$$= (2\pi)^{-n/2} (\sigma_{\epsilon}^2)^{-n/2} (1 - \rho^2)^{1/2} \exp\left(-\frac{1}{2\sigma_{\epsilon}^2} \sum_{t=1}^n (y_t^* - x_t^* \beta)^2\right)$$

= $L(\rho, \sigma_{\epsilon}^2, \beta; y_n, y_{n-1}, \dots, y_1),$

where y_t^* and x_t^* are given by:

$$y_t^* = \begin{cases} \sqrt{1 - \rho^2} y_t, & \text{for } t = 1, \\ y_t - \rho y_{t-1}, & \text{for } t = 2, 3, \dots, n, \end{cases}$$
$$x_t^* = \begin{cases} \sqrt{1 - \rho^2} x_t, & \text{for } t = 1, \\ x_t - \rho x_{t-1}, & \text{for } t = 2, 3, \dots, n, \end{cases}$$

185

 $\tilde{\beta} = (\sum_{t=1}^{T} x_t^{*t} y_t^*)^{-1} (\sum_{t=1}^{T} x_t^{*t} y_t^*)$ $= (X^{*t} X^*)^{-1} X^{*t} y^*$ for t = 1,
for $t = 2, 3, \dots, n$. \Longrightarrow This is equivalent to OLS from the regression model: $y^* = X^* \beta + \epsilon$ and $\epsilon \sim 0$

 $N(0, \sigma^2 I_n)$, where $\sigma^2 = \sigma_{\epsilon}^2/(1 - \rho^2)$.

to β should be zero.

 \odot For maximization, the first derivative of $L(\rho, \sigma_{\epsilon}^2, \beta; y_n, y_{n-1}, \cdots, y_1)$ with respect to σ_{ϵ}^2 should be zero.

$$\tilde{\sigma}_{\epsilon}^{2} = \frac{1}{n} \sum_{t=1}^{n} (y_{t}^{*} - x_{t}^{*}\beta)^{2} = \frac{1}{n} (y^{*} - X^{*}\beta)'(y^{*} - X^{*}\beta),$$

where

$$y^* = \begin{pmatrix} y_1^* \\ y_2^* \\ \vdots \\ y_n^* \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \rho^2} y_1 \\ y_2 - \rho y_1 \\ \vdots \\ y_n - \rho y_{n-1} \end{pmatrix}, \qquad X^* = \begin{pmatrix} x_1^* \\ x_2^* \\ \vdots \\ x_n^* \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \rho^2} x_1 \\ x_2 - \rho x_1 \\ \vdots \\ x_n - \rho x_{n-1} \end{pmatrix}.$$

187

 \odot For maximization, the first derivative of $L(\rho, \sigma_{\epsilon}^2, \beta; y_n, y_{n-1}, \dots, y_1)$ with respect to ρ should be zero.

 \odot For maximization, the first derivative of $L(\rho, \sigma_{\epsilon}^2, \beta; y_n, y_{n-1}, \cdots, y_1)$ with respect

186

 $\max_{\beta,\sigma_{\epsilon}^2,\rho}L(\rho,\sigma_{\epsilon}^2,\beta;y) \quad \text{is equivalent to} \quad \max_{\rho}L(\rho,\tilde{\sigma}_{\epsilon}^2,\tilde{\beta};y).$

 $L(\rho, \tilde{\sigma}_{\epsilon}^2, \tilde{\beta}; y)$ is called the **concentrated log-likelihood function** (集約対数尤度関数), which is a function of ρ , i.e., both $\tilde{\sigma}_{\epsilon}^2$ and $\tilde{\beta}$ depend only on ρ .

188

The log-likelihood function is written as:

$$\begin{split} \log L(\rho, \tilde{\sigma}_{\epsilon}^2, \tilde{\beta}; y) &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\tilde{\sigma}_{\epsilon}^2) + \frac{1}{2} \log(1-\rho^2) - \frac{n}{2} \\ &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} - \frac{n}{2} \log(\tilde{\sigma}_{\epsilon}^2(\rho)) + \frac{1}{2} \log(1-\rho^2) \end{split}$$

For maximization of $\log L$, use Newton-Raphson method, method of scoring or simple grid search

Note that
$$\tilde{\sigma}_{\epsilon}^2 = \tilde{\sigma}_{\epsilon}^2(\rho) = \frac{1}{n}(y^* - X^*\tilde{\beta})'(y^* - X^*\tilde{\beta})$$
 for $\tilde{\beta} = (X^{*'}X^*)^{-1}X^{*'}y^*$.

