ| < ε) −→ 1 is used as

the definition of convergence in probability ( ).

In this case, we say that Xn converges in probability to µ.
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Theorem: In the case where X1, X2, · · ·, Xn are not identically distributed and they

are not mutually independently distributed, define:

mn = E(

n∑

i=1

Xi), Vn = V(

n∑

i=1

Xi),

and assume that

mn

n
=

1

n
E(

n∑

i=1

Xi) < ∞,
Vn

n
=

1

n
V(

n∑

i=1

Xi) < ∞,

Vn

n2
−→ 0, as n −→ ∞.
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Then, we obtain the following result:

∑n
i=1 Xi − mn

n
−→ 0.

That is, Xn converges in probability to lim
n→∞

mn

n
.

This theorem is also called the law of large numbers.
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Proof:

Remember Chebyshev’s inequality:

P(|X − E(X)| ≥ ε) ≤ V(X)

ε2
,

Replace X, E(X) and V(X)

by Xn, E(Xn) =
mn

n
and V(Xn) =

Vn

n2
.

Then, we obtain:

P(|Xn −
mn

n
| ≥ ε) ≤ Vn

n2ε2
.
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As n goes to infinity,

P(|Xn −
mn

n
| ≥ ε) ≤ Vn

n2ε2
−→ 0.

Therefore, Xn −→ lim
n→∞

mn

n
as n −→ ∞.
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6.3 Central Limit Theorem ( ) and Convergence in

Distribution ( )

Central Limit Theorem: X1, X2, · · ·, Xn are mutually independently and iden-

tically distributed with E(Xi) = µ and V(Xi) = σ2 for all i. Both µ and σ2 are

finite.

Under the above assumptions, when n −→ ∞, we have:

P
(Xn − µ
σ/

√
n
< x

)
−→

∫ x

−∞

1
√

2π
e−

1
2

u2

du,

which is called the central limit theorem.
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Proof:

Define Yi =
Xi − µ
σ

. We can rewrite as follows:

Xn − µ
σ/

√
n
=

1
√

n

n∑

i=1

Xi − µ
σ
=

1
√

n

n∑

i=1

Yi.

Since Y1, Y2, · · ·, Yn are mutually independently and identically distributed, the

moment-generating function of Yi is identical for all i, which is denoted by φ(θ).

248

Using E(Yi) = 0 and V(Yi) = 1, the moment-generating function of Yi, φ(θ), is

rewritten as:

φ(θ) = E(eYiθ) = E
(
1 + Yiθ +

1

2
Y2

i θ
2 +

1

3!
Y3

i θ
3 · · ·

)

= 1 +
1

2
θ2 + O(θ3).

In the second equality, eYiθ is approximated by the Taylor series expansion around

θ = 0.
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(*) Remark:

O(x) implies that it is a polynomial function of x and the higher-order terms but it

is dominated by x.

In this case, O(θ3) is a function of θ3, θ4, · · ·.

Since the moment-generating function is conventionally evaluated at θ = 0, θ3 is

the largest value of θ3, θ4, · · · and accordingly O(θ3) is dominated by θ3 (in other

words, θ4, θ5, · · · are small enough, compared with θ3).
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Define Z as:

Z =
1
√

n

n∑

i=1

Yi.

Then, the moment-generating function of Z, i.e., φz(θ), is given by:

φz(θ) = E(eZθ) = E
(
e

θ√
n

∑n
i=1 Yi

)
=

n∏

i=1

E
(
e

θ√
n

Yi
)
=

(
φ(

θ
√

n
)
)n

=
(
1 +

1

2

θ2

n
+ O(

θ3

n
3
2

)
)n
=

(
1 +

1

2

θ2

n
+ O(n−

3
2 )
)n
.

We consider that n goes to infinity.

Therefore, O( θ
3

n
3
2

) indicates a function of n−
3
2 .
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Moreover, consider x =
1

2

θ2

n
+ O(n−

3
2 ).

Multiply n/x on both sides of x =
1

2

θ2

n
+ O(n−

3
2 ).

Then, we obtain n =
1

x

(1

2
θ2 + O(n−

1
2 )
)
.

Substitute n =
1

x

(1

2
θ2 + O(n−

1
2 )
)

into the moment-generating function of Z, i.e.,

φz(θ).

Then, we obtain:

φz(θ) =
(
1 +

1

2

θ2

n
+ O(n−

3
2 )
)n
= (1 + x)

1
x
( θ

2

2
+O(n

− 1
2 ))

=
(
(1 + x)

1
x

) θ2
2
+O(n

− 1
2 )
−→ e

θ2

2 .
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Note that x −→ 0 when n −→ ∞ and that lim
x→0

(1+ x)1/x = e as in Section 2.3 (p.35).

Furthermore, we have O(n−
1
2 ) −→ 0 as n −→ ∞.

Since φz(θ) = e
θ2

2 is the moment-generating function of the standard normal distri-

bution (see p.110 in Section 3.1 for the moment-generating function of the standard

normal probability density), we have:

P
(Xn − µ
σ/

√
n
< x

)
−→

∫ x

−∞

1
√

2π
e−

1
2

u2

du,

or equivalently,

Xn − µ
σ/

√
n
−→ N(0, 1).
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We say that
Xn − µ
σ/

√
n

converges in distribution to N(0, 1).

=⇒ Convergence in distribution ( )

The following expression is also possible:

√
n(Xn − µ) −→ N(0, σ2). (11)
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Corollary 1: When E(Xi) = µ, V(Xi) = σ
2 and Xn = (1/n)

∑n
i=1 Xi, note that

Xn − E(Xn)
√

V(Xn)

=
Xn − µ
σ/

√
n
.

Therefore, we can rewrite the above theorem as:

P
(Xn − E(Xn)

√
V(Xn)

< x
)
−→

∫ x

−∞

1
√

2π
e−

1
2

u2

du.
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Corollary 2: Consider the case where X1, X2, · · ·, Xn are not identically dis-

tributed and they are not mutually independently distributed.

Assume that

lim
n→∞

nV(Xn) = σ2 < ∞, where Xn =
1

n

n∑

i=1

Xi.

Then, when n −→ ∞, we have:

P
(Xn − E(Xn)

√
V(Xn)

< x
)
−→

∫ x

−∞

1
√

2π
e−

1
2

u2

du.
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Summary: Let X1, X2, · · ·, Xn, · · · be a sequence of random variables. Let X be a

random variable. Let Fn be the distribution function of Xn and F be that of X.

• Xn converges in probability to X if lim
n→∞

P(|Xn − X| ≥ ε) = 0 or lim
n→∞

P(|Xn − X| <

ε) = 1 for all ε > 0.

Equivalently, we write Xn

P−→ X.

• Xn converges in distribution to X (or F) if lim
n→∞

Fn(x) = F(x) for all x.

Equivalently, we write Xn

D−→ X or Xn

D−→ F.
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7 Statistical Inference

7.1 Point Estimation ( )

Suppose that the underlying distribution is known but the parameter θ included in

the distribution is not known.

The distribution function of population is given by f (x; θ).

Let x1, x2, · · ·, xn be the n observed data drawn from the population distribution.
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Consider estimating the parameter θ using the n observed data.

Let θ̂n(x1, x2, · · ·, xn) be a function of the observed data x1, x2, · · ·, xn.

θ̂n(x1, x2, · · ·, xn) is constructed to estimate the parameter θ.

θ̂n(x1, x2, · · ·, xn) takes a certain value given the n observed data.

θ̂n(x1, x2, · · ·, xn) is called the point estimate of θ, or simply the estimate of θ.

259

Example 1.11: Consider the case of θ = (µ, σ2), where the unknown parameters

contained in population is given by mean and variance.

A point estimate of population mean µ is given by:

µ̂n(x1, x2, · · · , xn) ≡ x =
1

n

n∑

i=1

xi.
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A point estimate of population variance σ2 is:

σ̂2
n(x1, x2, · · · , xn) ≡ s2 =

1

n − 1

n∑

i=1

(xi − x)2.

An alternative point estimate of population variance σ2 is:

σ̃2
n(x1, x2, · · · , xn) ≡ s∗∗2 =

1

n

n∑

i=1

(xi − x)2.
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7.2 Statistic, Estimate and Estimator ( )

The underlying distribution of population is assumed to be known, but the parame-

ter θ, which characterizes the underlying distribution, is unknown.

The probability density function of population is given by f (x; θ).
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Let X1, X2, · · ·, Xn be a subset of population, which are regarded as the random

variables and are assumed to be mutually independent.

x1, x2, · · ·, xn are taken as the experimental values of the random variables X1, X2,

· · ·, Xn.

In statistics, we consider that n-variate random variables X1, X2, · · ·, Xn take the

experimental values x1, x2, · · ·, xn by chance.
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There, the experimental values and the actually observed data series are used in the

same meaning.

θ̂n(x1, x2, · · ·, xn) denotes the point estimate of θ.

