Econometrics II

（Tue．，8：50－10：20）

TA Session（by Mr．Kinoshita）：
Thu．，14：40－16：10
Room \＃ 605 （法経大学院総合研究棟）

1

Econometrics（Undergraduate Course）

Wed．，10：30－12：00
Fri．，8：50－10：20
－If you have not taken Econometrics in undergraduate level，attend the class．
－Textbook：『計量経済学』（山本拓著，新世社）
－The prerequisite of this class is to have knowledge of Econometrics I（last semester）and Econometrics（undergraduate level）．

2
y_{i} is called the dependent variable（従属変数）or the explained variable（被説明変
数），while x_{i} is known as the independent variable（独立変数）or the explanatory （or explaining）variable（説明変数）．
$\beta_{1}=$ Intercept（切片）$\quad \beta_{2}=$ Slope（傾き）
β_{1} and β_{2} are unknown parameters（パラメータ，母数）to be estimated．
β_{1} and β_{2} are called the regression coefficients（回帰係数）．
4

Taking the expectation on both sides of（1），the expectation of y_{i} is represented as：

$$
\begin{align*}
\mathrm{E}\left(y_{i}\right) & =\mathrm{E}\left(\beta_{1}+\beta_{2} x_{i}+u_{i}\right)=\beta_{1}+\beta_{2} x_{i}+\mathrm{E}\left(u_{i}\right) \\
& =\beta_{1}+\beta_{2} x_{i}, \tag{2}
\end{align*}
$$

for $i=1,2, \cdots, n$ ．

Using $\mathrm{E}\left(y_{i}\right)$ we can rewrite（1）as $y_{i}=\mathrm{E}\left(y_{i}\right)+u_{i}$ ．
（2）represents the true regression line．

Let $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ be estimates of β_{1} and β_{2} ．

Replacing β_{1} and β_{2} by $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ ，（1）turns out to be：

$$
\begin{equation*}
y_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} x_{i}+e_{i} \tag{3}
\end{equation*}
$$ for $i=1,2, \cdots, n$ ，where e_{i} is called the residual（残差）．

The residual e_{i} is taken as the experimental value（or realization）of u_{i} ．

We define \hat{y}_{i} as follows：

$$
\begin{equation*}
\hat{y}_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} x_{i} \tag{4}
\end{equation*}
$$

for $i=1,2, \cdots, n$ ，which is interpreted as the predicted value（予測値）of y_{i} ．
（4）indicates the estimated regression line，which is different from（2）．

Moreover，using \hat{y}_{i} we can rewrite（3）as $y_{i}=\hat{y}_{i}+e_{i}$ ．
（2）and（4）are displayed in Figure 1.

8

Consider the case of $n=6$ for simplicity．
\times indicates the observed data series．

The true regression line（2）is represented by the solid line，while the estimated regression line（4）is drawn with the dotted line．

Based on the observed data，β_{1} and β_{2} are estimated as：$\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ ．

In the next section，we consider how to obtain the estimates of β_{1} and β_{2} ，i．e．，$\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ ．

10

It might be plausible to choose the $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ which minimize the sum of squared residuals，i．e．，$S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ ．

This method is called the ordinary least squares estimation（最小二乗法，OLS）． To minimize $S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ with respect to $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ ，we set the partial derivatives equal to zero：

$$
\begin{aligned}
& \frac{\partial S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\partial \hat{\beta}_{1}}=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=0 \\
& \frac{\partial S\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\partial \hat{\beta}_{2}}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=0
\end{aligned}
$$

which yields the following two equations：

$$
\begin{align*}
& \bar{y}=\hat{\beta}_{1}+\hat{\beta}_{2} \bar{x} \tag{5}\\
& \sum_{i=1}^{n} x_{i} y_{i}=n \bar{x} \hat{\beta}_{1}+\hat{\beta}_{2} \sum_{i=1}^{n} x_{i}^{2} \tag{6}
\end{align*}
$$

where $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ and $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ ．
Multiplying（5）by $n \bar{x}$ and subtracting（6），we can derive $\hat{\beta}_{2}$ as follows：

$$
\begin{equation*}
\hat{\beta}_{2}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{7}
\end{equation*}
$$

1．3 Properties of Least Squares Estimator

Equation（7）is rewritten as：

$$
\begin{align*}
\hat{\beta}_{2} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}-\frac{\bar{y} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\sum_{i=1}^{n} \frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} Y_{i}=\sum_{i=1}^{n} \omega_{i} y_{i} \tag{9}
\end{align*}
$$

In the third equality，$\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$ is utilized because of $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ ． In the fourth equality，ω_{i} is defined as：$\omega_{i}=\frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$ ． ω_{i} is nonstochastic because x_{i} is assumed to be nonstochastic．

From（5），$\hat{\beta}_{1}$ is directly obtained as follows：

$$
\begin{equation*}
\hat{\beta}_{1}=\bar{y}-\hat{\beta}_{2} \bar{x} \tag{8}
\end{equation*}
$$

When the observed values are taken for y_{i} and x_{i} for $i=1,2, \cdots, n$ ，we say that $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are called the ordinary least squares estimates（or simply the least squares estimates，最小二乗推定値）of β_{1} and β_{2} ．

When y_{i} for $i=1,2, \cdots, n$ are regarded as the random sample，we say that $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are called the ordinary least squares estimators（or the least squares estimators，最小二乗推定量）of β_{1} and β_{2} ．

14
ω_{i} has the following properties：

$$
\begin{gather*}
\sum_{i=1}^{n} \omega_{i}=\sum_{i=1}^{n} \frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=0 \tag{10}\\
\sum_{i=1}^{n} \omega_{i} x_{i}=\sum_{i=1}^{n} \omega_{i}\left(x_{i}-\bar{x}\right)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=1, \tag{11}\\
\sum_{i=1}^{n} \omega_{i}^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}=\frac{1}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} . \tag{12}
\end{gather*}
$$

The first equality of（11）comes from（10）．

16

Mean and Variance of $\hat{\boldsymbol{\beta}}_{2}: \quad u_{1}, u_{2}, \cdots, u_{n}$ are assumed to be mutually indepen－ dently and identically distributed with mean zero and variance σ^{2} ，but they are not necessarily normal．
Remember that we do not need normality assumption to obtain mean and variance but the normality assumption is required to test a hypothesis．
From（13），the expectation of $\hat{\beta}_{2}$ is derived as follows：

$$
\begin{align*}
\mathrm{E}\left(\hat{\beta}_{2}\right) & =\mathrm{E}\left(\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\beta_{2}+\mathrm{E}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right) \\
& =\beta_{2}+\sum_{i=1}^{n} \omega_{i} \mathrm{E}\left(u_{i}\right)=\beta_{2} \tag{14}
\end{align*}
$$

It is shown from（14）that the ordinary least squares estimator $\hat{\beta}_{2}$ is an unbiased estimator of β_{2} ．
From（13），the variance of $\hat{\beta}_{2}$ is computed as：

$$
\begin{align*}
\mathrm{V}\left(\hat{\beta}_{2}\right) & =\mathrm{V}\left(\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\mathrm{V}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\sum_{i=1}^{n} \mathrm{~V}\left(\omega_{i} u_{i}\right)=\sum_{i=1}^{n} \omega_{i}^{2} \mathrm{~V}\left(u_{i}\right) \\
& =\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{15}
\end{align*}
$$

The third equality holds because $u_{1}, u_{2}, \cdots, u_{n}$ are mutually independent．
The last equality comes from（12）．
Thus， $\mathrm{E}\left(\hat{\beta}_{2}\right)$ and $\mathrm{V}\left(\hat{\beta}_{2}\right)$ are given by（14）and（15）．

Furthermore，here we show that $\hat{\beta}_{2}$ has minimum variance within a class of the linear unbiased estimators．

Consider the alternative linear unbiased estimator $\tilde{\beta}_{2}$ as follows：

$$
\tilde{\beta}_{2}=\sum_{i=1}^{n} c_{i} y_{i}=\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) y_{i}
$$

where $c_{i}=\omega_{i}+d_{i}$ is defined and d_{i} is nonstochastic．

Gauss－Markov Theorem（ガウス・マルコフ定理）：It has been discussed above that $\hat{\beta}_{2}$ is represented as（9），which implies that $\hat{\beta}_{2}$ is a linear estimator，i．e．，linear in y_{i} ．

In addition，（14）indicates that $\hat{\beta}_{2}$ is an unbiased estimator．
Therefore，summarizing these two facts，it is shown that $\hat{\beta}_{2}$ is a linear unbiased estimator（線形不偏推定量）。

Then，$\tilde{\beta}_{2}$ is transformed into：

$$
\begin{aligned}
\tilde{\beta}_{2} & =\sum_{i=1}^{n} c_{i} y_{i}=\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right)\left(\beta_{1}+\beta_{2} x_{i}+u_{i}\right) \\
& =\beta_{1} \sum_{i=1}^{n} \omega_{i}+\beta_{2} \sum_{i=1}^{n} \omega_{i} x_{i}+\sum_{i=1}^{n} \omega_{i} u_{i}+\beta_{1} \sum_{i=1}^{n} d_{i}+\beta_{2} \sum_{i=1}^{n} d_{i} x_{i}+\sum_{i=1}^{n} d_{i} u_{i} \\
& =\beta_{2}+\beta_{1} \sum_{i=1}^{n} d_{i}+\beta_{2} \sum_{i=1}^{n} d_{i} x_{i}+\sum_{i=1}^{n} \omega_{i} u_{i}+\sum_{i=1}^{n} d_{i} u_{i}
\end{aligned}
$$

Equations（10）and（11）are used in the forth equality．

When these conditions hold，we can rewrite $\tilde{\beta}_{2}$ as：

$$
\tilde{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) u_{i}
$$

The variance of $\tilde{\beta}_{2}$ is derived as：

$$
\begin{aligned}
\mathrm{V}\left(\tilde{\beta}_{2}\right) & =\mathrm{V}\left(\beta_{2}+\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) u_{i}\right)=\mathrm{V}\left(\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right) u_{i}\right)=\sum_{i=1}^{n} \mathrm{~V}\left(\left(\omega_{i}+d_{i}\right) u_{i}\right) \\
& =\sum_{i=1}^{n}\left(\omega_{i}+d_{i}\right)^{2} \mathrm{~V}\left(u_{i}\right)=\sigma^{2}\left(\sum_{i=1}^{n} \omega_{i}^{2}+2 \sum_{i=1}^{n} \omega_{i} d_{i}+\sum_{i=1}^{n} d_{i}^{2}\right) \\
& =\sigma^{2}\left(\sum_{i=1}^{n} \omega_{i}^{2}+\sum_{i=1}^{n} d_{i}^{2}\right)
\end{aligned}
$$

From unbiasedness of $\tilde{\beta}_{2}$ ，using $\sum_{i=1}^{n} d_{i}=0$ and $\sum_{i=1}^{n} d_{i} x_{i}=0$ ，we obtain：

$$
\sum_{i=1}^{n} \omega_{i} d_{i}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) d_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n} x_{i} d_{i}-\bar{X} \sum_{i=1}^{n} d_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=0
$$

which is utilized to obtain the variance of $\tilde{\beta}_{2}$ in the third line of the above equation．
From（15），the variance of $\hat{\beta}_{2}$ is given by： $\mathrm{V}\left(\hat{\beta}_{2}\right)=\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}$ ．
Therefore，we have：

$$
\mathrm{V}\left(\tilde{\beta}_{2}\right) \geq \mathrm{V}\left(\hat{\beta}_{2}\right)
$$

because of $\sum_{i=1}^{n} d_{i}^{2} \geq 0$ ．

Asymptotic Properties of $\hat{\beta}_{2}$ ：We assume that as n goes to infinity we have the following：

$$
\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \longrightarrow m<\infty,
$$

where m is a constant value．From（12），we obtain：

$$
n \sum_{i=1}^{n} \omega_{i}^{2}=\frac{1}{(1 / n) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)} \longrightarrow \frac{1}{m}
$$

Note that $\quad f\left(x_{n}\right) \longrightarrow f(m)$ when $x_{n} \longrightarrow m$ ，called Slutsky＇s theorem（スルツキー定理），where m is a constant value and $f(\cdot)$ is a function．

When $\sum_{i=1}^{n} d_{i}^{2}=0$ ，i．e．，when $d_{1}=d_{2}=\cdots=d_{n}=0$ ，we have the equality： $\mathrm{V}\left(\tilde{\beta}_{2}\right)$ $=\mathrm{V}\left(\hat{\beta}_{2}\right)$ ．

Thus，in the case of $d_{1}=d_{2}=\cdots=d_{n}=0, \hat{\beta}_{2}$ is equivalent to $\tilde{\beta}_{2}$ ．
As shown above，the least squares estimator $\hat{\beta}_{2}$ gives us the minimum variance linear unbiased estimator（最小分散線形不偏推定量），or equivalently the best linear unbiased estimator（最良線形不偏推定量，BLUE），which is called the Gauss－Markov theorem（ガウス・マルコフ定理）。

26

We show both consistency of $\hat{\beta}_{2}$ and asymptotic normality of $\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)$ ．
－First，we prove that $\hat{\beta}_{2}$ is a consistent estimator of β_{2} ．
Chebyshev＇s inequality is given by：

$$
P(|X-\mu|>\epsilon) \leq \frac{\sigma^{2}}{\epsilon^{2}}
$$

where $\mu=\mathrm{E}(X)$ and $\sigma^{2}=\mathrm{V}(X)$ ．
Replace $X, \mathrm{E}(X)$ and $\mathrm{V}(X)$ by：

$$
\hat{\beta}_{2}, \quad \mathrm{E}\left(\hat{\beta}_{2}\right)=\beta_{2}, \quad \text { and } \quad \mathrm{V}\left(\hat{\beta}_{2}\right)=\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)},
$$

respectively．
28
－Next，we want to show that $\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)$ is asymptotically normal．
Note that $\quad \hat{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i}$ as in（13）．
From the central limit theorem，asymptotic normality is shown as follows：

$$
\frac{\sum_{i=1}^{n} \omega_{i} u_{i}-\mathrm{E}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)}{\sqrt{\mathrm{V}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)}}=\frac{\sum_{i=1}^{n} \omega_{i} u_{i}}{\sigma \sqrt{\sum_{i=1}^{n} \omega_{i}^{2}}}=\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \longrightarrow N(0,1),
$$

where $\mathrm{E}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)=0, \mathrm{~V}\left(\sum_{i=1}^{n} \omega_{i} u_{i}\right)=\sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}$ ，and $\sum_{i=1}^{n} \omega_{i} u_{i}=\hat{\beta}_{2}-\beta_{2}$ are substituted in the first and second equalities．

Moreover，we can rewrite as follows：

$$
\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}=\frac{\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)}{\sigma / \sqrt{(1 / n) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \longrightarrow \frac{\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)}{\sigma / \sqrt{m}} \longrightarrow N(0,1),
$$

or equivalently，

$$
\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right) \longrightarrow N\left(0, \frac{\sigma^{2}}{m}\right)
$$

Thus，the asymptotic normality of $\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)$ is shown．

Exact Distribution of $\hat{\beta}_{2}$ ：We have shown asymptotic normality of $\sqrt{n}\left(\hat{\beta}_{2}-\beta_{2}\right)$ ， which is one of the large sample properties．
Now，we discuss the small sample properties of $\hat{\beta}_{2}$ ．
In order to obtain the distribution of $\hat{\beta}_{2}$ in small sample，the distribution of the error term has to be assumed．
Therefore，the extra assumption is that $u_{i} \sim N\left(0, \sigma^{2}\right)$ ．
Writing（13），again，$\hat{\beta}_{2}$ is represented as：

$$
\hat{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i} .
$$

First，we obtain the distribution of the second term in the above equation．

Finally，replacing σ^{2} by its consistent estimator s^{2} ，it is known as follows：

$$
\begin{equation*}
\frac{\hat{\beta}_{2}-\beta_{2}}{s / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \longrightarrow N(0,1) \tag{16}
\end{equation*}
$$

where s^{2} is defined as：

$$
\begin{equation*}
s^{2}=\frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta_{1}}-\hat{\beta_{2}} x_{i}\right)^{2}, \tag{17}
\end{equation*}
$$

which is a consistent and unbiased estimator of $\sigma^{2} . \longrightarrow$ Proved later．
Thus，using（16），in large sample we can construct the confidence interval and test the hypothesis．

Using the moment－generating function，$\sum_{i=1}^{n} \omega_{i} u_{i}$ is distributed as：

$$
\sum_{i=1}^{n} \omega_{i} u_{i} \sim N\left(0, \sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}\right)
$$

Therefore，$\hat{\beta}_{2}$ is distributed as：

$$
\hat{\beta}_{2}=\beta_{2}+\sum_{i=1}^{n} \omega_{i} u_{i} \sim N\left(\beta_{2}, \sigma^{2} \sum_{i=1}^{n} \omega_{i}^{2}\right)
$$

or equivalently，

$$
\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma \sqrt{\sum_{i=1}^{n} \omega_{i}^{2}}}=\frac{\hat{\beta}_{2}-\beta_{2}}{\sigma / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \sim N(0,1)
$$

for any n ．

Before going to multiple regression model（重回帰モデル），

2 Some Formulas of Matrix Algebra

1．Let $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 k} \\ a_{21} & a_{22} & \cdots & a_{2 k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l 1} & a_{l 2} & \cdots & a_{l k}\end{array}\right)=\left[a_{i j}\right]$ ，
which is a $l \times k$ matrix，where $a_{i j}$ denotes i th row and j th column of A ．

The transposed matrix（転置行列）of A ，denoted by A^{\prime} ，is defined as：
$A^{\prime}=\left(\begin{array}{cccc}a_{11} & a_{21} & \cdots & a_{l 1} \\ a_{12} & a_{22} & \cdots & a_{l 2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1 k} & a_{2 k} & \cdots & a_{l k}\end{array}\right)=\left[a_{j i}\right]$,
where the i th row of A^{\prime} is the i th column of A ．

2．$(A x)^{\prime}=x^{\prime} A^{\prime}$ ，
where A and x are a $l \times k$ matrix and a $k \times 1$ vector，respectively．

Especially，when A is symmetric，
$\frac{\partial x^{\prime} A x}{\partial x}=2 A x$ ．

6．Let A and B be $k \times k$ matrices，and I_{k} be a $k \times k$ identity matrix（単位行列） （one in the diagonal elements and zero in the other elements）．

When $A B=I_{k}, B$ is called the inverse matrix（逆行列）of A ，denoted by $B=A^{-1}$ ．

That is，$A A^{-1}=A^{-1} A=I_{k}$ ．

3．$a^{\prime}=a$ ，
where a denotes a scalar．

4．$\frac{\partial a^{\prime} x}{\partial x}=a$ ，
where a and x are $k \times 1$ vectors．

5．$\frac{\partial x^{\prime} A x}{\partial x}=\left(A+A^{\prime}\right) x$ ，
where A and x are a $k \times k$ matrix and a $k \times 1$ vector，respectively．

38

7．Let A be a $k \times k$ matrix and x be a $k \times 1$ vector．

If A is a positive definite matrix（正値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x>0
$$

If A is a positive semidefinite matrix（非負値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x \geq 0
$$

40

If A is a negative definite matrix（負値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x<0
$$

If A is a negative semidefinite matrix（非正値定符号行列），for any x except for $x=0$ we have：

$$
x^{\prime} A x \leq 0
$$

Trace，Rank and etc．：$\quad A: k \times k, \quad B: n \times k, \quad C: k \times n$.

