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Econometrics (Undergraduate Course)

Wed., 10:30-12:00

Fri., 8:50-10:20

• If you have not taken Econometrics in undergraduate level, attend the class.

• Textbook: ( )

• The prerequisite of this class is to have knowledge of Econometrics I (last semis-

tar) and Econometrics (undergraduate level).
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1 Regression Analysis ( )

1.1 Setup of the Model

When (x1, y1), (x2, y2), · · ·, (xn, yn) are available, suppose that there is a linear rela-

tionship between y and x, i.e.,

yi = β1 + β2xi + ui, (1)

for i = 1, 2, · · · , n. xi and yi denote the ith observations.

−→ Single (or simple) regression model ( )
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yi is called the dependent variable ( ) or the explained variable (

), while xi is known as the independent variable ( ) or the explanatory

(or explaining) variable ( ).

β1 = Intercept ( ) β2 = Slope ( )

β1 and β2 are unknown parameters ( ) to be estimated.

β1 and β2 are called the regression coefficients ( ).
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ui is the unobserved error term ( ) assumed to be a random variable with

mean zero and variance σ2.

σ2 is also a parameter to be estimated.

xi is assumed to be nonstochastic ( ), but yi is stochastic ( ) because

yi depends on the error ui.

The error terms u1, u2, · · ·, un are assumed to be mutually independently and iden-

tically distributed, which is called iid.

It is assumed that ui has a distribution with mean zero, i.e., E(ui) = 0 is assumed.
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Taking the expectation on both sides of (1), the expectation of yi is represented as:

E(yi) = E(β1 + β2xi + ui) = β1 + β2xi + E(ui)

= β1 + β2xi, (2)

for i = 1, 2, · · · , n.

Using E(yi) we can rewrite (1) as yi = E(yi) + ui.

(2) represents the true regression line.
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Let β̂1 and β̂2 be estimates of β1 and β2.

Replacing β1 and β2 by β̂1 and β̂2, (1) turns out to be:

yi = β̂1 + β̂2xi + ei, (3)

for i = 1, 2, · · · , n, where ei is called the residual ( ).

The residual ei is taken as the experimental value (or realization) of ui.
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We define ŷi as follows:

ŷi = β̂1 + β̂2xi, (4)

for i = 1, 2, · · · , n, which is interpreted as the predicted value ( ) of yi.

(4) indicates the estimated regression line, which is different from (2).

Moreover, using ŷi we can rewrite (3) as yi = ŷi + ei.

(2) and (4) are displayed in Figure 1.
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Figure 1. True and Estimated Regression Lines ( )
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Consider the case of n = 6 for simplicity.

× indicates the observed data series.

The true regression line (2) is represented by the solid line, while the estimated

regression line (4) is drawn with the dotted line.

Based on the observed data, β1 and β2 are estimated as: β̂1 and β̂2.

In the next section, we consider how to obtain the estimates of β1 and β2, i.e., β̂1

and β̂2.
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1.2 Ordinary Least Squares Estimation

Suppose that (x1, y1), (x2, y2), · · ·, (xn, yn) are available.

For the regression model (1), we consider estimating β1 and β2.

Replacing β1 and β2 by their estimates β̂1 and β̂2, remember that the residual ei is

given by:

ei = yi − ŷi = yi − β̂1 − β̂2xi.

The sum of squared residuals is defined as follows:

S (β̂1, β̂2) =

n∑

i=1

e2
i =

n∑

i=1

(yi − β̂1 − β̂2xi)
2.
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It might be plausible to choose the β̂1 and β̂2 which minimize the sum of squared

residuals, i.e., S (β̂1, β̂2).

This method is called the ordinary least squares estimation ( OLS).

To minimize S (β̂1, β̂2) with respect to β̂1 and β̂2, we set the partial derivatives equal

to zero:

∂S (β̂1, β̂2)

∂β̂1

= −2

n∑

i=1

(yi − β̂1 − β̂2xi) = 0,

∂S (β̂1, β̂2)

∂β̂2

= −2

n∑

i=1

xi(yi − β̂1 − β̂2xi) = 0,
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which yields the following two equations:

y = β̂1 + β̂2x, (5)
n∑

i=1

xiyi = nxβ̂1 + β̂2

n∑

i=1

x2
i , (6)

where y =
1

n

n∑

i=1

yi and x =
1

n

n∑

i=1

xi.

Multiplying (5) by nx and subtracting (6), we can derive β̂2 as follows:

β̂2 =

∑n
i=1 xiyi − nxy

∑n
i=1 x2

i
− nx

2
=

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
. (7)
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From (5), β̂1 is directly obtained as follows:

β̂1 = y − β̂2x. (8)

When the observed values are taken for yi and xi for i = 1, 2, · · · , n, we say that β̂1

and β̂2 are called the ordinary least squares estimates (or simply the least squares

estimates, ) of β1 and β2.