In the case where the observed data x1, x2, · · ·, xn are replaced by the corresponding

random variables X1, X2, · · ·, Xn, a function of X1, X2, · · ·, Xn, i.e., θ̂(X1, X2, · · ·,

Xn), is called the estimator ( ) of θ, which should be distinguished from the

estimate ( ) of θ, i.e., θ̂(x1, x2, · · ·, xn).
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Example 1.12: Let X1, X2, · · ·, Xn denote a random sample of n from a given

distribution f (x; θ).

Consider the case of θ = (µ, σ2).

The estimator of µ is given by X =
1

n

n∑

i=1

Xi, while the estimate of µ is x =
1

n

n∑

i=1

xi.

The estimator of σ2 is S 2 =
1

n − 1

n∑

i=1

(Xi − X)2 and the estimate of σ2 is s2 =

1

n − 1

n∑

i=1

(xi − x)2.
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There are numerous estimators and estimates of θ.

All of
1

n

n∑

i=1

Xi,
X1 + Xn

2
, median of (X1, X2, · · ·, Xn) and so on are taken as the

estimators of µ.

Of course, they are called the estimates of θ when Xi is replaced by xi for all i.

Both S 2 =
1

n − 1

n∑

i=1

(Xi − X)2 and S ∗2 =
1

n

2∑

i=1

(Xi − X)2 are the estimators of σ2.
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We need to choose one out of the numerous estimators of θ.

The problem of choosing an optimal estimator out of the numerous estimators is

discussed in Sections 7.4 and 7.5.1.

In addition, note as follows.

A function of random variables is called a statistic ( ). The statistic for esti-

mation of the parameter is called an estimator.

Therefore, an estimator is a family of a statistic.
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7.3 Estimation of Mean and Variance

Suppose that the population distribution is given by f (x; θ).

The random sample X1, X2, · · ·, Xn are assumed to be drawn from the population

distribution f (x; θ), where θ = (µ, σ2).

Therefore, we can assume that X1, X2, · · ·, Xn are mutually independently and iden-

tically distributed, where “identically” implies E(Xi) = µ and V(Xi) = σ2 for all

i.

Consider the estimators of θ = (µ, σ2) as follows.
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1. The estimator of population mean µ is:

• X =
1

n

n∑

i=1

Xi.

2. The estimators of population variance σ2 are:

• S ∗2 =
1

n

n∑

i=1

(Xi − µ)2, when µ is known,

• S 2 =
1

n − 1

n∑

i=1

(Xi − X)2,

• S ∗∗2 =
1

n

n∑

i=1

(Xi − X)2,
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Properties of X: From Theorem on p.138, mean and variance of X are obtained

as follows:

E(X) = µ, V(X) =
σ2

n
.

Properties of S∗2, S2 and S∗∗2: The expectation of S ∗2 is:

E(S ∗2) = E
(1

n

n∑

i=1

(Xi − µ)2
)
=

1

n

n∑

i=1

E
(
(Xi − µ)2

)

=
1

n

n∑

i=1

V(Xi) =
1

n

n∑

i=1

σ2 = σ2.
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Next, the expectation of S 2 is given by:

E(S 2)

= E
( 1

n − 1

n∑

i=1

(Xi − X)2
)
=

1

n − 1
E
( n∑

i=1

(Xi − X)2
)

=
1

n − 1
E
( n∑

i=1

((Xi − µ) − (X − µ))2
)

=
1

n − 1
E
( n∑

i=1

((Xi − µ)2 − 2(Xi − µ)(X − µ) + (X − µ)2)
)

=
1

n − 1
E
( n∑

i=1

(Xi − µ)2 − 2(X − µ)

n∑

i=1

(Xi − µ) + n(X − µ)2
)
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=
1

n − 1
E
( n∑

i=1

(Xi − µ)2 − n(X − µ)2
)

=
n

n − 1
E
(1

n

n∑

i=1

(Xi − µ)2
)
− n

n − 1
E((X − µ)2)

=
n

n − 1
σ2 − n

n − 1

σ2

n
= σ2.

∑n
i=1(Xi − µ) = n(X − µ) is used in the sixth equality.

E
(1

n

n∑

i=1

(Xi − µ)2
)
= E(S ∗2) = σ2 and

E((X − µ)2) = V(X) =
σ2

n
are required in the eighth equality.
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Finally, the expectation of S ∗∗2 is represented by:

E(S ∗∗2) = E
(1

n

n∑

i=1

(Xi − X)2
)
= E

(n − 1

n

1

n − 1

n∑

i=1

(Xi − X)2
)

= E
(n − 1

n
S 2

)
=

n − 1

n
E(S 2) =

n − 1

n
σ2
, σ2.

Summarizing the above results, we obtain as follows:

E(S ∗2) = σ2, E(S 2) = σ2, E(S ∗∗2) =
n − 1

n
σ2
, σ2.
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7.4 Point Estimation: Optimality

θ denotes the parameter to be estimated.

θ̂n(X1, X2, · · ·, Xn) represents the estimator of θ, while θ̂n(x1, x2, · · ·, xn) indicates

the estimate of θ.

Hereafter, in the case of no confusion, θ̂n(X1, X2, · · ·, Xn) is simply written as θ̂n.

As discussed above, there are numerous candidates of the estimator θ̂n.
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The desired properties of θ̂n are:

• unbiasedness ( ),

• efficiency ( ).

• consistency ( ) and

• sufficiency ( ). ←− Not discussed in this class.
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Unbiasedness ( ): One of the desirable features that the estimator of the

parameter should have is given by:

E(θ̂n) = θ, (12)

which implies that θ̂n is distributed around θ.

When (12) holds, θ̂n is called the unbiased estimator ( ) of θ.

E(θ̂n) − θ is defined as bias ( ).
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As an example of unbiasedness, consider the case of θ = (µ, σ2).

Suppose that X1, X2, · · ·, Xn are mutually independently and identically distributed

with mean µ and variance σ2.

Consider the following estimators of µ and σ2.

1. The estimator of µ is:

• X =
1

n

n∑

i=1

Xi.
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2. The estimators of σ2 are:

• S 2 =
1

n − 1

n∑

i=1

(Xi − X)2, • S ∗∗2 =
1

n

n∑

i=1

(Xi − X)2.

Since we have obtained E(X) = µ and E(S 2) = σ2, X and S 2 are unbiased estimators

of µ and σ2.

We have obtained the result E(S ∗∗2) , σ2 and therefore S ∗∗2 is not an unbiased

estimator of σ2.

According to the criterion of unbiasedness, S 2 is preferred to S ∗∗2 for estimation of

σ2.
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Efficiency ( ): Consider two estimators, θ̂n and θ̃n.

Both are assumed to be unbiased.

That is, E(θ̂n) = θ and E(̃θn) = θ.

When V(θ̂n) < V(̃θn), we say that θ̂n is more efficient than θ̃n.

The unbiased estimator with the least variance is known as the efficient estimator

( ).

We have the case where an efficient estimator does not exist.

In order to find the efficient estimator, we utilize Cramer-Rao inequality (

).
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Suppose that X1, X2, · · ·, Xn are mutually independently and identically distributed

and the distribution of Xi is f (xi; θ).

For any unbiased estimator of θ, denoted by θ̂n, it is known that we have the follow-

ing inequality:

V(θ̂n) ≥ σ2(θ)

n
, (13)

where σ2(θ) =
1

E

((∂ log f (X; θ)

∂θ

)2
) = 1

V

((∂ log f (X; θ)

∂θ

))

= − 1

E
(∂2 log f (X; θ)

∂θ2

) , (14)
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which is known as the Cramer-Rao inequality ( ).

When there exists the unbiased estimator θ̂n such that the equality in (13) holds,

θ̂n becomes the unbiased estimator with minimum variance, which is the efficient

estimator ( ).
σ2(θ)

n
is called the Cramer-Rao lower bound ( ).
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Proof of the Cramer-Rao inequality: We prove the above inequality and the

equalities in σ2(θ).

The likelihood function ( ) l(θ; x) = l(θ; x1, x2, · · ·, xn) is a joint density of

X1, X2, · · ·, Xn.

That is, l(θ; x) = l(θ; x1, x2, · · ·, xn) =
∏n

i=1 f (xi; θ)

See Section 7.5.1 for the likelihood function ( ).
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The integration of l(θ; x1, x2, · · ·, xn) with respect to x1, x2, · · ·, xn is equal to one.

That is, we have the following equation:

1 =

∫
l(θ; x) dx, (15)

where the likelihood function l(θ; x) is given by l(θ; x) =
∏n

i=1 f (xi; θ) and
∫
· · · dx

implies n-tuple integral.
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Differentiating both sides of equation (15) with respect to θ, we obtain the following

equation:

0 =

∫
∂l(θ; x)

∂θ
dx =

∫
1

l(θ; x)

∂l(θ; x)

∂θ
l(θ; x) dx

=

∫
∂ log l(θ; x)

∂θ
l(θ; x) dx = E

(∂ log l(θ; X)

∂θ

)
, (16)

which implies that the expectation of
∂ log l(θ; X)

∂θ
is equal to zero.