1．The trace（トレース）of A is： $\operatorname{tr}(A)=\sum_{i=1}^{k} a_{i i}$ ，where $A=\left[a_{i j}\right]$ ．

2．The rank（ランク，階数）of A is the maximum number of linearly indepen－ dent column（or row）vectors of A ，which is denoted by $\operatorname{rank}(A)$ ．

3．If A is an idempotent matrix（べき等行列），$A=A^{2}$ ．
4. If A is an idempotent and symmetric matrix, $A=A^{2}=A^{\prime} A$.
5. A is idempotent if and only if the eigen values of A consist of 1 and 0 .
6. If A is idempotent, $\operatorname{rank}(A)=\operatorname{tr}(A)$.
7. $\operatorname{tr}(B C)=\operatorname{tr}(C B)$
2. If $X \sim N(\mu, \Sigma)$, then $(X-\mu)^{\prime} \Sigma^{-1}(X-\mu) \sim \chi^{2}(k)$.

Note that $\quad X^{\prime} X \sim \chi^{2}(k)$ when $X \sim N\left(0, I_{k}\right)$.
3. $X: n \times 1, \quad Y: m \times 1, \quad X \sim N\left(\mu_{x}, \Sigma_{x}\right), \quad Y \sim N\left(\mu_{y}, \Sigma_{y}\right)$
X is independent of Y, i.e., $\mathrm{E}\left(\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)^{\prime}\right)=0$ in the case of normal random variables.

$$
\frac{\left(X-\mu_{x}\right)^{\prime} \Sigma_{x}^{-1}\left(X-\mu_{x}\right) / n}{\left(Y-\mu_{y}\right)^{\prime} \Sigma_{y}^{-1}\left(Y-\mu_{y}\right) / m} \sim F(n, m)
$$

Distributions in Matrix Form:

1. Let X, μ and Σ be $k \times 1, k \times 1$ and $k \times k$ matrices.

When $X \sim N(\mu, \Sigma)$, the density function of X is given by:

$$
\begin{aligned}
& \qquad f(x)=\frac{1}{(2 \pi)^{k / 2}|\Sigma|} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right) \\
& \mathrm{E}(X)=\mu \text { and } \mathrm{V}(X)=\mathrm{E}\left((X-\mu)(X-\mu)^{\prime}\right)=\Sigma \\
& \text { The moment-generating function: } \phi(\theta)=\mathrm{E}\left(\exp \left(\theta^{\prime} X\right)\right)=\exp \left(\theta^{\prime} \mu+\frac{1}{2} \theta^{\prime} \Sigma \theta\right)
\end{aligned}
$$

4. If $X \sim N\left(0, \sigma^{2} I_{n}\right)$ and A is a symmetric idempotent $n \times n$ matrix of rank G, then $X^{\prime} A X / \sigma^{2} \sim \chi^{2}(G)$.

Note that $X^{\prime} A X=(A X)^{\prime}(A X)$ and $\operatorname{rank}(A)=\operatorname{tr}(A)$ because A is idempotent.
5. If $X \sim N\left(0, \sigma^{2} I_{n}\right), A$ and B are symmetric idempotent $n \times n$ matrices of rank G and K, and $A B=0$, then

$$
\frac{X^{\prime} A X}{G \sigma^{2}} / \frac{X^{\prime} B X}{K \sigma^{2}}=\frac{X^{\prime} A X / G}{X^{\prime} B X / K} \sim F(G, K)
$$

46

We consider the following regression model:

$$
\begin{aligned}
y_{i} & =\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\cdots+\beta_{k} x_{i, k}+u_{i} \\
& =\left(x_{i, 1}, x_{i, 2}, \cdots, x_{i, k}\right)\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right)+u_{i} \\
& =x_{i} \beta+u_{i}
\end{aligned}
$$

for $i=1,2, \cdots, n$,
where x_{i} and β denote a $1 \times k$ vector of the independent variables and a $k \times 1$ vector
of the unknown parameters to be estimated，which are represented as：

$$
x_{i}=\left(x_{i, 1}, x_{i, 2}, \cdots, x_{i, k}\right), \quad \beta=\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right) \text {. }
$$

$x_{i, j}$ denotes the i th observation of the j th independent variable．

The case of $k=2$ and $x_{i, 1}=1$ for all i is exactly equivalent to（1）．

Therefore，the matrix form above is a generalization of（1）．
which is rewritten as：

$$
\begin{aligned}
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) & =\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, k} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, k}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right)+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \beta+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)
\end{aligned}
$$

51

Writing all the equations for $i=1,2, \cdots, n$ ，we have：

$$
\begin{gathered}
y_{1}=\beta_{1} x_{1,1}+\beta_{2} x_{1,2}+\cdots+\beta_{k} x_{1, k}+u_{1}=x_{1} \beta+u_{1} \\
y_{2}=\beta_{1} x_{2,1}+\beta_{2} x_{2,2}+\cdots+\beta_{k} x_{2, k}+u_{2}=x_{2} \beta+u_{2} \\
\vdots \\
y_{n}=\beta_{1} x_{n, 1}+\beta_{2} x_{n, 2}+\cdots+\beta_{k} x_{n, k}+u_{n}=x_{n} \beta+u_{n}
\end{gathered}
$$

Again，the above equation is compactly rewritten as：

$$
\begin{equation*}
y=X \beta+u \tag{18}
\end{equation*}
$$

where y, X and u are denoted by：

$$
y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right), \quad X=\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, k} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, k}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad u=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{k}
\end{array}\right)
$$

Utilizing the matrix form（18），we derive the ordinary least squares estimator of β ， denoted by $\hat{\beta}$ ．

52

To minimize $S(\hat{\beta})$ with respect to $\hat{\beta}$ ，we set the first derivative of $S(\hat{\beta})$ equal to zero， i．e．，

$$
\frac{\partial S(\hat{\beta})}{\partial \hat{\beta}}=-2 X^{\prime} y+2 X^{\prime} X \hat{\beta}=0
$$

Solving the equation above with respect to $\hat{\beta}$ ，the ordinary least squares estimator （OLS，最小自乗推定量）of β is given by：

$$
\begin{equation*}
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y \tag{19}
\end{equation*}
$$

Thus，the ordinary least squares estimator is derived in the matrix form．

(*) Remark

The second order condition for minimization:

$$
\frac{\partial^{2} S(\hat{\beta})}{\partial \hat{\beta} \partial \hat{\beta}^{\prime}}=2 X^{\prime} X
$$

is a positive definite matrix.

Set $c=X d$.

For any $d \neq 0$, we have $c^{\prime} c=d^{\prime} X^{\prime} X d>0$.

The variance of $\hat{\beta}$ is obtained as:

$$
\begin{aligned}
\mathrm{V}(\hat{\beta}) & =\mathrm{E}\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right)=\mathrm{E}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime}\right) \\
& =\mathrm{E}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1}\right)=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}\left(u u^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

The first equality is the definition of variance in the case of vector.
In the fifth equality, $\mathrm{E}\left(u u^{\prime}\right)=\sigma^{2} I_{n}$ is used, which implies that $\mathrm{E}\left(u_{i}^{2}\right)=\sigma^{2}$ for all i and $\mathrm{E}\left(u_{i} u_{j}\right)=0$ for $i \neq j$.
Remember that $u_{1}, u_{2}, \cdots, u_{n}$ are assumed to be mutually independently and identically distributed with mean zero and variance σ^{2}.

Now, in order to obtain the properties of $\hat{\beta}$ such as mean, variance, distribution and so on, (19) is rewritten as follows:

$$
\begin{align*}
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u)=\left(X^{\prime} X\right)^{-1} X^{\prime} X \beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u . \tag{20}
\end{align*}
$$

Taking the expectation on both sides of (20), we have the following:

$$
\mathrm{E}(\hat{\beta})=\mathrm{E}\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}(u)=\beta
$$

because of $\mathrm{E}(u)=0$ by the assumption of the error term u_{i}.
Thus, unbiasedness of $\hat{\beta}$ is shown.

56

Under normality assumption on the error term u, it is known that the distribution of $\hat{\beta}$ is given by:

$$
\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)
$$

Proof:

$\theta_{u}: n \times 1, \quad u: n \times 1, \quad \theta_{\beta}: k \times 1, \quad \hat{\beta}: k \times 1$
The moment-generating function of u, i.e., $\phi_{u}\left(\theta_{u}\right)$, is:

$$
\phi_{u}\left(\theta_{u}\right)=\mathrm{E}\left(\exp \left(\theta_{u}^{\prime} u\right)\right)=\exp \left(\frac{\sigma^{2}}{2} \theta_{u}^{\prime} \theta_{u}\right)
$$

which is $N\left(0, \sigma^{2} I_{n}\right)$.
58

Taking the j th element of $\hat{\beta}$, its distribution is given by:

$$
\hat{\beta}_{j} \sim N\left(\beta_{j}, \sigma^{2} a_{j j}\right), \quad \text { i.e., } \quad \frac{\hat{\beta}_{j}-\beta_{j}}{\sigma \sqrt{a_{j j}}} \sim N(0,1)
$$

where $a_{j j}$ denotes the j th diagonal element of $\left(X^{\prime} X\right)^{-1}$.
Replacing σ^{2} by its estimator s^{2}, we have the following t distribution:

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{s \sqrt{a_{j j}}} \sim t(n-k)
$$

where $t(n-k)$ denotes the t distribution with $n-k$ degrees of freedom.
s^{2} is taken as follows：

$$
s^{2}=\frac{1}{n-k} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n-k} e^{\prime} e=\frac{1}{n-k}(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}),
$$

which leads to an unbiased estimator of σ^{2} ．

Proof：

Substitute $y=X \beta+u$ and $\hat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u$ into $e=y-X \hat{\beta}$ ．

$$
\begin{aligned}
e & =y-X \hat{\beta}=X \beta+u-X\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right) \\
& =u-X\left(X^{\prime} X\right)^{-1} X^{\prime} u=\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
\end{aligned}
$$

Take the expectation of $u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u$ and note that $\operatorname{tr}(a)=a$ for a scalar a ．

$$
\begin{aligned}
\mathrm{E}\left(s^{2}\right) & =\frac{1}{n-k} \mathrm{E}\left(\operatorname{tr}\left(u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u\right)\right)=\frac{1}{n-k} \mathrm{E}\left(\operatorname{tr}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u u^{\prime}\right)\right) \\
& =\frac{1}{n-k} \operatorname{tr}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \mathrm{E}\left(u u^{\prime}\right)\right)=\frac{1}{n-k} \sigma^{2} \operatorname{tr}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) I_{n}\right) \\
& =\frac{1}{n-k} \sigma^{2} \operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right) \\
& =\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)\right)=\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(I_{k}\right)\right) \\
& =\frac{1}{n-k} \sigma^{2}(n-k)=\sigma^{2}
\end{aligned}
$$

$\longrightarrow s^{2}$ is an unbiased estimator of σ^{2} ．
Note that we do not need normality assumption for unbiasedness of s^{2} ．

Trace（トレース）：

1．$A: n \times n, \quad \operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$ ，where $a_{i j}$ denotes an element in the i th row and the j th column of a matrix A ．

2．a ：scalar $(1 \times 1), \quad \operatorname{tr}(a)=a$
3．$A: n \times k, B: k \times n, \quad \operatorname{tr}(A B)=\operatorname{tr}(B A)$
4． $\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)=\operatorname{tr}\left(I_{k}\right)=k$
5．When X is a vector of random variables， $\mathrm{E}(\operatorname{tr}(X))=\operatorname{tr}(\mathrm{E}(X))$
$I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is idempotent and symmetric，because we have：

$$
\begin{aligned}
& \left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=I_{n}-X\left(X^{\prime} X\right)^{-1} X,^{\prime} \\
& \left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}=I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}
\end{aligned}
$$

s^{2} is rewritten as follows：

$$
\begin{aligned}
s^{2} & =\frac{1}{n-k} e^{\prime} e=\frac{1}{n-k}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u\right)^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u \\
& =\frac{1}{n-k} u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u \\
& =\frac{1}{n-k} u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
\end{aligned}
$$

Under normality assumption for u ，the distribution of s^{2} is：

$$
\frac{(n-k) s^{2}}{\sigma^{2}}=\frac{u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u}{\sigma^{2}} \sim \chi^{2}\left(\operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)
$$

Note that $\quad \operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=n-k$ ，because

$$
\begin{aligned}
& \operatorname{tr}\left(I_{n}\right)=n \\
& \operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)=\operatorname{tr}\left(I_{k}\right)=k
\end{aligned}
$$

64

Asymptotic Normality（without normality assumption on \boldsymbol{u} ）：Using the cen－ tral limit theorem，without normality assumption we can show that as $n \longrightarrow \infty$ ， under the condition of $\frac{1}{n} X^{\prime} X \longrightarrow M$ we have the following result：

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{s \sqrt{a_{j j}}} \longrightarrow N(0,1)
$$

where M denotes a $k \times k$ constant matrix．

Thus，we can construct the confidence interval and the testing procedure，using the t distribution under the normality assumption or the normal distribution without the normality assumption．

4 Properties of OLSE

1．Properties of $\hat{\beta}$ ：BLUE（best linear unbiased estimator，最良線形不偏推
定量），i．e．，minimum variance within the class of linear unbiased estimators
（Gauss－Markov theorem，ガウス・マルコフの定理）

Proof：

Consider another linear unbiased estimator，which is denoted by $\tilde{\beta}=C y$ ．

$$
\tilde{\beta}=C y=C(X \beta+u)=C X \beta+C u,
$$

where C is a $k \times n$ matrix．

Defining $C=D+\left(X^{\prime} X\right)^{-1} X^{\prime}, \mathrm{V}(\tilde{\beta})$ is rewritten as：

$$
\mathrm{V}(\tilde{\beta})=\sigma^{2} C C^{\prime}=\sigma^{2}\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime} .
$$

Moreover，because $\hat{\beta}$ is unbiased，we have the following：

$$
C X=I_{k}=\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X=D X+I_{k} .
$$

Therefore，we have the following condition：

$$
D X=0
$$

69

Taking the expectation of $\tilde{\beta}$ ，we obtain：

$$
\mathrm{E}(\tilde{\beta})=C X \beta+C \mathrm{E}(u)=C X \beta
$$

Because we have assumed that $\tilde{\beta}=C y$ is unbiased， $\mathrm{E}(\tilde{\beta})=\beta$ holds．
That is，we need the condition：$C X=I_{k}$ ．
Next，we obtain the variance of $\tilde{\beta}=C y$ ．

$$
\tilde{\beta}=C(X \beta+u)=\beta+C u .
$$

Therefore，we have：

$$
\left.\mathrm{V}(\tilde{\beta})=\mathrm{E}(\tilde{\beta}-\beta)(\tilde{\beta}-\beta)^{\prime}\right)=\mathrm{E}\left(C u u^{\prime} C^{\prime}\right)=\sigma^{2} C C^{\prime}
$$

68

Accordingly， $\mathrm{V}(\tilde{\beta})$ is rewritten as：

$$
\begin{aligned}
\mathrm{V}(\tilde{\beta}) & =\sigma^{2} C C^{\prime}=\sigma^{2}\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(D+\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}+\sigma^{2} D D^{\prime}=\mathrm{V}(\hat{\beta})+\sigma^{2} D D^{\prime}
\end{aligned}
$$

Thus， $\mathrm{V}(\tilde{\beta})-\mathrm{V}(\hat{\beta})$ is a positive definite matrix．
$\Longrightarrow \mathrm{V}\left(\tilde{\beta}_{i}\right)-\mathrm{V}\left(\hat{\beta}_{i}\right)>0$
$\Longrightarrow \hat{\beta}$ is a minimum variance（i．e．，best）linear unbiased estimator of β ．

70

Note as follows：

$\Longrightarrow A$ is positive definite when $d^{\prime} A d>0$ except $d=0$.
\Longrightarrow The i th diagonal element of A ，i．e．，$a_{i i}$ ，is positive（choose d such that the i th element of d is one and the other elements are zeros）．
F Distribution $\left(H_{0}: \beta=0\right)$ ：
1．If $u \sim N\left(0, \sigma^{2} I_{n}\right)$ ，then $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$ ． Therefore，$\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}} \sim \chi^{2}(k)$ ．

2．Proof：
Using $\hat{\beta}-\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} u$ ，we obtain：

$$
\begin{aligned}
(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta) & =\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u=u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u
\end{aligned}
$$

Note that $X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is symmetric and idempotent, i.e., $A^{\prime} A=A$.

$$
\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u}{\sigma^{2}} \sim \chi^{2}\left(\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right)
$$

The degree of freedom is given by:

$$
\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)=\operatorname{tr}\left(I_{k}\right)=k
$$

Therefore, we obtain:

$$
\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u}{\sigma^{2}} \sim \chi^{2}(k)
$$

3. (*) Formula:

Suppose that $X \sim N\left(0, I_{k}\right)$.

If A is symmetric and idempotent, i.e., $A^{\prime} A=A$, then $X^{\prime} A X \sim \chi^{2}(\operatorname{tr}(A))$.
Here, $X=\frac{1}{\sigma} u \sim N\left(0, I_{n}\right)$ from $u \sim N\left(0, \sigma^{2} I_{n}\right)$, and $A=X\left(X^{\prime} X\right)^{-1} X^{\prime}$.

