
When these conditions hold, we can rewrite β̃2 as:

β̃2 = β2 +

n∑

i=1

(ωi + di)ui.

The variance of β̃2 is derived as:

V(β̃2) = V
(
β2 +

n∑

i=1

(ωi + di)ui

)
= V

( n∑

i=1

(ωi + di)ui

)
=

n∑

i=1

V
(
(ωi + di)ui

)

=

n∑

i=1

(ωi + di)
2V(ui) = σ

2(

n∑

i=1

ω2
i + 2

n∑

i=1

ωidi +

n∑

i=1

d2
i )

= σ2(

n∑

i=1

ω2
i +

n∑

i=1

d2
i ).
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From unbiasedness of β̃2, using
∑n

i=1 di = 0 and
∑n

i=1 dixi = 0, we obtain:

n∑

i=1

ωidi =

∑n
i=1(xi − x)di∑n
i=1(xi − x)2

=

∑n
i=1 xidi − X

∑n
i=1 di∑n

i=1(xi − x)2
= 0,

which is utilized to obtain the variance of β̃2 in the third line of the above equation.

From (15), the variance of β̂2 is given by: V(β̂2) = σ2
∑n

i=1 ω
2
i .

Therefore, we have:

V(β̃2) ≥ V(β̂2),

because of
∑n

i=1 d2
i
≥ 0.
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When
∑n

i=1 d2
i
= 0, i.e., when d1 = d2 = · · · = dn = 0, we have the equality: V(β̃2)

= V(β̂2).

Thus, in the case of d1 = d2 = · · · = dn = 0, β̂2 is equivalent to β̃2.

As shown above, the least squares estimator β̂2 gives us the minimum variance

linear unbiased estimator ( ), or equivalently the best

linear unbiased estimator ( BLUE), which is called the

Gauss-Markov theorem ( ).
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Asymptotic Properties of β̂2: We assume that as n goes to infinity we have the

following:

1

n

n∑

i=1

(xi − x)2 −→ m < ∞,

where m is a constant value. From (12), we obtain:

n

n∑

i=1

ω2
i =

1

(1/n)
∑n

i=1(xi − x)
−→

1

m
.

Note that f (xn) −→ f (m) when xn −→ m, called Slutsky’s theorem (

), where m is a constant value and f (·) is a function.
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We show both consistency of β̂2 and asymptotic normality of
√

n(β̂2 − β2).

First, we prove that β̂2 is a consistent estimator of β2.

Chebyshev’s inequality is given by:

P(|X − µ| > ε) ≤ σ
2

ε2
,

where µ = E(X) and σ2
= V(X).

Replace X, E(X) and V(X) by:

β̂2, E(β̂2) = β2, and V(β̂2) = σ2

n∑

i=1

ω2
i =

σ2

∑n
i=1(xi − x)

,

respectively.
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Then, when n −→ ∞, we obtain the following result:

P(|β̂2 − β2| > ε) ≤
σ2

∑n
i=1 ω

2
i

ε2
=
σ2n

∑n
i=1 ω

2
i

nε2
−→ 0,

where
∑n

i=1 ω
2
i
−→ 0 because n

∑n
i=1 ω

2
i
−→ 1

m
from the assumption.

Thus, we obtain the result that β̂2 −→ β2 as n −→ ∞.

Therefore, we can conclude that β̂2 is a consistent estimator of β2.
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Next, we want to show that
√

n(β̂2 − β2) is asymptotically normal.

Note that β̂2 = β2 +
∑n

i=1 ωiui as in (13).

From the central limit theorem, asymptotic normality is shown as follows:

∑n
i=1 ωiui − E(

∑n
i=1 ωiui)√

V(
∑n

i=1 ωiui)
=

∑n
i=1 ωiui

σ

√∑n
i=1 ω

2
i

=
β̂2 − β2

σ/
√∑n

i=1(xi − x)2
−→ N(0, 1),

where E(
∑n

i=1 ωiui) = 0, V(
∑n

i=1 ωiui) = σ
2
∑n

i=1 ω
2
i , and

∑n
i=1 ωiui = β̂2 − β2 are

substituted in the first and second equalities.
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Moreover, we can rewrite as follows:

β̂2 − β2

σ/
√∑n

i=1(xi − x)2
=

√
n(β̂2 − β2)

σ/
√

(1/n)
∑n

i=1(xi − x)2
−→

√
n(β̂2 − β2)

σ/
√

m
−→ N(0, 1),

or equivalently,

√
n(β̂2 − β2) −→ N(0,

σ2

m
).

Thus, the asymptotic normality of
√

n(β̂2 − β2) is shown.
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Finally, replacing σ2 by its consistent estimator s2, it is known as follows:

β̂2 − β2

s/
√∑n

i=1(xi − x)2
−→ N(0, 1), (16)

where s2 is defined as:

s2
=

1

n − 2

n∑

i=1

e2
i =

1

n − 2

n∑

i=1

(yi − β̂1 − β̂2xi)
2, (17)

which is a consistent and unbiased estimator of σ2. −→ Proved later.

