

6. Suppose that the regression model is given by:

$$y = X\beta + u, \quad u \sim N(0, \sigma^2 \Omega).$$

In this case, when we use OLS, what happens?

$$\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u$$

$$V(\hat{\beta}) = \sigma^2(X'X)^{-1}X'\Omega X(X'X)^{-1}$$

Compare GLS and OLS.

138

(a) Expectation:

$$E(\hat{\beta}) = \beta, \quad \text{and} \quad E(b) = \beta$$

Thus, both $\hat{\beta}$ and b are unbiased estimator.

(b) Variance:

$$V(\hat{\beta}) = \sigma^2(X'X)^{-1}X'\Omega X(X'X)^{-1}$$

$$V(b) = \sigma^2(X'\Omega^{-1}X)^{-1}$$

Which is more efficient, OLS or GLS?.

139

$$\begin{aligned} V(\hat{\beta}) - V(b) &= \sigma^2(X'X)^{-1}X'\Omega X(X'X)^{-1} - \sigma^2(X'\Omega^{-1}X)^{-1} \\ &= \sigma^2 \left((X'X)^{-1}X' - (X'\Omega^{-1}X)^{-1}X'\Omega^{-1} \right) \Omega \\ &\quad \times \left((X'X)^{-1}X' - (X'\Omega^{-1}X)^{-1}X'\Omega^{-1} \right)' \\ &= \sigma^2 A \Omega A' \end{aligned}$$

Ω is the variance-covariance matrix of u , which is a positive definite matrix.

Therefore, except for $\Omega = I_n$, $A\Omega A'$ is also a positive definite matrix.

140

This implies that $V(\hat{\beta}_i) - V(b_i) > 0$ for the i th element of β .

Accordingly, b is more efficient than $\hat{\beta}$.

7. If $u \sim N(0, \sigma^2 \Omega)$, then $b \sim N(\beta, \sigma^2(X'\Omega^{-1}X)^{-1})$.

Consider testing the hypothesis $H_0 : R\beta = r$.

$$R : G \times k, \quad \text{rank}(R) = G \leq k.$$

$$Rb \sim N(R\beta, \sigma^2 R(X'\Omega^{-1}X)^{-1}R').$$

Therefore, the following quadratic form is distributed as:

$$\frac{(Rb - r)'(R(X'\Omega^{-1}X)^{-1}R')^{-1}(Rb - r)}{\sigma^2} \sim \chi^2(G)$$

141

8. Because $(y^* - X^*b)'(y^* - X^*b)/\sigma^2 \sim \chi^2(n - k)$, we obtain:

$$\frac{(y - Xb)' \Omega^{-1} (y - Xb)}{\sigma^2} \sim \chi^2(n - k)$$

9. Furthermore, from the fact that b is independent of $y - Xb$, the following F distribution can be derived:

10. Let b be the unrestricted GLSE and \tilde{b} be the restricted GLSE.

Their residuals are given by e and \tilde{e} , respectively.

$$e = y - Xb, \quad \tilde{e} = y - X\tilde{b}$$

Then, the F test statistic is written as follows:

$$\frac{(\tilde{e}' \Omega^{-1} \tilde{e} - e' \Omega^{-1} e)/G}{e' \Omega^{-1} e/(n - k)} \sim F(G, n - k)$$

142

143

8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS \implies Stochastic linear restriction:

$$\begin{aligned} r &= R\beta + v, & \mathbb{E}(v) &= 0 \text{ and } \mathbb{V}(v) &= \sigma^2 \Psi \\ y &= X\beta + u, & \mathbb{E}(u) &= 0 \text{ and } \mathbb{V}(u) &= \sigma^2 I_n \end{aligned}$$

Using a matrix form,

$$\begin{pmatrix} y \\ r \end{pmatrix} = \begin{pmatrix} X \\ R \end{pmatrix} \beta + \begin{pmatrix} u \\ v \end{pmatrix}, \quad \mathbb{E} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ and } \mathbb{V} \begin{pmatrix} u \\ v \end{pmatrix} = \sigma^2 \begin{pmatrix} I_n & 0 \\ 0 & \Psi \end{pmatrix}$$

For estimation, we do not need normality assumption.