74
where the trace is:

$$
\operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=n-k
$$

Therefore, we have the following result:

$$
\frac{e^{\prime} e}{\sigma^{2}}=\frac{(n-k) s^{2}}{\sigma^{2}} \sim \chi^{2}(n-k)
$$

where

$$
s^{2}=\frac{1}{n-k} e^{\prime} e
$$

76
6. Therefore, we obtain the following distribution:

$$
\begin{aligned}
& \frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}}=\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u}{\sigma^{2}} \sim \chi^{2}(k), \\
& \frac{e^{\prime} e}{\sigma^{2}}=\frac{u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u}{\sigma^{2}} \sim \chi^{2}(n-k)
\end{aligned}
$$

$\hat{\beta}$ is independent of e.

Accordingly, we can derive:

$$
\frac{\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}} / k}{\frac{e^{\prime} e}{\sigma^{2}} /(n-k)}=\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta) / k}{s^{2}} \sim F(k, n-k)
$$

Note as follows：

$$
\frac{\frac{(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)}{\sigma^{2}} / k}{\frac{e^{\prime} e}{\sigma^{2}} /(n-k)}=\frac{u^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} u / k}{u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u /(n-k)} \sim F(k, n-k)
$$

because $X\left(X^{\prime} X\right)^{-1} X^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=0$ ．
（＊）Formula
When $X \sim N\left(0, I_{n}\right), A$ and B are $n \times n$ symmetric idempotent matrices， $\operatorname{Rank}(A)=$ $\operatorname{tr}(A)=G, \operatorname{Rank}(B)=\operatorname{tr}(B)=K$ and $A B=0$ ，then $\frac{X^{\prime} A X / G}{X^{\prime} B X / K} \sim F(G, K)$ ．

Coefficient of Determination（決定係数）， \boldsymbol{R}^{2} ：

1．Definition of the Coefficient of Determination，$R^{2}: \quad R^{2}=1-\frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}$
2．Numerator：$\quad \sum_{i=1}^{n} e_{i}^{2}=e^{\prime} e$
3．Denominator：$\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=y^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right)^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y=y^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y$
（＊）Remark

$$
\left(\begin{array}{c}
y_{1}-\bar{y} \\
y_{2}-\bar{y} \\
\vdots \\
y_{T}-\bar{y}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{T}
\end{array}\right)-\left(\begin{array}{c}
\bar{y} \\
\bar{y} \\
\vdots \\
\bar{y}
\end{array}\right)=y-\frac{1}{n} i i^{\prime} y=\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y
$$

where $i=(1,1, \cdots, 1)^{\prime}$ ．
4．In a matrix form，we can rewrite as：$\quad R^{2}=1-\frac{e^{\prime} e}{y^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) y}$

F Distribution and Coefficient of Determination：

\Longrightarrow This will be discussed later．

Testing Linear Restrictions（F Distribution）：

1．If $u \sim N\left(0, \sigma^{2} I_{n}\right)$ ，then $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$ ．
Consider testing the hypothesis $H_{0}: R \beta=r$ ．

$$
\begin{aligned}
& R: G \times k, \quad \operatorname{rank}(R)=G \leq k \\
& R \hat{\beta} \sim N\left(R \beta, \sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)
\end{aligned}
$$

82

Therefore，$\quad \frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r)}{\sigma^{2}} \sim \chi^{2}(G)$ ．
Note that $R \beta=r$ ．
（a）When $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$ ，the mean is：

$$
\mathrm{E}(R \hat{\beta})=R \mathrm{E}(\hat{\beta})=R \beta
$$

（b）When $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$ ，the variance is：

$$
\begin{aligned}
\mathrm{V}(R \hat{\beta}) & =\mathrm{E}\left((R \hat{\beta}-R \beta)(R \hat{\beta}-R \beta)^{\prime}\right)=\mathrm{E}\left(R(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime} R^{\prime}\right) \\
& =R \mathrm{E}\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right) R^{\prime}=R \mathrm{~V}(\hat{\beta}) R^{\prime}=\sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}
\end{aligned}
$$

2．We have the following：

$$
\frac{\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r)}{G}}{\frac{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})}{n-k}} \sim F(G, n-k)
$$

3．Some Examples：
（a）t Test：
The case of $G=1, r=0$ and $R=(0, \cdots, 1, \cdots, 0)$（the i th element of R is one and the other elements are zero）：

That is，test of $\beta_{i}=0$ ：
Define：$s^{2}=\frac{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})}{n-k}$ ．
Then，

$$
\frac{\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r)}{G}}{s^{2}}=\frac{\hat{\beta}_{i}^{2}}{s^{2} a_{i i}} \sim F(1, n-k),
$$

where $R \hat{\beta}=\hat{\beta}_{i}$ and $a_{i i}=$ the i row and i th column of $\left(X^{\prime} X\right)^{-1}$ ．
＊）Recall that $Y \sim F(1, m)$ when $X \sim t(m)$ and $Y=X^{2}$ ．
Therefore，the test of $\beta_{i}=0$ is given by：

$$
\frac{\hat{\beta}_{i}}{s \sqrt{a_{i i}}} \sim t(n-k) .
$$

（b）Test of structural change（Part 1）：

$$
y_{i}= \begin{cases}x_{i} \beta_{1}+u_{i}, & i=1,2, \cdots, m \\ x_{i} \beta_{2}+u_{i}, & i=m+1, m+2, \cdots, n\end{cases}
$$

Assume that $u_{i} \sim N\left(0, \sigma^{2}\right)$ ．

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m} \\
y_{m+1} \\
y_{m+2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{cc}
x_{1} & 0 \\
x_{2} & 0 \\
\vdots & \vdots \\
x_{m} & 0 \\
0 & x_{m+1} \\
0 & x_{m+2} \\
\vdots & \vdots \\
0 & x_{n}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{m} \\
u_{m+1} \\
u_{m+2} \\
\vdots \\
u_{n}
\end{array}\right)
$$

87

Moreover，rewriting，

$$
\binom{Y_{1}}{Y_{2}}=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}+u
$$

Again，rewriting，

$$
Y=X \beta+u
$$

The null hypothesis is $H_{0}: \beta_{1}=\beta_{2}$ ．
Apply the F test，using $R=\left(I_{k}-I_{k}\right)$ and $r=0$ ．
In this case，$G=\operatorname{rank}(R)=k$ and β is a $2 k \times 1$ vector．
The distribution is $F(k, n-2 k)$ ．
88
（c）The hypothesis in which sum of the 1st and 2nd coefficients is equal to one：
$R=(1,1,0, \cdots, 0), r=1$
In this case，$G=\operatorname{rank}(R)=1$
The distribution of the test statistic is $F(1, n-k)$ ．
（d）Testing seasonality：
The regression model：The case of quarterly data（四半期データ）

$$
y=\alpha+\alpha_{1} D_{1}+\alpha_{2} D_{2}+\alpha_{3} D_{3}+X \beta_{0}+u
$$

（e）Cobb－Douglas Production Function：
Let Q_{i}, K_{i} and L_{i} be production，capital stock and labor
We estimate the following production function：

$$
\log \left(Q_{i}\right)=\beta_{1}+\beta_{2} \log \left(K_{i}\right)+\beta_{3} \log \left(L_{i}\right)+u_{i} .
$$

We want to test a linear homogeneous（一次同次）production function，
i．e．，$\beta_{2}+\beta_{3}=1$ ．

The null and alternative hypotheses are：

91

$$
\begin{aligned}
& H_{0}: \beta_{2}+\beta_{3}=1, \\
& H_{1}: \beta_{2}+\beta_{3} \neq 1 .
\end{aligned}
$$

Then，set as follows：

$$
R=\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right), \quad r=1
$$

（f）Test of structural change（Part 2）：
Test the structural change between time periods m and $m+1$ ．
In the case where both the constant term and the slope are changed，the

92

Then，set as follows：

$$
R=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad r=\binom{0}{0}
$$

（g）Multiple regression model：
Consider the case of two explanatory variables：

$$
y_{i}=\alpha+\beta x_{i}+\gamma z_{i}+u_{i}
$$

We want to test the hypothesis that neither x_{i} nor z_{i} depends on y_{i} ． In this case，the null and alternative hypotheses are as follows：

94

$$
\begin{aligned}
& H_{0}: \beta=\gamma=0, \\
& H_{1}: \beta \neq 0, \text { or, } \gamma \neq 0
\end{aligned}
$$

Then，set as follows：

$$
R=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad r=\binom{0}{0}
$$

Coefficient of Determination R^{2} and F distribution：

The regression model：

$$
y_{i}=x_{i} \beta+u_{i}=\beta_{1}+x_{2 i} \beta_{2}+u_{i}
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
x_{i}=\left(\begin{array}{ll}
1 & x_{2 i}
\end{array}\right), \quad \beta=\binom{\beta_{1}}{\beta_{2}}, \\
x_{i}: 1 \times k, \quad x_{2 i}: 1 \times(k-1), \quad \beta: k \times 1, \quad \beta_{2}:(k-1) \times 1 \\
y=X \beta+u=i \beta_{1}+X_{2} \beta_{2}
\end{array}
\end{aligned}
$$

where the first column of X corresponds to a constant term, i.e.,

$$
X=\left(\begin{array}{ll}
i & X_{2}
\end{array}\right), \quad i=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
$$

The F distribution:

$$
R=\left(\begin{array}{ll}
0 & I_{k-1}
\end{array}\right), \quad r=0
$$

where R is a $(k-1) \times k$ matrix and r is a $(k-1) \times 1$ vector.

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) /(k-1)}{e^{\prime} e /(n-k)} \sim F(k-1, n-k)
$$

97
$R\left(X^{\prime} X\right)^{-1} R^{\prime}$ is given by:

$$
\begin{aligned}
R\left(X^{\prime} X\right)^{-1} R^{\prime} & =\left(\begin{array}{ll}
0 & I_{k-1}
\end{array}\right)\left(\binom{i^{\prime}}{X_{2}^{\prime}}\left(\begin{array}{ll}
i & X_{2}
\end{array}\right)\right)^{-1}\binom{0}{I_{k-1}} \\
& =\left(\begin{array}{ll}
0 & I_{k-1}
\end{array}\right)\left(\begin{array}{cc}
i^{\prime} i & i^{\prime} X_{2} \\
X_{2}^{\prime} i & X_{2}^{\prime} X_{2}
\end{array}\right)^{-1}\binom{0}{I_{k-1}}
\end{aligned}
$$

Note as follows:

$$
(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r)=\hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2}
$$

where $M=I_{n}-\frac{1}{n} i i^{\prime}$.
Note that M is symmetric and idempotent, i.e., $M^{\prime} M=M$.

$$
\left(\begin{array}{c}
y_{1}-\bar{y} \\
y_{2}-\bar{y} \\
\vdots \\
y_{n}-\bar{y}
\end{array}\right)=M y
$$

98
(*) The inverse of a partitioned matrix:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{11} and A_{22} are square nonsingular matrices.

$$
A^{-1}=\left(\begin{array}{cc}
B_{11} & -B_{11} A_{12} A_{22}^{-1} \\
-A_{22}^{-1} A_{21} B_{11} & A_{22}^{-1}+A_{22}^{-1} A_{21} B_{11} A_{12} A_{22}^{-1}
\end{array}\right)
$$

where $B_{11}=\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1}$, or alternatively,

$$
A^{-1}=\left(\begin{array}{cc}
A_{11}^{-1}+A_{11}^{-1} A_{12} B_{22} A_{21} A_{11}^{-1} & -A_{11}^{-1} A_{12} B_{22} \\
-B_{22} A_{21} A_{11}^{-1} & B_{22}
\end{array}\right)
$$

where $B_{22}=\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1}$

100

Go back to the F distribution.

$$
\begin{aligned}
\left(\begin{array}{cc}
i^{\prime} i & i^{\prime} X_{2} \\
X_{2}^{\prime} i & X_{2}^{\prime} X_{2}
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
\cdot & \cdots \\
\vdots & \left(X_{2}^{\prime} X_{2}-X_{2}^{\prime} i\left(i^{\prime} i\right)^{-1} i^{\prime} X_{2}\right)^{-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cdot & \cdots \\
\vdots & \left(X_{2}^{\prime}\left(I_{n}-\frac{1}{n} i i^{\prime}\right) X_{2}\right)^{-1}
\end{array}\right)=\left(\begin{array}{cc}
\cdot & \cdots \\
\vdots & \left(X_{2}^{\prime} M X_{2}\right)^{-1}
\end{array}\right)
\end{aligned}
$$

Therefore, we obtain:

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & I_{k-1}
\end{array}\right)\left(\begin{array}{cc}
i^{\prime} i & i^{\prime} X_{2} \\
X_{2}^{\prime} i & X_{2}^{\prime} X_{2}
\end{array}\right)^{-1}\binom{0}{I_{k-1}} \\
& \quad=\left(\begin{array}{ll}
0 & I_{k-1}
\end{array}\right)\left(\begin{array}{ll}
\cdot & \cdots \\
\vdots & \left(X_{2}^{\prime} M X_{2}\right)^{-1}
\end{array}\right)\binom{0}{I_{k-1}}=\left(X_{2}^{\prime} M X_{2}\right)^{-1}
\end{aligned}
$$

Thus, under $H_{0}: \beta_{2}=0$, we obtain the following result:
$\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) /(k-1)}{e^{\prime} e /(n-k)}$
$=\frac{\hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2} /(k-1)}{e^{\prime} e /(n-k)} \sim F(k-1, n-k)$

Coefficient of Determination R^{2} ：
Define e as $e=y-X \hat{\beta}$ ．The coefficient of determinant，R^{2} ，is

$$
R^{2}=1-\frac{e^{\prime} e}{y^{\prime} M y}
$$

where $M=I_{n}-\frac{1}{n} i i^{\prime}, I_{n}$ is a $n \times n$ identity matrix and i is a $n \times 1$ vector consisting of 1 ，i．e．，$i=(1,1, \cdots, 1)^{\prime}$ ．

$$
M e=M y-M X \hat{\beta}
$$

When $X=\left(\begin{array}{ll}i & X_{2}\end{array}\right)$ and $\hat{\beta}=\binom{\hat{\beta}_{1}}{\hat{\beta}_{2}}$ ，

$$
M e=e
$$

103
because $i^{\prime} e=0$ ，and

$$
M X=M\left(\begin{array}{ll}
i & X_{2}
\end{array}\right)=\left(\begin{array}{ll}
M i & M X_{2}
\end{array}\right)=\left(\begin{array}{ll}
0 & M X_{2}
\end{array}\right)
$$

because $M i=0$ ．

$$
M X \hat{\beta}=\left(\begin{array}{ll}
0 & M X_{2}
\end{array}\right)\binom{\hat{\beta}_{1}}{\hat{\beta}_{2}}=M X_{2} \hat{\beta}_{2}
$$

Thus，

$$
M y=M X \hat{\beta}+M e \quad \Longrightarrow \quad M y=M X_{2} \hat{\beta}_{2}+e
$$

Therefore，$y^{\prime} M y$ is given by：$\quad y^{\prime} M y=\hat{\beta}_{2}^{\prime} X_{2}^{\prime} M X_{2} \hat{\beta}_{2}+e^{\prime} e$,
because $X_{2}^{\prime} e=0$ and $M e=e$ ．

104

5 Restricted OLS（制約付き最小二乗法）

1．Minimize $(y-X \beta)^{\prime}(y-X \beta)$ subject to $R \beta=r$ ．
Let L be the Lagrangian for the minimization problem．

$$
L=(y-X \beta)^{\prime}(y-X \beta)-2 \lambda^{\prime}(R \beta-r)
$$

Let the solutions of β and λ for minimization be $\tilde{\beta}$ and $\tilde{\lambda}$ ．

$$
\begin{gathered}
\frac{\partial L}{\partial \beta}=-2 X^{\prime}(y-X \tilde{\beta})-2 R^{\prime} \tilde{\lambda}=0 \\
\frac{\partial L}{\partial \lambda}=-2(R \tilde{\beta}-r)=0
\end{gathered}
$$

106

From $\partial L / \partial \beta=0$ ，we obtain：

$$
\begin{aligned}
\tilde{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y+\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda} \\
& =\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}
\end{aligned}
$$

Multiplying R from the left，we have：

$$
R \tilde{\beta}=R \hat{\beta}+R\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}
$$

Because $R \tilde{\beta}=r$ has to be satisfied，we have the following expression：

$$
r=R \hat{\beta}+R\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}
$$

Therefore，solving the above equation with respect to $\tilde{\lambda}$ ，we obtain：

$$
\tilde{\lambda}=\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \hat{\beta})
$$

Substituting $\tilde{\lambda}$ into $\tilde{\beta}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime} \tilde{\lambda}$ ，the restricted OLSE is given by：

$$
\tilde{\beta}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \hat{\beta})
$$

（a）The expectation of $\tilde{\beta}$ is：

$$
\begin{aligned}
\mathrm{E}(\tilde{\beta}) & =\mathrm{E}(\hat{\beta})+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \mathrm{E}(\hat{\beta})) \\
& \left.=\beta+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \beta)\right)=\beta
\end{aligned}
$$

which shows that $\tilde{\beta}$ is unbiased.
(b) The variance of $\tilde{\beta}$ is as follows.

