Defining $C=D+\left(X^{\prime} X\right)^{-1} X^{\prime}, \mathrm{V}(\widetilde{\beta})$ is rewritten as:

$$
\mathrm{V}(\widetilde{\beta})=\sigma^{2} C C^{\prime}=\sigma^{2}\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}
$$

Moreover, because $\widehat{\beta}$ is unbiased, we have the following:

$$
C X=I_{k}=\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X=D X+I_{k} .
$$

Therefore, we have the following condition:

$$
D X=0
$$

Note as follows:
$\Longrightarrow A$ is positive definite when $d^{\prime} A d>0$ except $d=0$.
\Longrightarrow The i th diagonal element of A, i.e., $a_{i i}$, is positive (choose d such that the i th element of d is one and the other elements are zeros).

Accordingly, $\mathrm{V}(\widetilde{\beta})$ is rewritten as:

$$
\begin{aligned}
\mathrm{V}(\widetilde{\beta}) & =\sigma^{2} C C^{\prime}=\sigma^{2}\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}+\sigma^{2} D D^{\prime}=\mathrm{V}(\hat{\beta})+\sigma^{2} D D^{\prime}
\end{aligned}
$$

Thus, $\mathrm{V}(\widetilde{\beta})-\mathrm{V}(\hat{\beta})$ is a positive definite matrix.
$\Longrightarrow \mathrm{V}\left(\widetilde{\beta}_{i}\right)-\mathrm{V}\left(\hat{\beta}_{i}\right)>0$
$\Longrightarrow \hat{\beta}$ is a minimum variance (i.e., best) linear unbiased estimator of β.
F Distribution $\left(H_{0}: \beta=0\right)$:

1. If $u \sim N\left(0, \sigma^{2} I_{n}\right)$, then $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$.

Therefore, $\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}} \sim \chi^{2}(k)$.
2. Proof:

Using $\hat{\beta}-\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} u$, we obtain:

$$
\begin{aligned}
(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta) & =\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u=u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u
\end{aligned}
$$

72
3. (*) Formula:

Suppose that $X \sim N\left(0, I_{k}\right)$.

If A is symmetric and idempotent, i.e., $A^{\prime} A=A$, then $X^{\prime} A X \sim \chi^{2}(\operatorname{tr}(A))$.
Here, $X=\frac{1}{\sigma} u \sim N\left(0, I_{n}\right)$ from $u \sim N\left(0, \sigma^{2} I_{n}\right)$, and $A=X\left(X^{\prime} X\right)^{-1} X^{\prime}$.

Therefore, we obtain:

$$
\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u}{\sigma^{2}} \sim \chi^{2}(k)
$$

4. Sum of Residuals: e is rewritten as:

$$
e=\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
$$

Therefore, the sum of residuals is given by:

$$
e^{\prime} e=u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
$$

Note that $\quad I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is symmetric and idempotent.
We obtain the following result:

$$
\frac{e^{\prime} e}{\sigma^{2}}=\frac{u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u}{\sigma^{2}} \sim \chi^{2}\left(\operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)
$$

75
where the trace is:

$$
\operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=n-k
$$

Therefore, we have the following result:

$$
\frac{e^{\prime} e}{\sigma^{2}}=\frac{(n-k) s^{2}}{\sigma^{2}} \sim \chi^{2}(n-k)
$$

where

$$
s^{2}=\frac{1}{n-k} e^{\prime} e
$$

76
6. Therefore, we obtain the following distribution:

$$
\begin{aligned}
& \frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}}=\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u}{\sigma^{2}} \sim \chi^{2}(k) \\
& \frac{e^{\prime} e}{\sigma^{2}}=\frac{u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u}{\sigma^{2}} \sim \chi^{2}(n-k)
\end{aligned}
$$

$\hat{\beta}$ is independent of e.

Accordingly, we can derive:

$$
\frac{\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}} / k}{\frac{e^{\prime} e}{\sigma^{2}} /(n-k)}=\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta) / k}{s^{2}} \sim F(k, n-k)
$$

78

Note as follows:

$$
\frac{\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}} / k}{\frac{e^{\prime} e}{\sigma^{2}} /(n-k)}=\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u / k}{u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u /(n-k)} \sim F(k, n-k)
$$

because $X\left(X^{\prime} X\right)^{-1} X^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=0$.
(*) Formula:
When $X \sim N\left(0, I_{n}\right), A$ and B are $n \times n$ symmetric idempotent matrices, Rank $(A)=$ $\operatorname{tr}(A)=G, \operatorname{Rank}(B)=\operatorname{tr}(B)=K$ and $A B=0$, then $\frac{X^{\prime} A X / G}{X^{\prime} B X / K} \sim F(G, K)$.
(*) Remark

$$
\left(\begin{array}{c}
y_{1}-\bar{y} \\
y_{2}-\bar{y} \\
\vdots \\
y_{T}-\bar{y}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{T}
\end{array}\right)-\left(\begin{array}{c}
\bar{y} \\
\bar{y} \\
\vdots \\
\bar{y}
\end{array}\right)=y-\frac{1}{n} i i^{\prime} y=\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y
$$

where $i=(1,1, \cdots, 1)^{\prime}$.
4. In a matrix form, we can rewrite as: $\quad R^{2}=1-\frac{e^{\prime} e}{y^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y}$
F Distribution and Coefficient of Determination:
\Longrightarrow This will be discussed later.

Testing Linear Restrictions (F Distribution):

1. If $u \sim N\left(0, \sigma^{2} I_{n}\right)$, then $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$. Consider testing the hypothesis $H_{0}: R \beta=r$.

$$
R: G \times k, \quad \operatorname{rank}(R)=G \leq k
$$

$$
R \hat{\beta} \sim N\left(R \beta, \sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)
$$

Therefore, $\quad \frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r)}{\sigma^{2}} \sim \chi^{2}(G)$.
Note that $R \beta=r$.
(a) When $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$, the mean is: $\mathrm{E}(R \hat{\beta})=R \mathrm{E}(\hat{\beta})=R \beta$.
(b) When $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$, the variance is:

$$
\mathrm{V}(R \hat{\beta})=\mathrm{E}\left((R \hat{\beta}-R \beta)(R \hat{\beta}-R \beta)^{\prime}\right)=\mathrm{E}\left(R(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime} R^{\prime}\right)
$$

$$
=R \mathrm{E}\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right) R^{\prime}=R \mathrm{~V}(\hat{\beta}) R^{\prime}=\sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}
$$

