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Econometrics (Undergraduate Course)

Wed., 10:30-12:00

Fri., 8:50-10:20

• If you have not taken Econometrics in undergraduate level, attend the class.

• Textbook: ( )

• The prerequisite of this class is to have knowledge of Econometrics I (last

semester) and Econometrics (undergraduate level).
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1 Regression Analysis ( )

1.1 Setup of the Model

When (x1, y1), (x2, y2), · · ·, (xn, yn) are available, suppose that there is a linear rela-

tionship between y and x, i.e.,

yi = β1 + β2xi + ui, (1)

for i = 1, 2, · · · , n. xi and yi denote the ith observations.

−→ Single (or simple) regression model ( )
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yi is called the dependent variable ( ) or the explained variable (

), while xi is known as the independent variable ( ) or the explanatory

(or explaining) variable ( ).

β1 = Intercept ( ) β2 = Slope ( )

β1 and β2 are unknown parameters ( ) to be estimated.

β1 and β2 are called the regression coefficients ( ).
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ui is the unobserved error term ( ) assumed to be a random variable with

mean zero and variance σ2.

σ2 is also a parameter to be estimated.

xi is assumed to be nonstochastic ( ), but yi is stochastic ( ) because

yi depends on the error ui.

The error terms u1, u2, · · ·, un are assumed to be mutually independently and iden-

tically distributed, which is called iid.

It is assumed that ui has a distribution with mean zero, i.e., E(ui) = 0 is assumed.
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Taking the expectation on both sides of (1), the expectation of yi is represented as:

E(yi) = E(β1 + β2xi + ui) = β1 + β2xi + E(ui)

= β1 + β2xi, (2)

for i = 1, 2, · · · , n.

Using E(yi) we can rewrite (1) as yi = E(yi) + ui.

(2) represents the true regression line.
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Let β̂1 and β̂2 be estimates of β1 and β2.

Replacing β1 and β2 by β̂1 and β̂2, (1) turns out to be:

yi = β̂1 + β̂2xi + ei, (3)

for i = 1, 2, · · · , n, where ei is called the residual ( ).

The residual ei is taken as the experimental value (or realization) of ui.
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We define ŷi as follows:

ŷi = β̂1 + β̂2xi, (4)

for i = 1, 2, · · · , n, which is interpreted as the predicted value ( ) of yi.

(4) indicates the estimated regression line, which is different from (2).

Moreover, using ŷi we can rewrite (3) as yi = ŷi + ei.

(2) and (4) are displayed in Figure 1.
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Figure 1. True and Estimated Regression Lines ( )
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Consider the case of n = 6 for simplicity.

× indicates the observed data series.

The true regression line (2) is represented by the solid line, while the estimated

regression line (4) is drawn with the dotted line.

Based on the observed data, β1 and β2 are estimated as: β̂1 and β̂2.

In the next section, we consider how to obtain the estimates of β1 and β2, i.e., β̂1

and β̂2.
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1.2 Ordinary Least Squares Estimation

Suppose that (x1, y1), (x2, y2), · · ·, (xn, yn) are available.

For the regression model (1), we consider estimating β1 and β2.

Replacing β1 and β2 by their estimates β̂1 and β̂2, remember that the residual ei is

given by:

ei = yi − ŷi = yi − β̂1 − β̂2xi.

The sum of squared residuals is defined as follows:

S (β̂1, β̂2) =

n
∑

i=1

e2
i =

n
∑

i=1

(yi − β̂1 − β̂2xi)
2.
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It might be plausible to choose the β̂1 and β̂2 which minimize the sum of squared

residuals, i.e., S (β̂1, β̂2).

This method is called the ordinary least squares estimation ( OLS).

To minimize S (β̂1, β̂2) with respect to β̂1 and β̂2, we set the partial derivatives equal

to zero:

∂S (β̂1, β̂2)

∂β̂1

= −2

n
∑

i=1

(yi − β̂1 − β̂2xi) = 0,

∂S (β̂1, β̂2)

∂β̂2

= −2

n
∑

i=1

xi(yi − β̂1 − β̂2xi) = 0,
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which yields the following two equations:

y = β̂1 + β̂2x, (5)
n

∑

i=1

xiyi = nxβ̂1 + β̂2

n
∑

i=1

x2
i , (6)

where y =
1

n

n
∑

i=1

yi and x =
1

n

n
∑

i=1

xi.

Multiplying (5) by nx and subtracting (6), we can derive β̂2 as follows:

β̂2 =

∑n
i=1 xiyi − nxy

∑n
i=1 x2

i
− nx

2
=

∑n
i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2
. (7)
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From (5), β̂1 is directly obtained as follows:

β̂1 = y − β̂2x. (8)

When the observed values are taken for yi and xi for i = 1, 2, · · · , n, we say that β̂1

and β̂2 are called the ordinary least squares estimates (or simply the least squares

estimates, ) of β1 and β2.

When yi for i = 1, 2, · · · , n are regarded as the random sample, we say that β̂1 and β̂2

are called the ordinary least squares estimators (or the least squares estimators,

) of β1 and β2.
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1.3 Properties of Least Squares Estimator

Equation (7) is rewritten as:

β̂2 =

∑n
i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2
=

∑n
i=1(xi − x)yi

∑n
i=1(xi − x)2

−
y
∑n

i=1(xi − x)
∑n

i=1(xi − x)2

=

n
∑

i=1

xi − x
∑n

i=1(xi − x)2
Yi =

n
∑

i=1

ωiyi. (9)

In the third equality,

n
∑

i=1

(xi − x) = 0 is utilized because of x =
1

n

n
∑

i=1

xi.

In the fourth equality, ωi is defined as: ωi =
xi − x

∑n
i=1(xi − x)2

.

ωi is nonstochastic because xi is assumed to be nonstochastic.
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ωi has the following properties:

n
∑

i=1

ωi =

n
∑

i=1

xi − x
∑n

i=1(xi − x)2
=

∑n
i=1(xi − x)

∑n
i=1(xi − x)2

= 0, (10)

n
∑

i=1

ωixi =

n
∑

i=1

ωi(xi − x) =

∑n
i=1(xi − x)2

∑n
i=1(xi − x)2

= 1, (11)

n
∑

i=1

ω2
i =

n
∑

i=1

(

xi − x
∑n

i=1(xi − x)2

)2

=

∑n
i=1(xi − x)2

(

∑n
i=1(xi − x)2

)2
=

1
∑n

i=1(xi − x)2
. (12)

The first equality of (11) comes from (10).
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From now on, we focus only on β̂2, because usually β2 is more important than β1 in

the regression model (1).

In order to obtain the properties of the least squares estimator β̂2, we rewrite (9) as:

β̂2 =

n
∑

i=1

ωiyi =

n
∑

i=1

ωi(β1 + β2xi + ui)

= β1

n
∑

i=1

ωi + β2

n
∑

i=1

ωixi +

n
∑

i=1

ωiui = β2 +

n
∑

i=1

ωiui. (13)

In the fourth equality of (13), (10) and (11) are utilized.
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Mean and Variance of β̂2: u1, u2, · · ·, un are assumed to be mutually indepen-

dently and identically distributed with mean zero and variance σ2, but they are not

necessarily normal.

Remember that we do not need normality assumption to obtain mean and variance

but the normality assumption is required to test a hypothesis.

From (13), the expectation of β̂2 is derived as follows:

E(β̂2) = E(β2 +

n
∑

i=1

ωiui) = β2 + E(

n
∑

i=1

ωiui)

= β2 +

n
∑

i=1

ωiE(ui) = β2. (14)

18



It is shown from (14) that the ordinary least squares estimator β̂2 is an unbiased

estimator of β2.

From (13), the variance of β̂2 is computed as:

V(β̂2) = V(β2 +

n
∑

i=1

ωiui) = V(

n
∑

i=1

ωiui) =

n
∑

i=1

V(ωiui) =

n
∑

i=1

ω2
i V(ui)

= σ2

n
∑

i=1

ω2
i =

σ2

∑n
i=1(xi − x)2

. (15)

The third equality holds because u1, u2, · · ·, un are mutually independent.