When yi for i = 1, 2, · · · , n are regarded as the random sample, we say that β̂1 and β̂2

are called the ordinary least squares estimators (or the least squares estimators,

) of β1 and β2.
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1.3 Properties of Least Squares Estimator

Equation (7) is rewritten as:

β̂2 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
=

∑n
i=1(xi − x)yi∑n
i=1(xi − x)2

−

y
∑n

i=1(xi − x)∑n
i=1(xi − x)2

=

n∑

i=1

xi − x∑n
i=1(xi − x)2

Yi =

n∑

i=1

ωiyi. (9)

In the third equality,

n∑

i=1

(xi − x) = 0 is utilized because of x =
1

n

n∑

i=1

xi.

In the fourth equality, ωi is defined as: ωi =
xi − x∑n

i=1(xi − x)2
.

ωi is nonstochastic because xi is assumed to be nonstochastic.
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ωi has the following properties:

n∑

i=1

ωi =

n∑

i=1

xi − x∑n
i=1(xi − x)2

=

∑n
i=1(xi − x)∑n

i=1(xi − x)2
= 0, (10)

n∑

i=1

ωixi =

n∑

i=1

ωi(xi − x) =

∑n
i=1(xi − x)2

∑n
i=1(xi − x)2

= 1, (11)

n∑

i=1

ω2
i =

n∑

i=1

(
xi − x∑n

i=1(xi − x)2

)2

=

∑n
i=1(xi − x)2

(∑n
i=1(xi − x)2

)2
=

1∑n
i=1(xi − x)2

. (12)

The first equality of (11) comes from (10).
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From now on, we focus only on β̂2, because usually β2 is more important than β1 in

the regression model (1).

In order to obtain the properties of the least squares estimator β̂2, we rewrite (9) as:

β̂2 =

n∑

i=1

ωiyi =

n∑

i=1

ωi(β1 + β2xi + ui)

= β1

n∑

i=1

ωi + β2

n∑

i=1

ωixi +

n∑

i=1

ωiui = β2 +

n∑

i=1

ωiui. (13)

In the fourth equality of (13), (10) and (11) are utilized.
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Mean and Variance of β̂2: u1, u2, · · ·, un are assumed to be mutually indepen-

dently and identically distributed with mean zero and variance σ2, but they are not

necessarily normal.

Remember that we do not need normality assumption to obtain mean and variance

but the normality assumption is required to test a hypothesis.

From (13), the expectation of β̂2 is derived as follows:

E(β̂2) = E(β2 +

n∑

i=1

ωiui) = β2 + E(

n∑

i=1

ωiui)

= β2 +

n∑

i=1

ωiE(ui) = β2. (14)
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It is shown from (14) that the ordinary least squares estimator β̂2 is an unbiased

estimator of β2.

From (13), the variance of β̂2 is computed as:

V(β̂2) = V(β2 +

n∑

i=1

ωiui) = V(

n∑

i=1

ωiui) =

n∑

i=1

V(ωiui) =

n∑

i=1

ω2
i V(ui)

= σ2

n∑

i=1

ω2
i =

σ2

∑n
i=1(xi − x)2

. (15)

The third equality holds because u1, u2, · · ·, un are mutually independent.

The last equality comes from (12).

Thus, E(β̂2) and V(β̂2) are given by (14) and (15).
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Gauss-Markov Theorem ( ): It has been discussed above

that β̂2 is represented as (9), which implies that β̂2 is a linear estimator, i.e., linear

in yi.

In addition, (14) indicates that β̂2 is an unbiased estimator.

Therefore, summarizing these two facts, it is shown that β̂2 is a linear unbiased

estimator ( ).
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Furthermore, here we show that β̂2 has minimum variance within a class of the

linear unbiased estimators.

Consider the alternative linear unbiased estimator β̃2 as follows:

β̃2 =

n∑

i=1

ciyi =

n∑

i=1

(ωi + di)yi,

where ci = ωi + di is defined and di is nonstochastic.
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Then, β̃2 is transformed into:

β̃2 =

n∑

i=1

ciyi =

n∑

i=1

(ωi + di)(β1 + β2xi + ui)

= β1

n∑

i=1

ωi + β2

n∑

i=1

ωixi +

n∑

i=1

ωiui + β1

n∑

i=1

di + β2

n∑

i=1

dixi +

n∑

i=1

diui

= β2 + β1

n∑

i=1

di + β2

n∑

i=1

dixi +

n∑

i=1

ωiui +

n∑

i=1

diui.

Equations (10) and (11) are used in the forth equality.
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Taking the expectation on both sides of the above equation, we obtain:

E(̃β2) = β2 + β1

n∑

i=1

di + β2

n∑

i=1

dixi +

n∑

i=1

ωiE(ui) +

n∑

i=1

diE(ui)

= β2 + β1

n∑

i=1

di + β2

n∑

i=1

dixi.

Note that di is not a random variable and that E(ui) = 0.

Since β̃2 is assumed to be unbiased, we need the following conditions:

n∑

i=1

di = 0,

n∑

i=1

dixi = 0.
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