Homework (Due: June 12, 2012)

1 When $X \sim \chi^{2}(n)$, obtain $\mathrm{E}(X)$ and $\mathrm{V}(X)$.

Note that the $\chi^{2}(n)$ distribution is:

$$
f(x)=\frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2}-1} \exp \left(-\frac{x}{2}\right), \quad x>0 .
$$

2 Suppose that $X \sim N\left(\mu, \sigma^{2}\right)$. Define $Y=e^{X}$. Then, obtain the distribution of Y, which is called the log-normal distribution. Moreover, what are $\mathrm{E}(Y)$ and $\mathrm{V}(Y)$?

3 Suppose that $X \sim \chi^{2}(n)$ and $Y \sim \chi^{2}(m)$. Let X be independent of Y. Define $U=\frac{X / n}{Y / m}$. Then, prove that $U \sim F(n, m)$.

Note that the $F(m, n)$ distribution is:

$$
f(x)=\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)}\left(\frac{m}{n}\right)^{\frac{m}{2}} x^{\frac{m}{2}-1}\left(1+\frac{m}{n} x\right)^{-\frac{m+n}{2}}, \quad x>0 .
$$

$4 X_{1}, X_{2}, \cdots, X_{n}$ are assumed to be mutually independently, identically and normally distributed with mean μ and variance σ^{2}.
(1) Prove that $\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2} \sim \chi^{2}(n)$.
(2) Prove that $\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\sigma}\right)^{2}$ is independent of $\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2}$.
(3) What is the distribution of $\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right)^{2}$?
(4) What is the distribution of $\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\sigma}\right)^{2}$?