The last equality comes from (12).

Thus, E(β̂2) and V(β̂2) are given by (14) and (15).

19

Gauss-Markov Theorem ( ): It has been discussed above

that β̂2 is represented as (9), which implies that β̂2 is a linear estimator, i.e., linear

in yi.

In addition, (14) indicates that β̂2 is an unbiased estimator.

Therefore, summarizing these two facts, it is shown that β̂2 is a linear unbiased

estimator ( ).
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Furthermore, here we show that β̂2 has minimum variance within a class of the

linear unbiased estimators.

Consider the alternative linear unbiased estimator β̃2 as follows:

β̃2 =

n
∑

i=1

ciyi =

n
∑

i=1

(ωi + di)yi,

where ci = ωi + di is defined and di is nonstochastic.
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Then, β̃2 is transformed into:

β̃2 =

n
∑

i=1

ciyi =

n
∑

i=1

(ωi + di)(β1 + β2xi + ui)

= β1

n
∑

i=1

ωi + β2

n
∑

i=1

ωixi +

n
∑

i=1

ωiui + β1

n
∑

i=1

di + β2

n
∑

i=1

dixi +

n
∑

i=1

diui

= β2 + β1

n
∑

i=1

di + β2

n
∑

i=1

dixi +

n
∑

i=1

ωiui +

n
∑

i=1

diui.

Equations (10) and (11) are used in the forth equality.
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Taking the expectation on both sides of the above equation, we obtain:

E(β̃2) = β2 + β1

n
∑

i=1

di + β2

n
∑

i=1

dixi +

n
∑

i=1

ωiE(ui) +

n
∑

i=1

diE(ui)

= β2 + β1

n
∑

i=1

di + β2

n
∑

i=1

dixi.

Note that di is not a random variable and that E(ui) = 0.

Since β̃2 is assumed to be unbiased, we need the following conditions:

n
∑

i=1

di = 0,

n
∑

i=1

dixi = 0.
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When these conditions hold, we can rewrite β̃2 as:

β̃2 = β2 +

n
∑

i=1

(ωi + di)ui.

The variance of β̃2 is derived as:

V(β̃2) = V
(

β2 +

n
∑

i=1

(ωi + di)ui

)

= V
(

n
∑

i=1

(ωi + di)ui

)

=

n
∑

i=1

V
(

(ωi + di)ui

)

=

n
∑

i=1

(ωi + di)
2V(ui) = σ

2(

n
∑

i=1

ω2
i + 2

n
∑

i=1

ωidi +

n
∑

i=1

d2
i )

= σ2(

n
∑

i=1

ω2
i +

n
∑

i=1

d2
i ).
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From unbiasedness of β̃2, using
∑n

i=1 di = 0 and
∑n

i=1 dixi = 0, we obtain:

n
∑

i=1

ωidi =

∑n
i=1(xi − x)di

∑n
i=1(xi − x)2

=

∑n
i=1 xidi − X

∑n
i=1 di

∑n
i=1(xi − x)2

= 0,

which is utilized to obtain the variance of β̃2 in the third line of the above equation.

From (15), the variance of β̂2 is given by: V(β̂2) = σ2
∑n

i=1 ω
2
i
.

Therefore, we have:

V(β̃2) ≥ V(β̂2),

because of
∑n

i=1 d2
i ≥ 0.
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When
∑n

i=1 d2
i
= 0, i.e., when d1 = d2 = · · · = dn = 0, we have the equality: V(β̃2)

= V(β̂2).

Thus, in the case of d1 = d2 = · · · = dn = 0, β̂2 is equivalent to β̃2.

As shown above, the least squares estimator β̂2 gives us the minimum variance

linear unbiased estimator ( ), or equivalently the best

linear unbiased estimator ( BLUE), which is called the

Gauss-Markov theorem ( ).
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Asymptotic Properties of β̂2: We assume that as n goes to infinity we have the

following:

1

n

n
∑

i=1

(xi − x)2 −→ m < ∞,

where m is a constant value. From (12), we obtain:

n

n
∑

i=1

ω2
i =

1

(1/n)
∑n

i=1(xi − x)
−→ 1

m
.

Note that f (xn) −→ f (m) when xn −→ m, called Slutsky’s theorem (

), where m is a constant value and f (·) is a function.
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We show both consistency of β̂2 and asymptotic normality of
√

n(β̂2 − β2).

First, we prove that β̂2 is a consistent estimator of β2.

Chebyshev’s inequality is given by:

P(|X − µ| > ε) ≤ σ
2

ε2
,

where µ = E(X) and σ2
= V(X).

Replace X, E(X) and V(X) by:

β̂2, E(β̂2) = β2, and V(β̂2) = σ2

n
∑

i=1

ω2
i =

σ2

∑n
i=1(xi − x)

,

respectively.
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Then, when n −→ ∞, we obtain the following result:

P(|β̂2 − β2| > ε) ≤
σ2

∑n
i=1 ω

2
i

ε2
=
σ2n

∑n
i=1 ω

2
i

nε2
−→ 0,

where
∑n

i=1 ω
2
i
−→ 0 because n

∑n
i=1 ω

2
i
−→ 1

m
from the assumption.

Thus, we obtain the result that β̂2 −→ β2 as n −→ ∞.

Therefore, we can conclude that β̂2 is a consistent estimator of β2.
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Next, we want to show that
√

n(β̂2 − β2) is asymptotically normal.

Note that β̂2 = β2 +
∑n

i=1 ωiui as in (13).

From the central limit theorem, asymptotic normality is shown as follows:

∑n
i=1 ωiui − E(

∑n
i=1 ωiui)

√

V(
∑n

i=1 ωiui)
=

∑n
i=1 ωiui

σ

√

∑n
i=1 ω

2
i

=
β̂2 − β2

σ/
√

∑n
i=1(xi − x)2

−→ N(0, 1),

where E(
∑n

i=1 ωiui) = 0, V(
∑n

i=1 ωiui) = σ
2
∑n

i=1 ω
2
i , and

∑n
i=1 ωiui = β̂2 − β2 are

substituted in the first and second equalities.
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Moreover, we can rewrite as follows:

β̂2 − β2

σ/
√

∑n
i=1(xi − x)2

=

√
n(β̂2 − β2)

σ/
√

(1/n)
∑n

i=1(xi − x)2
−→

√
n(β̂2 − β2)

σ/
√

m
−→ N(0, 1),

or equivalently,

√
n(β̂2 − β2) −→ N(0,

σ2

m
).

Thus, the asymptotic normality of
√

n(β̂2 − β2) is shown.
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Finally, replacing σ2 by its consistent estimator s2, it is known as follows:

β̂2 − β2

s/
√

∑n
i=1(xi − x)2

−→ N(0, 1), (16)

where s2 is defined as:

s2
=

1

n − 2

n
∑

i=1

e2
i =

1

n − 2

n
∑

i=1

(yi − β̂1 − β̂2xi)
2, (17)

which is a consistent and unbiased estimator of σ2. −→ Proved later.

Thus, using (16), in large sample we can construct the confidence interval and test

the hypothesis.
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Exact Distribution of β̂2: We have shown asymptotic normality of
√

n(β̂2 − β2),

which is one of the large sample properties.

Now, we discuss the small sample properties of β̂2.

In order to obtain the distribution of β̂2 in small sample, the distribution of the error

term has to be assumed.

Therefore, the extra assumption is that ui ∼ N(0, σ2).

Writing (13), again, β̂2 is represented as:

β̂2 = β2 +

n
∑

i=1

ωiui.

First, we obtain the distribution of the second term in the above equation.

33

Using the moment-generating function,
∑n

i=1 ωiui is distributed as:

n
∑

i=1

ωiui ∼ N(0, σ2

n
∑

i=1

ω2
i ).