In the third equality, note that
d log x

dx
=

1

x
.
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Now, let θ̂n be an estimator of θ. The definition of the mathematical expectation of

the estimator θ̂n is represented as:

E(θ̂n) =

∫
θ̂nl(θ; x) dx. (17)

Differentiating equation (17) with respect to θ on both sides, we can rewrite as

follows:

∂E(θ̂n)

∂θ
=

∫
θ̂n

∂l(θ; x)

∂θ
dx =

∫
θ̂n

∂ log l(θ; x)

∂θ
l(θ; x) dx

=

∫ (
θ̂n − E(θ̂n)

)(∂ log l(θ; x)

∂θ
− E(

∂ log l(θ; x)

∂θ
)
)
l(θ; x) dx

= Cov
(
θ̂n,

∂ log l(θ; X)

∂θ

)
. (18)
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In the second equality,
d log x

dx
=

1

x
is utilized.

The third equality holds because of E(
∂ log l(θ; X)

∂θ
) = 0 from equation (16).

For simplicity of discussion, suppose that θ is a scalar.
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Taking the square on both sides of equation (18), we obtain the following expres-

sion:

(∂E(θ̂n)

∂θ

)2
=

(
Cov

(
θ̂n,

∂ log l(θ; X)

∂θ

))2

= ρ2V(θ̂n)V
(∂ log l(θ; X)

∂θ

)

≤ V(θ̂n)V

(
∂ log l(θ; X)

∂θ

)
, (19)

where ρ denotes the correlation coefficient between θ̂n and
∂ log l(θ; X)

∂θ
.

287

Note that we have the definition of ρ is given by:

ρ =

Cov
(
θ̂n,

∂ log l(θ; X)

∂θ

)

√
V(θ̂n)

√
V
(∂ log l(θ; X)

∂θ

) .

Moreover, we have −1 ≤ ρ ≤ 1 (i.e., ρ2 ≤ 1).

Then, the inequality (19) is obtained, which is rewritten as:

V(θ̂n) ≥

(∂E(θ̂n)

∂θ

)2

V
(∂ log l(θ; X)

∂θ

) . (20)
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When E(θ̂n) = θ, i.e., when θ̂n is an unbiased estimator of θ, the numerator in the

right-hand side of equation (20) is equal to one.

Therefore, we have the following result:

V(θ̂n) ≥ 1

V
(∂ log l(θ; X)

∂θ

) =
1

E

((∂ log l(θ; X)

∂θ

)2
) .

Note that we have V
(∂ log l(θ; X)

∂θ

)
= E

(
(
∂ log l(θ; X)

∂θ
)2
)

in the equality above, be-

cause of E
(∂ log l(θ; X)

∂θ

)
= 0.
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Moreover, the denominator in the right-hand side of the above inequality is rewrit-

ten as follows:

E

((∂ log l(θ; X)

∂θ

)2
)

= E

(( n∑

i=1

∂ log f (Xi; θ)

∂θ

)2
)
=

n∑

i=1

E

((∂ log f (Xi; θ)

∂θ

)2
)

= nE

((∂ log f (X; θ)

∂θ

)2
)
= n

∫ ∞

−∞

(∂ log f (x; θ)

∂θ

)2
f (x; θ) dx.

In the first equality, log l(θ; X) =

n∑

i=1

log f (Xi; θ) is utilized.
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Since Xi, i = 1, 2, · · · , n, are mutually independent, the second equality holds.

The third equality holds because X1, X2, · · ·, Xn are identically distributed.

Therefore, we obtain the following inequality:

V(θ̂n) ≥ 1

E

((∂ log l(θ; X)

∂θ

)2
) = 1

nE

((∂ log f (X; θ)

∂θ

)2
) = σ

2(θ)

n
,

which is equivalent to (13).

Next, we prove the equalities in (14), i.e.,

−E
(∂2 log f (X; θ)

∂θ2

)
= E

((∂ log f (X; θ)

∂θ

)2
)
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= V
(∂ log f (X; θ)

∂θ

)
.

Differentiating

∫
f (x; θ) dx = 1 with respect to θ, we obtain as follows:

∫
∂ f (x; θ)

∂θ
dx = 0.

We assume that the range of x does not depend on the parameter θ and that
∂ f (x; θ)

∂θ

exists.

The above equation is rewritten as:

∫
∂ log f (x; θ)

∂θ
f (x; θ) dx = 0, (21)
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or equivalently,

E
(∂ log f (X; θ)

∂θ

)
= 0. (22)

Again, differentiating equation (21) with respect to θ,
∫

∂2 log f (x; θ)

∂θ2
f (x; θ) dx +

∫
∂ log f (x; θ)

∂θ

∂ f (x; θ)

∂θ
dx = 0,

i.e.,
∫

∂2 log f (x; θ)

∂θ2
f (x; θ) dx +

∫ (∂ log f (x; θ)

∂θ

)2
f (x; θ) dx = 0,

i.e.,

E
(∂2 log f (x; θ)

∂θ2

)
+ E

((∂ log f (x; θ)

∂θ

)2
)
= 0.
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Thus, we obtain:

−E
(∂2 log f (x; θ)

∂θ2

)
= E

((∂ log f (x; θ)

∂θ

)2
)
.

Moreover, from equation (22), the following equation is derived.

E

((∂ log f (x; θ)

∂θ

)2
)
= V

(∂ log f (x; θ)

∂θ

)
.

Therefore, we have:

− E
(∂2 log f (X; θ)

∂θ2

)
= E

((∂ log f (X; θ)

∂θ

)2
)
= V

(∂ log f (X; θ)

∂θ

)
.
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Thus, the Cramer-Rao inequality is derived as:

V(θ̂n) ≥ σ2(θ)

n
,

where

σ2(θ) =
1

E

((∂ log f (X; θ)

∂θ

)2
) = 1

V

((∂ log f (X; θ)

∂θ

))

= − 1

E
(∂2 log f (X; θ)

∂θ2

) .
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Example 1.13a (Efficient Estimator of µ): Suppose that X1, X2, · · ·, Xn are mu-

tually independently, identically and normally distributed with mean µ and variance

σ2.

Then, we show that X is an efficient estimator of µ.

V(X) is given by
σ2

n
, which does not depend on the distribution of Xi, i = 1, 2, · · · , n.

(A)

296

Because Xi is normally distributed with mean µ and variance σ2, the density func-

tion of Xi is given by:

f (x; µ) =
1

√
2πσ2

exp
(
− 1

2σ2
(x − µ)2

)
.

The Cramer-Rao inequality is represented as:

V(X) ≥ 1

nE

((∂ log f (X; µ)

∂µ

)2
) ,

where the logarithm of f (X; µ) is written as:

log f (X; µ) = −1

2
log(2πσ2) − 1

2σ2
(X − µ)2.
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The partial derivative of f (X; µ) with respect to µ is:

∂ log f (X; µ)

∂µ
=

1

σ2
(X − µ).

The Cramer-Rao inequality in this case is written as:

V(X) ≥ 1

nE

(( 1

σ2
(X − µ)

)2
)

=
1

n
1

σ4
E((X − µ)2)

=
σ2

n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (B)
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From (A) and (B), variance of X is equal to the lower bound of Cramer-Rao inequal-

ity, i.e., V(X) =
σ2

n
, which implies that the equality included in the Cramer-Rao

inequality holds.

Therefore, we can conclude that the sample mean X is an efficient estimator of µ.
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Example 1.13b (Efficient Estimator of σ2): Suppose that X1, X2, · · ·, Xn are mu-

tually independently, identically and normally distributed with mean µ and variance

σ2.

Is S 2 is an efficient estimator of σ2?

E(S 2) = σ2 ....... Unbiased estimator

Under normality assumption, V(S 2) is given by
2σ4

n − 1
, because V(U) = 2(n − 1)

from U =
(n − 1)S 2

σ2
∼ χ2(n − 1).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A)
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Because Xi is normally distributed with mean µ and variance σ2, the density func-

tion of Xi is given by:

f (x;σ2) =
1

√
2πσ2

exp
(
− 1

2σ2
(x − µ)2

)
.

The Cramer-Rao inequality is represented as:

V(S 2) ≥ 1

nE

((∂ log f (X;σ2)

∂σ2

)2
) = 1

−nE

(
∂2 log f (X;σ2)

∂(σ2)2

) ,

where the logarithm of f (X;σ2) is written as:

log f (X;σ2) = −1

2
log(2π) − 1

2
log(σ2) − 1

2σ2
(X − µ)2.
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The partial derivative of f (X;σ2) with respect to σ2 is:

∂ log f (X;σ2)

∂σ2
= − 1

2σ2
+

1

2σ4
(X − µ)2.

The 2nd partial derivative of f (X;σ2) with respect to σ2 is:

∂2 log f (X;σ2)

∂(σ2)2
=

1

2σ4
− 1

σ6
(X − µ)2.

The Cramer-Rao inequality in this case is written as:

V(S 2) ≥ 1

−nE

(
1

2σ4
− 1

σ6
(X − µ)2.

) = 2σ4

n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . (B)
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From (A) and (B), variance of S 2 is not equal to the lower bound of Cramer-Rao

inequality, i.e., V(S 2) =
2σ4

n − 1
>

2σ4

n
.

