n

F imization, the first derivative of L(0, 02, 8; Yu Yu-1: -+ ith t
= @) "2 (1 = pP) 2 exp (_72 OF - X B © For maximization, the first derivative of L(p, 07, B: Y, Yu-1 y1) with respec
1

1
202 p

to 8 should be zero.
= L(p, Uz,/f;)’n,yﬂ—la YD,

T T
B= 2 Ol x
=1 =1
- (X*’X*)"X*’y*

where y; and x; are given by:

. 1-p2y, fort=1,
Y =
Y

= pPYi-1,  fort=2,3,---.n, = This is equivalent to OLS from the regression model: y* = X*8 + € and € ~

2 22701 _ 2
) mxh fort =1, N(0,0°1,), where o° = o /(1 = p*).
X =
' X = pX-y, fort=2,3,---.n,
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© For maximization, the first derivative of L(p, 0'5, B Yns Yn-1, -, y1) with respect © For maximization, the first derivative of L(p, 0‘5, B Yns Yn-1, -+, y1) with respect
to o2 should be zero. to p should be zero.

"‘2—1" ‘*_*2_1,*_ OV (F Y
i= 00— NB =0~ X B - XP).

t=1

where
" 1=pn MY (VE=pa

max L(p, o?,B:y) isequivalent to max L(p, 52, 5; y).
Boep P

R Y2 =Py RS X2 = px) .
y=1.1= . > = = . L(p, 3%, ;) is called the concentrated log-likelihood function (§#9%t 4kt E RS
. . %% ), which is a function of p, i.e., both 2 and 3 depend only on p.
) W=y x) Lx = py ) P c andf§ dep yonp
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The log-likelihood function is written as: Remark: The regression model with AR(1) error is:
0 n n o1 5 N B )
log L(p, 5,55 y) = -5 log(2m) - 5 log(G) + 3 log(1 —p°) — 5 Vi =xB+ uy, u; = pu,_; + €, & ~ iid N(0,c2).
_n n o n - 1 ) 1 2 L ool
= —5 log@@m) - 5 — 5 log(67(p)) + 5 log(1 - p*) PP p )
P L p p o
o 1op e 7 , ,  o?
. . V(u) = o =0°Q, where o = .
For maximization of log L, use Newton-Raphson method, method of scoring or Pt e : 1-p?
simple grid search : : Lo p
. TR 1

1 - - -
Note that 32 = 62(p) = ~(* = X'BY (v = X*B) for B = (X" X*) 1 X"y - N
€ < n(y DAY B forf Y where Cov(u;, u;) = E(uu;) = 0?p1, i.e., the ith row and jth column of Q is pl"~.
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The regression model with AR(1) error is: y=XB+u, u ~ N0, Q).

There exists P which satisfies that Q = PP’, because w is a positive definite matrix.

Multiply P~! on both sides from the left.

Ply=P'XB+P'u = ¥ = X"B+u* and u* ~ N(0,0°1,)
= Apply OLS.
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9.6 MLE: Regression Model with Heteroscedastic Errors

In the case where the error term depends on the other exogenous variables, the

regression model is written as follows:
= s 2 2 _ 2
Yi = X8 + u;, u; ~ iid N(0, o7), o = (za).

The joint distribution of u,, u,_i, - - -, u;, denoted by f,(-;-), is given by:

108 fultty, th1,+ w0, 02) = " log fulw; o)
i=1
n 1< L ()
= -21ogm) - = Y logod) - = Y (4
2mm2;mw2;&)
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10 Asymptotic Theory

1. Definition: Convergence in Distribution (% #7423)

A series of random variables X;, X5, - - - have distribution functions Fy, F,,

-+, respectively.

If

lim F; = F,
then we say that a series of random variables X;, X, --- converges to F in
distribution.
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Vi-p*> 0 0
i L—p2y Vi
—p 1 0 0
R Y2 = pn »l oo
v = = ) = 0 -p 1 =Py
' : 0
Yn Yn = PYn-1 Yn
0 0 —p 1
X V1 -p%x
X, X2 — pXy .
X =| "= . =pP'Xx = Check P7'QP7" = al,,
: : where a is constant.
X, Xn = PXn-1
192
n lo (2 ) 1 210 ( )2 1 z u; ’
- ) — — ) — — facl
2 ¢ 2 =1 g 2 o1\
By the transformation of variables from u,, u,_1,- -, u; t0 Y, Yu_1, -+, y1, the log-

likelihood function is:

L@, B Yus Yn-15 "+ 5 ¥1) =10€ fi(Vs Vo155 Y15 @, B)
u
=108 fu(Vn = X Yuo1 = XpoiBy o1 — X183 ) >
n 1 n ) 1 n yi_xiﬁZ
=——logm) — = » log(zia)* — = Y |—E
2mm2;mm %Xw

— Maximize the above log-likelihood function with respect to 8 and a.
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2. Consistency (—E%):

(a) Definition: Convergence in Probability (FEZRIZR)
Let{Z : i=1,2,---} be a series of random variables.