Therefore, β̂2 is distributed as:

β̂2 = β2 +

n
∑

i=1

ωiui ∼ N(β2, σ
2

n
∑

i=1

ω2
i ),

or equivalently,

β̂2 − β2

σ

√

∑n
i=1 ω

2
i

=
β̂2 − β2

σ/
√

∑n
i=1(xi − x)2

∼ N(0, 1),

for any n.
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Moreover, replacing σ2 by its estimator s2 defined in (17), it is known that we have:

β̂2 − β2

s/
√

∑n
i=1(xi − x)2

∼ t(n − 2),

where t(n − 2) denotes t distribution with n − 2 degrees of freedom.

Thus, under normality assumption on the error term ui, the t(n − 2) distribution is

used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,

( β̂2 − β2

s/
√

∑n
i=1(xi − x)2

)2
∼ F(1, n − 2),

which will be proved later.
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Before going to multiple regression model ( ),

2 Some Formulas of Matrix Algebra

1. Let A =











































a11 a12 · · · a1k

a21 a22 · · · a2k

...
...
. . .

...

al1 al2 · · · alk











































= [ai j],

which is a l × k matrix, where ai j denotes ith row and jth column of A.
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The transposed matrix ( ) of A, denoted by A′, is defined as:

A′ =











































a11 a21 · · · al1

a12 a22 · · · al2

...
...
. . .

...

a1k a2k · · · alk











































= [a ji],

where the ith row of A′ is the ith column of A.

2. (Ax)′ = x′A′,

where A and x are a l × k matrix and a k × 1 vector, respectively.
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3. a′ = a,

where a denotes a scalar.

4.
∂a′x

∂x
= a,

where a and x are k × 1 vectors.

5.
∂x′Ax

∂x
= (A + A′)x,

where A and x are a k × k matrix and a k × 1 vector, respectively.
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Especially, when A is symmetric,

∂x′Ax

∂x
= 2Ax.

6. Let A and B be k × k matrices, and Ik be a k × k identity matrix ( )

(one in the diagonal elements and zero in the other elements).

When AB = Ik, B is called the inverse matrix ( ) of A, denoted by

B = A−1.

That is, AA−1
= A−1A = Ik.
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7. Let A be a k × k matrix and x be a k × 1 vector.

If A is a positive definite matrix ( ), for any x except for

x = 0 we have:

x′Ax > 0.

If A is a positive semidefinite matrix ( ), for any x except

for x = 0 we have:

x′Ax ≥ 0.
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If A is a negative definite matrix ( ), for any x except for

x = 0 we have:

x′Ax < 0.

If A is a negative semidefinite matrix ( ), for any x except

for x = 0 we have:

x′Ax ≤ 0.
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Trace, Rank and etc.: A : k × k, B : n × k, C : k × n.

1. The trace ( ) of A is: tr(A) =

k
∑

i=1

aii, where A = [ai j] .

2. The rank ( ) of A is the maximum number of linearly indepen-

dent column (or row) vectors of A, which is denoted by rank(A).

3. If A is an idempotent matrix ( ), A = A2 .
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4. If A is an idempotent and symmetric matrix, A = A2
= A′A .

5. A is idempotent if and only if the eigen values of A consist of 1 and 0.

6. If A is idempotent, rank(A) =tr(A) .

7. tr(BC) =tr(CB)

43

Distributions in Matrix Form:

1. Let X, µ and Σ be k × 1, k × 1 and k × k matrices.

When X ∼ N(µ,Σ), the density function of X is given by:

f (x) =
1

(2π)k/2|Σ|
exp

(

−1

2
(x − µ)′Σ−1(x − µ)

)

.

E(X) = µ and V(X) = E
(

(X − µ)(X − µ)′
)

= Σ

The moment-generating function: φ(θ) = E
(

exp(θ′X)
)

= exp(θ′µ + 1
2
θ′Σθ)

44

2. If X ∼ N(µ,Σ), then (X − µ)′Σ−1(X − µ) ∼ χ2(k).

Note that X′X ∼ χ2(k) when X ∼ N(0, Ik).

3. X: n × 1, Y: m × 1, X ∼ N(µx,Σx), Y ∼ N(µy,Σy)

X is independent of Y , i.e., E
(

(X − µx)(Y − µy)
′
)

= 0 in the case of normal

random variables.

(X − µx)
′
Σ
−1
x (X − µx)/n

(Y − µy)′Σ−1
y (Y − µy)/m

∼ F(n,m)
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4. If X ∼ N(0, σ2In) and A is a symmetric idempotent n × n matrix of rank G,

then X′AX/σ2 ∼ χ2(G).

Note that X′AX = (AX)′(AX) and rank(A) = tr(A) because A is idempotent.

5. If X ∼ N(0, σ2In), A and B are symmetric idempotent n × n matrices of rank

G and K, and AB = 0, then

X′AX

Gσ2

/X′BX

Kσ2
=

X′AX/G

X′BX/K
∼ F(G,K).
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3 Multiple Regression Model ( )

Up to now, only one independent variable, i.e., xi, is taken into the regression model.

In this section, we extend it to more independent variables, which is called the

multiple regression ( ).
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We consider the following regression model:

yi = β1xi,1 + β2xi,2 + · · · + βkxi,k + ui

= (xi,1, xi,2, · · · , xi,k)











































β1

β2

...

βk











































+ ui

= xiβ + ui,

for i = 1, 2, · · · , n,

where xi and β denote a 1× k vector of the independent variables and a k × 1 vector
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of the unknown parameters to be estimated, which are represented as:

xi = (xi,1, xi,2, · · · , xi,k), β =











































β1

β2

...

βk











































.

xi, j denotes the ith observation of the jth independent variable.

The case of k = 2 and xi,1 = 1 for all i is exactly equivalent to (1).

Therefore, the matrix form above is a generalization of (1).
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Writing all the equations for i = 1, 2, · · · , n, we have:

y1 = β1x1,1 + β2x1,2 + · · · + βkx1,k + u1 = x1β + u1,

y2 = β1x2,1 + β2x2,2 + · · · + βkx2,k + u2 = x2β + u2,

...

yn = β1xn,1 + β2xn,2 + · · · + βkxn,k + un = xnβ + un,
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which is rewritten as:











































y1

y2

...

yn











































=











































x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k

...
...
. . .

...

xn,1 xn,2 · · · xn,k





















































































β1

β2

...

βk











































+











































u1

u2

...

un











































=











































x1

x2

...

xn











































β +











































u1

u2

...

un











































.
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Again, the above equation is compactly rewritten as:

y = Xβ + u, (18)

where y, X and u are denoted by:

y =











































y1

y2

...

yn











































, X =











































x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k

...
...
. . .

...

xn,1 xn,2 · · · xn,k











































=











































x1

x2

...

xn











































, u =











































u1

u2

...

uk











































.

Utilizing the matrix form (18), we derive the ordinary least squares estimator of β,

denoted by β̂.
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In (18), replacing β by β̂, we have the following equation:

y = Xβ̂ + e,

where e denotes a n × 1 vector of the residuals.

The ith element of e is given by ei.

The sum of squared residuals is written as follows:

S (β̂) =

n
∑

i=1

e2
i = e′e = (y − Xβ̂)′(y − Xβ̂) = (y′ − β̂′X′)(y − Xβ̂)

= y′y − y′Xβ̂ − β̂′X′y + β̂′X′Xβ̂ = y′y − 2y′Xβ̂ + β̂′X′Xβ̂.

In the last equality, note that β̂′X′y = y′Xβ̂ because both are scalars.
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To minimize S (β̂) with respect to β̂, we set the first derivative of S (β̂) equal to zero,

i.e.,

∂S (β̂)

∂β̂
= −2X′y + 2X′Xβ̂ = 0.

Solving the equation above with respect to β̂, the ordinary least squares estimator

(OLS, ) of β is given by:

β̂ = (X′X)−1X′y. (19)

Thus, the ordinary least squares estimator is derived in the matrix form.
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(*) Remark

The second order condition for minimization:

∂2S (β̂)

∂β̂∂β̂′
= 2X′X

is a positive definite matrix.

Set c = Xd.

