
6. Suppose that the regression model is given by:

y = Xβ + u, u ∼ N(0, σ2
Ω).

In this case, when we use OLS, what happens?

β̂ = (X′X)−1X′y = β + (X′X)−1X′u

V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

Compare GLS and OLS.
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(a) Expectation:

E(β̂) = β, and E(b) = β

Thus, both β̂ and b are unbiased estimator.

(b) Variance:

V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

V(b) = σ2(X′Ω−1X)−1

Which is more efficient, OLS or GLS?.
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V(β̂) − V(b) = σ2(X′X)−1X′ΩX(X′X)−1 − σ2(X′Ω−1X)−1

= σ2
(

(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1
)

Ω

×
(

(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1
)′

= σ2AΩA′

Ω is the variance-covariance matrix of u, which is a positive definite

matrix.

Therefore, except for Ω = In, AΩA′ is also a positive definite matrix.
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This implies that V(β̂i) − V(bi) > 0 for the ith element of β.

Accordingly, b is more efficient than β̂.

7. If u ∼ N(0, σ2
Ω), then b ∼ N(β, σ2(X′Ω−1X)−1).

Consider testing the hypothesis H0 : Rβ = r.

R : G × k, rank(R) = G ≤ k.

Rb ∼ N(Rβ, σ2R(X′Ω−1X)−1R′).

Therefore, the following quadratic form is distributed as:

(Rb − r)′(R(X′Ω−1X)−1R′)−1(Rb − r)

σ2
∼ χ2(G)
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8. Because (y? − X?b)′(y? − X?b)/σ2 ∼ χ2(n − k), we obtain:

(y − Xb)′Ω−1(y − Xb)

σ2
∼ χ2(n − k)

9. Furthermore, from the fact that b is independent of y − Xb, the following F

distribution can be derived:

(Rb − r)′(R(X′Ω−1X)−1R′)−1(Rb − r)/G

(y − Xb)′Ω−1(y − Xb)/n − k
∼ F(G, n − k)
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10. Let b be the unrestricted GLSE and b̃ be the restricted GLSE.

Their residuals are given by e and ẽ, respectively.

e = y − Xb, ẽ = y − Xb̃

Then, the F test statistic is written as follows:

(ẽ′Ω−1ẽ − e′Ω−1e)/G

e′Ω−1e/(n − k)
∼ F(G, n − k)
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8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS =⇒ Stochastic linear restriction:

r = Rβ + v, E(v) = 0 and V(v) = σ2
Ψ

y = Xβ + u, E(u) = 0 and V(u) = σ2In

Using a matrix form,

(

y

r

)

=

(

X

R

)

β +

(

u

v

)

, E

(

u

v

)

=

(

0

0

)

and V

(

u

v

)

= σ2

(

In 0

0 Ψ

)

For estimation, we do not need normality assumption.
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Applying GLS, we obtain:

b =















( X′ R′ )

(

In 0

0 Ψ

)−1 (

X

R

)















−1 













( X′ R′ )

(

In 0

0 Ψ

)−1 (

y

r

)















=

(

X′X + R′Ψ−1R
)−1(

X′y + R′Ψ−1r
)

.

Mean and Variance of b: b is rewritten as follows:

b =















( X′ R′ )

(

In 0

0 Ψ

)−1 (

X

R

)















−1 













( X′ R′ )

(

In 0

0 Ψ

)−1 (

y

r

)















= β +















( X′ R′ )

(

In 0

0 Ψ

)−1 (

X

R

)















−1
(

u

v

)
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Threfore, the mean and variance are given by:

E(b) = β =⇒ b is unbiased.

V(b) = σ2















( X′ R′ )

(

In 0

0 Ψ

)−1 (

X

R

)















−1

= σ2
(

X′X + R′Ψ−1R
)−1
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9 Maximum Likelihood Estimation (MLE, )

=⇒ Review of Last Semester

1. The distribution function of {Xi}
n
i=1

is f (x; θ), where x = (x1, x2, · · · , xn) and

θ = (µ,Σ).

Note that X is a vector of random variables and x is a vector of their realiza-

tions (i.e., observed data).

Likelihood function L(·) is defined as L(θ; x) = f (x; θ).
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Note that f (x; θ) =
∏n

i=1 f (xi; θ) when X1, X2, · · ·, Xn are mutually indepen-

dently and identically distributed.

The maximum likelihood estimator (MLE) of θ is θ such that:

max
θ

L(θ; X). ⇐⇒ max
θ

log L(θ; X).

MLE satisfies the following two conditions:

(a)
∂ log L(θ; X)

∂θ
= 0.

(b)
∂2 log L(θ; X)

∂θ∂θ′
is a negative definite matrix.
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2. Fisher’s information matrix ( ) is defined as:

I(θ) = −E
(∂2 log L(θ; X)

∂θ∂θ′

)

,

where we have the following equality:

−E
(∂2 log L(θ; X)

∂θ∂θ′

)

= E
(∂ log L(θ; X)

∂θ

∂ log L(θ; X)

∂θ′

)

= V
(∂ log L(θ; X)

∂θ

)

Proof of the above equality:

∫

L(θ; x)dx = 1
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Take a derivative with respect to θ.
∫

∂L(θ; x)

∂θ
dx = 0

(We assume that (i) the domain of x does not depend on θ and (ii) the deriva-

tive
∂L(θ; x)

∂θ
exists.)

Rewriting the above equation, we obtain:
∫

∂ log L(θ; x)

∂θ
L(θ; x)dx = 0,

i.e.,

E

(

∂ log L(θ; X)

∂θ

)

= 0.
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Again, differentiating the above with respect to θ, we obtain:
∫

∂2 log L(θ; x)

∂θ∂θ′
L(θ; x)dx +

∫

∂ log L(θ; x)

∂θ

∂L(θ; x)

∂′θ
dx

=

∫

∂2 log L(θ; x)

∂θ∂θ′
L(θ; x)dx +

∫

∂ log L(θ; x)

∂θ

∂ log L(θ; x)

∂θ′
L(θ; x)dx

= E
(∂2 log L(θ; X)

∂θ∂θ′

)

+ E
(∂ log L(θ; X)

∂θ

∂ log L(θ; X)

∂θ′

)

= 0.

Therefore, we can derive the following equality:

−E

(

∂2 log L(θ; X)

∂θ∂θ′

)

= E

(

∂ log L(θ; X)

∂θ

∂ log L(θ; X)

∂θ′

)

= V

(

∂ log L(θ; X)

∂θ

)

,

where the second equality utilizes E

(

∂ log L(θ; X)

∂θ

)

= 0.
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