When these conditions hold，we can rewrite $\widetilde{\beta}_{2}$ as：

$$
\widetilde{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) u_{i}
$$

The variance of $\widetilde{\beta}_{2}$ is derived as：

$$
\begin{aligned}
\mathrm{V}\left(\widetilde{\beta}_{2}\right) & =\mathrm{V}\left(\beta_{2}+\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) u_{i}\right)=\mathrm{V}\left(\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) u_{i}\right)=\sum_{i=1}^{n} \mathrm{~V}\left(\left(\omega_{i}+d_{i}\right) u_{i}\right) \\
& =\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right)^{2} \mathrm{~V}\left(u_{i}\right)=\sigma^{2}\left(\sum_{i=1}^{n} \omega_{i}^{2}+2 \sum_{i=1}^{n} \omega_{i} d_{i}+\sum_{i=1}^{n} d_{i}^{2}\right) \\
& =\sigma^{2}\left(\sum_{i=1}^{n} \omega_{i}^{2}+\sum_{i=1}^{n} d_{i}^{2}\right)
\end{aligned}
$$

When $\sum_{i=1}^{n} d_{i}^{2}=0$ ，i．e．，when $d_{1}=d_{2}=\cdots=d_{n}=0$ ，we have the equality： $\mathrm{V}\left(\widetilde{\beta}_{2}\right)$ $=\mathrm{V}\left(\hat{\beta}_{2}\right)$ ．

Thus，in the case of $d_{1}=d_{2}=\cdots=d_{n}=0, \hat{\beta}_{2}$ is equivalent to $\widetilde{\beta}_{2}$ ．

As shown above，the least squares estimator $\hat{\beta}_{2}$ gives us the minimum variance linear unbiased estimator（最小分散線形不偏推定量），or equivalently the best linear unbiased estimator（最良線形不偏推定量，BLUE），which is called the Gauss－Markov theorem（ガウス・マルコフ定理）．

From unbiasedness of $\widetilde{\beta}_{2}$ ，using $\sum_{i=1}^{n} d_{i}=0$ and $\sum_{i=1}^{n} d_{i} x_{i}=0$ ，we obtain：

$$
\sum_{i=1}^{n} \omega_{i} d_{i}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) d_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n} x_{i} d_{i}-\bar{X} \sum_{i=1}^{n} d_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=0,
$$

which is utilized to obtain the variance of $\widetilde{\beta}_{2}$ in the third line of the above equation． From（15），the variance of $\hat{\beta}_{2}$ is given by： $\mathrm{V}\left(\hat{\beta}_{2}\right)=\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}$ ．

Therefore，we have：

$$
\mathrm{V}\left(\widetilde{\beta}_{2}\right) \geq \mathrm{V}\left(\hat{\beta}_{2}\right),
$$

because of $\sum_{i=1}^{n} d_{i}^{2} \geq 0$ ．

25

Asymptotic Properties of $\hat{\beta}_{2}$ ：We assume that as n goes to infinity we have the following：

$$
\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \longrightarrow m<\infty
$$

where m is a constant value．From（12），we obtain：

$$
n \sum_{i=1}^{n} \omega_{i}^{2}=\frac{1}{(1 / n) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)} \longrightarrow \frac{1}{m}
$$

Note that $f\left(x_{n}\right) \longrightarrow f(m)$ when $x_{n} \longrightarrow m$ ，called Slutsky＇s theorem（スルツキー定理），where m is a constant value and $f(\cdot)$ is a function．

27

Then，when $n \longrightarrow \infty$ ，we obtain the following result：

$$
P\left(\left|\hat{\beta}_{2}-\beta_{2}\right|>\epsilon\right) \leq \frac{\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}}{\epsilon^{2}}=\frac{\sigma^{2} n \sum_{i=1}^{n} \omega_{i}^{2}}{n \epsilon^{2}} \longrightarrow 0
$$

where $\sum_{i=1}^{n} \omega_{i}^{2} \longrightarrow 0$ because $n \sum_{i=1}^{n} \omega_{i}^{2} \longrightarrow \frac{1}{m}$ from the assumption．
Thus，we obtain the result that $\hat{\beta}_{2} \longrightarrow \beta_{2}$ as $n \longrightarrow \infty$ ．

Therefore，we can conclude that $\hat{\beta}_{2}$ is a consistent estimator of β_{2} ．

$$
\hat{\beta}_{2}, \quad \mathrm{E}\left(\hat{\beta}_{2}\right)=\beta_{2}, \quad \text { and } \quad \mathrm{V}\left(\hat{\beta}_{2}\right)=\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)},
$$

respectively．

Next, we want to show that $\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)$ is asymptotically normal.
Note that $\hat{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}$ as in (13).
From the central limit theorem, asymptotic normality is shown as follows:

$$
\frac{\sum_{i=1}^{n} \omega_{i} u_{i}-\mathrm{E}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)}{\sqrt{\mathrm{V}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)}}=\frac{\sum_{i=1}^{n} \omega_{i} u_{i}}{\sigma \sqrt{\sum_{i=1}^{n} \omega_{i}^{2}}}=\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \longrightarrow N(0,1),
$$

where $\mathrm{E}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)=0, \mathrm{~V}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}$, and $\sum_{i=1}^{n} \omega_{i} u_{i}=\hat{\beta}_{2}-\beta_{2}$ are substituted in the first and second equalities.

