2．If $X \sim N(\mu, \Sigma)$ ，then $(X-\mu)^{\prime} \Sigma^{-1}(X-\mu) \sim \chi^{2}(k)$ ．
Note that $\quad X^{\prime} X \sim \chi^{2}(k)$ when $X \sim N\left(0, I_{k}\right)$.

3．$X: n \times 1, \quad Y: m \times 1, \quad X \sim N\left(\mu_{x}, \Sigma_{x}\right), \quad Y \sim N\left(\mu_{y}, \Sigma_{y}\right)$
X is independent of Y ，i．e．， $\mathrm{E}\left(\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)^{\prime}\right)=0$ in the case of normal random variables．

$$
\frac{\left(X-\mu_{x}\right)^{\prime} \Sigma_{x}^{-1}\left(X-\mu_{x}\right) / n}{\left(Y-\mu_{y}\right)^{\prime} \Sigma_{y}^{-1}\left(Y-\mu_{y}\right) / m} \sim F(n, m)
$$

3 Multiple Regression Model（重回帰モデル）

Up to now，only one independent variable，i．e．，x_{i} ，is taken into the regression model． In this section，we extend it to more independent variables，which is called the multiple regression（重回帰）。

4．If $X \sim N\left(0, \sigma^{2} I_{n}\right)$ and A is a symmetric idempotent $n \times n$ matrix of rank G ， then $X^{\prime} A X / \sigma^{2} \sim \chi^{2}(G)$ ．

Note that $X^{\prime} A X=(A X)^{\prime}(A X)$ and $\operatorname{rank}(A)=\operatorname{tr}(A)$ because A is idempotent．

5．If $X \sim N\left(0, \sigma^{2} I_{n}\right), A$ and B are symmetric idempotent $n \times n$ matrices of rank G and K ，and $A B=0$ ，then

$$
\frac{X^{\prime} A X}{G \sigma^{2}} / \frac{X^{\prime} B X}{K \sigma^{2}}=\frac{X^{\prime} A X / G}{X^{\prime} B X / K} \sim F(G, K)
$$

46

We consider the following regression model：

$$
\begin{aligned}
y_{i} & =\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\cdots+\beta_{k} x_{i, k}+u_{i} \\
& =\left(x_{i, 1}, x_{i, 2}, \cdots, x_{i, k}\right)\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right)+u_{i} \\
& =x_{i} \beta+u_{i} .
\end{aligned}
$$

for $i=1,2, \cdots, n$ ，
where x_{i} and β denote a $1 \times k$ vector of the independent variables and a $k \times 1$ vector

48

Writing all the equations for $i=1,2, \cdots, n$ ，we have：

$$
\begin{gathered}
y_{1}=\beta_{1} x_{1,1}+\beta_{2} x_{1,2}+\cdots+\beta_{k} x_{1, k}+u_{1}=x_{1} \beta+u_{1} \\
y_{2}=\beta_{1} x_{2,1}+\beta_{2} x_{2,2}+\cdots+\beta_{k} x_{2, k}+u_{2}=x_{2} \beta+u_{2} \\
\vdots \\
y_{n}=\beta_{1} x_{n, 1}+\beta_{2} x_{n, 2}+\cdots+\beta_{k} x_{n, k}+u_{n}=x_{n} \beta+u_{n}
\end{gathered}
$$

$x_{i, j}$ denotes the i th observation of the j th independent variable．

The case of $k=2$ and $x_{i, 1}=1$ for all i is exactly equivalent to（1）．

Therefore，the matrix form above is a generalization of（1）．
which is rewritten as：

$$
\begin{aligned}
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) & =\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, k} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, k}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right)+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \beta+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)
\end{aligned}
$$

Again，the above equation is compactly rewritten as：

$$
\begin{equation*}
y=X \beta+u \tag{18}
\end{equation*}
$$

where y, X and u are denoted by：

$$
y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right), \quad X=\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, k} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, k}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad u=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{k}
\end{array}\right) .
$$

Utilizing the matrix form（18），we derive the ordinary least squares estimator of β ， denoted by $\hat{\beta}$ ．

52

To minimize $S(\hat{\beta})$ with respect to $\hat{\beta}$ ，we set the first derivative of $S(\hat{\beta})$ equal to zero， i．e．，

$$
\frac{\partial S(\hat{\beta})}{\partial \hat{\beta}}=-2 X^{\prime} y+2 X^{\prime} X \hat{\beta}=0
$$

Solving the equation above with respect to $\hat{\beta}$ ，the ordinary least squares estimator （OLS，最小自乗推定量）of β is given by：

$$
\begin{equation*}
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y \tag{19}
\end{equation*}
$$

Thus，the ordinary least squares estimator is derived in the matrix form．

54

（＊）Remark

The second order condition for minimization：

$$
\frac{\partial^{2} S(\hat{\beta})}{\partial \hat{\beta} \partial \hat{\beta}^{\prime}}=2 X^{\prime} X
$$

is a positive definite matrix．

Set $c=X d$ ．

For any $d \neq 0$ ，we have $c^{\prime} c=d^{\prime} X^{\prime} X d>0$ ．

