3．Cramer－Rao Lower Bound（クラメール・ラオの下限）：$I(\theta)$

Suppose that an estimator of θ is given by $s(X)$ ．
The expectation of $s(X)$ is：

$$
\mathrm{E}(s(X))=\int s(x) L(\theta ; x) \mathrm{d} x
$$

Differentiating the above with respect to θ ，

$$
\begin{aligned}
\frac{\partial \mathrm{E}(s(X))}{\partial \theta} & =\int s(x) \frac{\partial L(\theta ; x)}{\partial \theta} \mathrm{d} x=\int s(x) \frac{\partial \log L(\theta ; x)}{\partial \theta} L(\theta ; x) \mathrm{d} x \\
& =\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
\end{aligned}
$$

152
i．e．，

$$
\rho=\frac{\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}{\sqrt{\mathrm{V}(s(X))} \sqrt{\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}}
$$

Note that $|\rho| \leq 1$ ．
Therefore，we have the following inequality：

$$
\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} \leq \mathrm{V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
$$

For simplicity，let $s(X)$ and θ be scalars．
Then，

$$
\begin{aligned}
\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} & =\left(\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)\right)^{2}=\rho^{2} \mathrm{~V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right) \\
& \leq \mathrm{V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right),
\end{aligned}
$$

where ρ denotes the correlation coefficient between $s(X)$ and $\frac{\partial \log L(\theta ; X)}{\partial \theta}$ ，
i．e．，

$$
\mathrm{V}(s(X)) \geq \frac{\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2}}{\mathrm{~V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}
$$

Especially，when $\mathrm{E}(s(X))=\theta$ ，

$$
\mathrm{V}(s(X)) \geq \frac{1}{-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta^{2}}\right)}=(I(\theta))^{-1}
$$

4．Asymptotic Normality of MLE：
Let $\tilde{\theta}$ be MLE of θ ．
As n goes to infinity，we have the following result：

$$
\sqrt{n}(\tilde{\theta}-\theta) \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)^{-1}\right)
$$

where it is assumed that $\lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)$ converges．
That is，when n is large，$\tilde{\theta}$ is approximately distributed as follows：

$$
\tilde{\theta} \sim N\left(\theta,(I(\theta))^{-1}\right)
$$

157

Suppose that $s(X)=\tilde{\theta}$ ．
When n is large， $\mathrm{V}(s(X))$ is approximately equal to $(I(\theta))^{-1}$ ．
5．Optimization（最適化）：

$$
0=\frac{\partial \log L(\theta ; x)}{\partial \theta}=\frac{\partial \log L\left(\theta^{*} ; x\right)}{\partial \theta}+\frac{\partial^{2} \log L\left(\theta^{*} ; x\right)}{\partial \theta \partial \theta^{\prime}}\left(\theta-\theta^{*}\right)
$$

Solving the above equation with respect to θ ，we obtain the following：

$$
\theta=\theta^{*}-\left(\frac{\partial^{2} \log L\left(\theta^{*} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)^{-1} \frac{\partial \log L\left(\theta^{*} ; x\right)}{\partial \theta}
$$

Replace the variables as follows：

$$
\begin{aligned}
\theta & \longrightarrow \theta^{(i+1)} \\
\theta^{*} & \longrightarrow \theta^{(i)}
\end{aligned}
$$

Then，we have：

$$
\theta^{(i+1)}=\theta^{(i)}-\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta}
$$

\Longrightarrow Newton－Raphson method（ニュートン・ラプソン法）

9．1 MLE：The Case of Single Regression Model

The regression model：

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i}
$$

1．$u_{i} \sim N\left(0, \sigma^{2}\right)$ is assumed．
2．The density function of u_{i} is：

$$
f\left(u_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}} u_{i}^{2}\right)
$$

Because $u_{1}, u_{2}, \cdots, u_{n}$ are mutually independently distributed，the joint den－

161
sity function of $u_{1}, u_{2}, \cdots, u_{n}$ is written as：

$$
\begin{aligned}
f\left(u_{1}, u_{2}, \cdots, u_{n}\right) & =f\left(u_{1}\right) f\left(u_{2}\right) \cdots f\left(u_{n}\right) \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} u_{i}^{2}\right)
\end{aligned}
$$

3．Using the transformation of variable（ $u_{i}=y_{i}-\beta_{1}-\beta_{2} x_{i}$ ），the joint density function of $y_{1}, y_{2}, \cdots, y_{n}$ is given by：

$$
\begin{aligned}
f\left(y_{1}, y_{2}, \cdots, y_{n}\right) & =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2}\right) \\
& \equiv L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)
\end{aligned}
$$

$L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)$ is called the likelihood function．
$\log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)$ is called the log－likelihood function．

$$
\begin{aligned}
& \log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right) \\
& \quad=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{t}-\beta_{1}-\beta_{2} x_{i}\right)^{2}
\end{aligned}
$$

4．Transformation of Variable（変数変換）：

Suppose that the density function of a random variable X is $f_{x}(x)$ ．
Defining $X=g(Y)$ ，the density function of $Y, f_{y}(y)$ ，is given by：

$$
f_{y}(y)=f_{x}(g(y))\left|\frac{\mathrm{d} g(y)}{\mathrm{d} y}\right| .
$$

In the case where X and $g(Y)$ are $n \times 1$ vectors，$\left|\frac{\mathrm{d} g(y)}{\mathrm{d} y}\right|$ should be replaced by $\left|\frac{\partial g(y)}{\partial y^{\prime}}\right|$, which is an absolute value of a determinant of the matrix $\frac{\partial g(y)}{\partial y^{\prime}}$ ．

164

5．Given the observed data $y_{1}, y_{2}, \cdots, y_{n}$ ，the likelihood function $L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}\right.$ ， y_{2}, \cdots, y_{n} ，or the \log－likelihood function $\log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)$ is maximized with respect to $\left(\alpha, \beta, \sigma^{2}\right)$ ．

Solve the following three simultaneous equations：

$$
\begin{aligned}
& \frac{\partial \log L\left(\alpha, \beta, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)}{\partial \alpha}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)=0 \\
& \frac{\partial \log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)}{\partial \beta}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right) x_{i}=0
\end{aligned}
$$

Example：When $X \sim U(0,1)$ ，derive the density function of $Y=-\log (X)$ ．

$$
f_{x}(x)=1
$$

$X=\exp (-Y)$ is obtained．

Therefore，the density function of $Y, f_{y}(y)$ ，is given by：

$$
f_{y}(y)=\left|\frac{\mathrm{d} x}{\mathrm{~d} y}\right| f_{x}(g(y))=|-\exp (-y)|=\exp (-y)
$$

165

$$
\frac{\partial \log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)}{\partial \sigma^{2}}=-\frac{n}{2} \frac{1}{\sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2}=0
$$

The solutions of $\left(\beta_{1}, \beta_{2}, \sigma^{2}\right)$ are called the maximum likelihood estimates， denoted by $\left(\tilde{\beta}_{1}, \tilde{\beta}_{2}, \tilde{\sigma}^{2}\right)$ ．

The maximum likelihood estimates are：
$\tilde{\beta}_{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, \quad \tilde{\beta}_{1}=\bar{y}-\tilde{\beta}_{2} \bar{x}, \quad \tilde{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\tilde{\alpha}-\tilde{\beta} x_{i}\right)^{2}$.
The MLE of σ^{2} is divided by n ，not $n-2$ ．