Thus, using (16), in large sample we can construct the confidence interval and test

the hypothesis.
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Exact Distribution of β̂2: We have shown asymptotic normality of
√

n(β̂2 − β2),

which is one of the large sample properties.

Now, we discuss the small sample properties of β̂2.

In order to obtain the distribution of β̂2 in small sample, the distribution of the error

term has to be assumed.

Therefore, the extra assumption is that ui ∼ N(0, σ2).

Writing (13), again, β̂2 is represented as:

β̂2 = β2 +

n∑

i=1

ωiui.

First, we obtain the distribution of the second term in the above equation.
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Using the moment-generating function,
∑n

i=1 ωiui is distributed as:

n∑

i=1

ωiui ∼ N(0, σ2

n∑

i=1

ω2
i ).

Therefore, β̂2 is distributed as:

β̂2 = β2 +

n∑

i=1

ωiui ∼ N(β2, σ
2

n∑

i=1

ω2
i ),

or equivalently,

β̂2 − β2

σ

√∑n
i=1 ω

2
i

=
β̂2 − β2

σ/
√∑n

i=1(xi − x)2
∼ N(0, 1),

for any n.
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Moreover, replacing σ2 by its estimator s2 defined in (17), it is known that we have:

β̂2 − β2

s/
√∑n

i=1(xi − x)2
∼ t(n − 2),

where t(n − 2) denotes t distribution with n − 2 degrees of freedom.

Thus, under normality assumption on the error term ui, the t(n − 2) distribution is

used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

( β̂2 − β2

s/
√∑n

i=1(xi − x)2

)2
∼ F(1, n − 2),

which will be proved later.
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Before going to multiple regression model ( ),

2 Some Formulas of Matrix Algebra

1. Let A =



a11 a12 · · · a1k

a21 a22 · · · a2k

...
...
. . .

...

al1 al2 · · · alk



= [ai j],

which is a l × k matrix, where ai j denotes ith row and jth column of A.
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The transposed matrix ( ) of A, denoted by A′, is defined as:

A′ =



a11 a21 · · · al1

a12 a22 · · · al2

...
...
. . .

...

a1k a2k · · · alk



= [a ji],

where the ith row of A′ is the ith column of A.

2. (Ax)′ = x′A′,

where A and x are a l × k matrix and a k × 1 vector, respectively.
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3. a′ = a,

where a denotes a scalar.

4.
∂a′x

∂x
= a,

where a and x are k × 1 vectors.

5.
∂x′Ax

∂x
= (A + A′)x,

where A and x are a k × k matrix and a k × 1 vector, respectively.
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Especially, when A is symmetric,

∂x′Ax

∂x
= 2Ax.

6. Let A and B be k × k matrices, and Ik be a k × k identity matrix ( )

(one in the diagonal elements and zero in the other elements).

When AB = Ik, B is called the inverse matrix ( ) of A, denoted by

B = A−1.

That is, AA−1
= A−1A = Ik.
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7. Let A be a k × k matrix and x be a k × 1 vector.

If A is a positive definite matrix ( ), for any x except for

x = 0 we have:

x′Ax > 0.

If A is a positive semidefinite matrix ( ), for any x except

for x = 0 we have:

x′Ax ≥ 0.
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If A is a negative definite matrix ( ), for any x except for

x = 0 we have:

x′Ax < 0.

If A is a negative semidefinite matrix ( ), for any x except

for x = 0 we have:

x′Ax ≤ 0.
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Trace, Rank and etc.: A : k × k, B : n × k, C : k × n.

1. The trace ( ) of A is: tr(A) =

k∑

i=1

aii, where A = [ai j] .

2. The rank ( ) of A is the maximum number of linearly indepen-

dent column (or row) vectors of A, which is denoted by rank(A).

3. If A is an idempotent matrix ( ), A = A2 .

42

4. If A is an idempotent and symmetric matrix, A = A2
= A′A .

5. A is idempotent if and only if the eigen values of A consist of 1 and 0.

6. If A is idempotent, rank(A) =tr(A) .

7. tr(BC) =tr(CB)
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Distributions in Matrix Form:

1. Let X, µ and Σ be k × 1, k × 1 and k × k matrices.

When X ∼ N(µ,Σ), the density function of X is given by:

f (x) =
1

(2π)k/2|Σ|
exp

(
−1

2
(x − µ)′Σ−1(x − µ)

)
.

E(X) = µ and V(X) = E
(
(X − µ)(X − µ)′

)
= Σ

The moment-generating function: φ(θ) = E
(
exp(θ′X)

)
= exp(θ′µ + 1

2
θ′Σθ)
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