First, rewrite as follows:

$$
\begin{aligned}
(\tilde{\beta}-\beta) & =(\hat{\beta}-\beta)+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \beta-R \hat{\beta}) \\
& =(\hat{\beta}-\beta)-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-R \beta) \\
& =(\hat{\beta}-\beta)-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R(\hat{\beta}-\beta) \\
& =\left(I-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\right)^{-1}(\hat{\beta}-\beta) \\
& =W(\hat{\beta}-\beta) .
\end{aligned}
$$

109

Then, we obtain the following variance:

$$
\begin{aligned}
& \mathrm{V}(\tilde{\beta}) \equiv \mathrm{E}\left((\tilde{\beta}-\beta)(\tilde{\beta}-\beta)^{\prime}\right)=\mathrm{E}\left(W(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime} W^{\prime}\right) \\
&= W \mathrm{E}\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right) W^{\prime}=W \mathrm{~V}(\hat{\beta}) W^{\prime}=\sigma^{2} W\left(X^{\prime} X\right)^{-1} W^{\prime} \\
&= \sigma^{2}\left(I-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\right)\left(X^{\prime} X\right)^{-1} \\
& \quad \times\left(I-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\right)^{\prime} \\
&= \sigma^{2}\left(X^{\prime} X\right)^{-1}-\sigma^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\left(X^{\prime} X\right)^{-1} \\
&=\mathrm{V}(\hat{\beta})-\sigma^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1} R\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

Thus, $\mathrm{V}(\hat{\beta})-\mathrm{V}(\tilde{\beta})$ is positive definite.
110
2. Another solution:
(a) Again, write the first-order condition for minimization:

$$
\begin{aligned}
& \frac{\partial L}{\partial \beta}=-2 X^{\prime}(y-X \tilde{\beta})-2 R^{\prime} \tilde{\lambda}=0 \\
& \frac{\partial L}{\partial \lambda}=-2(R \tilde{\beta}-r)=0
\end{aligned}
$$

which can be written as:

$$
\begin{aligned}
& X^{\prime} X \tilde{\beta}-R^{\prime} \tilde{\lambda}=X^{\prime} y \\
& R \tilde{\beta}=r
\end{aligned}
$$

111

Using the matrix form:

$$
\left(\begin{array}{cc}
X^{\prime} X & R^{\prime} \\
R & 0
\end{array}\right)\binom{\tilde{\beta}}{-\tilde{\lambda}}=\binom{X^{\prime} y}{r}
$$

The solutions of $\tilde{\beta}$ and $-\tilde{\lambda}$ are given by:

$$
\binom{\tilde{\beta}}{-\tilde{\lambda}}=\left(\begin{array}{cc}
X^{\prime} X & R^{\prime} \\
R & 0
\end{array}\right)^{-1}\binom{X^{\prime} y}{r}
$$

(b) Formula to the inverse matrix:

$$
\left(\begin{array}{ll}
A & B \\
B^{\prime} & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
E & F \\
F^{\prime} & G
\end{array}\right)
$$

112
where E, F and G are given by:

$$
\begin{aligned}
E & =\left(A-B D^{-1} B^{\prime}\right)^{-1} \\
& =A^{-1}+A^{-1} B\left(D-B^{\prime} A^{-1} B\right)^{-1} B^{\prime} A^{-1} \\
F & =-\left(A-B D^{-1} B^{\prime}\right)^{-1} B D^{-1} \\
& =-A^{-1} B\left(D-B^{\prime} A^{-1} B\right)^{-1} \\
G & =\left(D-B^{\prime} A^{-1} B\right)^{-1} \\
& =D^{-1}+D^{-1} B^{\prime}\left(A-B D^{-1} B^{\prime}\right)^{-1} B D^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& E=\left(X^{\prime} X\right)^{-1}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right) R\left(X^{\prime} X\right)^{-1} \\
& F=\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right) .
\end{aligned}
$$

Therefore, $\tilde{\beta}$ is derived as follows:

$$
\begin{aligned}
\tilde{\beta} & =E X^{\prime} y+F r \\
& =\hat{\beta}+\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(r-R \hat{\beta}) .
\end{aligned}
$$

(d) The variance is:

$$
\mathrm{V}\binom{\tilde{\beta}}{-\tilde{\lambda}}=\sigma^{2}\left(\begin{array}{cc}
X^{\prime} X & R^{\prime} \\
R & 0
\end{array}\right)^{-1}
$$

Therefore, $\mathrm{V}(\tilde{\beta})$ is:

$$
\begin{aligned}
\mathrm{V}(\tilde{\beta}) & =\sigma^{2} E \\
& =\sigma^{2}\left(\left(X^{\prime} X\right)^{-1}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right) R\left(X^{\prime} X\right)^{-1}\right)
\end{aligned}
$$

(e) Under the restriction: $R \beta=r$,

$$
\mathrm{V}(\hat{\beta})-\mathrm{V}(\tilde{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right) R\left(X^{\prime} X\right)^{-1}
$$

is positive definite.

6 F Distribution (Restricted OLS and Unrestricted

OLS)

1. As mentioned above, under the null hypothesis $H_{0}: R \beta=r$,

where $G=\operatorname{Rank}(R)$.

Moreover, rewrite as follows:

$$
\begin{aligned}
(y-X \tilde{\beta})^{\prime}(y-X \tilde{\beta})= & (y-X \hat{\beta}-X(\tilde{\beta}-\hat{\beta}))^{\prime}(y-X \hat{\beta}-X(\tilde{\beta}-\hat{\beta})) \\
= & (y-X \hat{\beta})^{\prime}(y-X \hat{\beta})+(\tilde{\beta}-\hat{\beta})^{\prime} X^{\prime} X(\tilde{\beta}-\hat{\beta}) \\
& -(y-X \hat{\beta})^{\prime} X(\tilde{\beta}-\hat{\beta})-(\tilde{\beta}-\hat{\beta})^{\prime} X^{\prime}(y-X \hat{\beta}) \\
= & (y-X \hat{\beta})^{\prime}(y-X \hat{\beta})+(\tilde{\beta}-\hat{\beta})^{\prime} X^{\prime} X(\tilde{\beta}-\hat{\beta}) .
\end{aligned}
$$

$X^{\prime}(y-X \widehat{\beta})=X^{\prime} e=0$ is utilized.

Therefore, we obtain the following result:

$$
\frac{(R \hat{\beta}-r)^{\prime}\left(R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-r) / G}{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta}) /(n-k)}=\frac{\left(\tilde{u}^{\prime} \tilde{u}-e^{\prime} e\right) / G}{e^{\prime} e /(n-k)}
$$

where e and \tilde{u} are the restricted residual and the unrestricted residual.
That is,

$$
e=y-X \hat{\beta}, \quad \text { and } \quad \tilde{u}=y-X \tilde{\beta}
$$

7 Example：F Distribution（Restricted OLS and Un－ restricted OLS）

Date file \Longrightarrow cons99．txt（Next slide）
Each column denotes year，nominal household expenditures（家計消費， 10 billion yen），household disposable income（家計可処分所得， 10 billion yen）and house－ hold expenditure deflator（家計消費デフレータ，1990＝100）from the left．

1955	5430.1	6135.0	18.1	1970	37784.1	45913.2	35.2	1985	185335.1	220655.6	93.9
1956	5974.2	6828.4	18.3	1971	42571.6	51944.3	37.5	1986	193069.6	229938.8	94.8
1957	6686.3	7619.5	19.0	1972	49124.1	60245.4	39.7	1987	202072.8	235924.0	95.3
1958	7169.7	8153.3	19.1	1973	59366.1	74924.8	44.1	1988	212939.9	247159.7	95.8
1959	8019.3	9274.3	19.7	1974	71782.1	93833.2	53.3	1989	227122.2	263940.5	97.7
1960	9234.9	10776.5	20.5	1975	83591.1	108712.8	59.4	1990	243035.7	280133.0	100.0
1961	10836.2	12869.4	21.8	1976	94443.7	123540.9	65.2	1991	255531.8	297512.9	102.5
1962	12430.8	14701.4	23.2	1977	105397.8	135318.4	70.1	1992	265701.6	309256.6	104.5
1963	14506.6	17042.7	24.9	1978	115960.3	147244.2	73.5	1993	272075.3	317021.6	105.9
1964	16674.9	19709.9	26.0	1979	127600.9	157071.1	76.0	1994	279538.7	325655.7	106.7
1965	18820.5	22337.4	27.8	1980	138585.0	169931.5	81.6	1995	283245.4	331967.5	106.2
1966	21680.6	25514.5	29.0	1981	147103.4	181349.2	85.4	1996	291458.5	340619.1	106.0
1967	24914.0	29012.6	30.1	1982	157994.0	199611.5	87.7	1997	298475.2	345522.7	107.3
1968	28452.7	34233.6	31.6	1983	166631.6	199587.8	89.5				
1969	32705.2	39486.3	32.9	1984			91.8				

Adjusted R－squared＝． 994762

 Durbin－Watson statistic $=.116873$F －statistic（zero slopes）$=7787.70$
Schwarz Bayes．Info．Crit．$=17.4101$
Log of likelihood function $=-421.469$

	Estimated	Standard	
Variable	Coefficient	Error	t－statistic
C	-3317.80	1934.49	-1.71508
RYD	.854577	$.968382 \mathrm{E}-02$	88.2480

Equation 1

Method of estimation $=$ Ordinary Least Squares

Dependent variable：RCONS
Current sample： 1956 to 1997
Number of observations： 42
Mean of dependent variable $=149038$ ．
Std．dev．of dependent var．$=78147.9$
Sum of squared residuals $=.127951 \mathrm{E}+10$
Variance of residuals $=.319878 \mathrm{E}+08$
Std．error of regression $=5655.77$
R －squared $=.994890$

124

Equation 2

Method of estimation $=$ Ordinary Least Squares

Dependent variable：RCONS
Current sample： 1956 to 1997
Number of observations： 42
Mean of dependent variable $=149038$ ．
Std．dev．of dependent var．$=78147.9$
Sum of squared residuals $=.244501 \mathrm{E}+09$
Variance of residuals $=.643423 \mathrm{E}+07$
Std．error of regression $=2536.58$
R －squared $=.999024$

Adjusted R－squared $=.998946$
Durbin－Watson statistic $=.420979$
F －statistic（zero slopes）$=12959.1$
Schwarz Bayes．Info．Crit．$=15.9330$ Log of likelihood function $=-386.714$

	Estimated Variable Coefficient	Standard Error	t－statistic
C	4204.11	1440.45	2.91861
D1	-39915.3	3154.24	-12.6545
RYD	.786609	.015024	52.3561
D1RYD	.194495	.018731	10.3839

1% point of $F(1,40)=7.31$
$H_{0}: \beta_{2}=0$ is rejected．

2．Equation 1 vs．Equation 2

Test the structural change between 1973 and 1974.
Equation 2 is：

$$
\mathrm{RCONS}=\beta_{1}+\beta_{2} \mathrm{D} 1+\beta_{3} \mathrm{RYD}+\beta_{4} \mathrm{RYD} \times \mathrm{D} 1
$$

$H_{0}: \beta_{2}=\beta_{4}=0$

1．Equation 1

Significance test：
Equation 1 is：

$$
\mathrm{RCONS}=\beta_{1}+\beta_{2} \mathrm{RYD}
$$

$H_{0}: \beta_{2}=0$
（No．1）t Test \Longrightarrow Compare 10.3839 and $t(42-2)$
（No．2）F Test \Longrightarrow Compare $\frac{R^{2} / G}{\left(1-R^{2}\right) /(n-k)}=\frac{.994890 / 1}{(1-.994890) /(42-2)}=$ 7787.8 and $F(1,40)$ ．

128

Restricted OLS \Longrightarrow Equation 1
Unrestricted OLS \Longrightarrow Equation 2

$$
\frac{\left(\tilde{u}^{\prime} \tilde{u}-e^{\prime} e\right) / G}{e^{\prime} e /(n-k)}=\frac{(.127951 \mathrm{E}+10-.244501 \mathrm{E}+09) / 2}{.244501 \mathrm{E}+09 /(42-4)}=80.43
$$

which should be compared with $F(2,38)$ ．
1% point of $F(2,38)=5.211<80.43$
$H_{0}: \beta_{2}=\beta_{4}=0$ is rejected.
\Longrightarrow The structure was changed in 1974 ．

130

8 Generalized Least Squares Method（GLS，一般化

最小自乗法）

1．Regression model：$y=X \beta+u, \quad u \sim\left(0, \sigma^{2} \Omega\right)$
2．Heteroscedasticity（不等分散，不均一分散）

$$
\sigma^{2} \Omega=\left(\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \sigma_{n}^{2}
\end{array}\right)
$$

First－Order Autocorrelation（一階の自己相関，系列相関）

In the case of time series data，the subscript is conventionally given by t ，not i ．

$$
u_{t}=\rho u_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim \operatorname{iid} N\left(0, \sigma_{\epsilon}^{2}\right)
$$

$$
\sigma^{2} \Omega=\frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}}\left(\begin{array}{ccccc}
1 & \rho & \rho^{2} & \cdots & \rho^{n-1} \\
\rho & 1 & \rho & \cdots & \rho^{n-2} \\
\rho^{2} & \rho & 1 & \cdots & \rho^{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \cdots & 1
\end{array}\right)
$$

132

$$
\mathrm{V}\left(u_{t}\right)=\sigma^{2}=\frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}}
$$

3. The generalized least squares (GLS) estimator of β, denoted by b, solves the following minimization problem:

$$
\min _{\beta}(y-X \beta)^{\prime} \Omega^{-1}(y-X \beta)
$$

The GLSE of β is:

$$
b=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y
$$

133
4. In general, when Ω is symmetric, Ω is decomposed as follows.

$$
\Omega=A^{\prime} \Lambda A
$$

Λ is a diagonal matrix, where the diagonal elements of Λ are given by the eigen values.
A is a matrix consisting of eigen vectors.
When Ω is a positive definite matrix, all the diagonal elements of Λ are positive.
5. There exists P such that $\Omega=P P^{\prime}$ (i.e., take $P=A^{\prime} \Lambda^{1 / 2}$).

134

Accordingly, the regression model is rewritten as:

$$
y^{\star}=X^{\star} \beta+u^{\star}, \quad u^{\star} \sim\left(0, \sigma^{2} I_{n}\right)
$$

Apply OLS to the above model.
That is,
$\min _{\beta}\left(y^{\star}-X^{\star} \beta\right)^{\prime}\left(y^{\star}-X^{\star} \beta\right)$
β
is equivalent to:

$$
\min (y-X \beta)^{\prime} \Omega^{-1}(y-X \beta)
$$

β
136
.

$$
\begin{gathered}
b=\left(X^{\star \prime} X^{\star}\right)^{-1} X^{\star \prime} y^{\star}=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y \\
b=\beta+\left(X^{\star} X^{\star}\right)^{-1} X^{\star \prime} u^{\star}=\beta+\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} u \\
\mathrm{E}(b)=\beta \\
\mathrm{V}(b)=\sigma^{2}\left(X^{\star \prime} X^{\star}\right)^{-1}=\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1}
\end{gathered}
$$

6. Suppose that the regression model is given by:

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} \Omega\right) .
$$

In this case, when we use OLS, what happens?

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u
$$

$$
\mathrm{V}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}
$$

Compare GLS and OLS.
(a) Expectation:

$$
\mathrm{E}(\hat{\beta})=\beta, \quad \text { and } \quad \mathrm{E}(b)=\beta
$$

Thus, both $\hat{\beta}$ and b are unbiased estimator.
(b) Variance:

$$
\begin{aligned}
& \mathrm{V}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1} \\
& \mathrm{~V}(b)=\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1}
\end{aligned}
$$

Which is more efficient, OLS or GLS?.

$$
\begin{aligned}
\mathrm{V}(\hat{\beta})-\mathrm{V}(b)= & \sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}-\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1} \\
= & \sigma^{2}\left(\left(X^{\prime} X\right)^{-1} X^{\prime}-\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right) \Omega \\
& \times\left(\left(X^{\prime} X\right)^{-1} X^{\prime}-\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right)^{\prime} \\
= & \sigma^{2} A \Omega A^{\prime}
\end{aligned}
$$

Ω is the variance-covariance matrix of u, which is a positive definite matrix.

Therefore, except for $\Omega=I_{n}, A \Omega A^{\prime}$ is also a positive definite matrix.
8. Because $\left(y^{\star}-X^{\star} b\right)^{\prime}\left(y^{\star}-X^{\star} b\right) / \sigma^{2} \sim \chi^{2}(n-k)$, we obtain:

$$
\frac{(y-X b)^{\prime} \Omega^{-1}(y-X b)}{\sigma^{2}} \sim \chi^{2}(n-k)
$$

9. Furthermore, from the fact that b is independent of $y-X b$, the following F distribution can be derived:

$$
\frac{(R b-r)^{\prime}\left(R\left(X^{\prime} \Omega^{-1} X\right)^{-1} R^{\prime}\right)^{-1}(R b-r) / G}{(y-X b)^{\prime} \Omega^{-1}(y-X b) / n-k} \sim F(G, n-k)
$$

142
10. Let b be the unrestricted GLSE and \tilde{b} be the restricted GLSE.

Their residuals are given by e and \tilde{e}, respectively.

$$
e=y-X b, \quad \tilde{e}=y-X \tilde{b}
$$

Then, the F test statistic is written as follows:

$$
\frac{\left(\tilde{e}^{\prime} \Omega^{-1} \tilde{e}-e^{\prime} \Omega^{-1} e\right) / G}{e^{\prime} \Omega^{-1} e /(n-k)} \sim F(G, n-k)
$$

8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS \Longrightarrow Stochastic linear restriction:

$$
\begin{array}{ll}
r=R \beta+v, & \mathrm{E}(v)=0 \text { and } \mathrm{V}(v)=\sigma^{2} \Psi \\
y=X \beta+u, & \mathrm{E}(u)=0 \text { and } \mathrm{V}(u)=\sigma^{2} I_{n}
\end{array}
$$

Using a matrix form,

$$
\binom{y}{r}=\binom{X}{R} \beta+\binom{u}{v}, \quad \mathrm{E}\binom{u}{v}=\binom{0}{0} \text { and } \mathrm{V}\binom{u}{v}=\sigma^{2}\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)
$$

For estimation, we do not need normality assumption.