Finally, replacing σ^{2} by its consistent estimator s^{2}, it is known as follows:

$$
\begin{equation*}
\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \longrightarrow N(0,1) \tag{16}
\end{equation*}
$$

where s^{2} is defined as:

$$
\begin{equation*}
s^{2}=\frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta_{1}}-\hat{\beta_{2}} x_{i}\right)^{2} \tag{17}
\end{equation*}
$$

which is a consistent and unbiased estimator of $\sigma^{2} . \longrightarrow$ Proved later.
Thus, using (16), in large sample we can construct the confidence interval and test the hypothesis.

$$
32
$$

Moreover, we can rewrite as follows:

$$
\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}=\frac{\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)}{\sigma / \sqrt{(1 / n) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \longrightarrow \frac{\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)}{\sigma / \sqrt{m}} \longrightarrow N(0,1)
$$

or equivalently,

$$
\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right) \longrightarrow N\left(0, \frac{\sigma^{2}}{m}\right)
$$

Thus, the asymptotic normality of $\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)$ is shown.

Exact Distribution of $\hat{\boldsymbol{\beta}}_{2}$: We have shown asymptotic normality of $\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)$, which is one of the large sample properties.
Now, we discuss the small sample properties of $\hat{\beta}_{2}$.
In order to obtain the distribution of $\hat{\beta}_{2}$ in small sample, the distribution of the error term has to be assumed.
Therefore, the extra assumption is that $u_{i} \sim N\left(0, \sigma^{2}\right)$.
Writing (13), again, $\hat{\beta}_{2}$ is represented as:

$$
\hat{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}
$$

First, we obtain the distribution of the second term in the above equation.
33

Moreover, replacing σ^{2} by its estimator s^{2} defined in (17), it is known that we have:

$$
\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \sim t(n-2)
$$

where $t(n-2)$ denotes t distribution with $n-2$ degrees of freedom.

Thus, under normality assumption on the error term u_{i}, the $t(n-2)$ distribution is used for the confidence interval and the testing hypothesis in small sample.
Or, taking the square on both sides,

$$
\left(\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}\right)^{2} \sim F(1, n-2)
$$

which will be proved later.

Before going to multiple regression model（重回帰モデル），

2 Some Formulas of Matrix Algebra

1．Let $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 k} \\ a_{21} & a_{22} & \cdots & a_{2 k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l 1} & a_{l 2} & \cdots & a_{l k}\end{array}\right)=\left[a_{i j}\right]$ ，
which is a $l \times k$ matrix，where $a_{i j}$ denotes i th row and j th column of A ．

The transposed matrix（転置行列）of A ，denoted by A^{\prime} ，is defined as：
$A^{\prime}=\left(\begin{array}{cccc}a_{11} & a_{21} & \cdots & a_{l 1} \\ a_{12} & a_{22} & \cdots & a_{l 2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1 k} & a_{2 k} & \cdots & a_{l k}\end{array}\right)=\left[a_{j i}\right]$,
where the i th row of A^{\prime} is the i th column of A ．

2．$(A x)^{\prime}=x^{\prime} A^{\prime}$ ，
where A and x are a $l \times k$ matrix and a $k \times 1$ vector，respectively．

37

Especially，when A is symmetric，
$\frac{\partial x^{\prime} A x}{\partial x}=2 A x$ ．

6．Let A and B be $k \times k$ matrices，and I_{k} be a $k \times k$ identity matrix（単位行列） （one in the diagonal elements and zero in the other elements）．

When $A B=I_{k}, B$ is called the inverse matrix（逆行列）of A ，denoted by $B=A^{-1}$ ．

That is，$A A^{-1}=A^{-1} A=I_{k}$ ．
39

7．Let A be a $k \times k$ matrix and x be a $k \times 1$ vector．

If A is a positive definite matrix（正値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x>0 .
$$

If A is a positive semidefinite matrix（非負値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x \geq 0
$$

If A is a negative definite matrix（負値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x<0
$$

If A is a negative semidefinite matrix（非正値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x \leq 0
$$

Trace，Rank and etc．：$\quad A: k \times k, \quad B: n \times k, \quad C: k \times n$.

1．The trace（トレース）of A is： $\operatorname{tr}(A)=\sum_{i=1}^{k} a_{i i}$ ，where $A=\left[a_{i j}\right]$ ．

2．The rank（ランク，階数）of A is the maximum number of linearly indepen－ dent column（or row）vectors of A ，which is denoted by $\operatorname{rank}(A)$ ．

3．If A is an idempotent matrix（べき等行列），$A=A^{2}$ 。

Distributions in Matrix Form：

1．Let X, μ and Σ be $k \times 1, k \times 1$ and $k \times k$ matrices．
When $X \sim N(\mu, \Sigma)$ ，the density function of X is given by：

$$
f(x)=\frac{1}{(2 \pi)^{k / 2}|\Sigma|} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right)
$$

$\mathrm{E}(X)=\mu$ and $\mathrm{V}(X)=\mathrm{E}\left((X-\mu)(X-\mu)^{\prime}\right)=\Sigma$

The moment－generating function：$\phi(\theta)=\mathrm{E}\left(\exp \left(\theta^{\prime} X\right)\right)=\exp \left(\theta^{\prime} \mu+\frac{1}{2} \theta^{\prime} \Sigma \theta\right)$