For any d , 0, we have c′c = d′X′Xd > 0.
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Now, in order to obtain the properties of β̂ such as mean, variance, distribution and

so on, (19) is rewritten as follows:

β̂ = (X′X)−1X′y = (X′X)−1X′(Xβ + u) = (X′X)−1X′Xβ + (X′X)−1X′u

= β + (X′X)−1X′u. (20)

Taking the expectation on both sides of (20), we have the following:

E(β̂) = E(β + (X′X)−1X′u) = β + (X′X)−1X′E(u) = β,

because of E(u) = 0 by the assumption of the error term ui.

Thus, unbiasedness of β̂ is shown.
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The variance of β̂ is obtained as:

V(β̂) = E((β̂ − β)(β̂ − β)′) = E
(

(X′X)−1X′u((X′X)−1X′u)′
)

= E((X′X)−1X′uu′X(X′X)−1) = (X′X)−1X′E(uu′)X(X′X)−1

= σ2(X′X)−1X′X(X′X)−1
= σ2(X′X)−1.

The first equality is the definition of variance in the case of vector.

In the fifth equality, E(uu′) = σ2In is used, which implies that E(u2
i
) = σ2 for all i

and E(uiu j) = 0 for i , j.

Remember that u1, u2, · · ·, un are assumed to be mutually independently and identi-

cally distributed with mean zero and variance σ2.
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Under normality assumption on the error term u, it is known that the distribution of

β̂ is given by:

β̂ ∼ N(β, σ2(X′X)−1).

Proof:

θu: n × 1, u: n × 1, θβ: k × 1, β̂: k × 1

The moment-generating function of u, i.e., φu(θu), is:

φu(θu) = E
(

exp(θ′uu)
)

= exp
(σ2

2
θ′uθu

)

,

which is N(0, σ2In).
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The moment-generating function of β̂, i.e., φβ(θβ), is:

φβ(θβ) = E
(

exp(θ′ββ̂)
)

= E
(

exp(θ′ββ + θ
′
β(X

′X)−1X′u)
)

= exp(θ′ββ)E
(

θ′β(X
′X)−1X′u

)

= exp(θ′ββ)φu

(

θ′β(X
′X)−1X′

)

= exp(θ′ββ) exp
(σ2

2
θ′β(X

′X)−1θβ
)

= exp
(

θ′ββ +
σ2

2
θ′β(X

′X)−1θβ
)

,

which is equivalent to the normal distribution with mean β and variance σ2(X′X)−1.

Note that θu = X(X′X)−1θβ. QED
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Taking the jth element of β̂, its distribution is given by:

β̂ j ∼ N(β j, σ
2a j j), i.e.,

β̂ j − β j

σ
√

a j j

∼ N(0, 1),

where a j j denotes the jth diagonal element of (X′X)−1.

Replacing σ2 by its estimator s2, we have the following t distribution:

β̂ j − β j

s
√

a j j

∼ t(n − k),

where t(n − k) denotes the t distribution with n − k degrees of freedom.
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s2 is taken as follows:

s2
=

1

n − k

n
∑

i=1

e2
i =

1

n − k
e′e =

1

n − k
(y − Xβ̂)′(y − Xβ̂),

which leads to an unbiased estimator of σ2.

Proof:

Substitute y = Xβ + u and β̂ = β + (X′X)−1X′u into e = y − Xβ̂.

e = y − Xβ̂ = Xβ + u − X(β + (X′X)−1X′u)

= u − X(X′X)−1X′u = (In − X(X′X)−1X′)u
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In − X(X′X)−1X′ is idempotent and symmetric, because we have:

(In − X(X′X)−1X′)(In − X(X′X)−1X′) = In − X(X′X)−1X,′

(In − X(X′X)−1X′)′ = In − X(X′X)−1X′.

s2 is rewritten as follows:

s2
=

1

n − k
e′e =

1

n − k
((In − X(X′X)−1X′)u)′(In − X(X′X)−1X′)u

=
1

n − k
u′(In − X(X′X)−1X′)′(In − X(X′X)−1X′)u

=
1

n − k
u′(In − X(X′X)−1X′)u
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Take the expectation of u′(In − X(X′X)−1X′)u and note that tr(a) = a for a scalar a.

E(s2) =
1

n − k
E
(

tr
(

u′(In − X(X′X)−1X′)u
))

=
1

n − k
E
(

tr
(

(In − X(X′X)−1X′)uu′
))

=
1

n − k
tr
(

(In − X(X′X)−1X′)E(uu′)
)

=
1

n − k
σ2tr

(

(In − X(X′X)−1X′)In

)

=
1

n − k
σ2tr(In − X(X′X)−1X′) =

1

n − k
σ2(tr(In) − tr(X(X′X)−1X′))

=
1

n − k
σ2(tr(In) − tr((X′X)−1X′X)) =

1

n − k
σ2(tr(In) − tr(Ik))

=
1

n − k
σ2(n − k) = σ2

−→ s2 is an unbiased estimator of σ2.

Note that we do not need normality assumption for unbiasedness of s2.
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Under normality assumption for u, the distribution of s2 is:

(n − k)s2

σ2
=

u′(In − X(X′X)−1X′)u

σ2
∼ χ2(tr(In − X(X′X)−1X′))

Note that tr(In − X(X′X)−1X′) = n − k, because

tr(In) = n

tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k
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Trace ( ):

1. A: n × n, tr(A) =
∑n

i=1 aii, where ai j denotes an element in the ith row and

the jth column of a matrix A.

2. a: scalar (1 × 1), tr(a) = a

3. A: n × k, B: k × n, tr(AB) = tr(BA)

4. tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k

5. When X is a vector of random variables, E(tr(X)) = tr(E(X))
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Asymptotic Normality (without normality assumption on u): Using the cen-

tral limit theorem, without normality assumption we can show that as n −→ ∞,

under the condition of
1

n
X′X −→ M we have the following result:

β̂ j − β j

s
√

a j j

−→ N(0, 1),

where M denotes a k × k constant matrix.

Thus, we can construct the confidence interval and the testing procedure, using the

t distribution under the normality assumption or the normal distribution without the

normality assumption.
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4 Properties of OLSE

1. Properties of β̂ : BLUE (best linear unbiased estimator

), i.e., minimum variance within the class of linear unbiased estimators

(Gauss-Markov theorem )

Proof:

Consider another linear unbiased estimator, which is denoted by β̃ = Cy.

β̃ = Cy = C(Xβ + u) = CXβ +Cu,

where C is a k × n matrix.
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Taking the expectation of β̃, we obtain:

E(β̃) = CXβ +CE(u) = CXβ

Because we have assumed that β̃ = Cy is unbiased, E(β̃) = β holds.

That is, we need the condition: CX = Ik.

Next, we obtain the variance of β̃ = Cy.

β̃ = C(Xβ + u) = β +Cu.

Therefore, we have:

V(β̃) = E((β̃ − β)(β̃ − β)′) = E(Cuu′C′) = σ2CC′
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Defining C = D + (X′X)−1X′, V(β̃) is rewritten as:

V(β̃) = σ2CC′ = σ2(D + (X′X)−1X′)(D + (X′X)−1X′)′.

Moreover, because β̂ is unbiased, we have the following:

CX = Ik = (D + (X′X)−1X′)X = DX + Ik.

Therefore, we have the following condition:

DX = 0.
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Accordingly, V(β̃) is rewritten as:

V(β̃) = σ2CC′ = σ2(D + (X′X)−1X′)(D + (X′X)−1X′)′

= σ2(X′X)−1
+ σ2DD′ = V(β̂) + σ2DD′

Thus, V(β̃) − V(β̂) is a positive definite matrix.

=⇒ V(β̃i) − V(β̂i) > 0

=⇒ β̂ is a minimum variance (i.e., best) linear unbiased estimator of β.
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Note as follows:

=⇒ A is positive definite when d′Ad > 0 except d = 0.