Therefore, we can conclude that the sample unbiased variance S 2 is not an efficient

estimator of σ2.
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Example 1.14: Minimum Variance Linear Unbiased Estimator (

): Suppose that X1, X2, · · ·, Xn are mutually independently and identi-

cally distributed with mean µ and variance σ2 (note that the normality assumption

is excluded from Example 1.13).

Consider the following linear estimator: µ̂ =

n∑

i=1

aiXi.

Then, we want to show µ̂ (i.e., X) is a minimum variance linear unbiased esti-

mator if ai =
1

n
for all i, i.e., if µ̂ = X.
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Utilizing Theorem on p.133, when E(Xi) = µ and V(Xi) = σ2 for all i, we have:

E(µ̂) = µ

n∑

i=1

ai and V(µ̂) = σ2

n∑

i=1

a2
i .

Since µ̂ is linear in Xi, µ̂ is called a linear estimator ( ) of µ.

In order for µ̂ to be unbiased, we need to have the condition: E(µ̂) = µ

n∑

i=1

ai = µ.
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That is, if

n∑

i=1

ai = 1 is satisfied, µ̂ gives us a linear unbiased estimator (

).

Thus, as mentioned in Example 1.12 of Section 7.2, there are numerous unbiased

estimators.

The variance of µ̂ is given by σ2

n∑

i=1

a2
i .
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We obtain the value of ai which minimizes

n∑

i=1

a2
i with the constraint

n∑

i=1

ai = 1.

Construct the Lagrange function as follows:

L =
1

2

n∑

i=1

a2
i + λ(1 −

n∑

i=1

ai),

where λ denotes the Lagrange multiplier.

The 1
2

in the first term makes computation easier.
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For minimization, the partial derivatives of L with respect to ai and λ are equal to

zero, i.e.,

∂L

∂ai

= ai − λ = 0, i = 1, 2, · · · , n,

∂L

∂λ
= 1 −

n∑

i=1

ai = 0.

Solving the above equations, ai = λ =
1

n
is obtained.

When ai =
1

n
for all i, µ̂ has minimum variance in a class of linear unbiased estima-

tors.

X is a minimum variance linear unbiased estimator.
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The minimum variance linear unbiased estimator is different from the efficient

estimator.

The former does not requires the normality assumption.

The latter gives us the unbiased estimator which variance is equal to the Cramer-

Rao lower bound, which is not restricted to a class of the linear unbiased estimators.

Under normality assumption, he linear unbiased minimum variance estimator leads

to the efficient estimator.

Note that the efficient estimator does not necessarily exist.

309

Consistency ( ): Let θ̂n be an estimator of θ.

Suppose that for any ε > 0 we have the following:

P(|θ̂n − θ| ≥ ε) −→ 0, as n −→ ∞,

which implies that θ̂ −→ θ as n −→ ∞.

We say that θ̂n is a consistent estimator ( ) of θ.
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Example 1.15: Suppose that X1, X2, · · ·, Xn are mutually independently and

identically distributed with mean µ and variance σ2.

Assume that σ2 is known.

Then, it is shown that X is a consistent estimator of µ.

For RV X, Chebyshev’s inequality is given by:

P(|X − E(X)| ≥ ε) ≤ V(X)

ε2
.

Here, replacing X by X, we obtain E(X) and V(X) as follows:

E(X) = µ, V(X) =
σ2

n
,
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because E(Xi) = µ and V(Xi) = σ
2 < ∞ for all i.

Then, when n −→ ∞, we obtain the following result:

P(|X − µ| ≥ ε) ≤ σ2

nε2
−→ 0,

which implies that X −→ µ as n −→ ∞.

Therefore, X is a consistent estimator of µ.
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Summary:

When the distribution of Xi is not assumed for all i, X is an minimum variance

linear unbiased and consistent estimator of µ.

When the distribution of Xi is assumed to be normal for all i, X leads to an efficient

and consistent estimator of µ.
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Example 1.16a: Suppose that X1, X2, · · ·, Xn are mutually independently, identi-

cally and normally distributed with mean µ and variance σ2.

Consider S 2 =
1

n − 1

n∑

i=1

(Xi − X)2, which is an unbiased estimator of σ2.

We obtain the following Chebyshev’s inequality:

P(|S 2 − σ2| ≥ ε) ≤ E((S 2 − σ2)2)

ε2
.

We compute E((S 2 − σ2)2) ≡ V(S 2).

U =
(n − 1)S 2

σ2
∼ χ2(n − 1).
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E(U) = n − 1 and V(U) = 2(n − 1).

V(U) = V(
(n − 1)S 2

σ2
) = 2(n − 1)

(n − 1)2

σ4
V(S 2) = 2(n − 1)

V(S 2) =
2σ2

n − 1

P(|S 2 − σ2| ≥ ε) ≤ E((S 2 − σ2)2)

ε2
=

2σ2

(n − 1)ε2
−→ 0,

which implies that S 2 −→ σ2 as n −→ ∞.

Threfore, S 2 is a consistent estimator of σ2.
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Example 1.16b: Suppose that X1, X2, · · ·, Xn are mutually independently, identi-

cally and normally distributed with mean µ and variance σ2.

Consider S ∗∗2 =
1

n

n∑

i=1

(Xi − X)2, which is an estimate of σ2.

We obtain the following Chebyshev’s inequality:

P(|S ∗∗2 − σ2| ≥ ε) ≤ E((S ∗∗2 − σ2)2)

ε2
.

We compute E((S ∗∗2 − σ2)2).

Define S 2 =
1

n − 1

n∑

i=1

(Xi − X)2 as an estimator σ2.
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From
(n − 1)S 2

σ2
∼ χ2(n − 1), we obtain E

( (n − 1)S 2

σ2

)
= n − 1 and V

((n − 1)S 2

σ2

)
=

2(n − 1).

Therefore, E(S 2) = σ2 and V(S 2) =
2σ4

n − 1
can be derived.
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Using S ∗∗2 =
n − 1

n
S 2, we have the following:

E((S ∗∗2 − σ2)2) = E
((n − 1

n
S 2 − σ2

)2)

= E
((n − 1

n
(S 2 − σ2) − σ2

n

)2)

=
(n − 1)2

n2
E((S 2 − σ2)2) +

σ4

n2

=
(n − 1)2

n2
V(S 2) +

σ4

n2
=

(2n − 1)

n2
σ4.
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Therefore, as n −→ ∞, we obtain:

P(|S ∗∗2 − σ2| ≥ ε) ≤ 1

ε2

(2n − 1)

n2
σ4 −→ 0.

Because S ∗∗2 −→ σ2, S ∗∗2 is a consistent estimator of σ2.

S ∗∗2 is biased (see Section 7.3, p.273), but is is consistent.
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7.5 Estimation Methods

• Maximum Likelihood Estimation Method ( )

• Least Squares Estimation Method ( )

• Method of Moment ( )
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7.5.1 Maximum Likelihood Estimator ( )

In Section 7.4, the properties of the estimators X and S 2 are discussed.

It is shown that X is an unbiased, efficient and consistent estimator of µ under

normality assumption and that S 2 is an unbiased and consistent estimator of σ2.

The parameter θ is included in the underlying distribution f (x; θ).
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θ = (µ, σ2) in the case of the normal distribution.

Now, in more general cases, we want to consider how to estimate θ.

The maximum likelihood estimator ( ) gives us one of the solutions.

Let X1, X2, · · ·, Xn be mutually independently and identically distributed random

samples.

Xi has the probability density function f (x; θ).
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The joint density function of X1, X2, · · ·, Xn is given by:

f (x1, x2, · · · , xn; θ) =

n∏

i=1

f (xi; θ),

where θ denotes the unknown parameter.

Given the actually observed data x1, x2, · · ·, xn, the joint density f (x1, x2, · · ·, xn; θ)

is regarded as a function of θ, i.e.,

l(θ) = l(θ; x) = l(θ; x1, x2, · · · , xn) =

n∏

i=1

f (xi; θ).

l(θ) is called the likelihood function ( ).
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Let θ̂n be the θ which maximizes the likelihood function.

Given data x1, x2, · · ·, xn, θ̂n(x1, x2, · · ·, xn) is called the maximum likelihood

estimate (MLE, ).

Replacing x1, x2, · · ·, xn by X1, X2, · · ·, Xn, θ̂n = θ̂n(X1, X2, · · ·, Xn) is called the

maximum likelihood estimator (MLE, ).

That is, solving the following equation:

∂l(θ)

∂θ
= 0,

MLE θ̂n ≡ θ̂n(X1, X2, · · · , Xn) is obtained.
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Example 1.17a: Suppose that X1, X2, · · ·, Xn are mutually independently, identi-

cally and normally distributed with mean µ and variance σ2.

We derive the maximum likelihood estimators of µ and σ2.

The joint density (or the likelihood function) of X1, X2, · · ·, Xn is:

f (x1, x2, · · · , xn; µ, σ2) =

n∏

i=1

f (xi; µ, σ
2)

=

n∏

i=1

(2πσ2)−1/2 exp
(
− 1

2σ2
(xi − µ)2

)
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= (2πσ2)−n/2 exp
(
− 1

2σ2

n∑

i=1

(xi − µ)2
)

= l(µ, σ2).