Applying GLS，we obtain：

$$
\begin{aligned}
b & =\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{y}{r}\right) \\
& =\left(X^{\prime} X+R^{\prime} \Psi^{-1} R\right)^{-1}\left(X^{\prime} y+R^{\prime} \Psi^{-1} r\right) .
\end{aligned}
$$

Mean and Variance of $b: \quad b$ is rewritten as follows：

$$
\begin{aligned}
b & =\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{y}{r}\right) \\
& =\beta+\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\binom{u}{v}
\end{aligned}
$$

9 Maximum Likelihood Estimation（MLE，最尤法）
 \Longrightarrow Review of Last Semester

1．The distribution function of $\left\{X_{i}\right\}_{i=1}^{n}$ is $f(x ; \theta)$ ，where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $\theta=(\mu, \Sigma)$ ．

Note that X is a vector of random variables and x is a vector of their realiza－ tions（i．e．，observed data）．

Likelihood function $L(\cdot)$ is defined as $L(\theta ; x)=f(x ; \theta)$ ．

Therefore，the mean and variance are given by：

$$
\begin{aligned}
\mathrm{E}(b) & =\beta \quad \Longrightarrow \quad b \text { is unbiased } \\
\mathrm{V}(b) & =\sigma^{2}\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X+R^{\prime} \Psi^{-1} R\right)^{-1}
\end{aligned}
$$

Note that $f(x ; \theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$ when $X_{1}, X_{2}, \cdots, X_{n}$ are mutually indepen－ dently and identically distributed．

The maximum likelihood estimator（MLE）of θ is θ such that：

$$
\max _{\theta} L(\theta ; X) \quad \Longleftrightarrow \quad \max _{\theta} \log L(\theta ; X)
$$

MLE satisfies the following two conditions：
（a）$\frac{\partial \log L(\theta ; X)}{\partial \theta}=0$ ．
（b）$\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}$ is a negative definite matrix．
148

2．Fisher＇s information matrix（フィツシャーの情報行列）is defined as：

$$
I(\theta)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)
$$

where we have the following equality：

$$
-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)=\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
$$

Proof of the above equality：

$$
\int L(\theta ; x) \mathrm{d} x=1
$$

Take a derivative with respect to θ ．

$$
\int \frac{\partial L(\theta ; x)}{\partial \theta} \mathrm{d} x=0
$$

（We assume that（i）the domain of x does not depend on θ and（ii）the deriva－ tive $\frac{\partial L(\theta ; x)}{\partial \theta}$ exists．）

Rewriting the above equation，we obtain：

$$
\int \frac{\partial \log L(\theta ; x)}{\partial \theta} L(\theta ; x) \mathrm{d} x=0
$$

i．e．，

$$
\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0
$$

Again，differentiating the above with respect to θ ，we obtain：

$$
\begin{aligned}
& \int \frac{\partial^{2} \log L(\theta ; x)}{\partial \theta \partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x+\int \frac{\partial \log L(\theta ; x)}{\partial \theta} \frac{\partial L(\theta ; x)}{\partial^{\prime} \theta} \mathrm{d} x \\
& \quad=\int \frac{\partial^{2} \log L(\theta ; x)}{\partial \theta \partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x+\int \frac{\partial \log L(\theta ; x)}{\partial \theta} \frac{\partial \log L(\theta ; x)}{\partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x \\
& \quad=\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)+\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=0
\end{aligned}
$$

Therefore，we can derive the following equality：

$$
-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)=\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
$$

where the second equality utilizes $\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0$ ．

For simplicity，let $s(X)$ and θ be scalars．
Then，

$$
\begin{aligned}
\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} & =\left(\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)\right)^{2}=\rho^{2} \mathrm{~V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right) \\
& \leq \mathrm{V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
\end{aligned}
$$

where ρ denotes the correlation coefficient between $s(X)$ and $\frac{\partial \log L(\theta ; X)}{\partial \theta}$ ，

3．Cramer－Rao Lower Bound（クラメール・ラオの下限）：$I(\theta)$

Suppose that an estimator of θ is given by $s(X)$ ．
The expectation of $s(X)$ is：

$$
\mathrm{E}(s(X))=\int s(x) L(\theta ; x) \mathrm{d} x
$$

Differentiating the above with respect to θ ，

$$
\begin{aligned}
\frac{\partial \mathrm{E}(s(X))}{\partial \theta} & =\int s(x) \frac{\partial L(\theta ; x)}{\partial \theta} \mathrm{d} x=\int s(x) \frac{\partial \log L(\theta ; x)}{\partial \theta} L(\theta ; x) \mathrm{d} x \\
& =\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
\end{aligned}
$$

152
i．e．，

$$
\rho=\frac{\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}{\sqrt{\mathrm{V}(s(X))} \sqrt{\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}}
$$

Note that $|\rho| \leq 1$ ．
Therefore，we have the following inequality：

$$
\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} \leq \mathrm{V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
$$

Even in the case where $s(X)$ is a vector，the following inequality holds．

$$
\mathrm{V}(s(X)) \geq(I(\theta))^{-1}
$$

where $I(\theta)$ is defined as：

$$
\begin{aligned}
I(\theta) & =-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right) \\
& =\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right) \\
& =\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
\end{aligned}
$$

4．Asymptotic Normality of MLE：
Let $\tilde{\theta}$ be MLE of θ ．
As n goes to infinity，we have the following result：

$$
\sqrt{n}(\tilde{\theta}-\theta) \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)^{-1}\right)
$$

where it is assumed that $\lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)$ converges．
That is，when n is large，$\tilde{\theta}$ is approximately distributed as follows：

$$
\tilde{\theta} \sim N\left(\theta,(I(\theta))^{-1}\right)
$$

157

Replace the variables as follows：

$$
\begin{aligned}
\theta & \longrightarrow \theta^{(i+1)} \\
\theta^{*} & \longrightarrow \theta^{(i)}
\end{aligned}
$$

Then，we have：

$$
\theta^{(i+1)}=\theta^{(i)}-\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta}
$$

\Longrightarrow Newton－Raphson method（ニュートン・ラプソン法）

Suppose that $s(X)=\tilde{\theta}$ ．
When n is large， $\mathrm{V}(s(X))$ is approximately equal to $(I(\theta))^{-1}$ ．
5．Optimization（最適化）：

$$
0=\frac{\partial \log L(\theta ; x)}{\partial \theta}=\frac{\partial \log L\left(\theta^{*} ; x\right)}{\partial \theta}+\frac{\partial^{2} \log L\left(\theta^{*} ; x\right)}{\partial \theta \partial \theta^{\prime}}\left(\theta-\theta^{*}\right)
$$

Solving the above equation with respect to θ ，we obtain the following：

$$
\theta=\theta^{*}-\left(\frac{\partial^{2} \log L\left(\theta^{*} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)^{-1} \frac{\partial \log L\left(\theta^{*} ; x\right)}{\partial \theta}
$$

158

Replacing $\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}$ by $\mathrm{E}\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)$ ，we obtain the following op－
timization algorithm：

$$
\begin{aligned}
\theta^{(i+1)} & =\theta^{(i)}-\left(\mathrm{E}\left(\frac{\partial^{2} \log L\left(\theta^{(i)} ; x\right)}{\partial \theta \partial \theta^{\prime}}\right)\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta} \\
& =\theta^{(i)}+\left(I\left(\theta^{(i)}\right)\right)^{-1} \frac{\partial \log L\left(\theta^{(i)} ; x\right)}{\partial \theta}
\end{aligned}
$$

\Longrightarrow Method of Scoring（スコア法）

9．1 MLE：The Case of Single Regression Model

The regression model：

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i}
$$

1．$u_{i} \sim N\left(0, \sigma^{2}\right)$ is assumed．

2．The density function of u_{i} is：

$$
f\left(u_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}} u_{i}^{2}\right)
$$

Because $u_{1}, u_{2}, \cdots, u_{n}$ are mutually independently distributed，the joint den－
sity function of $u_{1}, u_{2}, \cdots, u_{n}$ is written as：

$$
\begin{aligned}
f\left(u_{1}, u_{2}, \cdots, u_{n}\right) & =f\left(u_{1}\right) f\left(u_{2}\right) \cdots f\left(u_{n}\right) \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} u_{i}^{2}\right)
\end{aligned}
$$

3．Using the transformation of variable $\left(u_{i}=y_{i}-\beta_{1}-\beta_{2} x_{i}\right)$ ，the joint density function of $y_{1}, y_{2}, \cdots, y_{n}$ is given by：

$$
\begin{aligned}
f\left(y_{1}, y_{2}, \cdots, y_{n}\right) & =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2}\right) \\
& \equiv L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)
\end{aligned}
$$

$L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)$ is called the likelihood function．
$\log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)$ is called the log－likelihood function．

$$
\begin{aligned}
\log L\left(\beta_{1}, \beta_{2},\right. & \left.\sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right) \\
& =-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{t}-\beta_{1}-\beta_{2} x_{i}\right)^{2}
\end{aligned}
$$

4．Transformation of Variable（変数変換）：

Suppose that the density function of a random variable X is $f_{x}(x)$ ．

Defining $X=g(Y)$ ，the density function of $Y, f_{y}(y)$ ，is given by：

$$
f_{y}(y)=f_{x}(g(y))\left|\frac{\mathrm{d} g(y)}{\mathrm{d} y}\right|
$$

In the case where X and $g(Y)$ are $n \times 1$ vectors，$\left|\frac{\mathrm{d} g(y)}{\mathrm{d} y}\right|$ should be replaced by $\left|\frac{\partial g(y)}{\partial y^{\prime}}\right|$ ，which is an absolute value of a determinant of the matrix $\frac{\partial g(y)}{\partial y^{\prime}}$ ．

164

5．Given the observed data $y_{1}, y_{2}, \cdots, y_{n}$ ，the likelihood function $L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}\right.$ ， y_{2}, \cdots, y_{n} ），or the \log－likelihood function $\log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)$ is maximized with respect to $\left(\alpha, \beta, \sigma^{2}\right)$ ．

Solve the following three simultaneous equations：

$$
\begin{aligned}
& \frac{\partial \log L\left(\alpha, \beta, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)}{\partial \alpha}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)=0 \\
& \frac{\partial \log L\left(\beta_{1}, \beta_{2}, \sigma^{2} \mid y_{1}, y_{2}, \cdots, y_{n}\right)}{\partial \beta}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right) x_{i}=0
\end{aligned}
$$

9．2 MLE：The Case of Multiple Regression Model I

1．Multivariate Normal Distribution：$X: n \times 1$ and $X \sim N(\mu, \Sigma)$

The density function of X is：

$$
f(x)=(2 \pi)^{n / 2}|\Sigma|^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right)
$$

$\tilde{\beta}_{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, \quad \tilde{\beta}_{1}=\bar{y}-\tilde{\beta}_{2} \bar{x}, \quad \tilde{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\tilde{\alpha}-\tilde{\beta} x_{i}\right)^{2}$.
The MLE of σ^{2} is divided by n ，not $n-2$ ．
2. Regression model: $y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} I_{n}\right)$

Transformation of Variables from u to y :

$$
\begin{aligned}
& f_{u}(u)=\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma^{2}} u^{\prime} u\right) \\
f_{y}(y)= & f_{u}(y-X \beta)\left|\frac{\partial u}{\partial y^{\prime}}\right| \\
= & \left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)\right) \\
= & L(\theta ; y, X),
\end{aligned}
$$

where $\theta=\left(\beta, \sigma^{2}\right)$, because of $\frac{\partial u}{\partial y^{\prime}}=I_{n}$.

169

Therefore, the log-likelihood function is:

$$
\log L(\theta ; y, X)=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)
$$

Note that $|\Sigma|^{-1 / 2}=\left|\sigma^{2} I_{n}\right|^{-1 / 2}=\sigma^{-n / 2}$.
3. $\max \log L(\theta ; y, X)$
θ
(FOC) $\frac{\partial \log L(\theta ; y, X)}{\partial \theta}=0$
(SOC) $\frac{\partial^{2} \log L(\theta ; y, X)}{\partial \theta \partial \theta^{\prime}}$ is a negative definite matrix.

170
variance - covariance matrix for unbiased estimators of θ.

$$
I(\theta)^{-1}=\left(\begin{array}{cc}
\sigma^{2}\left(X^{\prime} X\right)^{-1} & 0 \\
0 & \frac{2 \sigma^{4}}{n}
\end{array}\right)
$$

For large n, we approximately obtain: $\binom{\tilde{\beta}}{\tilde{\sigma}^{2}} \sim N\left(\binom{\beta}{\sigma^{2}},\left(\begin{array}{cc}\sigma^{2}\left(X^{\prime} X\right)^{-1} & 0 \\ 0 & \frac{2 \sigma^{4}}{n}\end{array}\right)\right)$.
where $\theta=\left(\beta, \sigma^{2}\right)$, because of $\frac{\partial u}{\partial y^{\prime}}=I_{n}$.
The log-likelihood function is:

$$
\log L(\theta ; y, X)=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2} \log |\Omega|-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime} \Omega^{-1}(y-X \beta)
$$

where $\theta=\left(\beta, \sigma^{2}\right)$.
2. $\max \log L(\theta ; y, X)$
θ
(FOC) $\frac{\partial \log L(\theta ; y, X)}{\partial \theta}=0$
(SOC) $\frac{\partial^{2} \log L(\theta ; y, X)}{\partial \theta \partial \theta^{\prime}}$ is a negative definite matrix.

Then，we obtain MLE of β and σ^{2} ：

$$
\tilde{\beta}=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y, \quad \tilde{\sigma}^{2}=\frac{(y-X \tilde{\beta})^{\prime} \Omega^{-1}(y-X \tilde{\beta})}{n}
$$

3．Fisher＇s information matrix is defined as：

$$
I(\theta)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; y, X)}{\partial \theta \partial \theta^{\prime}}\right)
$$

The inverse of the information matrix，$I(\theta)^{-1}$ ，provides a lower bound of the variance－covariance matrix for unbiased estimators of θ ，which is given by：

$$
I(\theta)^{-1}=\left(\begin{array}{cc}
\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1} & 0 \\
0 & \frac{2 \sigma^{4}}{n}
\end{array}\right)
$$

175

9．4 MLE：AR（1）Model

The p th－order Autoregressive Model，i．e．， $\operatorname{AR}(p) \operatorname{Model}(p$ 次の自己回帰モデル）：

$$
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\cdots+\phi_{p} y_{t-p}+u_{t}
$$

AR（1）Model：$\quad t=2,3, \cdots, n$,

$$
y_{t}=\phi_{1} y_{t-1}+u_{t}, \quad u_{t} \sim N\left(0, \sigma^{2}\right)
$$

where $\left|\phi_{1}\right|<1$ is assumed for now．

176

To obtain the joint density function of $y_{1}, y_{2}, \cdots, y_{n}, f\left(y_{n}, y_{n-1}, \cdots, y_{1}\right)$ is decom－ posed as follows：

$$
f\left(y_{n}, y_{n-1}, \cdots, y_{1}\right)=f\left(y_{1}\right) \prod_{t=2}^{n} f\left(y_{t} \mid y_{t-1}, \cdots, y_{1}\right)
$$

From $y_{t}=\phi_{1} y_{t-1}+u_{t}$ ，we can obtain：

$$
\mathrm{E}\left(y_{t} \mid y_{t-1}, \cdots, y_{1}\right)=\phi_{1} y_{t-1}, \quad \text { and } \quad \mathrm{V}\left(y_{t} \mid y_{t-1}, \cdots, y_{1}\right)=\sigma^{2}
$$

Therefore，the conditional distribution $f\left(y_{t} \mid y_{t-1}, \cdots, y_{1}\right)$ is：

$$
f\left(y_{t} \mid y_{t-1}, \cdots, y_{1}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{t}-\phi_{1} y_{t-1}\right)^{2}\right)
$$

The unconditional expectation and variance of y_{t} is：

$$
\mathrm{E}\left(y_{t}\right)=0, \quad \text { and } \quad \mathrm{V}\left(y_{t}\right)=\sigma^{2}\left(1+\phi_{1}^{2}+\phi_{1}^{4}+\cdots\right)=\frac{\sigma^{2}}{1-\phi_{1}^{2}}
$$

Therefore，the unconditional distribution of y_{t} is given by：

$$
f\left(y_{t}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2} /\left(1-\phi_{1}^{2}\right)}} \exp \left(-\frac{1}{2 \sigma^{2} /\left(1-\phi_{1}^{2}\right)} y_{t}^{2}\right)
$$

To obtain the unconditional distribution $f\left(y_{t}\right), y_{t}$ is rewritten as follows：

$$
\begin{aligned}
y_{t}= & \phi_{1} y_{t-1}+u_{t} \\
= & \phi_{1}^{2} y_{t-2}+u_{t}+\phi_{1} u_{t-1} \\
& \vdots \\
= & \phi_{1}^{j} y_{t-j}+u_{t}+\phi_{1} u_{t-1}+\cdots+\phi_{1}^{j} u_{t-j} \\
& \vdots \\
= & u_{t}+\phi_{1} u_{t-1}+\phi_{1}^{2} u_{t-2}+\cdots, \quad \text { when } j \text { goes to infinity. }
\end{aligned}
$$

Finally，the joint distribution of $y_{1}, y_{2}, \cdots, y_{n}$ is given by：

$$
\begin{aligned}
f\left(y_{n}, y_{n-1}, \cdots, y_{1}\right)= & f\left(y_{1}\right) \prod_{t=2}^{n} f\left(y_{t} \mid y_{t-1}, \cdots, y_{1}\right) \\
= & \frac{1}{\sqrt{2 \pi \sigma^{2} /\left(1-\phi_{1}^{2}\right)}} \exp \left(-\frac{1}{2 \sigma^{2} /\left(1-\phi_{1}^{2}\right)} y_{1}^{2}\right) \\
& \quad \times \prod_{t=2}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{t}-\phi_{1} y_{t-1}\right)^{2}\right)
\end{aligned}
$$

The log-likelihood function is:

$$
\begin{aligned}
\log L\left(\phi_{1}, \sigma^{2} ; y_{n}, y_{n-1}, \cdots, y_{1}\right)= & -\frac{1}{2} \log \left(2 \pi \sigma^{2} /\left(1-\phi_{1}^{2}\right)\right)-\frac{1}{2 \sigma^{2} /\left(1-\phi_{1}^{2}\right)} y_{1}^{2} \\
& -\frac{n-1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{t=2}^{n}\left(y_{t}-\phi_{1} y_{t-1}\right)^{2} .
\end{aligned}
$$

Maximize $\log L$ with respect to ϕ_{1} and σ^{2}.

