Now, in order to obtain the properties of $\hat{\beta}$ such as mean, variance, distribution and so on, (19) is rewritten as follows:

$$\hat{\beta} = (X'X)^{-1}X'y = (X'X)^{-1}X'(X\beta + u) = (X'X)^{-1}X'X\beta + (X'X)^{-1}X'u$$
$$= \beta + (X'X)^{-1}X'u.$$
(20)

Taking the expectation on both sides of (20), we have the following:

$$E(\hat{\beta}) = E(\beta + (X'X)^{-1}X'u) = \beta + (X'X)^{-1}X'E(u) = \beta,$$

because of E(u) = 0 by the assumption of the error term u_i . Thus, unbiasedness of $\hat{\beta}$ is shown.

.

56

The variance of $\hat{\beta}$ is obtained as:

$$\begin{split} \mathsf{V}(\hat{\beta}) &= \mathsf{E}((\hat{\beta}-\beta)(\hat{\beta}-\beta)') = \mathsf{E}\Big((X'X)^{-1}X'u((X'X)^{-1}X'u')\Big) \\ &= \mathsf{E}((X'X)^{-1}X'uu'X(X'X)^{-1}) = (X'X)^{-1}X'\mathsf{E}(uu')X(X'X)^{-1} \\ &= \sigma^2(X'X)^{-1}X'X(X'X)^{-1} = \sigma^2(X'X)^{-1}. \end{split}$$

The first equality is the definition of variance in the case of vector. In the fifth equality, $E(uu') = \sigma^2 I_n$ is used, which implies that $E(u_i^2) = \sigma^2$ for all *i* and $E(u_i u_i) = 0$ for $i \neq j$.

Remember that u_1, u_2, \dots, u_n are assumed to be mutually independently and identically distributed with mean zero and variance σ^2 .

57

Under normality assumption on the error term u, it is known that the distribution of $\hat{\beta}$ is given by:

$$\hat{\beta} \sim N(\beta, \sigma^2 (X'X)^{-1}).$$

Proof:

 $u: n \times 1, \qquad \theta_{\beta}: k \times 1, \qquad \hat{\beta}: k \times 1$ $\theta_u: n \times 1,$ The moment-generating function of u, i.e., $\phi_u(\theta_u)$, is:

 $\phi_u(\theta_u) = \mathrm{E}\Big(\exp(\theta'_u u)\Big) = \exp\Big(\frac{\sigma^2}{2}\theta'_u\theta_u\Big),$

which is $N(0, \sigma^2 I_n)$.

58

The moment-generating function of $\hat{\beta}$, i.e., $\phi_{\beta}(\theta_{\beta})$, is:

$$\begin{split} \phi_{\beta}(\theta_{\beta}) &= \mathrm{E}\Big(\mathrm{exp}(\theta_{\beta}'\beta)\Big) = \mathrm{E}\Big(\mathrm{exp}(\theta_{\beta}'\beta + \theta_{\beta}'(X'X)^{-1}X'u)\Big) \\ &= \mathrm{exp}(\theta_{\beta}'\beta)\mathrm{E}\Big(\theta_{\beta}'(X'X)^{-1}X'u\Big) = \mathrm{exp}(\theta_{\beta}'\beta)\phi_{u}\Big(\theta_{\beta}'(X'X)^{-1}X'\Big) \\ &= \mathrm{exp}(\theta_{\beta}'\beta)\exp\Big(\frac{\sigma^{2}}{2}\theta_{\beta}'(X'X)^{-1}\theta_{\beta}\Big) = \mathrm{exp}\Big(\theta_{\beta}'\beta + \frac{\sigma^{2}}{2}\theta_{\beta}'(X'X)^{-1}\theta_{\beta}\Big), \end{split}$$

which is equivalent to the normal distribution with mean β and variance $\sigma^2(X'X)^{-1}$. Note that $\theta_u = X(X'X)^{-1}\theta_{\beta}.$ QED

59

Taking the *j*th element of $\hat{\beta}$, its distribution is given by:

$$\hat{\beta}_j \sim N(\beta_j, \sigma^2 a_{jj}),$$
 i.e., $\frac{\hat{\beta}_j - \beta_j}{\sigma \sqrt{a_{jj}}} \sim N(0, 1),$

where a_{jj} denotes the *j*th diagonal element of $(X'X)^{-1}$.

Replacing σ^2 by its estimator s^2 , we have the following t distribution:

$$\frac{\hat{\beta}_j - \beta_j}{s \sqrt{a_{jj}}} \sim t(n-k),$$

where t(n - k) denotes the *t* distribution with n - k degrees of freedom.

 s^2 is taken as follows:

$$s^{2} = \frac{1}{n-k} \sum_{i=1}^{n} e_{i}^{2} = \frac{1}{n-k} e'e = \frac{1}{n-k} (y - X\hat{\beta})'(y - X\hat{\beta}),$$

which leads to an unbiased estimator of σ^2 .