The logarithm of the likelihood function is given by:

log l(µ, σ2) = −n

2
log(2π) − n

2
log(σ2) − 1

2σ2

n∑

i=1

(xi − µ)2,

which is called the log-likelihood function ( ).
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For maximization of the likelihood function, differentiating the log-likelihood func-

tion log l(µ, σ2) with respect to µ andσ2, the first derivatives should be equal to zero,

i.e.,

∂ log l(µ, σ2)

∂µ
=

1

σ2

n∑

i=1

(xi − µ) = 0,

∂ log l(µ, σ2)

∂σ2
= −n

2

1

σ2
+

1

2σ4

n∑

i=1

(xi − µ)2 = 0.

Let µ̂ and σ̂2 be the solution which satisfies the above two equations.
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Solving the two equations, we obtain the maximum likelihood estimates as follows:

µ̂ =
1

n

n∑

i=1

xi = x,

σ̂2 =
1

n

n∑

i=1

(xi − µ̂)2 =
1

n

n∑

i=1

(xi − x)2 = s∗∗2.

Replacing xi by Xi for i = 1, 2, · · · , n, the maximum likelihood estimators of µ and

σ2 are given by X and S ∗∗2.
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Since E(X) = µ, the maximum likelihood estimator of µ, X, is an unbiased estima-

tor.

We have checked that X is efficient and consistent.

However, because of E(S ∗∗2) =
n − 1

n
σ2
, σ2 as shown in Section 7.3, the maxi-

mum likelihood estimator of σ2, S ∗∗2, is not an unbiased estimator.

We have checked that S ∗∗2 is inefficient but consistent.
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Example 1.17b: Suppose that X1, X2, · · ·, Xn are mutually independently and

identically distributed as Bernoulli random variables with parameter p.

We derive the maximum likelihood estimators of p.

The joint density (or the likelihood function) of X1, X2, · · ·, Xn is:

f (x1, x2, · · · , xn; p) =

n∏

i=1

f (xi; p) =

n∏

i=1

pxi(1 − p)1−xi

= p
∑n

i=1 xi(1 − p)n−
∑n

i=1 xi = l(p).
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The log-likelihood function is given by:

log l(p) = (

n∑

i=1

xi) log(p) + (n −
n∑

i=1

xi) log(1 − p).

For maximization of the likelihood function, differentiating the log-likelihood func-

tion log l(p) with respect to p , the first derivatives should be equal to zero, i.e.,

d log l(p)

dp
=

1

p

n∑

i=1

xi −
1

1 − p
(n −

n∑

i=1

xi)

=
n

p
x − n

1 − p
(1 − x) = 0

Let p̂ be the solution which satisfies the above equation.
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We obtain the maximum likelihood estimates as follows:

p̂ = x =
1

n

n∑

i=1

xi,

Replacing xi by Xi for i = 1, 2, · · · , n, the maximum likelihood estimator of p is

given by p̂ = X =
1

n

n∑

i=1

Xi.
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We check whether p̂ is unbiased.

E(p̂) = E(X) = E(
1

n

n∑

i=1

Xi) =
1

n

n∑

i=1

E(Xi) = p

Remember that E(Xi) =

1∑

xi=0

xi p
xi(1 − p)1−xi = p, where xi takes 0 or 1.

Thus, p̂ is an unbiased estimator of p.

333

Next, we check whether p̂ is efficient.

From Cramer-Rao inequality,

V(p̂) ≥ − 1

nE
(d2 log f (X; p)

dp2

) .

f (X; p) = pX(1 − p)1−X

log f (X; p) = X log(p) + (1 − X) log(1 − p)

d log f (X; p)

dp
=

X

p
− 1 − X

1 − p

d2 log f (X; p)

dp2
= − X

p2
− 1 − X

(1 − p)2
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We need to check whether the equality holds.

V( p̂) = V(
1

n

n∑

i=1

Xi) =
1

n2
V(

n∑

i=1

Xi) =
1

n2

n∑

i=1

V(Xi)

=
1

n2

n∑

i=1

p(1 − p) =
p(1 − p)

n
,

Note as follows:

V(Xi) = E((Xi − p)2) =

1∑

xi=0

(xi − p)2 pxi(1 − p)1−xi = p(1 − p).
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The Cramer-Rao lower bound is:

− 1

nE
(d2 log f (X; p)

dp2

) = −
1

nE
(
− X

p2
− 1 − X

(1 − p)2

)

= − 1

n
(
−E(X)

p2
− 1 − E(X)

(1 − p)2

) =
1

n
(1

p
+

1

1 − p

) =
p(1 − p)

n
,

which is equal to V(p̂).

Thus, p̂ is an efficient estimator of p.
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We check whether p̂ is consistent.

From Chebyshev’s inequality,

P(| p̂ − p| ≥ ε) ≤ E((p̂ − p)2)

ε2
=

p(1 − p)

nε2
.

As n −→ ∞, P(| p̂ − p| ≥ ε) −→ 0.

That is, p̂ converges in probability to p.

Thus, p̂ is a consistent estimator of p.
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Properties of Maximum Likelihood Estimator: For small sample ( ), the

MLE has the following properties.

• MLE is not necessarily unbiased in general, but we often have the case where we

can construct the unbiased estimator by an appropriate transformation.

For instance, the MLE of σ2, S ∗∗2, is not unbiased.

However,
n

n − 1
S ∗∗2 = S 2 is an unbiased estimator of σ2.

• If the efficient estimator exists, the maximum likelihood estimator is efficient.
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Efficient estimator ⇐⇒ The variance of the estimator is equal to the Cramer-Rao

lower bound.

For large sample ( ), as n −→ ∞, the maximum likelihood estimator of θ,

θ̂n, has the following property:

√
n(θ̂n − θ) −→ N(0, σ2(θ)), (23)

where

σ2(θ) =
1

E

((∂ log f (X; θ)

∂θ

)2
) = − 1

E

(
∂2 log f (X; θ)

∂θ2

) .
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(23) indicates that the MLE has consistency, asymptotic unbiasedness (

), asymptotic efficiency ( ) and asymptotic normality ( ).

Asymptotic normality of the MLE comes from the central limit theorem discussed

in Section 6.3.

Even though the underlying distribution is not normal, i.e., even though f (x; θ) is

not normal, the MLE is asymptotically normally distributed.
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Note that the properties of n −→ ∞ are called the asymptotic properties, which

include consistency, asymptotic normality and so on.

By normalizing, as n −→ ∞, we obtain as follows:

√
n(θ̂n − θ)
σ(θ)

=
θ̂n − θ

σ(θ)/
√

n
−→ N(0, 1).

√
n(θ̂n − θ) has the distribution, which does not depend on n.

√
n(θ̂n − θ) = O(1) is written, where O() is a function n.

That is, θ̂n − θ = n−1/2 × O(1) = O(n−1/2).
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As another representation, when n is large, we can approximate the distribution of

θ̂n as follows:

θ̂n ∼ N
(
θ,
σ2(θ)

n

)
.

This implies that when n −→ ∞, θ̂n approaches the lower bound of Cramer-Rao

inequality:
σ2(θ)

n
.

This property is called an asymptotic efficiency.
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Moreover, replacing θ in variance σ2(θ) by θ̂n, when n −→ ∞, we have the follow-

ing property:

θ̂n − θ
σ(θ̂n)/

√
n
−→ N(0, 1). (24)

Practically, when n is large, we approximately use:

θ̂n ∼ N
(
θ,
σ2(θ̂n)

n

)
. (25)
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Proof of (23): By the central limit theorem (11) on p.254,

1
√

n

n∑

i=1

∂ log f (Xi; θ)

∂θ
−→ N

(
0,

1

σ2(θ)

)
, (26)

where σ2(θ) is defined in (14), i.e., V
(∂ log f (Xi; θ)

∂θ

)
=

1

σ2(θ)
.

Note that E
(∂ log f (Xi; θ)

∂θ

)
= 0.

Apply the central limit theorem, taking
∂ log f (Xi; θ)

∂θ
as the ith random variable.
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By the Taylor series expansion around θ̂n = θ,

0 =
1
√

n

n∑

i=1

∂ log f (Xi; θ̂n)

∂θ

=
1
√

n

n∑

i=1

∂ log f (Xi; θ)

∂θ
+

1
√

n

n∑

i=1

∂2 log f (Xi; θ)

∂θ2
(θ̂n − θ)

+
1

2!

1
√

n

n∑

i=1

∂3 log f (Xi; θ)

∂θ3
(θ̂n − θ)2 + · · ·
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The third and above terms in the right-hand side are:

1

2!

1
√

n

n∑

i=1

∂3 log f (Xi; θ)

∂θ3
(θ̂n − θ)2 + · · · −→ 0.

It can be shown that the sum of the above terms is equal to O(n−1/2).

Note that
1

n

n∑

i=1

∂3 log f (Xi; θ)

∂θ3
−→ E

(∂3 log f (Xi; θ)

∂θ3

)
from Chebyshev’s inequality.

