
2. If X ∼ N(µ,Σ), then (X − µ)′Σ−1(X − µ) ∼ χ2(k).

Note that X′X ∼ χ2(k) when X ∼ N(0, Ik).

3. X: n × 1, Y: m × 1, X ∼ N(µx,Σx), Y ∼ N(µy,Σy)

X is independent of Y , i.e., E
(

(X − µx)(Y − µy)
′

)

= 0 in the case of normal

random variables.

(X − µx)
′
Σ
−1
x (X − µx)/n

(Y − µy)′Σ−1
y (Y − µy)/m

∼ F(n,m)
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4. If X ∼ N(0, σ2In) and A is a symmetric idempotent n × n matrix of rank G,

then X′AX/σ2
∼ χ2(G).

Note that X′AX = (AX)′(AX) and rank(A) = tr(A) because A is idempotent.

5. If X ∼ N(0, σ2In), A and B are symmetric idempotent n × n matrices of rank

G and K, and AB = 0, then

X′AX

Gσ2

/X′BX

Kσ2
=

X′AX/G

X′BX/K
∼ F(G,K).
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3 Multiple Regression Model ( )

Up to now, only one independent variable, i.e., xi, is taken into the regression model.

In this section, we extend it to more independent variables, which is called the

multiple regression ( ).
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We consider the following regression model:

yi = β1xi,1 + β2xi,2 + · · · + βkxi,k + ui

= (xi,1, xi,2, · · · , xi,k)











































β1

β2

...

βk











































+ ui

= xiβ + ui,

for i = 1, 2, · · · , n,

where xi and β denote a 1× k vector of the independent variables and a k × 1 vector
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of the unknown parameters to be estimated, which are represented as:

xi = (xi,1, xi,2, · · · , xi,k), β =











































β1

β2

...

βk











































.

xi, j denotes the ith observation of the jth independent variable.

The case of k = 2 and xi,1 = 1 for all i is exactly equivalent to (1).

Therefore, the matrix form above is a generalization of (1).
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Writing all the equations for i = 1, 2, · · · , n, we have:

y1 = β1x1,1 + β2x1,2 + · · · + βkx1,k + u1 = x1β + u1,

y2 = β1x2,1 + β2x2,2 + · · · + βkx2,k + u2 = x2β + u2,

...

yn = β1xn,1 + β2xn,2 + · · · + βkxn,k + un = xnβ + un,
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which is rewritten as:











































y1

y2

...

yn











































=











































x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k

...
...
. . .

...

xn,1 xn,2 · · · xn,k





















































































β1

β2

...

βk











































+











































u1

u2

...

un











































=











































x1

x2

...

xn











































β +











































u1

u2

...

un











































.
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Again, the above equation is compactly rewritten as:

y = Xβ + u, (18)

where y, X and u are denoted by:

y =











































y1

y2

...

yn











































, X =











































x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k

...
...
. . .

...

xn,1 xn,2 · · · xn,k











































=











































x1

x2

...

xn











































, u =











































u1

u2

...

uk











































.

Utilizing the matrix form (18), we derive the ordinary least squares estimator of β,

denoted by β̂.
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In (18), replacing β by β̂, we have the following equation:

y = Xβ̂ + e,

where e denotes a n × 1 vector of the residuals.

The ith element of e is given by ei.

The sum of squared residuals is written as follows:

S (β̂) =

n
∑

i=1

e2
i = e′e = (y − Xβ̂)′(y − Xβ̂) = (y′ − β̂′X′)(y − Xβ̂)

= y′y − y′Xβ̂ − β̂′X′y + β̂′X′Xβ̂ = y′y − 2y′Xβ̂ + β̂′X′Xβ̂.

In the last equality, note that β̂′X′y = y′Xβ̂ because both are scalars.
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To minimize S (β̂) with respect to β̂, we set the first derivative of S (β̂) equal to zero,

i.e.,

∂S (β̂)

∂β̂
= −2X′y + 2X′Xβ̂ = 0.

Solving the equation above with respect to β̂, the ordinary least squares estimator

(OLS, ) of β is given by:

β̂ = (X′X)−1X′y. (19)

Thus, the ordinary least squares estimator is derived in the matrix form.
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(*) Remark

The second order condition for minimization:

∂2S (β̂)

∂β̂∂β̂′
= 2X′X

is a positive definite matrix.

Set c = Xd.

For any d , 0, we have c′c = d′X′Xd > 0.
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