=⇒ The ith diagonal element of A, i.e., aii, is positive (choose d such that the

ith element of d is one and the other elements are zeros).
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F Distribution (H0 : β = 0):

1. If u ∼ N(0, σ2In), then β̂ ∼ N(β, σ2(X′X)−1) .

Therefore,
(β̂ − β)′X′X(β̂ − β)

σ2
∼ χ2(k).

2. Proof:

Using β̂ − β = (X′X)−1X′u, we obtain:

(β̂ − β)′X′X(β̂ − β) = ((X′X)−1X′u)′X′X(X′X)−1X′u

= u′X(X′X)−1X′X(X′X)−1X′u = u′X(X′X)−1X′u
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Note that X(X′X)−1X′ is symmetric and idempotent, i.e., A′A = A.

u′X(X′X)−1X′u

σ2
∼ χ2

(

tr(X(X′X)−1X′)
)

The degree of freedom is given by:

tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k

Therefore, we obtain:

u′X(X′X)−1X′u

σ2
∼ χ2(k)
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3. (*) Formula:

Suppose that X ∼ N(0, Ik).

If A is symmetric and idempotent, i.e., A′A = A, then X′AX ∼ χ2(tr(A)).

Here, X =
1

σ
u ∼ N(0, In) from u ∼ N(0, σ2In), and A = X(X′X)−1X′.
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4. Sum of Residuals: e is rewritten as:

e = (In − X(X′X)−1X′)u.

Therefore, the sum of residuals is given by:

e′e = u′(In − X(X′X)−1X′)u.

Note that In − X(X′X)−1X′ is symmetric and idempotent.

We obtain the following result:

e′e

σ2
=

u′(In − X(X′X)−1X′)u

σ2
∼ χ2

(

tr(In − X(X′X)−1X′)
)

,
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where the trace is:

tr(In − X(X′X)−1X′) = n − k.

Therefore, we have the following result:

e′e

σ2
=

(n − k)s2

σ2
∼ χ2(n − k),

where

s2
=

1

n − k
e′e.
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5. We show that β̂ is independent of e.

Proof:

Because u ∼ N(0, σ2In), we show that Cov(e, β̂) = 0.

Cov(e, β̂) = E(e(β̂ − β)′) = E
(

(In − X(X′X)−1X′)u((X′X)−1X′u)′
)

= E
(

(In − X(X′X)−1X′)uu′X(X′X)−1
)

= (In − X(X′X)−1X′)E(uu′)X(X′X)−1

= (In − X(X′X)−1X′)(σ2In)X(X′X)−1
= σ2(In − X(X′X)−1X′)X(X′X)−1

= σ2(X(X′X)−1 − X(X′X)−1X′X(X′X)−1) = σ2(X(X′X)−1 − X(X′X)−1) = 0.

Therefore, β̂ is independent of e.
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6. Therefore, we obtain the following distribution:

(β̂ − β)′X′X(β̂ − β)
σ2

=
u′X(X′X)−1X′u

σ2
∼ χ2(k),

e′e

σ2
=

u′(In − X(X′X)−1X′)u

σ2
∼ χ2(n − k)

β̂ is independent of e.

Accordingly, we can derive:

(β̂ − β)′X′X(β̂ − β)
σ2

/

k

e′e

σ2

/

(n − k)

=
(β̂ − β)′X′X(β̂ − β)/k

s2
∼ F(k, n − k)
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Note as follows:

(β̂ − β)′X′X(β̂ − β)
σ2

/

k

e′e

σ2

/

(n − k)

=
u′X(X′X)−1X′u/k

u′(In − X(X′X)−1X′)u/(n − k)
∼ F(k, n − k),

because X(X′X)−1X′(In − X(X′X)−1X′) = 0.

(*) Formula:

When X ∼ N(0, In), A and B are n × n symmetric idempotent matrices, Rank(A) =

tr(A) = G, Rank(B) = tr(B) = K and AB = 0, then
X′AX/G

X′BX/K
∼ F(G,K).
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Coefficient of Determination ( ), R
2:

1. Definition of the Coefficient of Determination, R2: R2
= 1 −

∑n
i=1 e2

i
∑n

i=1(yi − y)2

2. Numerator:

n
∑

i=1

e2
i = e′e

3. Denominator:

n
∑

i=1

(yi − y)2
= y′(In −

1

n
ii′)′(In −

1

n
ii′)y = y′(In −

1

n
ii′)y
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(*) Remark











































y1 − y

y2 − y

...

yT − y
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y1

y2

...

yT











































−











































y

y

...

y











































= y − 1

n
ii′y = (In −

1

n
ii′)y,

where i = (1, 1, · · · , 1)′.

4. In a matrix form, we can rewrite as: R2
= 1 − e′e

y′(In − 1
n
ii′)y
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F Distribution and Coefficient of Determination:

=⇒ This will be discussed later.

Testing Linear Restrictions (F Distribution):

1. If u ∼ N(0, σ2In), then β̂ ∼ N(β, σ2(X′X)−1) .

Consider testing the hypothesis H0 : Rβ = r.

R : G × k, rank(R) = G ≤ k.

Rβ̂ ∼ N(Rβ, σ2R(X′X)−1R′).
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Therefore,
(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)

σ2
∼ χ2(G).

Note that Rβ = r .

(a) When β̂ ∼ N(β, σ2(X′X)−1), the mean is:

E(Rβ̂) = RE(β̂) = Rβ.

(b) When β̂ ∼ N(β, σ2(X′X)−1), the variance is:

V(Rβ̂) = E((Rβ̂ − Rβ)(Rβ̂ − Rβ)′) = E(R(β̂ − β)(β̂ − β)′R′)

= RE((β̂ − β)(β̂ − β)′)R′ = RV(β̂)R′ = σ2R(X′X)−1R′.
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2. We have the following:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)

G

(y − Xβ̂)′(y − Xβ̂)

n − k

∼ F(G, n − k)

3. Some Examples:

(a) t Test:

The case of G = 1, r = 0 and R = (0, · · · , 1, · · · , 0) (the ith element of R

is one and the other elements are zero):
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That is, test of βi = 0:

Define: s2
=

(y − Xβ̂)′(y − Xβ̂)

n − k
.

Then,

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)

G

s2
=
β̂2

i

s2aii

∼ F(1, n − k),

where Rβ̂ = β̂i and aii = the i row and ith column of (X′X)−1.

*) Recall that Y ∼ F(1,m) when X ∼ t(m) and Y = X2.
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Therefore, the test of βi = 0 is given by:

β̂i

s
√

aii

∼ t(n − k).

(b) Test of structural change (Part 1):

yi =



















xiβ1 + ui, i = 1, 2, · · · ,m

xiβ2 + ui, i = m + 1,m + 2, · · · , n

Assume that ui ∼ N(0, σ2).
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In a matrix form,
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...
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yn
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x1 0

x2 0

...
...

xm 0

0 xm+1

0 xm+2

...
...

0 xn
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β1

β2

)

+











































































































u1

u2

...

um

um+1

um+2

...

un











































































































87

Moreover, rewriting,

(

Y1

Y2

)

=

(

X1 0

0 X2

) (

β1

β2

)

+ u

Again, rewriting,

Y = Xβ + u

The null hypothesis is H0 : β1 = β2.

Apply the F test, using R = (Ik − Ik) and r = 0.

In this case, G = rank(R) = k and β is a 2k × 1 vector.

The distribution is F(k, n − 2k).
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(c) The hypothesis in which sum of the 1st and 2nd coefficients is equal to

one:

R = (1, 1, 0, · · · , 0), r = 1

In this case, G = rank(R) = 1

The distribution of the test statistic is F(1, n − k).

(d) Testing seasonality:

The regression model: The case of quarterly data ( )

y = α + α1D1 + α2D2 + α3D3 + Xβ0 + u

89

D j = 1 in the jth quarter and 0 otherwise, i.e., D j, j = 1, 2, 3, are sea-

sonal dummy variables.

Testing seasonality =⇒ H0 : α1 = α2 = α3 = 0

β =



























































α

α1

α2

α3

β0



























































, R =



























0 1 0 0 0 · · · 0

0 0 1 0 0 · · · 0

0 0 0 1 0 · · · 0



























, r =



























0

0

0



























In this case, G = rank(R) = 3, and β is a k × 1 vector.