In addition, for now, we consider
√

n(θ̂n − θ)2 −→ 0 as n −→ ∞. Actually, we

obtain
√

n(θ̂n − θ)2 = O(n−1/2) from θ̂n − θ = O(n−1/2).
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Therefore,

1
√

n

n∑

i=1

∂ log f (Xi; θ)

∂θ
≈ − 1

√
n

n∑

i=1

∂2 log f (Xi; θ)

∂θ2
(θ̂n − θ)

which implies that the asy. dist. of
1
√

n

n∑

i=1

∂ log f (Xi; θ)

∂θ
is equivalent to that of

− 1
√

n

n∑

i=1

∂2 log f (Xi; θ)

∂θ2
(θ̂n − θ).
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From (26) and the above equations, we obtain:

−1

n

n∑

i=1

∂2 log f (Xi; θ)

∂θ2

√
n(θ̂n − θ) −→ N

(
0,

1

σ2(θ)

)
.

The law of large numbers indicates as follows:

−1

n

n∑

i=1

∂2 log f (Xi; θ)

∂θ2
−→ −E

(∂2 log f (Xi; θ)

∂θ2

)
=

1

σ2(θ)
,

where the last equality comes from (14).
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Thus, we have the following relationship:

−1

n

n∑

i=1

∂2 log f (Xi; θ)

∂θ2

√
n(θ̂n − θ) −→

1

σ2(θ)

√
n(θ̂n − θ)

−→ N
(
0,

1

σ2(θ)

)

Therefore, the asymptotic normality of the maximum likelihood estimator is ob-

tained as follows:
√

n(θ̂n − θ) −→ N(0, σ2(θ)).

Thus, (23) is obtained.
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7.5.2 Least Squares Estimation Method ( )

X1, X2, · · ·, Xn are mutually independently distributed with mean µ.

x1, x2, · · ·, xn are generated from X1, X2, · · ·, Xn, respectively.

Solve the following problem:

min
µ

S (µ), where S (µ) =

n∑

i=1

(xi − µ)2.

Let µ̂ be the least squares estimate of µ.

dS (µ)

dµ
= 0 =⇒ µ̂ =

1

n

n∑

i=1

xi
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The least squares estimator is given by:

µ̂ =
1

n

n∑

i=1

Xi,

which is equivalent to MLE.
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7.5.3 Method of Moment ( )

The distribution of Xi is f (x; θ).

Let µ′
k

be the kth moment.

From the definition of the kth moment,

E(Xk) = µ′k

where µ′
k

depends on θ.

Let µ̂′
k

be the estimate of the kth moment.

E(Xk) ≈ 1

n

n∑

i=1

xk
i = µ̂

′
k
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The estimator of µ′
k

is:

µ̂′k =
1

n

n∑

i=1

Xk
i

Example: θ = (µ, σ2): Because we have two parameters, we use the 1st and 2nd

moments.

µ′
1
= E(X) = µ

µ′
2
= E(X2) = V(X) + (E(X))2 = σ2 + µ2
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Estimates:

µ̂ =
1

n

n∑

i=1

xi = x σ̂2 + µ̂2 =
1

n

n∑

i=1

x2
i

σ̂2 =
1

n

n∑

i=1

x2
i − µ̂2 =

1

n

n∑

i=1

x2
i − x

2
=

1

n

n∑

i=1

(xi − x)2

Estimators:

µ̂ =
1

n

n∑

i=1

Xi = X σ̂2 =
1

n

n∑

i=1

(Xi − X)2
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7.6 Interval Estimation

In Sections 7.1 – 7.5.1, the point estimation is discussed.

It is important to know where the true parameter value of θ is likely to lie.

Suppose that the population distribution is given by f (x; θ).
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Using the random sample X1, X2, · · ·, Xn drawn from the population distribution, we

construct the two statistics, say, θU(X1, X2, · · ·, Xn) and θL(X1, X2, · · ·, Xn), where

P(θL(X1, X2, · · · , Xn) < θ < θU(X1, X2, · · · , Xn)) = 1 − α. (27)

(27) implies that θ lies on the interval
(
θL(X1, X2, · · ·, Xn), θU(X1, X2, · · ·, Xn)

)
with

probability 1 − α.
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Now, we replace the random variables X1, X2, · · ·, Xn by the experimental values x1,

x2, · · ·, xn.

Then, we say that the interval:

(
θL(x1, x2, · · · , xn), θU(x1, x2, · · · , xn)

)

is called the 100 × (1 − α)% confidence interval ( ) of θ.

Thus, estimating the interval is known as the interval estimation ( ), which

is distinguished from the point estimation.

In the interval, θL(x1, x2, · · ·, xn) is known as the lower bound of the confidence

interval, while θU(x1, x2, · · ·, xn) is the upper bound of the confidence interval.
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Given probability α, the θL(X1, X2, · · ·, Xn) and θU(X1, X2, · · ·, Xn) which satisfies

equation (27) are not unique.

For estimation of the unknown parameter θ, it is more optimal to minimize the

width of the confidence interval.

Therefore, we should choose θL and θU which minimizes the width θU(X1, X2, · · ·,

Xn) − θL(X1, X2, · · ·, Xn).
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Interval Estimation of X: Let X1, X2, · · ·, Xn be mutually independently and

identically distributed random variables.

Xi has a distribution with mean µ and variance σ2.

From the central limit theorem,

X − µ
σ/

√
n
−→ N(0, 1).

Replacing σ2 by its estimator S 2 (or S ∗∗2),

X − µ
S/
√

n
−→ N(0, 1).
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Therefore, when n is large enough,

P(z∗ <
X − µ
S/
√

n
< z∗∗) = 1 − α,

where z∗ and z∗∗ (z∗ < z∗∗) are percent points from the standard normal density

function.

Solving the inequality above with respect to µ, the following expression is obtained.

P
(
X − z∗∗

S
√

n
< µ < X − z∗

S
√

n

)
= 1 − α,

where θ̂L and θ̂U correspond to X − z∗∗
S
√

n
and X − z∗

S
√

n
, respectively.
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The length of the confidence interval is given by:

θ̂U − θ̂L =
S
√

n
(z∗∗ − z∗),

which should be minimized subject to:

∫ z∗∗

z∗
f (x) dx = 1 − α,

i.e.,

F(z∗∗) − F(z∗) = 1 − α,

where F(·) denotes the standard normal cumulative distribution function.
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Solving the minimization problem above, we can obtain the conditions that f (z∗) =

f (z∗∗) for z∗ < z∗∗ and that f (x) is symmetric.

Therefore, we have:

−z∗ = z∗∗ = zα/2,

where zα/2 denotes the 100 × α/2 percent point from the standard normal density

function.

Accordingly, replacing the estimators X and S 2 by their estimates x and s2, the

100 × (1 − α)% confidence interval of µ is approximately represented as:

(
x − zα/2

s
√

n
, x + zα/2

s
√

n

)
,
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for large n.

For now, we do not impose any assumptions on the distribution of Xi.

If we assume that Xi is normal,
X − µ
S/
√

n
has a t distribution with n − 1 degrees of

freedom for any n.

Therefore, 100 × (1 − α)% confidence interval of µ is given by:

(
x − tα/2(n − 1)

s
√

n
, x + tα/2(n − 1)

s
√

n

)
,

where tα/2(n− 1) denotes the 100×α/2 percent point of the t distribution with n− 1

degrees of freedom.
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Interval Estimation of θ̂n: Let X1, X2, · · ·, Xn be mutually independently and

identically distributed random variables.

Xi has the probability density function f (xi; θ).

Suppose that θ̂n represents the maximum likelihood estimator of θ.

From (25), we can approximate the 100 × (1 − α)% confidence interval of θ as

follows:
(
θ̂n − zα/2

σ(θ̂n)
√

n
, θ̂n + zα/2

σ(θ̂n)
√

n

)
.

364

8 Testing Hypothesis ( )

8.1 Basic Concepts in Testing Hypothesis

Given the population distribution f (x; θ), we want to judge from the observed values

x1, x2, · · ·, xn whether the hypothesis on the parameter θ, e.g. θ = θ0, is correct or

not.

The hypothesis that we want to test is called the null hypothesis ( ), which

is denoted by H0 : θ = θ0.
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The hypothesis against the null hypothesis, e.g. θ , θ0, is called the alternative

hypothesis ( ), which is denoted by H1 : θ , θ0.
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Type I and Type II Errors ( ): When we test the

null hypothesis H0, as shown in Table 1 we have four cases, i.e.,

(i) we accept H0 when H0 is true,

(ii) we reject H0 when H0 is true,

(iii) we accept H0 when H0 is false, and

(iv) we reject H0 when H0 is false.

(i) and (iv) are correct judgments, while (ii) and (iii) are not correct.

(ii) is called a type I error ( ) and (iii) is called a type II error (

).

367

The probability which a type I error occurs is called the significance level (

), which is denoted by α, and the probability of committing a type II error is

denoted by β.

Probability of (iv) is called the power ( ) or the power function (

), because it is a function of the parameter θ.
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Table 1: Type I and Type II Errors

H0 is true. H0 is false.