Maximization Procedure:

- Newton-Raphson Method, or Method of Scoring
- Simple Grid Search (search maximization within the range $-1<\rho<1$, changing the value of ϕ_{1} by 0.01)

$$
\begin{aligned}
& =\left(2 \pi \sigma_{\epsilon}^{2} /\left(1-\rho^{2}\right)\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma_{\epsilon}^{2} /\left(1-\rho^{2}\right)} u_{1}^{2}\right) \\
& \quad \times\left(2 \pi \sigma_{\epsilon}^{2}\right)^{-(n-1) / 2} \exp \left(-\frac{1}{2 \sigma_{\epsilon}^{2}} \sum_{t=2}^{n}\left(u_{t}-\rho u_{t-1}\right)^{2}\right) .
\end{aligned}
$$

By transformation of variables from $u_{n}, u_{n-1}, \cdots, u_{1}$ to $y_{n}, y_{n-1}, \cdots, y_{1}$, the joint distribution of $y_{n}, y_{n-1}, \cdots, y_{1}$ is:

$$
\begin{aligned}
& f_{y}\left(y_{n}, y_{n-1}, \cdots, y_{1} ; \rho, \sigma_{\epsilon}^{2}, \beta\right) \\
& \quad=f_{u}\left(y_{n}-x_{n} \beta, y_{n-1}-x_{n-1} \beta, \cdots, y_{1}-x_{1} \beta ; \rho, \sigma_{\epsilon}^{2}\right)\left|\frac{\partial u}{\partial y^{\prime}}\right|
\end{aligned}
$$

9.5 MLE: Regression Model with AR(1) Error

When the error term is autocorrelated, the regression model is written as:

$$
y_{t}=x_{t} \beta+u_{t}, \quad u_{t}=\rho u_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim \operatorname{iid} N\left(0, \sigma_{\epsilon}^{2}\right)
$$

The joint distribution of $u_{n}, u_{n-1}, \cdots, u_{1}$ is:

$$
f_{u}\left(u_{n}, u_{n-1}, \cdots, u_{1} ; \rho, \sigma_{\epsilon}^{2}\right)=f_{u}\left(u_{1} ; \rho, \sigma_{\epsilon}^{2}\right) \prod_{t=2}^{n} f_{u}\left(u_{t} \mid u_{t-1}, \cdots, u_{1} ; \rho, \sigma_{\epsilon}^{2}\right)
$$

182

$$
\begin{aligned}
= & \left(2 \pi \sigma_{\epsilon}^{2} /\left(1-\rho^{2}\right)\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma_{\epsilon}^{2} /\left(1-\rho^{2}\right)}\left(y_{1}-x_{1} \beta\right)^{2}\right) \\
= & \left(2 \pi \sigma_{\epsilon}^{2}\right)^{-1 / 2}\left(1-\rho^{2}\right)^{1 / 2} \exp \left(-\frac{1}{2 \sigma_{\epsilon}^{2}}\left(\sqrt{1-\rho^{2}} y_{1}-\sqrt{1-\rho^{2}} x_{1} \beta\right)^{2}\right) \\
& \times\left(2 \pi \sigma_{\epsilon}^{2}\right)^{-(n-1) / 2} \exp \left(-\frac{1}{2 \sigma_{\epsilon}^{2}} \sum_{t=2}^{n}\left(\left(y_{t}-\rho y_{t-1}\right)-\left(x_{t}-\rho x_{t-1}\right) \beta\right)^{2}\right) \\
= & \quad\left(2 \pi \sigma_{\epsilon}^{2}\right)^{-n / 2}\left(1-\rho^{2}\right)^{1 / 2} \exp \left(-\frac{1}{2 \sigma_{\epsilon}^{2}}\left(y_{1}^{*}-x_{1}^{*} \beta\right)^{2}\right) \times \exp \left(-\frac{1}{2 \sigma_{\epsilon}^{2}} \sum_{t=2}^{n}\left(y_{t}^{*}-x_{t}^{*} \beta\right)^{2}\right)
\end{aligned}
$$

(○) For maximization, the first derivative of $L\left(\rho, \sigma_{\epsilon}^{2}, \beta ; y_{n}, y_{n-1}, \cdots, y_{1}\right)$ with respect to β should be zero.

$$
\begin{aligned}
\tilde{\beta} & =\left(\sum_{t=1}^{T} x_{t}^{* \prime} x_{t}^{*}\right)^{-1}\left(\sum_{t=1}^{T} x_{t}^{* \prime} y_{t}^{*}\right) \\
& =\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} y^{*}
\end{aligned}
$$

\Longrightarrow This is equivalent to OLS from the regression model: $y^{*}=X^{*} \beta+\epsilon$ and $\epsilon \sim$ $N\left(0, \sigma^{2} I_{n}\right)$, where $\sigma^{2}=\sigma_{\epsilon}^{2} /\left(1-\rho^{2}\right)$.
（©）For maximization，the first derivative of $L\left(\rho, \sigma_{\epsilon}^{2}, \beta ; y_{n}, y_{n-1}, \cdots, y_{1}\right)$ with respect to σ_{ϵ}^{2} should be zero．

$$
\tilde{\sigma}_{\epsilon}^{2}=\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}^{*}-x_{t}^{*} \beta\right)^{2}=\frac{1}{n}\left(y^{*}-X^{*} \beta\right)^{\prime}\left(y^{*}-X^{*} \beta\right)
$$

where

$$
y^{*}=\left(\begin{array}{c}
y_{1}^{*} \\
y_{2}^{*} \\
\vdots \\
y_{n}^{*}
\end{array}\right)=\left(\begin{array}{c}
\sqrt{1-\rho^{2}} y_{1} \\
y_{2}-\rho y_{1} \\
\vdots \\
y_{n}-\rho y_{n-1}
\end{array}\right), \quad X^{*}=\left(\begin{array}{c}
x_{1}^{*} \\
x_{2}^{*} \\
\vdots \\
x_{n}^{*}
\end{array}\right)=\left(\begin{array}{c}
\sqrt{1-\rho^{2}} x_{1} \\
x_{2}-\rho x_{1} \\
\vdots \\
x_{n}-\rho x_{n-1}
\end{array}\right) .
$$

187

The log－likelihood function is written as：

$$
\begin{aligned}
\log L\left(\rho, \tilde{\sigma}_{\epsilon}^{2}, \tilde{\beta} ; y\right) & =-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\tilde{\sigma}_{\epsilon}^{2}\right)+\frac{1}{2} \log \left(1-\rho^{2}\right)-\frac{n}{2} \\
& =-\frac{n}{2} \log (2 \pi)-\frac{n}{2}-\frac{n}{2} \log \left(\tilde{\sigma}_{\epsilon}^{2}(\rho)\right)+\frac{1}{2} \log \left(1-\rho^{2}\right)
\end{aligned}
$$

For maximization of $\log L$ ，use Newton－Raphson method，method of scoring or simple grid search
Note that $\tilde{\sigma}_{\epsilon}^{2}=\tilde{\sigma}_{\epsilon}^{2}(\rho)=\frac{1}{n}\left(y^{*}-X^{*} \tilde{\beta}\right)^{\prime}\left(y^{*}-X^{*} \tilde{\beta}\right)$ for $\tilde{\beta}=\left(X^{* \prime} X^{*}\right)^{-1} X^{* \prime} y^{*}$ ．
（©）For maximization，the first derivative of $L\left(\rho, \sigma_{\epsilon}^{2}, \beta ; y_{n}, y_{n-1}, \cdots, y_{1}\right)$ with respect to ρ should be zero．
$\max _{\beta, \sigma_{\epsilon}^{2}, \rho} L\left(\rho, \sigma_{\epsilon}^{2}, \beta ; y\right)$ is equivalent to $\max _{\rho} L\left(\rho, \tilde{\sigma}_{\epsilon}^{2}, \tilde{\beta} ; y\right)$.
$L\left(\rho, \tilde{\sigma}_{\epsilon}^{2}, \tilde{\beta} ; y\right)$ is called the concentrated log－likelihood function（集約対数尤度関
数 ），which is a function of ρ ，i．e．，both $\tilde{\sigma}_{\epsilon}^{2}$ and $\tilde{\beta}$ depend only on ρ ．

188

Remark：The regression model with $\operatorname{AR}(1)$ error is：

$$
\begin{gathered}
y_{t}=x_{t} \beta+u_{t}, \quad u_{t}=\rho u_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim \text { iid } N\left(0, \sigma_{\epsilon}^{2}\right) . \\
\mathrm{V}(u)=\sigma^{2}\left(\begin{array}{cccccc}
1 & \rho & \rho^{2} & & \cdots & \rho^{n-1} \\
\rho & 1 & \rho & \rho^{2} & \cdots & \rho^{n-2} \\
\rho^{2} & \rho & 1 & \rho & \cdots & \rho^{n-3} \\
\rho^{3} & \rho^{2} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \rho \\
\rho^{n-1} & \rho^{n-2} & \cdots & \rho^{2} & \rho & 1
\end{array}\right)=\sigma^{2} \Omega, \quad \text { where } \sigma^{2}=\frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}} .
\end{gathered}
$$

where $\operatorname{Cov}\left(u_{i}, u_{j}\right)=\mathrm{E}\left(u_{i} u_{j}\right)=\sigma^{2} \rho^{|i-j|}$ ，i．e．，the i th row and j th column of Ω is $\rho^{|i-j|}$ ．

190

$$
\begin{aligned}
& y^{*}=\left(\begin{array}{c}
y_{1}^{*} \\
y_{2}^{*} \\
\vdots \\
y_{n}^{*}
\end{array}\right)=\left(\begin{array}{c}
\sqrt{1-\rho^{2}} y_{1} \\
y_{2}-\rho y_{1} \\
\vdots \\
y_{n}-\rho y_{n-1}
\end{array}\right)=\left(\begin{array}{ccccc}
\sqrt{1-\rho^{2}} & 0 & \cdots & \cdots & 0 \\
-\rho & 1 & 0 & \cdots & 0 \\
0 & -\rho & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & -\rho & 1
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=P^{-1} y \\
& X^{*}=\left(\begin{array}{c}
x_{1}^{*} \\
x_{2}^{*} \\
\vdots \\
x_{n}^{*}
\end{array}\right)=\left(\begin{array}{c}
\sqrt{1-\rho^{2}} x_{1} \\
x_{2}-\rho x_{1} \\
\vdots \\
x_{n}-\rho x_{n-1}
\end{array}\right)=P^{-1} X \quad \begin{array}{l}
\text { Check } P^{-1} \Omega P^{-1 \prime}=a I_{n} \\
\text { where } a \text { is constant. }
\end{array}
\end{aligned}
$$

9．6 MLE：Regression Model with Heteroscedastic Errors

In the case where the error term depends on the other exogenous variables，the regression model is written as follows：

$$
y_{i}=x_{i} \beta+u_{i}, \quad u_{i} \sim \operatorname{iid} N\left(0, \sigma_{i}^{2}\right), \quad \sigma_{i}^{2}=\left(z_{i} \alpha\right)^{2} .
$$

The joint distribution of $u_{n}, u_{n-1}, \cdots, u_{1}$ ，denoted by $f_{u}(\cdot ; \cdot)$ ，is given by：

$$
\begin{gathered}
\log f_{u}\left(u_{n}, u_{n-1}, \cdots, u_{1} ; \sigma_{1}^{2}, \cdots, \sigma_{n}^{2}\right)=\sum_{i=1}^{n} \log f_{u}\left(u_{t} ; \sigma_{i}^{2}\right) \\
=-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \sum_{i=1}^{n} \log \left(\sigma_{i}^{2}\right)-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{u_{i}}{\sigma_{i}}\right)^{2}
\end{gathered}
$$

193

10 Asymptotic Theory

1．Definition：Convergence in Distribution（分布収束）
A series of random variables X_{1}, X_{2}, \cdots have distribution functions F_{1}, F_{2} ， \cdots ，respectively．

If

$$
\lim _{i \rightarrow \infty} F_{i}=F,
$$

then we say that a series of random variables X_{1}, X_{2}, \cdots converges to F in distribution．

$$
=-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \sum_{i=1}^{n} \log \left(z_{i} \alpha\right)^{2}-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{u_{i}}{z_{i} \alpha}\right)^{2}
$$

By the transformation of variables from $u_{n}, u_{n-1}, \cdots, u_{1}$ to $y_{n}, y_{n-1}, \cdots, y_{1}$ ，the log－ likelihood function is：

$$
\begin{aligned}
L\left(\alpha, \beta ; y_{n}, y_{n-1}, \cdots, y_{1}\right) & =\log f_{y}\left(y_{n}, y_{n-1}, \cdots, y_{1} ; \alpha, \beta\right) \\
& =\log f_{u}\left(y_{n}-x_{n} \beta, y_{n-1}-x_{n-1} \beta, \cdots, y_{1}-x_{1} \beta ; \sigma_{i}^{2}\right)\left|\frac{\partial u}{\partial y}\right| \\
& =-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \sum_{i=1}^{n} \log \left(z_{i} \alpha\right)^{2}-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{y_{i}-x_{i} \beta}{z_{i} \alpha}\right)^{2}
\end{aligned}
$$

\Longrightarrow Maximize the above log－likelihood function with respect to β and α ．
194

2．Consistency（一致性）：

（a）Definition：Convergence in Probability（確率収束）

Let $\left\{Z_{i}: i=1,2, \cdots\right\}$ be a series of random variables．
If the following holds，

$$
\lim _{i \rightarrow \infty} P\left(\left|Z_{i}-\theta\right|<\epsilon\right)=1,
$$

for any positive ϵ ，then we say that Z_{i} converges to θ in probability．
θ is called a probability limit（確率極限）of Z_{i} ．
$\operatorname{plim} Z_{i}=\theta$.
196
and $\operatorname{Var}(X)=\Sigma$ ．
Then，we have the following inequality：

$$
P\left((X-\mu)^{\prime}(X-\mu) \geq k\right) \leq \frac{\operatorname{tr}(\Sigma)}{k} .
$$

Note as follows：

$$
\begin{aligned}
\mathrm{E}\left((X-\mu)^{\prime}(X-\mu)\right) & =\mathrm{E}\left(\operatorname{tr}\left((X-\mu)^{\prime}(X-\mu)\right)\right)=\mathrm{E}\left(\operatorname{tr}\left((x-\mu)(x-\mu)^{\prime}\right)\right) \\
& =\operatorname{tr}\left(\mathrm{E}\left((x-\mu)(x-\mu)^{\prime}\right)\right)=\operatorname{tr}(\Sigma) .
\end{aligned}
$$

5．Example 1：

Suppose that $X_{i} \sim\left(\mu, \sigma^{2}\right), i=1,2, \cdots, n$ ．
Then，the sample average \bar{X} is a consistent estimator of μ ．
Proof：
Note that $g(\bar{X})=(\bar{X}-\mu)^{2}, \epsilon^{2}=k, \mathrm{E}(g(\bar{X}))=\mathrm{V}(\bar{X})=\frac{\sigma^{2}}{n}$ ．
Use Chebyshev＇s inequality．
If $n \longrightarrow \infty$ ，

$$
P(|\bar{X}-\mu| \geq \epsilon) \leq \frac{\sigma^{2}}{n \epsilon^{2}} \longrightarrow 0, \quad \text { for any } \epsilon
$$

199

That is．for any ϵ ，

$$
\lim _{n \rightarrow \infty} P(|\bar{X}-\mu|<\epsilon)=1
$$

6．Example 2 （Multivariate Case）：

Suppose that $X_{i} \sim(\mu, \Sigma), i=1,2, \cdots, n$ ．
Then，the sample average \bar{X} is a consistent estimator of μ ．
Proof：
Note that $g(\bar{X})=(\bar{X}-\mu)^{\prime}(\bar{X}-\mu), \epsilon^{2}=k, \mathrm{E}(g(\bar{X}))=\mathrm{V}(\bar{X})=\frac{1}{n} \Sigma$ ． Use Chebyshev＇s inequality．

200

Then，

（a） $\operatorname{plim}\left(X_{n}+Y_{n}\right)=c+d$
（b） $\operatorname{plim} X_{n} Y_{n}=c d$
（c） $\operatorname{plim} X_{n} / Y_{n}=c / d$ for $d \neq 0$
（d） $\operatorname{plim} g\left(X_{n}\right)=g(c)$ for a function $g(\cdot)$
\Longrightarrow Slutsky＇s Theorem（スルツキー定理） 202

Then，

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\mu\right) \longrightarrow N(0, \Sigma)
$$

where

$$
\Sigma=\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} \Sigma_{t}\right)
$$

10．Definition：Let $\hat{\theta}_{n}$ be a consistent estimator of θ ．
Suppose that $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)$ converges to $N(0, \Sigma)$ in distribution．
Then，we say that $\hat{\theta}_{n}$ has an asymptotic distribution（漸近分布）：$N(\theta, \Sigma / n)$ ．

11．Definition：We say that $\hat{\theta}_{n}$ is consistent uniformly asymptotically normal， when the following three conditions are satisfied：
（a）$\hat{\theta}_{n}$ is consistent，
（b）$\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)$ converges to $N(0, \Sigma)$ in distribution，
（c）Uniform convergence．
12．Definition：Suppose that $\hat{\theta}_{n}$ and $\tilde{\theta}_{n}$ are consistent，uniformly，asymptotically normal，and that the asymptotic variances are given by Σ / n and Ω / n ．
If $\Omega-\Sigma$ is positive semidefinite，$\hat{\theta}_{n}$ is asymptotically more efficient（漸近的

に有効）than $\tilde{\theta}_{n}$ ．
13．Definition：If a consistent，uniformly，asymptotically normal estimator is asymptotically more efficient than any other consistent，uniformly，asymptoti－ cally normal estimators，we say that the consistent，uniformly，asymptotically normal estimator is asymptotically efficient（漸近的有効）．

14．The sufficient condition for an asymptotically efficient and consistent，uni－ formly，asymptotically normal estimator is that the asymptotic variance is equivalent to Cramer－Rao lower bound．
（i）consistent，
（ii）asymptotically normal，and
（iii）asymptotically efficient．

18．Slutsky＇s Theorem

Let $\hat{\theta}$ be a consistent estimator of θ ．
Then，$g(\hat{\theta})$ is also a consistent estimator of $g(\theta)$ ，where $g(\cdot)$ is a well－defined continuous function．

208

11 Consistency and Asymptotic Normality of OLSE

Regression model：

$$
y=X \beta+u, \quad u \sim\left(0, \sigma^{2} I_{n}\right)
$$

Consistency：

1．Let $\hat{\beta}_{n}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$ be the OLS with sample size n ．
Consistency：As n is large，$\hat{\beta}_{n}$ converges to β ．
2. Assume the stationarity assumption for X, i.e.,

$$
\frac{1}{n} X^{\prime} X \longrightarrow M_{x x}
$$

Then, we have the following result:

$$
\frac{1}{n} X^{\prime} u \longrightarrow 0
$$

Proof:

According to Chebyshev's inequality, for $g(x) \geq 0$,

$$
P(g(X) \geq k) \leq \frac{\mathrm{E}(g(X))}{k}
$$

where k is a positive constant.
Set $g(X)=X^{\prime} X$, and X is replaced by $\frac{1}{n} X^{\prime} u$.
Apply Chebyshev's inequality.

$$
\begin{gathered}
\mathrm{E}\left(\left(\frac{1}{n} X^{\prime} u\right)^{\prime} \frac{1}{T} X^{\prime} u\right)=\frac{1}{n^{2}} \mathrm{E}\left(u^{\prime} X X^{\prime} u\right)=\frac{1}{n^{2}} \mathrm{E}\left(\operatorname{tr}\left(u^{\prime} X X^{\prime} u\right)\right)=\frac{1}{n^{2}} \mathrm{E}\left(\operatorname{tr}\left(X X^{\prime} u u^{\prime}\right)\right) \\
=\frac{1}{n^{2}} \operatorname{tr}\left(X X^{\prime} \mathrm{E}\left(u u^{\prime}\right)\right)=\frac{\sigma^{2}}{n^{2}} \operatorname{tr}\left(X X^{\prime}\right)=\frac{\sigma^{2}}{n^{2}} \operatorname{tr}\left(X^{\prime} X\right)=\frac{\sigma^{2}}{n} \operatorname{tr}\left(\frac{1}{n} X^{\prime} X\right)
\end{gathered}
$$

Therefore,

$$
P\left(\left(\frac{1}{n} X^{\prime} u\right)^{\prime} \frac{1}{n} X^{\prime} u \geq k\right) \leq \frac{\sigma^{2}}{n k} \operatorname{tr}\left(\frac{1}{n} X^{\prime} X\right) \longrightarrow 0 \times \operatorname{tr}\left(M_{x x}\right)=0
$$

$$
=\beta+\left(\frac{1}{n} X^{\prime} X\right)^{-1}\left(\frac{1}{n} X^{\prime} u\right) .
$$

Therefore,

$$
\hat{\beta}_{n} \longrightarrow \beta+M_{x x}^{-1} \times 0=\beta
$$

Thus, OLSE is a consitent estimator.
3. Note that

$$
\begin{aligned}
& \frac{1}{n} X^{\prime} X \longrightarrow M_{x x} \\
& \text { results in } \\
& \left(\frac{1}{n} X^{\prime} X\right)^{-1} \longrightarrow M_{x x}^{-1}
\end{aligned}
$$

\Longrightarrow Slutsky's Theorem
${ }^{(*)}$ Slutsky's Theorem $\quad g(\hat{\theta}) \longrightarrow g(\theta)$, when $\hat{\theta} \longrightarrow \theta$.
4. OLS is given by:
which implies:

$$
\frac{1}{n} X^{\prime} u \longrightarrow 0
$$

because $\left(\frac{1}{n} X^{\prime} u\right)^{\prime} \frac{1}{n} X^{\prime} u$ indicates a quadratic form.

