Econometrics II
 （Tue．，8：50－10：20）

TA Session（by Mr．Kinoshita）：
Thu．，14：40－16：10
Room \＃ 605 （法経大学院総合研究棟）

1

1 Regression Analysis（回帰分析）

1．1 Setup of the Model

When $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$ are available，suppose that there is a linear rela－ tionship between y and x ，i．e．，

$$
\begin{equation*}
y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i} \tag{1}
\end{equation*}
$$

for $i=1,2, \cdots, n . \quad x_{i}$ and y_{i} denote the i th observations．
\longrightarrow Single（or simple）regression model（単回帰モデル）

3

Econometrics（Undergraduate Course）

Wed．，10：30－12：00
Fri．，8：50－10：20
－If you have not taken Econometrics in undergraduate level，attend the class．
－Textbook：『計量経済学』（山本拓著，新世社）
－The prerequisite of this class is to have knowledge of Econometrics I（last semis－ tar）and Econometrics（undergraduate level）．

2
y_{i} is called the dependent variable（従属変数）or the explained variable（被説明変数），while x_{i} is known as the independent variable（独立変数）or the explanatory （or explaining）variable（説明変数）．
$\beta_{1}=$ Intercept $($ 切片 $) \quad \beta_{2}=$ Slope （傾き）
β_{1} and β_{2} are unknown parameters（パラメータ，母数）to be estimated．
β_{1} and β_{2} are called the regression coefficients（回帰係数）．
4

Taking the expectation on both sides of（1），the expectation of y_{i} is represented as：

$$
\begin{align*}
\mathrm{E}\left(y_{i}\right) & =\mathrm{E}\left(\beta_{1}+\beta_{2} x_{i}+u_{i}\right)=\beta_{1}+\beta_{2} x_{i}+\mathrm{E}\left(u_{i}\right) \\
& =\beta_{1}+\beta_{2} x_{i} \tag{2}
\end{align*}
$$

for $i=1,2, \cdots, n$ ．

Using $\mathrm{E}\left(y_{i}\right)$ we can rewrite（1）as $y_{i}=\mathrm{E}\left(y_{i}\right)+u_{i}$ ．
（2）represents the true regression line．

Let $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ be estimates of β_{1} and β_{2} ．

Replacing β_{1} and β_{2} by $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ ，（1）turns out to be：

$$
\begin{equation*}
y_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} x_{i}+e_{i} \tag{3}
\end{equation*}
$$ for $i=1,2, \cdots, n$ ，where e_{i} is called the residual（残差）．

The residual e_{i} is taken as the experimental value（or realization）of u_{i} ．

We define \hat{y}_{i} as follows：

$$
\begin{equation*}
\hat{y}_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} x_{i} \tag{4}
\end{equation*}
$$

for $i=1,2, \cdots, n$ ，which is interpreted as the predicted value（予測値）of y_{i} ．
（4）indicates the estimated regression line，which is different from（2）．

Moreover，using \hat{y}_{i} we can rewrite（3）as $y_{i}=\hat{y}_{i}+e_{i}$ ．
（2）and（4）are displayed in Figure 1.

8

Consider the case of $n=6$ for simplicity．
\times indicates the observed data series．

The true regression line（2）is represented by the solid line，while the estimated regression line（4）is drawn with the dotted line．

Based on the observed data，β_{1} and β_{2} are estimated as：$\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ ．

In the next section，we consider how to obtain the estimates of β_{1} and β_{2} ，i．e．，$\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ ．

10

It might be plausible to choose the $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ which minimize the sum of squared residuals，i．e．，$S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ ．

This method is called the ordinary least squares estimation（最小二乗法，OLS）． To minimize $S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ with respect to $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ ，we set the partial derivatives equal to zero：

$$
\begin{aligned}
& \frac{\partial S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\partial \hat{\beta}_{1}}=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=0 \\
& \frac{\partial S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\partial \hat{\beta}_{2}}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=0
\end{aligned}
$$

which yields the following two equations：

$$
\begin{align*}
& \bar{y}=\hat{\beta}_{1}+\hat{\beta}_{2} \bar{x} \tag{5}\\
& \sum_{i=1}^{n} x_{i} y_{i}=n \bar{x} \hat{\beta}_{1}+\hat{\beta}_{2} \sum_{i=1}^{n} x_{i}^{2} \tag{6}
\end{align*}
$$

where $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ and $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ ．
Multiplying（5）by $n \bar{x}$ and subtracting（6），we can derive $\hat{\beta}_{2}$ as follows：

$$
\begin{equation*}
\hat{\beta}_{2}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{7}
\end{equation*}
$$

1．3 Properties of Least Squares Estimator

Equation（7）is rewritten as：

$$
\begin{align*}
\hat{\beta}_{2} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}-\frac{\bar{y} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\sum_{i=1}^{n} \frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} Y_{i}=\sum_{i=1}^{n} \omega_{i} y_{i} \tag{9}
\end{align*}
$$

In the third equality，$\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$ is utilized because of $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ ． In the fourth equality，ω_{i} is defined as：$\omega_{i}=\frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$ ． ω_{i} is nonstochastic because x_{i} is assumed to be nonstochastic．

From（5），$\hat{\beta}_{1}$ is directly obtained as follows：

$$
\begin{equation*}
\hat{\beta}_{1}=\bar{y}-\hat{\beta}_{2} \bar{x} \tag{8}
\end{equation*}
$$

When the observed values are taken for y_{i} and x_{i} for $i=1,2, \cdots, n$ ，we say that $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are called the ordinary least squares estimates（or simply the least squares estimates，最小二乗推定値）of β_{1} and β_{2} ．