The distribution of the test statistic is F(3, n − k).
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(e) Cobb-Douglas Production Function:

Let Qi, Ki and Li be production, capital stock and labor.

We estimate the following production function:

log(Qi) = β1 + β2 log(Ki) + β3 log(Li) + ui.

We want to test a linear homogeneous ( ) production function,

i.e., β2 + β3 = 1.

The null and alternative hypotheses are:
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H0 : β2 + β3 = 1,

H1 : β2 + β3 , 1.

Then, set as follows:

R = ( 0 1 1 ) , r = 1.

(f) Test of structural change (Part 2):

Test the structural change between time periods m and m + 1.

In the case where both the constant term and the slope are changed, the
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regression model is as follows:

yi = α + βxi + γdi + δdixi + ui,

where

di =



















0, for i = 1, 2, · · · ,m,

1, for i = m + 1,m + 2, · · · , n.

We consider testing the structural change at time m + 1.

The null and alternative hypotheses are as follows:

H0 : γ = δ = 0,

H1 : γ , 0, or, δ , 0.
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Then, set as follows:

R =

(

0 0 1 0

0 0 0 1

)

, r =

(

0

0

)

(g) Multiple regression model:

Consider the case of two explanatory variables:

yi = α + βxi + γzi + ui.

We want to test the hypothesis that neither xi nor zi depends on yi.

In this case, the null and alternative hypotheses are as follows:
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H0 : β = γ = 0,

H1 : β , 0, or, γ , 0.

Then, set as follows:

R =

(

0 1 0

0 0 1

)

, r =

(

0

0

)
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Coefficient of Determination R
2 and F distribution:

The regression model:

yi = xiβ + ui = β1 + x2iβ2 + ui

where

xi = ( 1 x2i ) , β =

(

β1

β2

)

,

xi : 1 × k, x2i : 1 × (k − 1), β : k × 1, β2 : (k − 1) × 1

y = Xβ + u = iβ1 + X2β2
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where the first column of X corresponds to a constant term, i.e.,

X = ( i X2 ) , i =











































1

1

...

1











































The F distribution:

R = ( 0 Ik−1 ) , r = 0

where R is a (k − 1) × k matrix and r is a (k − 1) × 1 vector.

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)/(k − 1)

e′e/(n − k)
∼ F(k − 1, n − k)
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Note as follows:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r) = β̂′2X′2MX2β̂2,

where M = In −
1

n
ii′.

Note that M is symmetric and idempotent, i.e., M′M = M.











































y1 − y

y2 − y

...

yn − y











































= My
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R(X′X)−1R′ is given by:

R(X′X)−1R′ = ( 0 Ik−1 )

((

i′

X′
2

)

( i X2 )

)−1 (

0

Ik−1

)

= ( 0 Ik−1 )

(

i′i i′X2

X′
2
i X′

2
X2

)−1 (

0

Ik−1

)

99

(*) The inverse of a partitioned matrix:

A =

(

A11 A12

A21 A22

)

,

where A11 and A22 are square nonsingular matrices.

A−1
=

(

B11 −B11A12A−1
22

−A−1
22

A21B11 A−1
22
+ A−1

22
A21B11A12A−1

22

)

,

where B11 = (A11 − A12A−1
22

A21)−1, or alternatively,

A−1
=

(

A−1
11
+ A−1

11
A12B22A21A−1

11
−A−1

11
A12B22

−B22A21A−1
11

B22

)

,

where B22 = (A22 − A21A−1
11

A12)−1
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Go back to the F distribution.

(

i′i i′X2

X′
2
i X′

2
X2

)−1

=

( · · · ·
... (X′

2
X2 − X′

2
i(i′i)−1i′X2)−1

)

=

( · · · ·
... (X′

2
(In − 1

n
ii′)X2)−1

)

=

( · · · ·
... (X′

2
MX2)−1

)

Therefore, we obtain:

( 0 Ik−1 )

(

i′i i′X2

X′
2
i X′

2
X2

)−1 (

0

Ik−1

)

= ( 0 Ik−1 )

( · · · ·
... (X′

2
MX2)−1

) (

0

Ik−1

)

= (X′2MX2)−1.
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Thus, under H0 : β2 = 0, we obtain the following result:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)/(k − 1)

e′e/(n − k)

=
β̂′

2
X′

2
MX2β̂2/(k − 1)

e′e/(n − k)
∼ F(k − 1, n − k)

102



Coefficient of Determination R2:

Define e as e = y − Xβ̂. The coefficient of determinant, R2, is

R2
= 1 − e′e

y′My
,

where M = In −
1

n
ii′, In is a n × n identity matrix and i is a n × 1 vector consisting

of 1, i.e., i = (1, 1, · · · , 1)′.

Me = My − MXβ̂.

When X = ( i X2 ) and β̂ =

(

β̂1

β̂2

)

,

Me = e,
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because i′e = 0, and

MX = M ( i X2 ) = ( Mi MX2 ) = ( 0 MX2 )

because Mi = 0.

MXβ̂ = ( 0 MX2 )

(

β̂1

β̂2

)

= MX2β̂2

Thus,

My = MXβ̂ + Me =⇒ My = MX2β̂2 + e

Therefore, y′My is given by: y′My = β̂′
2
X′

2
MX2β̂2 + e′e,

because X′
2
e = 0 and Me = e.
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The coefficient of determinant, R2, is rewritten as:

R2
= 1 − e′e

y′My
=⇒ e′e = (1 − R2)y′My

R2
=

y′My − e′e

y′My
=
β̂′

2
X′

2
MX2β̂2

y′My
=⇒ β̂′2X′2MX2β̂2 = R2y′My

Therefore,

β̂′
2
X′

2
MX2β̂2/(k − 1)

e′e/(n − k)
=

R2y′My/(k − 1)

(1 − R2)y′My/(n − k)

=
R2/(k − 1)

(1 − R2)/(n − k)
∼ F(k − 1, n − k)
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5 Restricted OLS ( )

1. Minimize (y − Xβ)′(y − Xβ) subject to Rβ = r.

Let L be the Lagrangian for the minimization problem.

L = (y − Xβ)′(y − Xβ) − 2λ′(Rβ − r)

Let the solutions of β and λ for minimization be β̃ and λ̃.

∂L

∂β
= −2X′(y − Xβ̃) − 2R′λ̃ = 0

∂L

∂λ
= −2(Rβ̃ − r) = 0

106

From ∂L/∂β = 0, we obtain:

β̃ = (X′X)−1X′y + (X′X)−1R′λ̃

= β̂ + (X′X)−1R′λ̃.

Multiplying R from the left, we have:

Rβ̃ = Rβ̂ + R(X′X)−1R′λ̃.

Because Rβ̃ = r has to be satisfied, we have the following expression:

r = Rβ̂ + R(X′X)−1R′λ̃.
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Therefore, solving the above equation with respect to λ̃, we obtain:

λ̃ =
(

R(X′X)−1R′
)−1

(r − Rβ̂)

Substituting λ̃ into β̃ = β̂ + (X′X)−1R′λ̃, the restricted OLSE is given by:

β̃ = β̂ + (X′X)−1R′
(

R(X′X)−1R′
)−1

(r − Rβ̂).

(a) The expectation of β̃ is:

E(β̃) = E(β̂) + (X′X)−1R′(R(X′X)−1R′)−1(r − RE(β̂))

= β + (X′X)−1R′(R(X′X)−1R′)−1(r − Rβ)) = β,
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which shows that β̃ is unbiased.

(b) The variance of β̃ is as follows.

