Equation 1

Method of estimation $=$ Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1956 to 1997
Number of observations: 42
Mean of dependent variable $=149038$.
Std. dev. of dependent var. $=78147.9$
Sum of squared residuals $=.127951 \mathrm{E}+10$
Variance of residuals $=.319878 \mathrm{E}+08$
Std. error of regression $=5655.77$
R -squared $=.994890$

124

Adjusted R-squared $=.994762$
Durbin-Watson statistic $=.116873$ F-statistic (zero slopes) $=7787.70$ Schwarz Bayes. Info. Crit. = 17.4101 Log of likelihood function $=-421.469$

	Estimated	Standard	
Variable	Coefficient	Error	t-statistic
C	-3317.80	1934.49	-1.71508
RYD	.854577	$.968382 \mathrm{E}-02$	88.2480

Equation 2

Method of estimation $=$ Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1956 to 1997
Number of observations: 42
Mean of dependent variable $=149038$
Std. dev. of dependent var. $=78147.9$
Sum of squared residuals $=.244501 \mathrm{E}+09$
Variance of residuals $=.643423 \mathrm{E}+07$
Std. error of regression $=2536.58$ R -squared $=.999024$

Adjusted R-squared $=.998946$
Durbin-Watson statistic $=.420979$ F-statistic (zero slopes) = 12959.1 Schwarz Bayes. Info. Crit. = 15.9330 Log of likelihood function $=-386.714$

	Estimated	Standard Error	t-statistic
Variable	Coefficient	Erich C	4204.11

1. Equation 1

Significance test:
Equation 1 is:

$$
\mathrm{RCONS}=\beta_{1}+\beta_{2} \mathrm{RYD}
$$

$H_{0}: \beta_{2}=0$
(No.1) t Test \Longrightarrow Compare 10.3839 and $t(42-2)$.
(No.2) F Test \Longrightarrow Compare $\frac{R^{2} / G}{\left(1-R^{2}\right) /(n-k)}=\frac{.994890 / 1}{(1-.994890) /(42-2)}=$ 7787.8 and $F(1,40)$.
1% point of $F(1,40)=7.31$
$H_{0}: \beta_{2}=0$ is rejected.
2. Equation 1 vs. Equation 2

Test the structural change between 1973 and 1974.
Equation 2 is:

$$
\mathrm{RCONS}=\beta_{1}+\beta_{2} \mathrm{D} 1+\beta_{3} \mathrm{RYD}+\beta_{4} \mathrm{RYD} \times \mathrm{D} 1
$$

$H_{0}: \beta_{2}=\beta_{4}=0$

Restricted OLS \Longrightarrow Equation 1
Unrestricted OLS \Longrightarrow Equation 2

$$
\frac{\left(\tilde{u}^{\prime} \tilde{u}-e^{\prime} e\right) / G}{e^{\prime} e /(n-k)}=\frac{(.127951 \mathrm{E}+10-.244501 \mathrm{E}+09) / 2}{.244501 \mathrm{E}+09 /(42-4)}=80.43
$$

which should be comared with $F(2,38)$ ．
1% point of $F(2,38)=5.211<80.43$
$H_{0}: \beta_{2}=\beta_{4}=0$ is rejected．
\Longrightarrow The structure was changed in 1974.

130

8 Generalized Least Squares Method（GLS，一般化

最小自乗法）

1．Regression model：$y=X \beta+u, \quad u \sim\left(0, \sigma^{2} \Omega\right)$
2．Heteroscedasticity（不等分散，不均一分散）

$$
\sigma^{2} \Omega=\left(\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \sigma_{n}^{2}
\end{array}\right)
$$

131

$$
\mathrm{V}\left(u_{t}\right)=\sigma^{2}=\frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}}
$$

3．The genelarized least squares（GLS）estimator of β ，denoted by b ，solves the following minimization problem：

$$
\min _{\beta}(y-X \beta)^{\prime} \Omega^{-1}(y-X \beta)
$$

The GLSE of β is：

$$
b=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y
$$

Multiply P^{-1} on both sides of $y=X \beta+u$ ．
We have：
$y^{\star}=X^{\star} \beta+u^{\star}$ ，
where $\quad y^{\star}=P^{-1} y, \quad X^{\star}=P^{-1} X, \quad$ and $\quad u^{\star}=P^{-1} u$.
Note that

$$
\mathrm{V}\left(u^{\star}\right)=\mathrm{V}\left(P^{-1} u\right)=P^{-1} \mathrm{~V}(u) P^{\prime-1}=\sigma^{2} P^{-1} \Omega P^{\prime-1}=\sigma^{2} I_{n}
$$

because $\Omega=P P^{\prime}$ ，i．e．，$P^{-1} \Omega P^{\prime-1}=I_{n}$ ．

5．There exists P shuch that $\Omega=P P^{\prime}$（i．e．，take $P=A^{\prime} \Lambda^{1 / 2}$ ）．

Accordingly, the regression model is rewritten as:

$$
y^{\star}=X^{\star} \beta+u^{\star}, \quad u^{\star} \sim\left(0, \sigma^{2} I_{n}\right)
$$

Apply OLS to the above model.
That is,

$$
\begin{gathered}
b=\left(X^{\star \prime} X^{\star}\right)^{-1} X^{\star \prime} y^{\star}=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y \\
b=\beta+\left(X^{\star \prime} X^{\star}\right)^{-1} X^{\star \prime} u^{\star}=\beta+\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} u
\end{gathered}
$$

$\mathrm{E}(b)=\beta$

$$
\min \left(y^{\star}-X^{\star} \beta\right)^{\prime}\left(y^{\star}-X^{\star} \beta\right)
$$

is equivalent to:

$$
\min (y-X \beta)^{\prime} \Omega^{-1}(y-X \beta)
$$

$$
\beta
$$

136