213

$$
\hat{\beta}_{n}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u
$$

214

Asymptotic Normality:

1. Asymptotic Normality of OLSE

$$
\sqrt{n}\left(\hat{\beta}_{n}-\beta\right) \longrightarrow N\left(0 \cdot \sigma^{2} M_{x x}^{-1}\right) \text { when } n \longrightarrow \infty
$$

2. Central Limit Theorem: Greenberg and Webster (1983)
$Z_{1}, Z_{2}, \cdots, Z_{n}$ are mutually indelendently distributed with mean μ and variance Σ_{i}.

Then，we have the following result：

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i}-\mu\right) \longrightarrow N(0, \Sigma)
$$

where

$$
\Sigma=\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} \Sigma_{i}\right)
$$

The distribution of Z_{i} is not assumed．

3．Define $Z_{i}=x_{i} u_{i}$ ．Then，$\Sigma_{i}=\operatorname{Var}\left(Z_{i}\right)=\sigma^{2} x_{i}^{\prime} x_{i}$ ．

5．Applying Central Limit Theorem（Greenberg and Webster（1983），we obtain the following：

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i}^{\prime} u_{i}=\frac{1}{\sqrt{n}} X^{\prime} u \longrightarrow N\left(0, \sigma^{2} M_{x x}\right)
$$

On the other hand，from $\hat{\beta}_{n}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u$ ，we can rewrite as：

$$
\sqrt{n}(\hat{\beta}-\beta)=\left(\frac{1}{n} X^{\prime} X\right)^{-1} \frac{1}{\sqrt{n}} X^{\prime} u .
$$

$$
\operatorname{Var}\left(\left(\frac{1}{n} X^{\prime} X\right)^{-1} \frac{1}{\sqrt{n}} X^{\prime} u\right)=\mathrm{E}\left(\left(\frac{1}{n} X^{\prime} X\right)^{-1} \frac{1}{\sqrt{n}} X^{\prime} u\left(\left(\frac{1}{n} X^{\prime} X\right)^{-1} \frac{1}{\sqrt{n}} X^{\prime} u\right)^{\prime}\right)
$$

219

4．Σ is defined as：

$$
\Sigma=\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} \sigma^{2} x_{i}^{\prime} x_{i}\right)=\sigma^{2} \lim _{n \rightarrow \infty}\left(\frac{1}{n} X^{\prime} X\right)=\sigma^{2} M_{x x},
$$

where

$$
X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\frac{1}{n} X^{\prime} X\right)^{-1}\left(\frac{1}{n} X^{\prime} \mathrm{E}\left(u u^{\prime}\right) X\right)\left(\frac{1}{n} X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(\frac{1}{n} X^{\prime} X\right)^{-1} \longrightarrow \sigma^{2} M_{x x}^{-1}
\end{aligned}
$$

Therefore，

$$
\sqrt{n}(\hat{\beta}-\beta) \longrightarrow N\left(0, \sigma^{2} M_{x x}^{-1}\right)
$$

\Longrightarrow Asymptotic normality（漸近的正規性）of OLSE
The distribution of u_{i} is not assumed．

220

12 Instrumental Variable（操作変数法）

12．1 Measurement Error（測定誤差）

Errors in Variables

1．True regression model：

$$
y=\tilde{X} \beta+u
$$

2．Observed variable：

$$
X=\tilde{X}+V
$$

$V:$ is called the measurement error（測定誤差 or 観測誤差）

3．For the elements which do not include measurement errors in X ，the corre－ sponding elements in V are zeros．

4．Regression using observed variable：

$$
y=X \beta+(u-V \beta)
$$

OLS of β is：

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime}(u-V \beta)
$$

(a) The measurement error in X is uncorrelated with \tilde{X} in the limit. i.e.,

$$
\operatorname{plim}\left(\frac{1}{n} \tilde{X}^{\prime} V\right)=0 .
$$

Therefore, we obtain the following:

$$
\operatorname{plim}\left(\frac{1}{n} X^{\prime} X\right)=\operatorname{plim}\left(\frac{1}{n} \tilde{X}^{\prime} \tilde{X}\right)+\operatorname{plim}\left(\frac{1}{n} V^{\prime} V\right)=\Sigma+\Omega
$$

(b) u is not correlated with V.
u is not correlated with \tilde{X}.

That is,

$$
\operatorname{plim}\left(\frac{1}{n} V^{\prime} u\right)=0, \quad \operatorname{plim}\left(\frac{1}{n} \tilde{X}^{\prime} u\right)=0 .
$$

6. OLSE of β is:

$$
\hat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime}(u-V \beta)=\beta+\left(X^{\prime} X\right)^{-1}(\tilde{X}+V)^{\prime}(u-V \beta) .
$$

Therefore, we obtain the following:

$$
\operatorname{plim} \hat{\beta}=\beta-(\Sigma+\Omega)^{-1} \Omega \beta
$$

7. Example: The Case of Two Variables:

The regression model is given by:

$$
y_{t}=\alpha+\beta \tilde{x}_{t}+u_{t}, \quad x_{t}=\tilde{x}_{t}+v_{t}
$$

Under the above model

$$
\Sigma=\operatorname{plim}\left(\frac{1}{n} \tilde{X}^{\prime} \tilde{X}\right)=\operatorname{plim}\left(\begin{array}{cc}
1 & \frac{1}{n} \sum \tilde{x}_{i} \\
\frac{1}{n} \sum \tilde{x}_{i} & \frac{1}{n} \sum \tilde{x}_{i}^{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & \mu \\
\mu & \mu^{2}+\sigma^{2}
\end{array}\right)
$$

where μ and σ^{2} represent the mean and variance of \tilde{x}_{i}.

$$
\Omega=\operatorname{plim}\left(\frac{1}{n} V^{\prime} V\right)=\operatorname{plim}\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{1}{n} \sum v_{i}^{2}
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & \sigma_{v}^{2}
\end{array}\right)
$$

225

Therefore,

$$
\begin{aligned}
\operatorname{plim}\binom{\hat{\alpha}}{\hat{\beta}} & =\binom{\alpha}{\beta}-\left(\left(\begin{array}{cc}
1 & \mu \\
\mu & \mu^{2}+\sigma^{2}
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & \sigma_{v}^{2}
\end{array}\right)\right)^{-1}\left(\begin{array}{cc}
0 & 0 \\
0 & \sigma_{v}^{2}
\end{array}\right)\binom{\alpha}{\beta} \\
& =\binom{\alpha}{\beta}-\frac{1}{\sigma^{2}+\sigma_{v}^{2}}\binom{-\mu \sigma_{v}^{2} \beta}{\sigma_{v}^{2} \beta}
\end{aligned}
$$

Now we focus on β.
$\hat{\beta}$ is not consistent. because of:

$$
\operatorname{plim}(\hat{\beta})=\beta-\frac{\sigma_{v}^{2} \beta}{\sigma^{2}+\sigma_{v}^{2}}=\frac{\beta}{1+\sigma_{v}^{2} / \sigma^{2}}<\beta
$$

226
where

$$
\frac{1}{n} X^{\prime} X \longrightarrow M_{x x}, \quad \frac{1}{n} X^{\prime} u \longrightarrow M_{x u} \neq 0
$$

3. Find the Z which satisfies $\frac{1}{n} Z^{\prime} u \longrightarrow M_{z u}=0$.

Multiplying Z^{\prime} on both sides of the regression model: $y=X \beta+u$,

$$
Z^{\prime} y=Z^{\prime} X \beta+Z^{\prime} u
$$

Dividing n on both sides of the above equation, we take plim on both sides.

Then，we obtain the following：

$$
\operatorname{plim}\left(\frac{1}{n} Z^{\prime} y\right)=\operatorname{plim}\left(\frac{1}{n} Z^{\prime} X\right) \beta+\operatorname{plim}\left(\frac{1}{n} Z^{\prime} u\right)=\operatorname{plim}\left(\frac{1}{n} Z^{\prime} X\right) \beta
$$

Accordingly，we obtain：

$$
\beta=\left(\operatorname{plim}\left(\frac{1}{n} Z^{\prime} X\right)\right)^{-1} \operatorname{plim}\left(\frac{1}{n} Z^{\prime} y\right)
$$

Therefore，we consider the following estimator：

$$
\beta_{I V}=\left(Z^{\prime} X\right)^{-1} Z^{\prime} y
$$

which is taken as an estimator of β ．

4．Assume the followings：

$$
\frac{1}{n} Z^{\prime} X \longrightarrow M_{z x}, \quad \frac{1}{n} Z^{\prime} Z \longrightarrow M_{z z}, \quad \frac{1}{n} Z^{\prime} u \longrightarrow 0
$$

5．Distribution of $\beta_{I V}$ ：

$$
\beta_{I V}=\left(Z^{\prime} X\right)^{-1} Z^{\prime} y=\left(Z^{\prime} X\right)^{-1} Z^{\prime}(X \beta+u)=\beta+\left(Z^{\prime} X\right)^{-1} Z^{\prime} u
$$

which is rewritten as：

$$
\sqrt{n}\left(\beta_{I V}-\beta\right)=\left(\frac{1}{n} Z^{\prime} X\right)^{-1}\left(\frac{1}{\sqrt{n}} Z^{\prime} u\right)
$$

230

6．The variance of $\beta_{I V}$ is given by：

$$
\mathrm{V}\left(\beta_{I V}\right)=s^{2}\left(Z^{\prime} X\right)^{-1} Z^{\prime} Z\left(X^{\prime} Z\right)^{-1}
$$

where

$$
s^{2}=\frac{\left(y-X \beta_{I V}\right)^{\prime}\left(y-X \beta_{I V}\right)}{n-k}
$$

12．3 Two－Stage Least Squares Method（2 段階最小二乗法，2SLS or TSLS）

1．Regression Model：

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} I\right),
$$

In the case of $\mathrm{E}\left(X^{\prime} u\right) \neq 0$ ，OLSE is not consistent．
2．Find the variable Z which satisfies $\frac{1}{n} Z^{\prime} u \longrightarrow M_{z u}=0$ ．
3．Use $Z=\hat{X}$ for the instrumental variable．
\hat{X} is the predicted value which regresses X on the other exogenous variables， say W ．

That is，consider the following regression model：

$$
X=W B+V
$$

Estimate B by OLS．
Then，we obtain the prediction：

$$
\hat{X}=W \hat{B}
$$

where $\hat{B}=\left(W^{\prime} W\right)^{-1} W^{\prime} X$ ．

Or，equivalently，

$$
\hat{X}=W\left(W^{\prime} W\right)^{-1} W^{\prime} X .
$$

\hat{X} is used for the instrumental variable of X ．
4．The IV method is rewritten as：

$$
\beta_{I V}=\left(\hat{X}^{\prime} X\right)^{-1} \hat{X}^{\prime} y=\left(X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X\right)^{-1} X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} y .
$$

Furthermore，$\beta_{I V}$ is written as follows：

$$
\beta_{I V}=\beta+\left(X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X\right)^{-1} X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} u .
$$

Therefore，

$$
\beta_{I V}=\left(\hat{X}^{\prime} X\right)^{-1} \hat{X}^{\prime} y=\left(\hat{X}^{\prime} \hat{X}\right)^{-1} \hat{X}^{\prime} y,
$$

which implies the OLS estimator of β in the regression model：$y=\hat{X} \beta+u$ and $u \sim N\left(0, \sigma^{2} I_{n}\right)$ ．

Therefore，we obtain the following expression：

$$
\begin{aligned}
\sqrt{n}\left(\beta_{I V}-\beta\right) & =\left(\left(\frac{1}{n} X^{\prime} W\right)\left(\frac{1}{n} W^{\prime} W\right)^{-1}\left(\frac{1}{n} X W^{\prime}\right)^{\prime}\right)^{-1}\left(\frac{1}{n} X^{\prime} W\right)\left(\frac{1}{n} W^{\prime} W\right)^{-1}\left(\frac{1}{\sqrt{n}} W^{\prime} u\right) \\
& \longrightarrow N\left(0,\left(M_{x z} M_{z z}^{-1} M_{x z}^{\prime}\right)^{-1}\right)
\end{aligned}
$$

5．Clearly，there is no correlation between W and u at least in the limit，i．e．，

$$
\operatorname{plim}\left(\frac{1}{n} W^{\prime} u\right)=0
$$

6．Remark：

$$
\hat{X}^{\prime} X=X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X=X^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} W\left(W^{\prime} W\right)^{-1} W^{\prime} X=\hat{X}^{\prime} \hat{X} .
$$

13 Large Sample Tests

13．1 Wald，LM and LR Tests

$\theta: K \times 1$
$h(\theta): G \times 1$ vector function，$G \leq K$
$\theta: K \times 1$
The null hypothesis $H_{0}: h(\theta)=0 \Longrightarrow G$ restrictions
$\tilde{\theta}: k \times 1$ ，restricted maximum likelihood estimate
$\hat{\theta}: k \times 1$ ，unrestricted maximum likelihood estimate

238
$I(\theta): k \times k$ ，information matrix，i．e．，

$$
I(\theta)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}\right)
$$

$\log L(\theta): \log$－likelihood function
$R_{\theta}=\frac{\partial h(\theta)}{\partial \theta^{\prime}}: G \times k$
$F_{\theta}=\frac{\partial \log L(\theta)}{\partial \theta}: k \times 1$
1．Wald Test（ワルド検定）：$\quad W=h(\hat{\theta})^{\prime}\left(R_{\hat{\theta}}(I(\hat{\theta}))^{-1} R_{\hat{\theta}}^{\prime}\right)^{-1} h(\hat{\theta})$
（a）$h(\theta) \approx h(\hat{\theta})+\frac{\partial h(\hat{\theta})}{\partial \theta^{\prime}}(\theta-\hat{\theta}) \quad \Longleftarrow h(\theta)$ is linearized around $\theta=\hat{\theta}$.