First, rewrite as follows:

(β̃ − β) = (β̂ − β) + (X′X)−1R′
(

R(X′X)−1R′
)−1

(Rβ − Rβ̂)

= (β̂ − β) − (X′X)−1R′
(

R(X′X)−1R′
)−1

(Rβ̂ − Rβ)

= (β̂ − β) − (X′X)−1R′
(

R(X′X)−1R′
)−1

R(β̂ − β)

=

(

I − (X′X)−1R′
(

R(X′X)−1R′
)−1

R

)−1

(β̂ − β)

= W(β̂ − β).
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Then, we obtain the following variance:

V(β̃) ≡ E((β̃ − β)(β̃ − β)′) = E(W(β̂ − β)(β̂ − β)′W ′)

= WE((β̂ − β)(β̂ − β)′)W ′
= WV(β̂)W ′

= σ2W(X′X)−1W ′

= σ2
(

I − (X′X)−1R′
(

R(X′X)−1R′
)−1

R
)

(X′X)−1

×
(

I − (X′X)−1R′
(

R(X′X)−1R′
)−1

R
)′

= σ2(X′X)−1 − σ2(X′X)−1R′
(

R(X′X)−1R′
)−1

R(X′X)−1

= V(β̂) − σ2(X′X)−1R′
(

R(X′X)−1R′
)−1

R(X′X)−1

Thus, V(β̂) − V(β̃) is positive definite.
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2. Another solution:

(a) Again, write the first-order condition for minimization:

∂L

∂β
= −2X′(y − Xβ̃) − 2R′λ̃ = 0,

∂L

∂λ
= −2(Rβ̃ − r) = 0,

which can be written as:

X′Xβ̃ − R′λ̃ = X′y,

Rβ̃ = r.
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Using the matrix form:

(

X′X R′

R 0

) (

β̃

−λ̃

)

=

(

X′y

r

)

The solutions of β̃ and −λ̃ are given by:

(

β̃

−λ̃

)

=

(

X′X R′

R 0

)−1 (

X′y

r

)

.

(b) Formula to the inverse matrix:

(

A B

B′ D

)−1

=

(

E F

F′ G

)

,
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where E, F and G are given by:

E = (A − BD−1B′)−1

= A−1
+ A−1B(D − B′A−1B)−1B′A−1

F = −(A − BD−1B′)−1BD−1

= −A−1B(D − B′A−1B)−1

G = (D − B′A−1B)−1

= D−1
+ D−1B′(A − BD−1B′)−1BD−1
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(c) In this case, E and F correspond to:

E = (X′X)−1 − (X′X)−1R′(R(X′X)−1R′)R(X′X)−1

F = (X′X)−1R′(R(X′X)−1R′).

Therefore, β̃ is derived as follows:

β̃ = EX′y + Fr

= β̂ + (X′X)−1R′
(

R(X′X)−1R′
)−1

(r − Rβ̂).

(d) The variance is:

V

(

β̃

−λ̃

)

= σ2

(

X′X R′

R 0

)−1

.
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Therefore, V(β̃) is:

V(β̃) = σ2E

= σ2
(

(X′X)−1 − (X′X)−1R′(R(X′X)−1R′)R(X′X)−1
)

(e) Under the restriction: Rβ = r,

V(β̂) − V(β̃) = σ2(X′X)−1R′(R(X′X)−1R′)R(X′X)−1

is positive definite.
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6 F Distribution (Restricted OLS and Unrestricted

OLS)

1. As mentioned above, under the null hypothesis H0 : Rβ = r,

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)

G

(y − Xβ̂)′(y − Xβ̂)

n − k

∼ F(G, n − k),

where G = Rank(R).
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The numerator is written as follows:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r) = (β̂ − β̃)′(X′X)(β̂ − β̃).

Remember that

β̃=β̂ + (X′X)−1R′
(

R(X′X)−1R′
)−1

(r − Rβ̂).
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Moreover, rewrite as follows:

(y − Xβ̃)′(y − Xβ̃)=(y − Xβ̂ − X(β̃ − β̂))′(y − Xβ̂ − X(β̃ − β̂))

=(y − Xβ̂)′(y − Xβ̂) + (β̃ − β̂)′X′X(β̃ − β̂)

−(y − Xβ̂)′X(β̃ − β̂) − (β̃ − β̂)′X′(y − Xβ̂)

=(y − Xβ̂)′(y − Xβ̂) + (β̃ − β̂)′X′X(β̃ − β̂).

X′(y − Xβ̂) = X′e = 0 is utilized.
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Summarizing, we have following representation:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)=(β̃ − β̂)′X′X(β̃ − β̂)

=(y − Xβ̃)′(y − Xβ̃) − (y − Xβ̂)′(y − Xβ̂)

=ũ′ũ − e′e,

where e and ũ are the restricted residual and the unrestricted residual.

That is,

e = y − Xβ̂, and ũ = y − Xβ̃.
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Therefore, we obtain the following result:

(Rβ̂ − r)′(R(X′X)−1R′)−1(Rβ̂ − r)/G

(y − Xβ̂)′(y − Xβ̂)/(n − k)
=

(ũ′ũ − e′e)/G

e′e/(n − k)
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7 Example: F Distribution (Restricted OLS and Un-

restricted OLS)

Date file =⇒ cons99.txt (Next slide)

Each column denotes year, nominal household expenditures ( 10 billion

yen), household disposable income ( 10 billion yen) and house-

hold expenditure deflator ( 1990=100) from the left.
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1955 5430.1 6135.0 18.1 1970 37784.1 45913.2 35.2 1985 185335.1 220655.6 93.9

1956 5974.2 6828.4 18.3 1971 42571.6 51944.3 37.5 1986 193069.6 229938.8 94.8

1957 6686.3 7619.5 19.0 1972 49124.1 60245.4 39.7 1987 202072.8 235924.0 95.3

1958 7169.7 8153.3 19.1 1973 59366.1 74924.8 44.1 1988 212939.9 247159.7 95.8

1959 8019.3 9274.3 19.7 1974 71782.1 93833.2 53.3 1989 227122.2 263940.5 97.7

1960 9234.9 10776.5 20.5 1975 83591.1 108712.8 59.4 1990 243035.7 280133.0 100.0

1961 10836.2 12869.4 21.8 1976 94443.7 123540.9 65.2 1991 255531.8 297512.9 102.5

1962 12430.8 14701.4 23.2 1977 105397.8 135318.4 70.1 1992 265701.6 309256.6 104.5

1963 14506.6 17042.7 24.9 1978 115960.3 147244.2 73.5 1993 272075.3 317021.6 105.9

1964 16674.9 19709.9 26.0 1979 127600.9 157071.1 76.0 1994 279538.7 325655.7 106.7

1965 18820.5 22337.4 27.8 1980 138585.0 169931.5 81.6 1995 283245.4 331967.5 106.2

1966 21680.6 25514.5 29.0 1981 147103.4 181349.2 85.4 1996 291458.5 340619.1 106.0

1967 24914.0 29012.6 30.1 1982 157994.0 190611.5 87.7 1997 298475.2 345522.7 107.3

1968 28452.7 34233.6 31.6 1983 166631.6 199587.8 89.5

1969 32705.2 39486.3 32.9 1984 175383.4 209451.9 91.8
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Estimate using TSP 5.0.

LINE ************************************************
| 1 freq a;
| 2 smpl 1955 1997;
| 3 read(file=’cons99.txt’) year cons yd price;
| 4 rcons=cons/(price/100);
| 5 ryd=yd/(price/100);
| 6 d1=0.0;
| 7 smpl 1974 1997;
| 8 d1=1.0;
| 9 smpl 1956 1997;
| 10 d1ryd=d1*ryd;
| 11 olsq rcons c ryd;
| 12 olsq rcons c d1 ryd d1ryd;
| 13 end;
******************************************************
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Equation 1
============

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1956 to 1997
Number of observations: 42

Mean of dependent variable = 149038.
Std. dev. of dependent var. = 78147.9
Sum of squared residuals = .127951E+10
Variance of residuals = .319878E+08

Std. error of regression = 5655.77
R-squared = .994890
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Adjusted R-squared = .994762
Durbin-Watson statistic = .116873

F-statistic (zero slopes) = 7787.70
Schwarz Bayes. Info. Crit. = 17.4101
Log of likelihood function = -421.469

Estimated Standard
Variable Coefficient Error t-statistic
C -3317.80 1934.49 -1.71508
RYD .854577 .968382E-02 88.2480
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Equation 2
============

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1956 to 1997
Number of observations: 42

Mean of dependent variable = 149038.
Std. dev. of dependent var. = 78147.9
Sum of squared residuals = .244501E+09
Variance of residuals = .643423E+07

Std. error of regression = 2536.58
R-squared = .999024
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Adjusted R-squared = .998946
Durbin-Watson statistic = .420979

F-statistic (zero slopes) = 12959.1
Schwarz Bayes. Info. Crit. = 15.9330
Log of likelihood function = -386.714

Estimated Standard
Variable Coefficient Error t-statistic
C 4204.11 1440.45 2.91861
D1 -39915.3 3154.24 -12.6545
RYD .786609 .015024 52.3561
D1RYD .194495 .018731 10.3839
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1. Equation 1

Significance test:

Equation 1 is:

RCONS = β1 + β2RYD

H0 : β2 = 0

(No.1) t Test =⇒ Compare 10.3839 and t(42 − 2).

