6. Suppose that the regression model is given by:

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} \Omega\right)
$$

In this case, when we use OLS, what happens?

$$
\begin{gathered}
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
\mathrm{~V}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}
\end{gathered}
$$

Compare GLS and OLS.

138
(a) Expectation:

$$
\mathrm{E}(\hat{\beta})=\beta, \quad \text { and } \quad \mathrm{E}(b)=\beta
$$

Thus, both $\hat{\beta}$ and b are unbiased estimator.
(b) Variance:

$$
\begin{aligned}
& \mathrm{V}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1} \\
& \mathrm{~V}(b)=\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1}
\end{aligned}
$$

Which is more efficient, OLS or GLS?.

This implies that $\mathrm{V}\left(\hat{\beta}_{i}\right)-\mathrm{V}\left(b_{i}\right)>0$ for the i th element of β.
Accordingly, b is more efficient than $\hat{\beta}$.
7. If $u \sim N\left(0, \sigma^{2} \Omega\right)$, then $b \sim N\left(\beta, \sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1}\right)$.

Consider testing the hypothesis $H_{0}: R \beta=r$.
$R: G \times k, \quad \operatorname{rank}(R)=G \leq k$.
$R b \sim N\left(R \beta, \sigma^{2} R\left(X^{\prime} \Omega^{-1} X\right)^{-1} R^{\prime}\right)$.
Therefore, the following quadratic form is distributed as:

$$
\frac{(R b-r)^{\prime}\left(R\left(X^{\prime} \Omega^{-1} X\right)^{-1} R^{\prime}\right)^{-1}(R b-r)}{\sigma^{2}} \sim \chi^{2}(G)
$$

141
10. Let b be the unrestricted GLSE and \tilde{b} be the restricted GLSE.

Their residuals are given by e and \tilde{e}, respectively.

$$
e=y-X b, \quad \tilde{e}=y-X \tilde{b}
$$

Then, the F test statistic is written as follows:

$$
\frac{\left(\tilde{e}^{\prime} \Omega^{-1} \tilde{e}-e^{\prime} \Omega^{-1} e\right) / G}{e^{\prime} \Omega^{-1} e /(n-k)} \sim F(G, n-k)
$$

8．1 Example：Mixed Estimation（Theil and Goldberger Model）

A generalization of the restricted OLS \Longrightarrow Stochastic linear restriction：

$$
\begin{array}{ll}
r=R \beta+v, & \mathrm{E}(v)=0 \text { and } \mathrm{V}(v)=\sigma^{2} \Psi \\
y=X \beta+u, & \mathrm{E}(u)=0 \text { and } \mathrm{V}(u)=\sigma^{2} I_{n}
\end{array}
$$

Using a matrix form，

$$
\binom{y}{r}=\binom{X}{R} \beta+\binom{u}{v}, \quad \mathrm{E}\binom{u}{v}=\binom{0}{0} \text { and } \mathrm{V}\binom{u}{v}=\sigma^{2}\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)
$$

For estimation，we do not need normality assumption．

Applying GLS，we obtain：

$$
\begin{aligned}
b & \left.=\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{y}{r}\right) \\
& =\left(X^{\prime} X+R^{\prime} \Psi^{-1} R\right)^{-1}\left(X^{\prime} y+R^{\prime} \Psi^{-1} r\right) .
\end{aligned}
$$

Mean and Variance of $b: \quad b$ is rewritten as follows：

$$
\begin{aligned}
b & \left.=\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{y}{r}\right) \\
& =\beta+\left(\begin{array}{ll}
\left.\left(\begin{array}{ll}
R^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\binom{u}{v}
\end{array}\right. \text { (}
\end{aligned}
$$

9 Maximum Likelihood Estimation（MLE，最尤法）

\Longrightarrow Review of Last Semester

1．The distribution function of $\left\{X_{i}\right\}_{i=1}^{n}$ is $f(x ; \theta)$ ，where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $\theta=(\mu, \Sigma)$ ．
Note that X is a vector of random variables and x is a vector of their realiza－ tions（i．e．，observed data）．

Likelihood function $L(\cdot)$ is defined as $L(\theta ; x)=f(x ; \theta)$ ．

147

Note that $f(x ; \theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$ when $X_{1}, X_{2}, \cdots, X_{n}$ are mutually indepen－ dently and identically distributed．

The maximum likelihood estimator（MLE）of θ is θ such that：

$$
\max _{\theta} L(\theta ; X) . \quad \Longleftrightarrow \quad \max _{\theta} \log L(\theta ; X)
$$

MLE satisfies the following two conditions：
（a）$\frac{\partial \log L(\theta ; X)}{\partial \theta}=0$ ．
（b）$\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}$ is a negative definite matrix．

2．Fisher＇s information matrix（フィッシャーの情報行列）is defined as：

$$
I(\theta)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)
$$

where we have the following equality：

$$
-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)=\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
$$

Proof of the above equality：

$$
\int L(\theta ; x) \mathrm{d} x=1
$$

Take a derivative with respect to θ.

$$
\int \frac{\partial L(\theta ; x)}{\partial \theta} \mathrm{d} x=0
$$

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative $\frac{\partial L(\theta ; x)}{\partial \theta}$ exists.)
Rewriting the above equation, we obtain:

$$
\int \frac{\partial \log L(\theta ; x)}{\partial \theta} L(\theta ; x) \mathrm{d} x=0
$$

i.e.,

$$
\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0
$$

Again, differentiating the above with respect to θ, we obtain:

$$
\int \frac{\partial^{2} \log L(\theta ; x)}{\partial \theta \partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x+\int \frac{\partial \log L(\theta ; x)}{\partial \theta} \frac{\partial L(\theta ; x)}{\partial^{\prime} \theta} \mathrm{d} x
$$

$$
\begin{aligned}
& =\int \frac{\partial^{2} \log L(\theta ; x)}{\partial \theta \partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x+\int \frac{\partial \log L(\theta ; x)}{\partial \theta} \frac{\partial \log L(\theta ; x)}{\partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x \\
& =\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)+\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=0
\end{aligned}
$$

Therefore, we can derive the following equality:
$-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)=\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)$,
where the second equality utilizes $\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0$.
151

