Now, in order to obtain the properties of $\hat{\beta}$ such as mean, variance, distribution and so on, (19) is rewritten as follows:

$$
\begin{align*}
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u)=\left(X^{\prime} X\right)^{-1} X^{\prime} X \beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u . \tag{20}
\end{align*}
$$

Taking the expectation on both sides of (20), we have the following:

$$
\mathrm{E}(\hat{\beta})=\mathrm{E}\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}(u)=\beta
$$

because of $\mathrm{E}(u)=0$ by the assumption of the error term u_{i}. Thus, unbiasedness of $\hat{\beta}$ is shown.

The variance of $\hat{\beta}$ is obtained as:

$$
\begin{aligned}
\mathrm{V}(\hat{\beta}) & =\mathrm{E}\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right)=\mathrm{E}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime}\right) \\
& =\mathrm{E}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1}\right)=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}\left(u u^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

The first equality is the definition of variance in the case of vector. In the fifth equality, $\mathrm{E}\left(u u^{\prime}\right)=\sigma^{2} I_{n}$ is used, which implies that $\mathrm{E}\left(u_{i}^{2}\right)=\sigma^{2}$ for all i and $\mathrm{E}\left(u_{i} u_{j}\right)=0$ for $i \neq j$.

Remember that $u_{1}, u_{2}, \cdots, u_{n}$ are assumed to be mutually independently and identically distributed with mean zero and variance σ^{2}.

57

The moment-generating function of $\hat{\beta}$, i.e., $\phi_{\beta}\left(\theta_{\beta}\right)$, is:

$$
\begin{aligned}
\phi_{\beta}\left(\theta_{\beta}\right) & =\mathrm{E}\left(\exp \left(\theta_{\beta}^{\prime} \hat{\beta}\right)\right)=\mathrm{E}\left(\exp \left(\theta_{\beta}^{\prime} \beta+\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)\right) \\
& =\exp \left(\theta_{\beta}^{\prime} \beta\right) \mathrm{E}\left(\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)=\exp \left(\theta_{\beta}^{\prime} \beta\right) \phi_{u}\left(\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
& =\exp \left(\theta_{\beta}^{\prime} \beta\right) \exp \left(\frac{\sigma^{2}}{2} \theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} \theta_{\beta}\right)=\exp \left(\theta_{\beta}^{\prime} \beta+\frac{\sigma^{2}}{2} \theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} \theta_{\beta}\right),
\end{aligned}
$$

which is equivalent to the normal distribution with mean β and variance $\sigma^{2}\left(X^{\prime} X\right)^{-1}$. Note that $\quad \theta_{u}=X\left(X^{\prime} X\right)^{-1} \theta_{\beta}$.
s^{2} is taken as follows:

$$
s^{2}=\frac{1}{n-k} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n-k} e^{\prime} e=\frac{1}{n-k}(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}),
$$

which leads to an unbiased estimator of σ^{2}.

Proof:

Substitute $y=X \beta+u$ and $\hat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u$ into $e=y-X \hat{\beta}$.

$$
\begin{aligned}
e & =y-X \hat{\beta}=X \beta+u-X\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right) \\
& =u-X\left(X^{\prime} X\right)^{-1} X^{\prime} u=\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
\end{aligned}
$$

$I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is idempotent and symmetric，because we have：

$$
\begin{aligned}
& \left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=I_{n}-X\left(X^{\prime} X\right)^{-1} X,^{\prime} \\
& \left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}=I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}
\end{aligned}
$$

s^{2} is rewritten as follows：

$$
\begin{aligned}
s^{2} & =\frac{1}{n-k} e^{\prime} e=\frac{1}{n-k}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u\right)^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u \\
& =\frac{1}{n-k} u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u \\
& =\frac{1}{n-k} u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
\end{aligned}
$$

$$
\frac{(n-k) s^{2}}{\sigma^{2}}=\frac{u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u}{\sigma^{2}} \sim \chi^{2}\left(\operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)
$$

Note that $\operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=n-k$ ，because

$$
\begin{aligned}
& \operatorname{tr}\left(I_{n}\right)=n \\
& \operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)=\operatorname{tr}\left(I_{k}\right)=k
\end{aligned}
$$

Take the expectation of $u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u$ and note that $\operatorname{tr}(a)=a$ for a scalar a ．

$$
\begin{aligned}
\mathrm{E}\left(s^{2}\right) & =\frac{1}{n-k} \mathrm{E}\left(\operatorname{tr}\left(u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u\right)\right)=\frac{1}{n-k} \mathrm{E}\left(\operatorname{tr}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u u^{\prime}\right)\right) \\
& =\frac{1}{n-k} \operatorname{tr}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \mathrm{E}\left(u u^{\prime}\right)\right)=\frac{1}{n-k} \sigma^{2} \operatorname{tr}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) I_{n}\right) \\
& =\frac{1}{n-k} \sigma^{2} \operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right) \\
& =\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)\right)=\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(I_{k}\right)\right) \\
& =\frac{1}{n-k} \sigma^{2}(n-k)=\sigma^{2}
\end{aligned}
$$

$\longrightarrow s^{2}$ is an unbiased estimator of σ^{2} ．
Note that we do not need normality assumption for unbiasedness of s^{2} ．
63

Trace（トレース）：
1．$A: n \times n, \quad \operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$ ，where $a_{i j}$ denotes an element in the i th row and the j th column of a matrix A ．

2．a ：scalar $(1 \times 1), \quad \operatorname{tr}(a)=a$
3．$A: n \times k, B: k \times n, \quad \operatorname{tr}(A B)=\operatorname{tr}(B A)$
4． $\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)=\operatorname{tr}\left(I_{k}\right)=k$
5．When X is a vector of random variables， $\mathrm{E}(\operatorname{tr}(X))=\operatorname{tr}(\mathrm{E}(X))$

65

4 Properties of OLSE

1．Properties of $\hat{\beta}$ ：BLUE（best linear unbiased estimator，最良線形不偏推定量），i．e．，minimum variance within the class of linear unbiased estimators （Gauss－Markov theorem，ガウス・マルコフの定理）
Proof：
Consider another linear unbiased estimator，which is denoted by $\widetilde{\beta}=C y$ ．

$$
\widetilde{\beta}=C y=C(X \beta+u)=C X \beta+C u,
$$

where C is a $k \times n$ matrix．

Taking the expectation of $\widetilde{\beta}$, we obatin:

$$
\mathrm{E}(\widetilde{\beta})=C X \beta+C \mathrm{E}(u)=C X \beta
$$

Because we have assumed that $\widetilde{\beta}=C y$ is unbiased, $\mathrm{E}(\widetilde{\beta})=\beta$ holds.
That is, we need the condition: $C X=I_{k}$.
Next, we obtain the variance of $\widetilde{\beta}=C y$.

$$
\widetilde{\beta}=C(X \beta+u)=\beta+C u .
$$

Therefore, we have:

$$
\mathrm{V}(\widetilde{\beta})=\mathrm{E}(\widetilde{\beta}-\beta)(\widetilde{\beta}-\beta)^{\prime}=\mathrm{E}\left(C u u^{\prime} C^{\prime}\right)=\sigma^{2} C C^{\prime}
$$