144

Applying GLS, we obtain:

$$\begin{aligned} b &= \left((X' R') \begin{pmatrix} I_n & 0 \\ 0 & \Psi \end{pmatrix}^{-1} \begin{pmatrix} X \\ R \end{pmatrix} \right)^{-1} \left((X' R') \begin{pmatrix} I_n & 0 \\ 0 & \Psi \end{pmatrix}^{-1} \begin{pmatrix} y \\ r \end{pmatrix} \right) \\ &= (X' X + R' \Psi^{-1} R)^{-1} (X' y + R' \Psi^{-1} r). \end{aligned}$$

Mean and Variance of b : b is rewritten as follows:

$$\begin{aligned} b &= \left((X' R') \begin{pmatrix} I_n & 0 \\ 0 & \Psi \end{pmatrix}^{-1} \begin{pmatrix} X \\ R \end{pmatrix} \right)^{-1} \left((X' R') \begin{pmatrix} I_n & 0 \\ 0 & \Psi \end{pmatrix}^{-1} \begin{pmatrix} y \\ r \end{pmatrix} \right) \\ &= \beta + \left((X' R') \begin{pmatrix} I_n & 0 \\ 0 & \Psi \end{pmatrix}^{-1} \begin{pmatrix} X \\ R \end{pmatrix} \right)^{-1} \begin{pmatrix} u \\ v \end{pmatrix} \end{aligned}$$

145

Therefore, the mean and variance are given by:

$$\mathbb{E}(b) = \beta \implies b \text{ is unbiased.}$$

$$\begin{aligned} \mathbb{V}(b) &= \sigma^2 \left((X' R') \begin{pmatrix} I_n & 0 \\ 0 & \Psi \end{pmatrix}^{-1} \begin{pmatrix} X \\ R \end{pmatrix} \right)^{-1} \\ &= \sigma^2 (X' X + R' \Psi^{-1} R)^{-1} \end{aligned}$$

146

9 Maximum Likelihood Estimation (MLE, 最尤法)

implies Review of Last Semester

1. The distribution function of $\{X_i\}_{i=1}^n$ is $f(x; \theta)$, where $x = (x_1, x_2, \dots, x_n)$ and $\theta = (\mu, \Sigma)$.

Note that X is a vector of random variables and x is a vector of their realizations (i.e., observed data).

Likelihood function $L(\cdot)$ is defined as $L(\theta; x) = f(x; \theta)$.

147

Note that $f(x; \theta) = \prod_{i=1}^n f(x_i; \theta)$ when X_1, X_2, \dots, X_n are mutually independently and identically distributed.

The maximum likelihood estimator (MLE) of θ is θ such that:

$$\max_{\theta} L(\theta; X) \iff \max_{\theta} \log L(\theta; X).$$

MLE satisfies the following two conditions:

- $\frac{\partial \log L(\theta; X)}{\partial \theta} = 0$.
- $\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}$ is a negative definite matrix.

148

2. Fisher's information matrix (フィッシャーの情報行列) is defined as:

$$I(\theta) = -\mathbb{E}\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right),$$

where we have the following equality:

$$-\mathbb{E}\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) = \mathbb{E}\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = \mathbb{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)$$

Proof of the above equality:

$$\int L(\theta; x) dx = 1$$

149

Take a derivative with respect to θ .

$$\int \frac{\partial L(\theta; x)}{\partial \theta} dx = 0$$

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative $\frac{\partial L(\theta; x)}{\partial \theta}$ exists.)

Rewriting the above equation, we obtain:

$$\int \frac{\partial \log L(\theta; x)}{\partial \theta} L(\theta; x) dx = 0,$$

i.e.,

$$E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0.$$

150

Again, differentiating the above with respect to θ , we obtain:

$$\begin{aligned} & \int \frac{\partial^2 \log L(\theta; x)}{\partial \theta \partial \theta'} L(\theta; x) dx + \int \frac{\partial \log L(\theta; x)}{\partial \theta} \frac{\partial L(\theta; x)}{\partial \theta'} dx \\ &= \int \frac{\partial^2 \log L(\theta; x)}{\partial \theta \partial \theta'} L(\theta; x) dx + \int \frac{\partial \log L(\theta; x)}{\partial \theta} \frac{\partial \log L(\theta; x)}{\partial \theta'} L(\theta; x) dx \\ &= E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) + E\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = 0. \end{aligned}$$

Therefore, we can derive the following equality:

$$-E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) = E\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right),$$

where the second equality utilizes $E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0$.

151