Remark: The regression model with AR(1) error is:

$$V(u) = \sigma^{2} \begin{pmatrix} 1 & \rho & \rho^{2} & \cdots & \rho^{n-1} \\ \rho & 1 & \rho & \rho^{2} & \cdots & \rho^{n-2} \\ \rho^{2} & \rho & 1 & \rho & \cdots & \rho^{n-3} \\ \rho^{3} & \rho^{2} & \cdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \rho \\ \rho^{n-1} & \rho^{n-2} & \cdots & \rho^{2} & \rho & 1 \end{pmatrix} = \sigma^{2}\Omega, \quad \text{where } \sigma^{2} = \frac{\sigma_{\epsilon}^{2}}{1 - \rho^{2}}.$$

where $Cov(u_i, u_j) = E(u_i u_j) = \sigma^2 \rho^{|i-j|}$, i.e., the *i*th row and *j*th column of Ω is $\rho^{|i-j|}$.

The regression model with AR(1) error is: $y = X\beta + u$, $u \sim N(0, \sigma^2 \Omega)$.

There exists P which satisfies that $\Omega = PP'$, because ω is a positive definite matrix.

Multiply P^{-1} on both sides from the left.

$$P^{-1}y = P^{-1}X\beta + P^{-1}u$$
 \Longrightarrow $y^* = X^*\beta + u^*$ and $u^* \sim N(0, \sigma^2 I_n)$ \Longrightarrow Apply OLS.

191

$$y^* = \begin{pmatrix} y_1^* \\ y_2^* \\ \vdots \\ y_n^* \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \rho^2} y_1 \\ y_2 - \rho y_1 \\ \vdots \\ y_n - \rho y_{n-1} \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \rho^2} & 0 & \cdots & \cdots & 0 \\ -\rho & 1 & 0 & \cdots & 0 \\ 0 & -\rho & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -\rho & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = P^{-1}y$$

$$X^* = \begin{pmatrix} x_1^* \\ x_2^* \\ \vdots \\ x_n^* \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \rho^2} x_1 \\ x_2 - \rho x_1 \\ \vdots \\ x_n - \rho x_{n-1} \end{pmatrix} = P^{-1}X \qquad \Longrightarrow \qquad \text{Check } P^{-1}\Omega P^{-1} = aI_n, \text{ where } a \text{ is constant.}$$

192

.6 MLE: Regression Model with Heteroscedastic Errors

In the case where the error term depends on the other exogenous variables, the regression model is written as follows:

$$y_i = x_i \beta + u_i$$
, $u_i \sim \text{iid } N(0, \sigma_i^2)$, $\sigma_i^2 = (z_i \alpha)^2$.

The joint distribution of u_n, u_{n-1}, \dots, u_1 , denoted by $f_u(\cdot; \cdot)$, is given by:

$$\log f_u(u_n, u_{n-1}, \dots, u_1; \sigma_1^2, \dots, \sigma_n^2) = \sum_{i=1}^n \log f_u(u_i; \sigma_i^2)$$

$$= -\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum_{i=1}^n \log(\sigma_i^2) - \frac{1}{2} \sum_{i=1}^n \left(\frac{u_i}{\sigma_i}\right)^2$$

$$= -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}\log(z_{i}\alpha)^{2} - \frac{1}{2}\sum_{i=1}^{n}\left(\frac{u_{i}}{z_{i}\alpha}\right)^{2}$$

By the transformation of variables from u_n, u_{n-1}, \dots, u_1 to y_n, y_{n-1}, \dots, y_1 , the log-likelihood function is:

$$\begin{split} L(\alpha,\beta;y_n,y_{n-1},\cdots,y_1) &= \log f_y(y_n,y_{n-1},\cdots,y_1;\alpha,\beta) \\ &= \log f_u(y_n-x_n\beta,y_{n-1}-x_{n-1}\beta,\cdots,y_1-x_1\beta;\sigma_i^2) \left| \frac{\partial u}{\partial y} \right| \\ &= -\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum_{i=1}^n \log(z_i\alpha)^2 - \frac{1}{2} \sum_{i=1}^n \left(\frac{y_i-x_i\beta}{z_i\alpha} \right)^2 \end{split}$$

 \implies Maximize the above log-likelihood function with respect to β and α .