Under the null hypothesis $h(\theta)=0$ ，

$$
h(\hat{\theta}) \approx \frac{\partial h(\hat{\theta})}{\partial \theta^{\prime}}(\hat{\theta}-\theta)=R_{\hat{\theta}}(\hat{\theta}-\theta)
$$

（b）$\hat{\theta}$ is MLE．
From the properties of MLE，

$$
\sqrt{n}(\hat{\theta}-\theta) \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{I(\theta)}{n}\right)^{-1}\right)
$$

That is，approximately，we have the following result：

$$
(\hat{\theta}-\theta) \sim N\left(0,(I(\theta))^{-1}\right)
$$

（c）The distribution of $h(\hat{\theta})$ is approximately given by：

$$
h(\hat{\theta}) \sim N\left(0, R_{\hat{\theta}}(I(\theta))^{-1} R_{\hat{\theta}}^{\prime}\right)
$$

（d）Therefore，the $\chi^{2}(G)$ distribution is derived as follows：

$$
h(\hat{\theta})\left(R_{\hat{\theta}}(I(\theta))^{-1} R_{\hat{\theta}}^{\prime}\right)^{-1} h(\hat{\theta})^{\prime} \longrightarrow \chi^{2}(G)
$$

Furthermore，from the fact that $I(\hat{\theta}) \longrightarrow I(\theta)$ as $n \longrightarrow \infty$（i．e．，conver－ gence in probability，確率収束），we can replace θ by $\hat{\theta}$ as follows：

$$
h(\hat{\theta})\left(R_{\hat{\theta}}(I(\hat{\theta}))^{-1} R_{\hat{\theta}}^{\prime}\right)^{-1} h(\hat{\theta})^{\prime} \longrightarrow \chi^{2}(G)
$$

（b）For maximization，we have the following two equations：

$$
\begin{aligned}
& \frac{\partial L}{\partial \theta}=\frac{\partial \log L(\theta)}{\partial \theta}+\lambda \frac{\partial h(\theta)}{\partial \theta}=0 \\
& \frac{\partial L}{\partial \lambda}=h(\theta)=0
\end{aligned}
$$

（c）Mean and variance of $\frac{\partial \log L(\theta)}{\partial \theta}$ are given by：

$$
\mathrm{E}\left(\frac{\partial \log L(\theta)}{\partial \theta}\right)=0, \quad \mathrm{~V}\left(\frac{\partial \log L(\theta)}{\partial \theta}\right)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta)}{\partial \theta \partial \theta^{\prime}}\right)=I(\theta)
$$

243

2．Lagrange Multiplier Test（ラグランジェ乗数検定）：$\quad L M=F_{\tilde{\theta}}^{\prime}(I(\tilde{\theta}))^{-1} F_{\tilde{\theta}}$
（a）MLE with the constraint $h(\theta)=0$ ：

$$
\max _{\theta} \log L(\theta), \quad \text { subject to } \quad h(\theta)=0
$$

The Lagrangian function：

$$
L=\log L(\theta)+\lambda h(\theta)
$$

（d）Therefore，using the central limit theorem，

$$
\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta} \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{1}{n} I(\theta)\right)\right)
$$

（e）Therefore，

$$
\frac{\partial \log L(\theta)}{\partial \theta}(I(\theta))^{-1} \frac{\partial \log L(\theta)}{\partial \theta^{\prime}} \longrightarrow \chi^{2}(G)
$$

Because MLE is consistent，i．e．，$\tilde{\theta} \longrightarrow \theta$ ，we have the result：

$$
F_{\tilde{\theta}}^{\prime}(I(\tilde{\theta}))^{-1} F_{\tilde{\theta}} \longrightarrow \chi^{2}(G) .
$$

Note that $\frac{\partial \log L(\hat{\theta})}{\partial \theta}=0$ because $\hat{\theta}$ is MLE．

$$
\begin{aligned}
-2(\log L(\theta)-\log L(\hat{\theta})) & \approx-(\theta-\hat{\theta})^{\prime}\left(\frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}\right)(\theta-\hat{\theta}) \\
& =\sqrt{n}(\hat{\theta}-\theta)^{\prime}\left(-\frac{1}{n} \frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}\right) \sqrt{n}(\hat{\theta}-\theta) \\
& \longrightarrow \chi^{2}(G)
\end{aligned}
$$

$$
\begin{aligned}
& \log L(\theta)= \log L(\hat{\theta})+ \\
&+\frac{\partial \log L(\hat{\theta})}{\partial \theta}(\theta-\hat{\theta}) \\
&+\frac{1}{2}(\theta-\hat{\theta})^{\prime} \frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}(\theta-\hat{\theta})+\cdots \\
&= \log L(\hat{\theta})+\frac{1}{2}(\theta-\hat{\theta})^{\prime} \frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}(\theta-\hat{\theta})+\cdots
\end{aligned}
$$

3．Likelihood Ratio Test（尤度比検定）：$\quad L R=-2 \log \lambda \longrightarrow \chi^{2}(G)$

$$
\lambda=\frac{L(\tilde{\theta})}{L(\hat{\theta})}
$$

（a）By Taylor series expansion evaluated at $\theta=\hat{\theta}, \log L(\theta)$ is given by：

Note：
（1）$\hat{\theta} \longrightarrow \theta$ ，
（2）$-\frac{1}{n} \frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}} \longrightarrow-\lim _{n \rightarrow \infty}\left(\frac{1}{n} \mathrm{E}\left(\frac{\partial^{2} \log L(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}\right)\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{n} I(\theta)\right)$ ，
（3）$\sqrt{n}(\hat{\theta}-\theta) \longrightarrow N\left(0, \lim _{n \rightarrow \infty}\left(\frac{1}{n} I(\theta)\right)\right)$ ．
（b）Under $H_{0}: h(\theta)=0$ ，

$$
-2(\log L(\tilde{\theta})-\log L(\hat{\theta})) \longrightarrow \chi^{2}(G) .
$$

Remember that $h(\tilde{\theta})=0$ is always satisfied．
For proof，see Theil（1971，p．396）．

13．2 Example：W，LM and LR Tests

Date file \Longrightarrow cons $99 . t x t$（same data as before）
Each column denotes year，nominal household expenditures（家計消費， 10 billion yen），household disposable income（家計可処分所得， 10 billion yen）and house－ hold expenditure deflator（家計消費デフレータ， $1990=100$ ）from the left．

4．All of $W, L M$ and $L R$ are asymptotically distributed as $\chi^{2}(G)$ random vari－ ables under the null hypothesis $H_{0}: h(\theta)=0$ ．

5．Under some comditions，we have $W \geq L R \geq L M$ ．See Engle（1981）＂Wald， Likelihood and Lagrange Multiplier Tests in Econometrics，＂Chap． 13 in Handbook of Econometrics，Vol．2，Grilliches and Intriligator eds，North－ Holland．

1955	5430.1	6135.0	18.1	1970	37784.1	45913.2	35.2	1985	185335.1	220655.6	93.9
1956	5974.2	6828.4	18.3	1971	42571.6	51944.3	37.5	1986	193069.6	229938.8	94.8
1957	6686.3	7619.5	19.0	1972	49124.1	60245.4	39.7	1987	202072.8	235924.0	95.3
1958	7169.7	8153.3	19.1	1973	59366.1	74924.8	44.1	1988	212939.9	247159.7	95.8
1959	8019.3	9274.3	19.7	1974	71782.1	93833.2	53.3	1989	227122.2	263940.5	97.7
1960	9234.9	10776.5	20.5	1975	83591.1	108712.8	59.4	1990	243035.7	280133.0	100.0
1961	10836.2	12869.4	21.8	1976	94443.7	123540.9	65.2	1991	255531.8	297512.9	102.5
1962	12430.8	14701.4	23.2	1977	105397.8	135318.4	70.1	1992	265701.6	309256.6	104.5
1963	14506.6	17042.7	24.9	1978	115960.3	147244.2	73.5	1993	272875.3	317021.6	105.9
1964	16674.9	19709.9	26.0	1979	127600.9	157071.1	76.0	1994	279538.7	325655.7	106.7
1965	18820.5	22337.4	27.8	1980	138585.0	169931.5	81.6	1995	283245.4	331967.5	106.2
1966	21680.6	25514.5	29.0	1981	147103.4	181349.2	85.4	1996	291458.5	340619.1	106.0
1967	24914.0	29012.6	30.1	1982	157994.0	196611.5	87.7	1997	298475.2	345522.7	107.3
1968	28452.7	34233.6	31.6	1983	166331.6	199587.8	89.5				
1969	32705.2	39486.3	32.9	1984	175383.4	209451.9	91.8				

ryd＝yd／（price／100），
lyd＝log（ryd）；
olsq rcons c ryd；
olsq＠res＠res（－1）
ar1 rcons c ryd；
param a1 0 a2 0 a3 1 ；
frml eq rcons $=a 1+a 2 *((r y d * * a 3)-1.) / a 3$ ；
lsq（tol $=0.00001$ ，maxit $=100$ ）eq；
$\mathrm{a} 3=1.15$ ；
$\mathrm{rryd}=((\mathrm{ryd} * * a 3)-1.) / a 3$ ；
ar1 rcons c rryd；
17 end；

Equation 1
Method of estimation＝Ordinary Least Squares
Dependent variable：RCONS
Current sample： 1955 to 1997
Number of observations： 43
Mean of dep．var．$=146270$. Std．dev．of dep．var．$=79317.2$ Sum of squared residuals $=.129697 \mathrm{E}+10$
Variance of residuals $=.316335 \mathrm{E}+08$ Std．error of regression $=5624.36$ Adjusted R－squared $=.994972$
Variable
RYD

```
        LM het. test = . 207443
```

 LM het. test = . 207443 Durbin－Watson \(=.115101\) \(\begin{aligned} \text { Jarque－Bera test } & =9.47539 \\ \text { Ramsey＇s RESET2 } & =53.6424\end{aligned}\) F （zero slopes）\(=831190\) Schwarz B．I．C．\(=435.051\) Log likelihood \(=-431.289\)
 Equation 2
Method of estimation $=$ Ordinary Least Squares
Dependent variable: @RES
current sample: 1956 to 1997
Number of observations: 42
Mean of dep. var. $=-95.5174$
Std. dev. of dep. var. $=5588.52$
Sum of squared residuals $=.146231 \mathrm{E}+09$
Variance of residuals $=.356662 \mathrm{E}+07$
Std. error of regression $=1888.55$
Adjusted R-squared $=.885884$
LM het. test $=.760256$ [.383]
Durbin-Watson $=1.40409$ [.023, 023$]$
$\begin{aligned} \text { Durbin's } h & =1.97732[.048] \\ & =1.91077[.056]\end{aligned}$
arque-Bera test $=6.49360$ [.039]

Equation 3

FIRST-ORDER SERIAL CORRELATION OF THE ERROR Objective function: Exact ML (keep first obs.)
Dependent variable: RCONS
Dependent variable: RCONS
Current sample: 1955 to 1997
Current sample: 1955 to 199
Number of observations: 43
$\begin{aligned} \text { Mean of dep. var. } & =146270 .\end{aligned}$
$\begin{aligned} \text { Sum of squared residuals } & =.145826 \mathrm{E}+09 \\ \text { Variance of residuals } & =.364564 \mathrm{E}+07\end{aligned}$
Std. error of regression $=1909.36$
justed $\begin{aligned} & \text { R-squared }=.999480 ~\end{aligned}$
R-squared $=.99945$ $\begin{aligned} \text { Durbin-Watson } & =1.38714 \\ \text { Schwarz B.I.C. } & =391.061\end{aligned}$ Log likelihood $=-385.419$

		Standard Error	t-statistic	P-value
Parameter	Estimate	6587.40	.253881	$[.800]$
C	1672.42	.027182	30.9032	$[.000]$
RYD	.840011	.025	RHO	.945025
.045843	20.6143	$[.000]$		

Ramsey's RESET2 = . 186107 [.668]
Schwarz B.I.C. $=377.788$
Log likelihood $=-375.919$

	Estimated Variable Coefficient	Standard Error	t-statistic	P-value
@RES (-1)	.950693	.053301	17.8362	$[.000]$

@RES (-1) . 950693 . 053301 [.000]

Number of observations: 43

256

Standard Errors computed from quadratic form of analytic first derivatives (Gauss)

Equation: EQ
Dependent variable: RCONS
Mean of dep. var. $=146270$.

Std. dev. of dep. var. = 79317.2
Sum of squared residuals $=.590213 \mathrm{E}+09$
Variance of residuals $=.147553 \mathrm{E}+08$
Std. error of regression $=3841.27$
R-squared $=.997766$
ed R-squared $=.997655$
LM het. test $=.174943$ [.676]
Durbin-Watson $=.253234$ [.000, .000]

Equation 5
FIRST-ORDER SERIAL CORRELATION OF THE ERROR Objective function: Exact ML (keep first obs.)

1. Equation 1 vs. Equation 3 (Test of Serial Correlation)

Equation 1 is:

$$
\operatorname{RCONS}_{t}=\beta_{1}+\beta_{2} \mathrm{RYD}_{t}+u_{t}, \quad \epsilon_{t} \sim \operatorname{iid} N\left(0, \sigma_{\epsilon}^{2}\right)
$$

Equation 3 is:

$$
\operatorname{RCONS}_{t}=\beta_{1}+\beta_{2} \operatorname{RYD}_{t}+u_{t}, \quad u_{t}=\rho u_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim \text { iid } N\left(0, \sigma_{\epsilon}^{2}\right)
$$

The null hypothesis is $H_{0}: \rho=0$

260

$$
\begin{aligned}
& \operatorname{CONST}_{t}^{*}= \begin{cases}\sqrt{1-\rho^{2}}, & \text { for } t=1, \\
1-\rho, & \text { for } t=2,3, \cdots, n,\end{cases} \\
& \operatorname{RYD}_{t}^{*}= \begin{cases}\sqrt{1-\rho^{2}} \mathrm{RYD}_{t}, & \text { for } t=1, \\
\operatorname{RYD}_{t}-\rho \mathrm{RYD}_{t-1}, & \text { for } t=2,3, \cdots, n\end{cases}
\end{aligned}
$$

- MLE with the restriction $\rho=0$ (Equation 1) solves:

$$
\max _{\beta, \sigma_{\epsilon}^{2}} \log L\left(\beta, \sigma_{\epsilon}^{2}, 0\right)
$$

Restricted MLE $\Longrightarrow \tilde{\beta}, \tilde{\sigma}_{\epsilon}^{2}$
Log of likelihood function $=-431.289$
262

- MLE without the restriction $\rho=0$ (Equation 3) solves:

$$
\max _{\beta, \sigma_{\epsilon}^{2}, \rho} \log L\left(\beta, \sigma_{\epsilon}^{2}, \rho\right)
$$

Unrestricted MLE $\Longrightarrow \hat{\beta}, \hat{\sigma}_{\epsilon}^{2}, \hat{\rho}$
Log of likelihood function $=-385.419$

The likelihood ratio test statistic is:

$$
\begin{aligned}
-2 \log (\lambda) & =-2 \log \left(\frac{L\left(\tilde{\beta}, \tilde{\sigma}_{\epsilon}^{2}, 0\right)}{L\left(\hat{\beta}, \hat{\sigma}_{\epsilon}^{2}, \hat{\rho}\right)}\right)=-2\left(\log L\left(\tilde{\beta}, \tilde{\sigma}_{\epsilon}^{2}, 0\right)-\log L\left(\hat{\beta}, \hat{\sigma}_{\epsilon}^{2}, \hat{\rho}\right)\right) \\
& =-2(-431.289-(-385.419))=91.74
\end{aligned}
$$

The asymptotic distribution is given by:

$$
-2 \log (\lambda) \sim \chi^{2}(G)
$$

where G is the number of the restrictions, i.e., $G=1$ in this case.
The 1% upper probability point of $\chi^{2}(1)$ is 6.635 .

$$
91.74>6.635
$$

Therefore, $H_{0}: \rho=0$ is rejected.
There is serial correlation in the error term.
2. Equation 1 (Test of Serial Correlation \longrightarrow Lagrange Multiplier Test)

Equation 2 is:

$$
@ \mathrm{RES}_{t}=\rho @ \mathrm{RES}_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim N\left(0, \sigma_{\epsilon}^{2}\right)
$$

where @ $\mathrm{RES}_{t}=\mathrm{RCONS}_{t}-\hat{\beta}_{1}-\hat{\beta}_{2} \mathrm{RYD}_{t}$, and $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are OLSEs.
The null hypothesis is $H_{0}: \rho=0$

$$
\begin{array}{lllll}
\text { aRES }(-1) & .950693 & .053301 & 17.8362 & .000]
\end{array}
$$

Therefore, the Wald test statistic is $17.8362^{2}=318.13>6.635$.
$H_{0}: \rho=0$ is rejected.
3. Equation 3 (Test of Serial Correlation \longrightarrow Wald Test)

Equation 3 is:

$$
\operatorname{RCONS}_{t}=\beta_{1}+\beta_{2} \operatorname{RYD}_{t}+u_{t}, \quad u_{t}=\rho u_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim \operatorname{iid} N\left(0, \sigma_{\epsilon}^{2}\right)
$$

The null hypothesis is $H_{0}: \rho=0$
RHO .945025 .045843 20.6143 [.000]

The Wald teststatistics is $20.6143^{2}=424.95$, which is compared with $\chi^{2}(1)$.
266
which is equivalent to Equation 1.
The null hypothesis is $H_{0}: a 3=1$, where $G=1$.

- MLE with $a 3=1$ MLE (Equation 1)

Log of likelihood function $=-431.289$

- MLE without $a 3=1$ (NONLINEAR LEAST SQUARES)

Log of likelihood function $=-414.362$
The likelihood ratio test statistic is given by:

$$
-2 \log (\lambda)=-2(-431.289-(-414.362))=33.854
$$

268
if $a 3=0$, we have:

$$
\mathrm{RCONS}_{t}=a 1+a 2 \log \left(\mathrm{RYD}_{t}\right)+u_{t}
$$

which is equivalent to Equation 3.
The null hypothesis is $H_{0}: a 3=0$, where $G=1$.

- MLE with $a 3=0$ (Equation 3)

Log of likelihood function $=-495.418$

- MLE without $a 3=0$ (NONLINEAR LEAST SQUARES)

Log of likelihood function $=-414.362$

The likelihood ratio test statistic is：

$$
-2 \log (\lambda)=-2(-495.418-(-414.362))=162.112>6.635
$$

Therefore，$H_{0}: a 3=0$ is rejected
As a result，the functional form of the regression model is not log－linear， either．

6．Equation 1 vs．Equation 5 （Simultaneous Test of Serial Correlation and Linear Function）

Equation 5 is：
$\operatorname{RCONS}_{t}=a 1+a 2 \frac{\operatorname{RYD}_{t}^{a 3}-1}{a 3}+u_{t}, \quad u_{t}=\rho u_{t-1}+\epsilon_{t}, \quad \epsilon_{t} \sim \operatorname{iid} N\left(0, \sigma_{\epsilon}^{2}\right)$
The null hypothesis is $H_{0}: a 3=1, \rho=0$
Restricted MLE \Longrightarrow Equation 1
Unrestricted MLE \Longrightarrow Equation 4

Remark：In Lines 14－16 of PROGRAM，we have estimated Equation 4， given $a 3=0.00,0.01,0.02, \cdots$ ．

As a result，$a 3=1.15$ gives us the maximum log－likelihood．

272

The likelihood ratio test statistic is

$$
-2 \log (\lambda)=-2(-431.289-(-383.807))=94.964
$$

$-2 \log (\lambda) \sim \chi^{2}(2)$ in this case．
The 1% upper probability point of $\chi^{2}(2)$ is 9.210 ．
$94.964>9.210$
$H_{0}: a 3=1, \rho=0$ is rejected
Thus，even if serial correlation is taken into account，the regression model is not linear．

273

14 その他のトピック

1．Time Series Analysis（時系列分析）
\longrightarrow Econometrics III（Spring Semester，2013）
2．Bayesian Estimation（ベイズ推定）
\longrightarrow Econometrics III（Spring Semester，2013）
3．Panel Data（パネル・データ）
4．Discrete Dependent Variable（離散従属変数）and Truncated Regression Model （切断回帰モデル） 274

5．Nonparametric Estimation and Test（ノンパラメトリック推定•検定）

6．Generalized Method of Moment（GMM，一般化積率法）

7．Etc．．．．（その他）