Proof:

Substitute $y = X\beta + u$ and $\hat{\beta} = \beta + (X'X)^{-1}X'u$ into $e = y - X\hat{\beta}$.

$$e = y - X\hat{\beta} = X\beta + u - X(\beta + (X'X)^{-1}X'u)$$

= $u - X(X'X)^{-1}X'u = (I_n - X(X'X)^{-1}X')u$

 $I_n - X(X'X)^{-1}X'$ is idempotent and symmetric, because we have:

$$\begin{split} (I_n - X(X'X)^{-1}X')(I_n - X(X'X)^{-1}X') &= I_n - X(X'X)^{-1}X,' \\ (I_n - X(X'X)^{-1}X')' &= I_n - X(X'X)^{-1}X'. \end{split}$$

 s^2 is rewritten as follows:

$$s^{2} = \frac{1}{n-k}e'e = \frac{1}{n-k}((I_{n} - X(X'X)^{-1}X')u)'(I_{n} - X(X'X)^{-1}X')u$$
$$= \frac{1}{n-k}u'(I_{n} - X(X'X)^{-1}X')'(I_{n} - X(X'X)^{-1}X')u$$
$$= \frac{1}{n-k}u'(I_{n} - X(X'X)^{-1}X')u$$

62

Take the expectation of $u'(I_n - X(X'X)^{-1}X')u$ and note that tr(a) = a for a scalar *a*.

$$\begin{split} \mathsf{E}(s^2) &= \frac{1}{n-k} \mathsf{E}\Big(\mathrm{tr}\Big(u'(I_n - X(X'X)^{-1}X')u\Big) \Big) = \frac{1}{n-k} \mathsf{E}\Big(\mathrm{tr}\Big((I_n - X(X'X)^{-1}X')uu'\Big) \Big) \\ &= \frac{1}{n-k} \mathrm{tr}\Big((I_n - X(X'X)^{-1}X')\mathsf{E}(uu') \Big) = \frac{1}{n-k} \sigma^2 \mathrm{tr}\big((I_n - X(X'X)^{-1}X')I_n \big) \\ &= \frac{1}{n-k} \sigma^2 \mathrm{tr}(I_n - X(X'X)^{-1}X') = \frac{1}{n-k} \sigma^2 (\mathrm{tr}(I_n) - \mathrm{tr}(X(X'X)^{-1}X')) \\ &= \frac{1}{n-k} \sigma^2 (\mathrm{tr}(I_n) - \mathrm{tr}((X'X)^{-1}X'X)) = \frac{1}{n-k} \sigma^2 (\mathrm{tr}(I_n) - \mathrm{tr}(I_k)) \\ &= \frac{1}{n-k} \sigma^2 (n-k) = \sigma^2 \end{split}$$

 \longrightarrow s^2 is an unbiased estimator of σ^2 .

Note that we do not need normality assumption for unbiasedness of s^2 .

63

Under normality assumption for u, the distribution of s^2 is:

$$\frac{(n-k)s^2}{\sigma^2} = \frac{u'(I_n-X(X'X)^{-1}X')u}{\sigma^2} \sim \chi^2(\operatorname{tr}(I_n-X(X'X)^{-1}X'))$$

Note that $\operatorname{tr}(I_n - X(X'X)^{-1}X') = n - k$, because

$$\begin{split} &\operatorname{tr}(I_n) = n \\ &\operatorname{tr}(X(X'X)^{-1}X') = \operatorname{tr}((X'X)^{-1}X'X) = \operatorname{tr}(I_k) = k \end{split}$$

64

- 1. A: $n \times n$, $tr(A) = \sum_{i=1}^{n} a_{ii}$, where a_{ij} denotes an element in the *i*th row and the *j*th column of a matrix A.
- 2. *a*: scalar (1×1) , tr(a) = a
- 3. *A*: $n \times k$, *B*: $k \times n$, tr(AB) = tr(BA)
- 4. $tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = tr(I_k) = k$
- 5. When *X* is a vector of random variables, E(tr(X)) = tr(E(X))

65

Asymptotic Normality (without normality assumption on *u*): Using the central limit theorem, without normality assumption we can show that as $n \to \infty$, under the condition of $\frac{1}{n}X'X \longrightarrow M$ we have the following result:

$$\frac{\hat{\beta}_j - \beta_j}{s \sqrt{a_{jj}}} \longrightarrow N(0, 1),$$

where *M* denotes a $k \times k$ constant matrix.

Thus, we can construct the confidence interval and the testing procedure, using the t distribution under the normality assumption or the normal distribution without the normality assumption.

4 Properties of OLSE

 Properties of β: BLUE (best linear unbiased estimator, 最良線形不偏推 定量), i.e., minimum variance within the class of linear unbiased estimators (Gauss-Markov theorem, ガウス・マルコフの定理)

Proof:

Consider another linear unbiased estimator, which is denoted by $\tilde{\beta} = Cy$.

$$\widetilde{\beta} = Cy = C(X\beta + u) = CX\beta + Cu,$$

where C is a $k \times n$ matrix.

Taking the expectation of $\widetilde{\beta}$, we obtain:

$$\mathrm{E}(\widetilde{\beta}) = C X \beta + C \mathrm{E}(u) = C X \beta$$

Because we have assumed that $\widetilde{\beta} = Cy$ is unbiased, $E(\widetilde{\beta}) = \beta$ holds.

That is, we need the condition: $CX = I_k$.

Next, we obtain the variance of $\tilde{\beta} = Cy$.

 $\widetilde{\beta} = C(X\beta + u) = \beta + Cu.$

Therefore, we have:

 $\mathsf{V}(\widetilde{\beta}) = \mathsf{E}(\widetilde{\beta} - \beta)(\widetilde{\beta} - \beta)' = \mathsf{E}(Cuu'C') = \sigma^2 CC'$