194

10 Asymptotic Theory

1. Definition: Convergence in Distribution (分布収束)

A series of random variables X_1, X_2, \cdots have distribution functions F_1, F_2, \cdots , respectively.

If

$$\lim_{i \to \infty} F_i = F,$$

then we say that a series of random variables X_1, X_2, \cdots converges to F in distribution.

2. Consistency (一致性):

(a) Definition: Convergence in Probability (確率収束)

Let $\{Z_i: i=1,2,\cdots\}$ be a series of random variables. If the following holds,

$$\lim_{i \to \infty} \text{Prob}(|Z_i - \theta| < \epsilon) = 1,$$

for any positive ϵ , then we say that Z_i converges to θ in probability.

 θ is called a **probability limit** (確率極限) of Z_i .

$$plim Z_i = \theta.$$

196

195

(b) Let $\hat{\theta}_i$ be an estimator of parameter θ .

If $\hat{\theta}_i$ converges to θ in probability, we say that $\hat{\theta}_T$ is a consistent estimator of θ .

3. Chebyshev's inequality:

For $g(X) \ge 0$,

$$\operatorname{Prob}(g(X) \ge k) \le \frac{\operatorname{E}(g(X))}{k},$$

where k is a positive constant.

4. **Example:** For a random variable X, set $g(X) = (X - \mu)'(X - \mu)$, $E(X) = \mu$

197

and $Var(X) = \Sigma$.

Then, we have the following inequality:

$$\operatorname{Prob}((X - \mu)'(X - \mu) \ge k) \le \frac{\operatorname{tr}(\Sigma)}{k}.$$

Note as follows:

$$\begin{split} \mathsf{E}((X-\mu)'(X-\mu)) &= \mathsf{E}\Big(\mathsf{tr}((X-\mu)'(X-\mu))\Big) = \mathsf{E}\Big(\mathsf{tr}((x-\mu)(x-\mu)')\Big) \\ &= \mathsf{tr}\Big(\mathsf{E}((x-\mu)(x-\mu)')\Big) = \mathsf{tr}(\Sigma). \end{split}$$

198

5. Example 1:

Suppose that $X_i \sim (\mu, \sigma^2)$, $i = 1, 2, \dots, n$.

Then, the sample average \overline{X} is a consistent estimator of μ .

Proof:

Note that $g(\overline{X}) = (\overline{X} - \mu)^2$, $\epsilon^2 = k$, $E(g(\overline{X})) = V(\overline{X}) = \frac{\sigma^2}{n}$.

Use Chebyshev's inequality.

If $n \longrightarrow \infty$,

$$P(|\overline{X} - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2} \longrightarrow 0$$
, for any ϵ .

199

That is, for any ϵ ,

$$\lim P(|\overline{X} - \mu| < \epsilon) = 1$$

6. Example 2 (Multivariate Case):

Suppose that $X_i \sim (\mu, \Sigma)$, $i = 1, 2, \dots, n$.

Then, the sample average \overline{X} is a consistent estimator of μ .

Proof:

Note that $g(\overline{X}) = (\overline{X} - \mu)'(\overline{X} - \mu), \epsilon^2 = k, E(g(\overline{X})) = V(\overline{X}) = \frac{1}{n}\Sigma.$

Use Chebyshev's inequality.

200

If $n \longrightarrow \infty$,

$$P((\overline{X} - \mu)'(\overline{X} - \mu) \ge k) \le \frac{\operatorname{tr}(\Sigma)}{nk} \longrightarrow 0,$$
 for any positive k .

That is, for any positive k,

$$\lim P((\overline{X} - \mu)'(\overline{X} - \mu) < k) = 1$$

7. Some Formulas:

Let X_n and Y_n be the random variables which satisfy plim $X_n = c$ and plim $Y_n = d$.