If the following holds,
,hlPo Prob(|Z; — 6] <€) =1,
for any positive €, then we say that Z; converges to 6 in probability.
0 is called a probability limit (F3=4E[R) of Z;.
plim Z; = 6.
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(b) Let &; be an estimator of parameter 6.

If ; converges to € in probability, we say that 8 is a consistent estimator

of 6.

3. Chebyshev’s inequality:

For g(X) > 0,

Prob(g(X) > k) < @

where k is a positive constant.
. Example: For a random variable X, set g(X) = (X — p)'(X — ), E(X) =
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. Example 1:
Suppose that X; ~ (u,02),i=1,2,---,n.

Then, the sample average X is a consistent estimator of .

Proof:
L 7 7 2
Note that g(X) = (X — )%, € = k, E(g(X)) = V(X) = z
n
Use Chebyshev’s inequality.
If n — oo,
2
P(|§—,u|2 €) < 0-2 — 0, for any e.
ne
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If n — oo,
— — tr(X
P(X—p'X-wp >k < Lk) — 0, for any positive k.
n

That is. for any positive k,

lim P(X — ) (X —p) < k) =1

7. Some Formulas:

Let X,, and Y,, be the random variables which satisfy plim X,, = cand plim Y, =
d.
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and Var(X) = X.
Then, we have the following inequality:

Prob((X — )/ (X — p) > k) < ?

Note as follows:

BX = 1) (X = ) = B(tr((X = o) (X = ) = E(ur((x = p)x = 1))

= t(E((r - (= p)) = (D).
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That is. for any e,

lim P(X —pl<e) =1
frasd

. Example 2 (Multivariate Case):

Suppose that X; ~ (u, %), i=1,2,---,n.

Then, the sample average X is a consistent estimator of .
Proof:

Note that g(X) = (X - 0 (X - o), € = k, E(g(X)) = V(X) = %2.
Use Chebyshev’s inequality.
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Then,
() plim (X, +Y,) =c+d
(b) plim X%, = cd
(¢) plimX,/Y, = c/dford # 0

(d) plim g(X,) = g(c) for a function g(-)

= Slutsky’s Theorem (& JL*Y ¥ —E &)
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8. Central Limit Theorem (F /B E EIE)

X;, X, -+, X, are mutually independently, identically and normally dis-

tributed as X; ~ (u, X).
Then,
1 n
— X;—u) — N(O,X
7 Zl< =) ©0,3)
9. Central Limit Theorem (Generalization)

X1, X, -+, X, are mutually independently, identically and normally dis-

tributed as X; ~ (u, %).
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11. Definition: We say that §, is consistent uniformly asymptotically normal,
when the following three conditions are satisfied:
(a) 6, is consistent,
(b) ﬁ(@n — 0) converges to N(0, X) in distribution,
(c) Uniform convergence.
12. Definition: Suppose that 6, and 8, are consistent, uniformly, asymptotically
normal, and that the asymptotic variances are given by X/n and Q/n.

If Q — X is positive semidefinite, 8, is asymptotically more efficient (% iz &

205

15. X,,X,, -, X, are random variables with density function f(x;6).
Let 9,1 be a maximum likelihood estimator of 6.

Then, under some regularity conditions. 8, is a consistent estimator of § and

; 1)\
the asymptotic distribution of vn( — ) is given by: N [0, lim (2) )
n

16. Regularity Conditions:
(a) The domain of X; does not depend on 6.
(b) There exists at least third-order derivative of f(x; ) with respect to 6,

and their derivatives are finite.
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Then,
-
— N - N(0,3),
«/ﬁ,;( W — N@O,%)

where

) 1 n
2o im(i 3x)
10. Definition: Let @,, be a consistent estimator of 6.
Suppose that vn(f, — ) converges to N(0, X) in distribution.

Then, we say that 8, has an asymptotic distribution (835> %1): N(6,Z/n).
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IZF %)) than 6,.

13. Definition: If a consistent, uniformly, asymptotically normal estimator is
asymptotically more efficient than any other consistent, uniformly, asymptoti-
cally normal estimators, we say that the consistent, uniformly, asymptotically

normal estimator is asymptotically efficient (Ji VT4 %h).

14. The sufficient condition for an asymptotically efficient and consistent, uni-
formly, asymptotically normal estimator is that the asymptotic variance is

equivalent to Cramer-Rao lower bound.
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17. Thus, MLE is

(i) consistent,
(i) asymptotically normal, and
(iii) asymptotically efficient.
18. Slutsky’s Theorem
Let A be a consistent estimator of 6.

Then, g(?)) is also a consistent estimator of g(6), where g(-) is a well-defined

continuous function.
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19. Invariance of Maximum Likelihood Estimation (A ED R Z 1)
Let 91, 92, ce 9k be maximum likelihood estimators of 6, 6,, - - -, 6;.
Consider the following one-to-one transformation:

a; = ai(01,6,-+,6), @y =ax(01,602,---,00), -+, ax = ap(01,601,---,6;)

Then, MLEs of @, a», - - -, @ are given by:

&1 = a101,05,-+,00), G2 = ax01,05,--,8), -+, G = a0, 0.

209