When y_{i} for $i=1,2, \cdots, n$ are regarded as the random sample，we say that $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are called the ordinary least squares estimators（or the least squares estimators，最小二乗推定量）of β_{1} and β_{2} ．

14
ω_{i} has the following properties：

$$
\begin{gather*}
\sum_{i=1}^{n} \omega_{i}=\sum_{i=1}^{n} \frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=0 \tag{10}\\
\sum_{i=1}^{n} \omega_{i} x_{i}=\sum_{i=1}^{n} \omega_{i}\left(x_{i}-\bar{x}\right)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=1, \tag{11}\\
\sum_{i=1}^{n} \omega_{i}^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}=\frac{1}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} . \tag{12}
\end{gather*}
$$

The first equality of（11）comes from（10）．

16

Mean and Variance of $\hat{\boldsymbol{\beta}}_{2}: \quad u_{1}, u_{2}, \cdots, u_{n}$ are assumed to be mutually indepen－ dently and identically distributed with mean zero and variance σ^{2} ，but they are not necessarily normal．
Remember that we do not need normality assumption to obtain mean and variance but the normality assumption is required to test a hypothesis．
From（13），the expectation of $\hat{\beta}_{2}$ is derived as follows：

$$
\begin{align*}
\mathrm{E}\left(\hat{\beta}_{2}\right) & =\mathrm{E}\left(\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\beta_{2}+\mathrm{E}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right) \\
& =\beta_{2}+\sum_{i=1}^{n} \omega_{i} \mathrm{E}\left(u_{i}\right)=\beta_{2} \tag{14}
\end{align*}
$$

It is shown from（14）that the ordinary least squares estimator $\hat{\beta}_{2}$ is an unbiased estimator of β_{2} ．
From（13），the variance of $\hat{\beta}_{2}$ is computed as：

$$
\begin{align*}
\mathrm{V}\left(\hat{\beta}_{2}\right) & =\mathrm{V}\left(\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\mathrm{V}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\sum_{i=1}^{n} \mathrm{~V}\left(\omega_{i} u_{i}\right)=\sum_{i=1}^{n} \omega_{i}^{2} \mathrm{~V}\left(u_{i}\right) \\
& =\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{15}
\end{align*}
$$

The third equality holds because $u_{1}, u_{2}, \cdots, u_{n}$ are mutually independent．
The last equality comes from（12）．
Thus， $\mathrm{E}\left(\hat{\beta}_{2}\right)$ and $\mathrm{V}\left(\hat{\beta}_{2}\right)$ are given by（14）and（15）．

Furthermore，here we show that $\hat{\beta}_{2}$ has minimum variance within a class of the linear unbiased estimators．

Consider the alternative linear unbiased estimator $\widetilde{\beta}_{2}$ as follows：

$$
\widetilde{\beta}_{2}=\sum_{i=1}^{n} c_{i} y_{i}=\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) y_{i}
$$

where $c_{i}=\omega_{i}+d_{i}$ is defined and d_{i} is nonstochastic．

Gauss－Markov Theorem（ガウス・マルコフ定理）：It has been discussed above that $\hat{\beta}_{2}$ is represented as（9），which implies that $\hat{\beta}_{2}$ is a linear estimator，i．e．，linear in y_{i} ．

In addition，（14）indicates that $\hat{\beta}_{2}$ is an unbiased estimator．
Therefore，summarizing these two facts，it is shown that $\hat{\beta}_{2}$ is a linear unbiased estimator（線形不偏推定量）。

Then，$\widetilde{\beta}_{2}$ is transformed into：

$$
\begin{aligned}
\widetilde{\beta}_{2} & =\sum_{i=1}^{n} c_{i} y_{i}=\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right)\left(\beta_{1}+\beta_{2} x_{i}+u_{i}\right) \\
& =\beta_{1} \sum_{i=1}^{n} \omega_{i}+\beta_{2} \sum_{i=1}^{n} \omega_{i} x_{i}+\sum_{i=1}^{n} \omega_{i} u_{i}+\beta_{1} \sum_{i=1}^{n} d_{i}+\beta_{2} \sum_{i=1}^{n} d_{i} x_{i}+\sum_{i=1}^{n} d_{i} u_{i} \\
& =\beta_{2}+\beta_{1} \sum_{i=1}^{n} d_{i}+\beta_{2} \sum_{i=1}^{n} d_{i} x_{i}+\sum_{i=1}^{n} \omega_{i} u_{i}+\sum_{i=1}^{n} d_{i} u_{i}
\end{aligned}
$$

Equations（10）and（11）are used in the forth equality．

Taking the expectation on both sides of the above equation，we obtain：

$$
\begin{aligned}
\mathrm{E}\left(\widetilde{\beta}_{2}\right) & =\beta_{2}+\beta_{1} \sum_{i=1}^{n} d_{i}+\beta_{2} \sum_{i=1}^{n} d_{i} x_{i}+\sum_{i=1}^{n} \omega_{i} \mathrm{E}\left(u_{i}\right)+\sum_{i=1}^{n} d_{i} \mathrm{E}\left(u_{i}\right) \\
& =\beta_{2}+\beta_{1} \sum_{i=1}^{n} d_{i}+\beta_{2} \sum_{i=1}^{n} d_{i} x_{i}
\end{aligned}
$$

Note that d_{i} is not a random variable and that $\mathrm{E}\left(u_{i}\right)=0$ ．
Since $\widetilde{\beta}_{2}$ is assumed to be unbiased，we need the following conditions：

$$
\sum_{i=1}^{n} d_{i}=0, \quad \sum_{i=1}^{n} d_{i} x_{i}=0
$$