Then,

- (a) plim $(X_n + Y_n) = c + d$
- (b) $plim X_n Y_n = cd$
- (c) plim $X_n/Y_n = c/d$ for $d \neq 0$
- (d) plim $g(X_n) = g(c)$ for a function $g(\cdot)$

⇒ Slutsky's Theorem (スルツキー定理)

8. Central Limit Theorem (中心極限定理)

 X_1, X_2, \dots, X_n are mutually independently, identically and normally distributed as $X_i \sim (\mu, \Sigma)$.

Then,

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_{i}-\mu) \longrightarrow N(0,\Sigma)$$

9. Central Limit Theorem (Generalization)

 X_1, X_2, \dots, X_n are mutually independently, identically and normally distributed as $X_i \sim (\mu, \Sigma_i)$.

203

- 11. **Definition:** We say that $\hat{\theta}_n$ is consistent uniformly asymptotically normal, when the following three conditions are satisfied:
 - (a) $\hat{\theta}_n$ is consistent,
 - (b) $\sqrt{n}(\hat{\theta}_n \theta)$ converges to $N(0, \Sigma)$ in distribution,
 - (c) Uniform convergence.
- 12. **Definition:** Suppose that $\hat{\theta}_n$ and $\tilde{\theta}_n$ are consistent, uniformly, asymptotically normal, and that the asymptotic variances are given by Σ/n and Ω/n .

If $\Omega - \Sigma$ is positive semidefinite, $\hat{\theta}_n$ is **asymptotically more efficient** (漸近的

205

15. X_1, X_2, \dots, X_n are random variables with density function $f(x; \theta)$.

Let $\hat{\theta}_n$ be a maximum likelihood estimator of θ .

Then, under some regularity conditions. $\hat{\theta}_n$ is a consistent estimator of θ and the asymptotic distribution of $\sqrt{n}(\hat{\theta} - \theta)$ is given by: $N\left(0, \lim\left(\frac{I(\theta)}{n}\right)^{-1}\right)$.

- 16. Regularity Conditions:
 - (a) The domain of X_i does not depend on θ .
 - (b) There exists at least third-order derivative of $f(x; \theta)$ with respect to θ , and their derivatives are finite.

Then,

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_i-\mu) \longrightarrow N(0,\Sigma),$$

where

$$\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \Sigma_t \right).$$

10. **Definition:** Let $\hat{\theta}_n$ be a consistent estimator of θ .

Suppose that $\sqrt{n}(\hat{\theta}_n - \theta)$ converges to $N(0, \Sigma)$ in distribution.

Then, we say that $\hat{\theta}_n$ has an **asymptotic distribution** (漸近分布): $N(\theta, \Sigma/n)$.

204

に有効) than $\tilde{\theta}_n$.

- 13. **Definition:** If a consistent, uniformly, asymptotically normal estimator is asymptotically more efficient than any other consistent, uniformly, asymptotically normal estimators, we say that the consistent, uniformly, asymptotically normal estimator is asymptotically efficient (漸近的有效).
- 14. The sufficient condition for an asymptotically efficient and consistent, uniformly, asymptotically normal estimator is that the asymptotic variance is equivalent to Cramer-Rao lower bound.

206

- 17. Thus, MLE is
 - (i) consistent,
 - (ii) asymptotically normal, and
 - (iii) asymptotically efficient
- 18. Slutsky's Theorem

Let $\hat{\theta}$ be a consistent estimator of θ .

Then, $g(\hat{\theta})$ is also a consistent estimator of $g(\theta)$, where $g(\cdot)$ is a well-defined continuous function.

19. Invariance of Maximum Likelihood Estimation (最尤法の不変性)

Let $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_k$ be maximum likelihood estimators of $\theta_1, \theta_2, \dots, \theta_k$.

Consider the following one-to-one transformation:

$$\alpha_1 = \alpha_1(\theta_1, \theta_2, \dots, \theta_k), \ \alpha_2 = \alpha_2(\theta_1, \theta_2, \dots, \theta_k), \ \dots, \ \alpha_k = \alpha_k(\theta_1, \theta_2, \dots, \theta_k)$$

Then, MLEs of $\alpha_1, \alpha_2, \dots, \alpha_k$ are given by:

$$\hat{\alpha}_1 = \alpha_1(\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_k), \ \hat{\alpha}_2 = \alpha_2(\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_k), \ \cdots, \ \hat{\alpha}_k = \alpha_k(\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_k).$$

209