Acceptance of H0 Correct judgment Type II Error

(Probability β)

Rejection of H0 Type I Error Correct judgment

(1 − β = Power)

(Probability α

= Significance Level)
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Testing Procedures: The testing procedure is summarized as follows.

1. Construct the null hypothesis (H0) on the parameter.

2. Consider an appropriate statistic, which is called a test statistic (

).

Derive a distribution function of the test statistic when H0 is true.

3. From the observed data, compute the observed value of the test statistic.

4. Compare the distribution and the observed value of the test statistic.

When the observed value of the test statistic is in the tails of the distribution,
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we consider that H0 is not likely to occur and we reject H0.
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The region that H0 is unlikely to occur and accordingly H0 is rejected is called the

rejection region ( ) or the critical region, denoted by R.

Conversely, the region that H0 is likely to occur and accordingly H0 is accepted is

called the acceptance region ( ), denoted by A.

Using the rejection region R and the acceptance region A, the type I and II errors

and the power are formulated as follows.

Suppose that the test statistic is give by T = T (X1, X2, · · · , Xn).

372



The probability of committing a type I error ( ), i.e., the significance

level ( ) α, is given by:

P(T (X1, X2, · · · , Xn) ∈ R|H0 is true) = α,

which is the probability that rejects H0 when H0 is true.

Conventionally, the significance level α = 0.1, 0.05, 0.01 is chosen in practice.
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The probability of committing a type II error ( ), i.e., β, is represented

as:

P(T (X1, X2, · · · , Xn) ∈ A|H0 is not true) = β,

which corresponds to the probability that accepts H0 when H0 is not true.

The power ( ) is defined as 1 − β,

P(T (X1, X2, · · · , Xn) ∈ R|H0 is not true) = 1 − β,

which is the probability that rejects H0 when H0 is not true.
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8.2 Power Function ( )

Let X1, X2, · · ·, Xn be mutually independently, identically and normally distributed

with mean µ and variance σ2.

Assume that σ2 is known.

In Figure 3, we consider:

the null hypothesis H0 : µ = µ0,

the alternative hypothesis H1 : µ = µ1,

where µ1 > µ0 is taken.
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Figure 3: Type I Error (α) and Type II Error (β)
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The dark shadow area (probability α) corresponds to the probability of a type I er-

ror, i.e., the significance level, while the light shadow area (probability β) indicates

the probability of a type II error.

The probability of the right-hand side of f ∗ in the distribution under H1 represents

the power of the test, i.e., 1 − β.
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The distribution of sample mean X is given by:

X ∼ N
(
µ,
σ2

n

)
.

By normalization, we have:

X − µ
σ/

√
n
∼ N(0, 1).

Therefore, under the null hypothesis H0 : µ = µ0, we obtain:

X − µ0

σ/
√

n
∼ N(0, 1),

where µ is replaced by µ0.
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Since the significance level α is the probability which rejects H0 when H0 is true, it

is given by:

α = P
(
X > µ0 + zα

σ
√

n

)
,

where zα denotes 100 × α percent point of N(0, 1).

Therefore, the rejection region is given by: X > µ0 + zα
σ
√

n
.
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Since the power 1−β is the probability which rejects H0 when H1 is true, it is given

by:

1 − β = P
(
X > µ0 + zα

σ
√

n

)
= P

(X − µ1

σ/
√

n
>
µ0 − µ1

σ/
√

n
+ zα

)

= 1 − P
(X − µ1

σ/
√

n
<
µ0 − µ1

σ/
√

n
+ zα

)
= 1 − F

(µ0 − µ1

σ/
√

n
+ zα

)
,

where F(·) represents the standard normal cumulative distribution function, which

is given by:

F(x) =

∫ x

−∞
(2π)−1/2 exp(−1

2
t2) dt.

The power function is a function of µ1, given µ0 and α.
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8.3 Small Sample Test ( )

8.3.1 Testing Hypothesis on Mean

Known σ2: Let X1, X2, · · ·, Xn be mutually independently, identically and nor-

mally distributed with µ and σ2.

Consider testing the null hypothesis H0 : µ = µ0.

When the null hypothesis H0 is true, the distribution of X is:

X − µ0

σ/
√

n
∼ N(0, 1).
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Therefore, the test statistic is given by:
X − µ0

σ/
√

n
.

Depending on the alternative hypothesis, we have the three cases.

1. The alternative hypothesis H1 : µ < µ0 (one-sided test ): We

have: P
(X − µ0

σ/
√

n
< −zα

)
= α. Therefore, when

x − µ0

σ/
√

n
< −zα, we reject the

null hypothesis H0 : µ = µ0 at the significance level α.
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2. The alternative hypothesis H1 : µ > µ0 (one-sided test ): We

have: P
(X − µ0

σ/
√

n
> zα

)
= α. Therefore, when

x − µ0

σ/
√

n
> zα, we reject the null

hypothesis H0 : µ = µ0 at the significance level α.

3. The alternative hypothesis H1 : µ , µ0 (two-sided test ): We

have: P
(∣∣∣∣∣∣

X − µ0

σ/
√

n

∣∣∣∣∣∣ > zα/2
)
= α. Therefore, when

∣∣∣∣∣∣
x − µ0

σ/
√

n

∣∣∣∣∣∣ > zα/2, we reject the

null hypothesis H0 : µ = µ0 at the significance level α.
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Unknown σ2: Let X1, X2, · · ·, Xn be mutually independently, identically and

normally distributed with µ and σ2.

Test the null hypothesis H0 : µ = µ0.

When the null hypothesis H0 is true, the distribution of X is given by:

X − µ0

S/
√

n
∼ t(n − 1).

Therefore, the test statistic is given by:
X − µ0

S/
√

n
.
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8.3.2 Testing Hypothesis on Variance

Testing Hypothesis on Variance: Let X1, X2, · · ·, Xn be mutually independently,

identically and normally distributed with µ and σ2.

Test the null hypothesis H0 : σ2 = σ2
0
.

When the null hypothesis H0 is true, the distribution of S 2 is given by:

(n − 1)S 2

σ2
0

∼ χ2(n − 1)

Testing Equality of Two Variances: Let X1, X2, · · ·, Xn be mutually indepen-

dently, identically and normally distributed with µx and σ2
x.
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Let Y1, Y2, · · ·, Ym be mutually independently, identically and normally distributed

with µy and σ2
y .

Test the null hypothesis H0 : σ2
x = σ

2
y .

(n − 1)S 2
x

σ2
x

∼ χ2(n − 1), where S 2
x =

1

n − 1

n∑

i=1

(Xi − X)2

(m − 1)S 2
y

σ2
y

∼ χ2(m − 1), where S 2
y =

1

m − 1

m∑

i=1

(Yi − Y)2

Both are independent.
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Then, the ratio of two χ2 random variables divided by degrees of freedom is:

(n − 1)S 2
x

σ2
x
/(n − 1)

(m − 1)S 2
y

σ2
y
/(m − 1)

∼ F(n − 1,m − 1)

Therefore, under the null hypothesis H0 : σ2
x = σ

2
y ,

S 2
x

S 2
y

∼ F(n − 1,m − 1)
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8.4 Large Sample Test ( )

• Wald Test ( )

• Likelihood Ratio Test ( )

• Lagrange Multiplier Test ( )

−→ Skipped in this class.
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8.4.1 Wald Test ( )

From (24), under the null hypothesis H0 : θ = θ0 (scalar case), as n −→ ∞, the

maximum likelihood estimator θ̂n is distributed as:

θ̂n − θ0

σ(θ̂n)/
√

n
−→ N(0, 1).

Or, equivalently,
( θ̂n − θ0

σ(θ̂n)/
√

n

)2
−→ χ2(1).
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For H0 : θ = θ0 and H1 : θ , θ0, replacing X1, · · ·, Xn in θ̂n by the observed values

x1, · · ·, xn, the testing procedure is as follows.

When we have:
( θ̂n − θ0

σ(θ̂n)/
√

n

)2
> χ2

α(1), we reject the null hypothesis H0 at the

significance level α.

χ2
α(1) denotes the 100×α% point of the χ2 distribution with one degree of freedom.

This testing procedure is called the Wald test ( ).
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Example 1.18: X1, X2, · · ·, Xn are mutually independently, identically and expo-

nentially distributed.

Consider the following exponential probability density function:

f (x; γ) = γe−γx,

for 0 < x < ∞.

Using the Wald test, we want to test the null hypothesis H0 : γ = γ0 against the

alternative hypothesis H1 : γ , γ0.
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Generally, as n −→ ∞, the distribution of the maximum likelihood estimator of

the parameter γ, γ̂n, is asymptotically represented as:

γ̂n − γ
σ(γ̂n)/

√
n
−→ N(0, 1),

or, equivalently
( γ̂n − γ
σ(γ̂n)/

√
n

)2
−→ χ2(1),

where

σ2(γ) =

(
E

(( d log f (X; γ)

dγ

)2))−1

= −
(
E
( d2 log f (X; γ)

dγ2

))−1

.
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Therefore, under the null hypothesis H0 : γ = γ0, when n is large enough, we have

the following distribution:

( γ̂n − γ0

σ(γ̂n)/
√

n

)2
−→ χ2(1).

