6. Suppose that the regression model is given by: (a) Expectation:

E@) =8, and E(b)=p
y=XB+u, u ~ N(O, U'ZQ).

Thus, both 3 and b are unbiased estimator.
In this case, when we use OLS, what happens?

(b) Variance:
B=(X'X)!Y'y = vyl y?
B=@X) Xy =p+ XX Xu V(B) = (X' X)X’ QX (X'X)™!

2w —1
V(B) = (X' X)X’ QX (X' X)"! V(b) = A(X'Q'X)

Which is more efficient, OLS or GLS?.
Compare GLS and OLS.
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This implies that V(,@,») — V(b;) > 0 for the ith element of 8.
V) - V() = A XXX — Xy Accordingly, b is more efficient than /3.
_ (rz((X/X)-lxl _ (X/Q—IX)—IXrQ—I)Q 7. Ifu ~ N(0,0*Q), then b ~ N(B, 7> (X'Q™'X)™").
X((X'X)’IX’ _ (X'Qflx)le/Qfl)’ Consider testing the hypothesis H, : RB = r.
= ?AQA’ R: Gxk, rank(R)=G <k.
Q is the variance-covariance matrix of u, which is a positive definite Rb ~ N(RE, *RXQ7X)™'R).
matrix. Therefore, the following quadratic form is distributed as:
Therefore, except for Q = I,, AQA’ is also a positive definite matrix. (Rb— r)’(R(XlQ;:()?lR,)il(Rb = ~ XZ(G)
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8. Because (y* — X*b)'(y* — X*b)/c? ~ x*(n — k), we obtain: 10. Let b be the unrestricted GLSE and b be the restricted GLSE.

(y = XbYQ~'(y — Xb) > Their residuals are given by e and &, respectively.
I 4 (n—k)
9. Furthermore, from the fact that b is independent of y — Xb, the following F e=y-Xb, é=y-Xb
distribution can be derived:
Then, the F test statistic is written as follows:
(Rb - rY(RX'Q XY 'R Rb - 1)/G @Q2-Q70/G Lo
i ~FG.n—k) Q- e/(n— 1) o
(y—=Xb)YQ '(y-Xb)/n—-k
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8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS = Stochastic linear restriction:

r=RB+v, E(v) =0 and V(v) = ¥

y=XB+u, E(u) =0 and V(u) = oI,

Using a matrix form,

y X u u 0 u I, 0
Ol =)=lo) e v(C)-( )
r R v v 0 v 0 v
For estimation, we do not need normality assumption.
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Threfore, the mean and variance are given by:

E®) =p = b is unbiased.

I, 0\'/Xx
V(b):o-z[(X’ R’)( ) ( )]
0 ¥/ \R

= (XX +RY'R)
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Note that f(x;0) = [, f(x;;6) when X,, X5, ---, X,, are mutually indepen-

dently and identically distributed.

The maximum likelihood estimator (MLE) of 6 is 6 such that:

max L(6; X). = max log L(6; X).
0 0

MLE satisfies the following two conditions:
dlog L(6; X) 0

(a) 70
0’ log L(6; X
(b) % is a negative definite matrix.
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Applying GLS, we obtain:

1, 0\lixy! I, 0\'/y
=l ol W) () 1 ol ) ()
0o v R 0o v r
-1
= (XX +RYIR) (Xy+R¥7).
Mean and Variance of b: b is rewritten as follows:

b:[(X' R')(;" i)l(z)]l[(’f R')(Io” i)l(i)]

sl mfe o) G )
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9 Maximum Likelihood Estimation (MLE, & ;%)
— Review of Last Semester
1. The distribution function of {X;}, is f(x;6), where x = (xi, xa, -+, x,) and
0= (uXx).

Note that X is a vector of random variables and x is a vector of their realiza-

tions (i.e., observed data).

Likelihood function L(-) is defined as L(6; x) = f(x;6).
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2. Fisher’s information matrix (7 1 > v —®O1&#HR1T5) is defined as:

0*log L(8; X))

where we have the following equality:

& log L(0:X)\ _ _ 0log L(6;X) dlog L(6:X)\ _ dlog L(6:X)
- 9606 )= 9 a6 J=v( 96 )

Proof of the above equality:

fL(H; x)dx =1
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Take a derivative with respect to 6.

f@L(O; x)dx -0

06

(We assume that (i) the domain of x does not depend on 6 and (ii) the deriva-
AL(O; x)

a0
Rewriting the above equation, we obtain:

f dlog L(0; x)
a0

tive

exists.)
L(0; x)dx = 0,

dlog L(6; X)
E(—=—"20) =0.
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Again, differentiating the above with respect to 6, we obtain:
0% log L(6; x) 0log L(6; x) OL(6; x)
f a0 L(6; x)dx + f 0 50 dx
2 . . .
_ fﬁ log L(6; X)L(é}; Odx + f dlog L(6; x) d1og L(6; x)

0600 96 ag L:0dx

9*log L(6; X) dlog L(9; X) dlog L(6; X)
=E E =0.
(e ) *E 2 )0

Therefore, we can derive the following equality:

0% log L(9; X) dlog L(6; X) 0log L(6; X) dlog L(6; X)
—E =E =V s
0000" 00 00’ a0

dlog L(6; X
where the second equality utilizes E (%)) =0.
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