Equation 1 ====================================	Adjusted R-squared = .994762 Durbin-Watson statistic = .116873 F-statistic (zero slopes) = 7787.70 Schwarz Bayes. Info. Crit. = 17.4101 Log of likelihood function = -421.469				
Dependent variable: RCONS Current sample: 1956 to 1997 Number of observations: 42 Mean of dependent variable = 149038. Std. dev. of dependent var. = 78147.9 Sum of squared residuals = .127951E+10 Variance of residuals = .319878E+08 Std. error of regression = 5655.77 R-squared = .994890	Variable C RYD	Estimated Coefficient -3317.80 .854577	Standard Error 1934.49 .968382E-02	t-statistic -1.71508 88.2480	
124			125		

Equation 2 ============ Method of estimation = Ordinary Least Squares	Durbi F-stati Schwarz	Adjusted R-squared = .998946 Durbin-Watson statistic = .420979 F-statistic (zero slopes) = 12959.1 Schwarz Bayes. Info. Crit. = 15.9330 Log of likelihood function = -386.714				
Dependent variable: RCONS Current sample: 1956 to 1997 Number of observations: 42 Mean of dependent variable = 149038. Std. dev. of dependent var. = 78147.9 Sum of squared residuals = .244501E+09 Variance of residuals = .643423E+07 Std. error of regression = 2536.58 R-squared = .999024	Variable C D1 RYD D1RYD	Estimated Coefficient 4204.11 -39915.3 .786609 .194495	Standard Error 1440.45 3154.24 .015024 .018731	t-statistic 2.91861 -12.6545 52.3561 10.3839		

126

127

1. Equation 1

Significance test:

Equation 1 is:

 $\texttt{RCONS} = \beta_1 + \beta_2 \texttt{RYD}$

$$H_0: \beta_2 = 0$$

(No.1) t Test \implies Compare 10.3839 and t(42 - 2).

(No.2) *F* Test \implies Compare $\frac{R^2/G}{(1-R^2)/(n-k)} = \frac{.994890/1}{(1-.994890)/(42-2)} = 7787.8$ and *F*(1,40).

1% point of F(1, 40) = 7.31

 H_0 : $\beta_2 = 0$ is rejected.

2. Equation 1 vs. Equation 2

Test the structural change between 1973 and 1974.

Equation 2 is:

$$RCONS = \beta_1 + \beta_2 D1 + \beta_3 RYD + \beta_4 RYD \times D1$$

$$H_0:\,\beta_2=\beta_4=0$$

Restricted OLS \Longrightarrow Equation 1

 $\text{Unrestricted OLS} \Longrightarrow \text{Equation 2}$

$$\frac{(\tilde{u}'\tilde{u} - e'e)/G}{e'e/(n-k)} = \frac{(.127951E + 10 - .244501E + 09)/2}{.244501E + 09/(42 - 4)} = 80.43$$

which should be comared with F(2, 38).

1% point of F(2, 38) = 5.211 < 80.43

$$H_0$$
: $\beta_2 = \beta_4 = 0$ is rejected

 \implies The structure was changed in 1974.

130

8 Generalized Least Squares Method (GLS, 一般化 最小自乗法)

1. Regression model: $y = X\beta + u$, $u \sim (0, \sigma^2 \Omega)$

2. Heteroscedasticity (不等分散,不均一分散)

$$\sigma^2 \Omega = \begin{pmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_n^2 \end{pmatrix}$$

131

First-Order Autocorrelation (一階の自己相関,系列相関)

In the case of time series data, the subscript is conventionally given by t, not i.

$$u_t = \rho u_{t-1} + \epsilon_t, \quad \epsilon_t \sim \text{ iid } N(0, \sigma_{\epsilon}^2)$$

$$\sigma^{2}\Omega = \frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}} \begin{pmatrix} 1 & \rho & \rho^{2} & \cdots & \rho^{n-1} \\ \rho & 1 & \rho & \cdots & \rho^{n-2} \\ \rho^{2} & \rho & 1 & \cdots & \rho^{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \cdots & 1 \end{pmatrix}$$

~

 $V(u_t) = \sigma^2 = \frac{\sigma_\epsilon^2}{1 - \rho^2}$

3. The genelarized least squares (GLS) estimator of *β*, denoted by *b*, solves the following minimization problem:

 $\min_{\beta} (y - X\beta)' \Omega^{-1} (y - X\beta)$

The GLSE of
$$\beta$$
 is:

1

$$\phi = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y$$

133

4. In general, when Ω is symmetric, Ω is decomposed as follows.

$$\Omega = A'\Lambda A$$

 Λ is a diagonal matrix, where the diagonal elements of Λ are given by the eigen values.

 \boldsymbol{A} is a matrix consisting of egenvectors.

When Ω is a positive definite matrix, all the diagonal elements of Λ are positive.

5. There exists *P* shuch that $\Omega = PP'$ (i.e., take $P = A'\Lambda^{1/2}$).

Multiply P^{-1} on both sides of $y = X\beta + u$. We have:

 $y^{\star} = X^{\star}\beta + u^{\star},$

where $y^* = P^{-1}y$, $X^* = P^{-1}X$, and $u^* = P^{-1}u$. Note that

$$V(u^{\star}) = V(P^{-1}u) = P^{-1}V(u)P'^{-1} = \sigma^2 P^{-1}\Omega P'^{-1} = \sigma^2 I_n,$$

because $\Omega = PP'$, i.e., $P^{-1}\Omega P'^{-1} = I_n$.

Accordingly, the regression model is rewritten as:

 $y^{\star} = X^{\star}\beta + u^{\star}, \qquad u^{\star} \sim (0, \sigma^2 I_n)$

Apply OLS to the above model.

That is,

 $\min_{\beta} (y^* - X^*\beta)'(y^* - X^*\beta)$

is equivalent to:

 $\min_{\beta} (y - X\beta)' \Omega^{-1} (y - X\beta)$

136

 $b=\beta+(X^{\star\prime}X^{\star})^{-1}X^{\star\prime}u^{\star}=\beta+(X^{\prime}\Omega^{-1}X)^{-1}X^{\prime}\Omega^{-1}u$

 $E(b) = \beta$

 $V(b) = \sigma^2 (X^{\star \prime} X^{\star})^{-1} = \sigma^2 (X' \Omega^{-1} X)^{-1}$

137