As for the null hypothesis H0 : γ = γ0 against the alternative hypothesis H1 : γ ,

γ0, if we have:
( γ̂n − γ0

σ(γ̂n)/
√

n

)2
> χ2

α(1),

we can reject H0 at the significance level α.

We need to derive σ2(γ) and γ̂n for the testing procedure.
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First, σ2(γ) is given by:

σ2(γ) = −
(
E
( d2 log f (X; γ)

dγ2

))−1

= γ2.

Note that the first- and the second-derivatives of log f (X; γ) with respect to γ are

given by:

d log f (X; γ)

dγ
=

1

γ
− X,

d2 log f (X; γ)

dγ2
= − 1

γ2
.

Next, the maximum likelihood estimator of γ, i.e., γ̂n, is obtained as follows.

Since X1, X2 · · ·, Xn are mutually independently and identically distributed, the
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likelihood function l(γ) is given by:

l(γ) =

n∏

i=1

f (xi; γ) =

n∏

i=1

γe−γxi = γne−γ
∑

xi .

Therefore, the log-likelihood function is written as:

log l(γ) = n log(γ) − γ
n∑

i=1

xi.

We obtain the value of γ which maximizes log l(γ).

Solving the following equation:

d log l(γ)

dγ
=

n

γ
−

n∑

i=1

xi = 0,
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the MLE of γ, γ̂n, is represented as:

γ̂n =
n∑n

i=1 Xi

=
1

X
.

Then, we have the following:

γ̂n − γ
σ(γ̂n)/

√
n
=
γ̂n − γ
γ̂n/

√
n
−→ N(0, 1),

where γ̂n is given by 1/X.

Or, equivalently,
( γ̂n − γ
σ(γ̂n)/

√
n

)2
=
( γ̂n − γ
γ̂n/

√
n

)2
−→ χ2(1).
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For H0 : γ = γ0 and H1 : γ , γ0, when we have:

( γ̂n − γ0

γ̂n/
√

n

)2
> χ2

α(1),

we reject H0 at the significance level α.
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8.4.2 Likelihood Ratio Test ( )

Suppose that the population distribution is given by f (x; θ), where θ = (θ1, θ2).

Consider testing the null hypothesis θ1 = θ
∗
1

against the alternative hypothesis H1 :

θ1 , θ
∗
1
, using the observed values (x1, · · ·, xn) corresponding to the random sample

(X1, · · ·, Xn).

Let θ1 and θ2 be 1 × k1 and 1 × k2 vectors, respectively.

θ = (θ1, θ2) denotes a 1 × (k1 + k2) vector.
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Since we take the null hypothesis as H0 : θ1 = θ∗
1
, the number of restrictions is

given by k1, which is equal to the dimension of θ1.

The likelihood function is written as:

l(θ1, θ2) =

n∏

i=1

f (xi; θ1, θ2).

Let (̃θ1, θ̃2) be the maximum likelihood estimator of (θ1, θ2).
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That is, (̃θ1, θ̃2) indicates the solution of (θ1, θ2), obtained from the following equa-

tions:

∂l(θ1, θ2)

∂θ1

= 0,
∂l(θ1, θ2)

∂θ2

= 0.

The solution (̃θ1, θ̃2) is called the unconstrained maximum likelihood estimator

( ), because the null hypothesis H0 : θ1 = θ
∗
1

is not taken into

account.
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Let θ̂2 be the maximum likelihood estimator of θ2 under the null hypothesis H0 :

θ1 = θ
∗
1
.

That is, θ̂2 is a solution of the following equation:

∂l(θ∗
1
, θ2)

∂θ2

= 0.

The solution θ̂2 is called the constrained maximum likelihood estimator (

) of θ2, because the likelihood function is maximized with respect to

θ2 subject to the constraint θ1 = θ
∗
1
.
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Define λ as follows:

λ =
l(θ∗

1
, θ̂2)

l(̃θ1, θ̃2)
,

which is called the likelihood ratio ( ).

As n goes to infinity, it is known that we have:

−2 log(λ) −→ χ2(k1),

where k1 denotes the number of the constraints.
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Let χ2
α(k1) be the 100 × α percent point from the chi-square distribution with k1

degrees of freedom.

When −2 log(λ) > χ2
α(k1), we reject the null hypothesis H0 : θ1 = θ

∗
1

at the signifi-

cance level α.

This test is called the likelihood ratio test ( )

If −2 log(λ) is close to zero, we accept the null hypothesis.

When (θ∗
1
, θ̂2) is close to (̃θ1, θ̃2), −2 log(λ) approaches zero.
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Example 1.19: X1, X2, · · ·, Xn are mutually independently, identically and expo-

nentially distributed.

Consider the exponential probability density function:

f (x; γ) = γe−γx,

for 0 < x < ∞.

Using the likelihood ratio test, we test the null hypothesis H0 : γ = γ0 against the

alternative hypothesis H1 : γ , γ0.
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The likelihood ratio is given by:

λ =
l(γ0)

l(γ̂n)
,

where γ̂n is derived in Example 1.18, i.e.,

γ̂n =
n∑n

i=1 Xi

=
1

X
.

Since the number of the constraint is equal to one, as the sample size n goes to

infinity we have the following asymptotic distribution:

−2 log λ −→ χ2(1).
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The likelihood ratio is computed as follows:

λ =
l(γ0)

l(γ̂n)
=
γn

0
e−γ0

∑
Xi

γ̂n
ne−n

.

If −2 log λ > χ2
α(1), we reject the null hypothesis H0 : γ = γ0 at the significance

level α.
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Example 1.20: Suppose that X1, X2, · · ·, Xn are mutually independently, identi-

cally and normally distributed with mean µ and variance σ2.

The normal probability density function with mean µ and variance σ2 is given by:

f (x; µ, σ2) =
1

√
2πσ2

e
− 1

2σ2 (x−µ)2

.

By the likelihood ratio test, we test the null hypothesis H0 : µ = µ0 against the

alternative hypothesis H1 : µ , µ0.
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The likelihood ratio is given by:

λ =
l(µ0, σ̃

2)

l(µ̂, σ̂2)
,

where σ̃2 is the constrained maximum likelihood estimator with the constraint µ =

µ0, while (µ̂, σ̂2) denotes the unconstrained maximum likelihood estimator.

In this case, since the number of the constraint is one, the asymptotic distribution is

as follows:

−2 log λ −→ χ2(1).
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We derive l(µ0, σ̃
2) and l(µ̂, σ̂2). l(µ, σ2) is written as:

l(µ, σ2) = f (x1, x2, · · · , xn; µ, σ2) =

n∏

i=1

f (xi; µ, σ
2)

=

n∏

i=1

1
√

2πσ2
exp
(
− 1

2σ2
(xi − µ)2

)

= (2πσ2)−n/2 exp
(
− 1

2σ2

n∑

i=1

(xi − µ)2
)
.

The log-likelihood function log l(µ, σ2) is represented as:

log l(µ, σ2) = −n

2
log(2π) − n

2
log(σ2) − 1

2σ2

n∑

i=1

(xi − µ)2.
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For the numerator of the likelihood ratio, under the constraint µ = µ0, maximize

log l(µ0, σ
2) with respect to σ2.

Since we obtain the first-derivative:

∂ log l(µ0, σ
2)

∂σ2
= −n

2

1

σ2
+

1

2σ4

n∑

i=1

(xi − µ0)2 = 0,

the constrained maximum likelihood estimate σ̃2 is:

σ̃2 =
1

n

n∑

i=1

(xi − µ0)2.
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Therefore, replacing σ2 by σ̃2, l(µ0, σ̃
2) is written as:

l(µ0, σ̃
2) = (2πσ̃2)−n/2 exp

(
− 1

2σ̃2

n∑

i=1

(xi − µ0)2
)

= (2πσ̃2)−n/2 exp
(
−n

2

)
.
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For the denominator of the likelihood ratio, because the unconstrained maximum

likelihood estimates are obtained as:

µ̂ =
1

n

n∑

i=1

xi, σ̂2 =
1

n

n∑

i=1

(xi − µ̂)2,

l(µ̂, σ̂2) is written as:

l(µ̂, σ̂2) = (2πσ̂2)−n/2 exp
(
− 1

2σ̂2

n∑

i=1

(xi − µ̂)2
)

= (2πσ̂2)−n/2 exp
(
−n

2

)
.
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Thus, the likelihood ratio is given by:

λ =
l(µ0, σ̃

2)

l(µ̂, σ̂2)
=

(2πσ̃2)−n/2 exp
(
−n

2

)

(2πσ̂2)−n/2 exp
(
−n

2

) =
(σ̃2

σ̂2

)−n/2
.

Asymptotically, we have:

−2 log λ = n(log σ̃2 − log σ̂2) −→ χ2(1).

When −2 log λ > χ2
α(1), we reject the null hypothesis H0 : µ = µ0 at the significance

level α.
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Exam

July 31, 2012

60–70% from 16 exercises (in my Web) and two homeworks
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