
Now, in order to obtain the properties of β̂ such as mean, variance, distribution and

so on, (19) is rewritten as follows:

β̂ = (X′X)−1X′y = (X′X)−1X′(Xβ + u) = (X′X)−1X′Xβ + (X′X)−1X′u

= β + (X′X)−1X′u. (20)

Taking the expectation on both sides of (20), we have the following:

E(β̂) = E(β + (X′X)−1X′u) = β + (X′X)−1X′E(u) = β,

because of E(u) = 0 by the assumption of the error term ui.

Thus, unbiasedness of β̂ is shown.
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The variance of β̂ is obtained as:

V(β̂) = E((β̂ − β)(β̂ − β)′) = E
(
(X′X)−1X′u((X′X)−1X′u)′

)

= E((X′X)−1X′uu′X(X′X)−1) = (X′X)−1X′E(uu′)X(X′X)−1

= σ2(X′X)−1X′X(X′X)−1
= σ2(X′X)−1.

The first equality is the definition of variance in the case of vector.

In the fifth equality, E(uu′) = σ2In is used, which implies that E(u2
i
) = σ2 for all i

and E(uiu j) = 0 for i , j.

Remember that u1, u2, · · ·, un are assumed to be mutually independently and identi-

cally distributed with mean zero and variance σ2.
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Under normality assumption on the error term u, it is known that the distribution of

β̂ is given by:

β̂ ∼ N(β, σ2(X′X)−1).

Proof:

θu: n × 1, u: n × 1, θβ: k × 1, β̂: k × 1

The moment-generating function of u, i.e., φu(θu), is:

φu(θu) = E
(
exp(θ′uu)

)
= exp

(σ2

2
θ′uθu

)
,

which is N(0, σ2In).
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The moment-generating function of β̂, i.e., φβ(θβ), is:

φβ(θβ) = E
(
exp(θ′ββ̂)

)
= E
(
exp(θ′ββ + θ

′
β(X

′X)−1X′u)
)

= exp(θ′ββ)E
(
θ′β(X

′X)−1X′u
)
= exp(θ′ββ)φu

(
θ′β(X

′X)−1X′
)

= exp(θ′ββ) exp
(σ2

2
θ′β(X

′X)−1θβ

)
= exp

(
θ′ββ +

σ2

2
θ′β(X

′X)−1θβ

)
,

which is equivalent to the normal distribution with mean β and variance σ2(X′X)−1.

Note that θu = X(X′X)−1θβ. QED
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Taking the jth element of β̂, its distribution is given by:

β̂ j ∼ N(β j, σ
2a j j), i.e.,

β̂ j − β j

σ
√

a j j

∼ N(0, 1),

where a j j denotes the jth diagonal element of (X′X)−1.

Replacing σ2 by its estimator s2, we have the following t distribution:

β̂ j − β j

s
√

a j j

∼ t(n − k),

where t(n − k) denotes the t distribution with n − k degrees of freedom.
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s2 is taken as follows:

s2
=

1

n − k

n∑

i=1

e2
i =

1

n − k
e′e =

1

n − k
(y − Xβ̂)′(y − Xβ̂),

which leads to an unbiased estimator of σ2.

Proof:

Substitute y = Xβ + u and β̂ = β + (X′X)−1X′u into e = y − Xβ̂.

e = y − Xβ̂ = Xβ + u − X(β + (X′X)−1X′u)

= u − X(X′X)−1X′u = (In − X(X′X)−1X′)u
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In − X(X′X)−1X′ is idempotent and symmetric, because we have:

(In − X(X′X)−1X′)(In − X(X′X)−1X′) = In − X(X′X)−1X,′

(In − X(X′X)−1X′)′ = In − X(X′X)−1X′.

s2 is rewritten as follows:

s2
=

1

n − k
e′e =

1

n − k
((In − X(X′X)−1X′)u)′(In − X(X′X)−1X′)u

=

1

n − k
u′(In − X(X′X)−1X′)′(In − X(X′X)−1X′)u

=

1

n − k
u′(In − X(X′X)−1X′)u
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Take the expectation of u′(In − X(X′X)−1X′)u and note that tr(a) = a for a scalar a.

E(s2) =
1

n − k
E
(
tr
(
u′(In − X(X′X)−1X′)u

))
=

1

n − k
E
(
tr
(
(In − X(X′X)−1X′)uu′

))

=

1

n − k
tr
(
(In − X(X′X)−1X′)E(uu′)

)
=

1

n − k
σ2tr
(
(In − X(X′X)−1X′)In

)

=

1

n − k
σ2tr(In − X(X′X)−1X′) =

1

n − k
σ2(tr(In) − tr(X(X′X)−1X′))

=

1

n − k
σ2(tr(In) − tr((X′X)−1X′X)) =

1

n − k
σ2(tr(In) − tr(Ik))

=

1

n − k
σ2(n − k) = σ2

−→ s2 is an unbiased estimator of σ2.

Note that we do not need normality assumption for unbiasedness of s2.
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Under normality assumption for u, the distribution of s2 is:

(n − k)s2

σ2
=

u′(In − X(X′X)−1X′)u

σ2
∼ χ2(tr(In − X(X′X)−1X′))

Note that tr(In − X(X′X)−1X′) = n − k, because

tr(In) = n

tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k
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Trace ( ):

1. A: n × n, tr(A) =
∑n

i=1 aii, where ai j denotes an element in the ith row and

the jth column of a matrix A.

2. a: scalar (1 × 1), tr(a) = a

3. A: n × k, B: k × n, tr(AB) = tr(BA)

4. tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k

5. When X is a vector of random variables, E(tr(X)) = tr(E(X))
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Asymptotic Normality (without normality assumption on u): Using the cen-

tral limit theorem, without normality assumption we can show that as n −→ ∞,

under the condition of
1

n
X′X −→ M we have the following result:

β̂ j − β j

s
√

a j j

−→ N(0, 1),

where M denotes a k × k constant matrix.

Thus, we can construct the confidence interval and the testing procedure, using the

t distribution under the normality assumption or the normal distribution without the

normality assumption.
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4 Properties of OLSE

1. Properties of β̂ : BLUE (best linear unbiased estimator

), i.e., minimum variance within the class of linear unbiased estimators

(Gauss-Markov theorem )

Proof:

Consider another linear unbiased estimator, which is denoted by β̃ = Cy.

β̃ = Cy = C(Xβ + u) = CXβ +Cu,

where C is a k × n matrix.
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Taking the expectation of β̃, we obatin:

E(β̃) = CXβ +CE(u) = CXβ

Because we have assumed that β̃ = Cy is unbiased, E(β̃) = β holds.

That is, we need the condition: CX = Ik.

Next, we obtain the variance of β̃ = Cy.

β̃ = C(Xβ + u) = β +Cu.

Therefore, we have:

V(β̃) = E(β̃ − β)(̃β − β)′ = E(Cuu′C′) = σ2CC′
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