(No.2) F Test =⇒ Compare
R2/G

(1 − R2)/(n − k)
=

.994890/1

(1 − .994890)/(42 − 2)
=

7787.8 and F(1, 40).
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1% point of F(1, 40) = 7.31

H0 : β2 = 0 is rejected.

2. Equation 1 vs. Equation 2

Test the structural change between 1973 and 1974.

Equation 2 is:

RCONS = β1 + β2D1 + β3RYD + β4RYD × D1

H0 : β2 = β4 = 0
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Restricted OLS =⇒ Equation 1

Unrestricted OLS =⇒ Equation 2

(ũ′ũ − e′e)/G

e′e/(n − k)
=

(.127951E + 10 − .244501E + 09)/2
.244501E + 09/(42 − 4)

= 80.43

which should be compared with F(2, 38).

1% point of F(2, 38) = 5.211 < 80.43

H0 : β2 = β4 = 0 is rejected.

=⇒ The structure was changed in 1974.
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8 Generalized Least Squares Method (GLS,

)

1. Regression model: y = Xβ + u, u ∼ (0, σ2
Ω)

2. Heteroscedasticity ( )

σ2
Ω =











































σ2
1

0 · · · 0

0 σ2
2

. . .
...

...
. . .

. . . 0

0 · · · 0 σ2
n
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First-Order Autocorrelation ( )

In the case of time series data, the subscript is conventionally given by t, not

i .

ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε )

σ2
Ω =

σ2
ε

1 − ρ2



























































1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 · · · 1
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V(ut) = σ
2
=
σ2
ε

1 − ρ2

3. The generalized least squares (GLS) estimator of β, denoted by b, solves the

following minimization problem:

min

β

(y − Xβ)′Ω−1(y − Xβ)

The GLSE of β is:

b = (X′Ω−1X)−1X′Ω−1y
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4. In general, when Ω is symmetric, Ω is decomposed as follows.

Ω = A′ΛA

Λ is a diagonal matrix, where the diagonal elements of Λ are given by the

eigen values.

A is a matrix consisting of eigen vectors.

When Ω is a positive definite matrix, all the diagonal elements of Λ are posi-

tive.

5. There exists P such that Ω = PP′ (i.e., take P = A′Λ1/2).
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Multiply P−1 on both sides of y = Xβ + u.

We have:

y? = X?β + u?,

where y? = P−1y, X? = P−1X, and u? = P−1u.

Note that

V(u?) = V(P−1u) = P−1V(u)P′−1
= σ2P−1

ΩP′−1
= σ2In,

because Ω = PP′, i.e., P−1
ΩP′−1

= In.
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Accordingly, the regression model is rewritten as:

y? = X?β + u?, u? ∼ (0, σ2In)

Apply OLS to the above model.

That is,

min

β

(y? − X?β)′(y? − X?β)

is equivalent to:

min

β

(y − Xβ)′Ω−1(y − Xβ)
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b = (X?′X?)−1X?′y? = (X′Ω−1X)−1X′Ω−1y

b = β + (X?′X?)−1X?′u? = β + (X′Ω−1X)−1X′Ω−1u

E(b) = β

V(b) = σ2(X?′X?)−1
= σ2(X′Ω−1X)−1
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6. Suppose that the regression model is given by:

y = Xβ + u, u ∼ N(0, σ2
Ω).

In this case, when we use OLS, what happens?

β̂ = (X′X)−1X′y = β + (X′X)−1X′u

V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

Compare GLS and OLS.
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(a) Expectation:

E(β̂) = β, and E(b) = β

Thus, both β̂ and b are unbiased estimator.

(b) Variance:

V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

V(b) = σ2(X′Ω−1X)−1

Which is more efficient, OLS or GLS?.
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V(β̂) − V(b) = σ2(X′X)−1X′ΩX(X′X)−1 − σ2(X′Ω−1X)−1

= σ2
(

(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1
)

Ω

×
(

(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1
)′

= σ2AΩA′

Ω is the variance-covariance matrix of u, which is a positive definite

matrix.

Therefore, except for Ω = In, AΩA′ is also a positive definite matrix.
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This implies that V(β̂i) − V(bi) > 0 for the ith element of β.

Accordingly, b is more efficient than β̂.

7. If u ∼ N(0, σ2
Ω), then b ∼ N(β, σ2(X′Ω−1X)−1).

Consider testing the hypothesis H0 : Rβ = r.

R : G × k, rank(R) = G ≤ k.

Rb ∼ N(Rβ, σ2R(X′Ω−1X)−1R′).

Therefore, the following quadratic form is distributed as:

(Rb − r)′(R(X′Ω−1X)−1R′)−1(Rb − r)

σ2
∼ χ2(G)

141

8. Because (y? − X?b)′(y? − X?b)/σ2 ∼ χ2(n − k), we obtain:

(y − Xb)′Ω−1(y − Xb)

σ2
∼ χ2(n − k)

9. Furthermore, from the fact that b is independent of y − Xb, the following F

distribution can be derived:

(Rb − r)′(R(X′Ω−1X)−1R′)−1(Rb − r)/G

(y − Xb)′Ω−1(y − Xb)/n − k
∼ F(G, n − k)
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10. Let b be the unrestricted GLSE and b̃ be the restricted GLSE.

Their residuals are given by e and ẽ, respectively.

e = y − Xb, ẽ = y − Xb̃

Then, the F test statistic is written as follows:

(ẽ′Ω−1ẽ − e′Ω−1e)/G

e′Ω−1e/(n − k)
∼ F(G, n − k)
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8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS =⇒ Stochastic linear restriction:

r = Rβ + v, E(v) = 0 and V(v) = σ2
Ψ

y = Xβ + u, E(u) = 0 and V(u) = σ2In

Using a matrix form,

(

y

r

)

=

(

X

R

)

β +

(

u

v

)

, E

(

u

v

)

=

(

0

0

)

and V

(

u

v

)

= σ2

(

In 0

0 Ψ

)

For estimation, we do not need normality assumption.
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Applying GLS, we obtain:

b =















( X′ R′ )

(

In 0

0 Ψ

)−1 (

X

R

)















−1 













( X′ R′ )

(

In 0

0 Ψ

)−1 (

y

r

)















=

(

X′X + R′Ψ−1R
)−1(

X′y + R′Ψ−1r
)

.

Mean and Variance of b: b is rewritten as follows:

b =















( X′ R′ )

(

In 0

0 Ψ

)−1 (

X

R

)















−1 













( X′ R′ )

(

In 0

0 Ψ

)−1 (

y

r

)















= β +















( X′ R′ )

(

In 0

0 Ψ

)−1 (

X

R

)















−1
(

u

v

)
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Therefore, the mean and variance are given by:

E(b) = β =⇒ b is unbiased.

V(b) = σ2















( X′ R′ )

(

In 0

0 Ψ

)−1 (

X

R

)















−1

= σ2
(

X′X + R′Ψ−1R
)−1
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9 Maximum Likelihood Estimation (MLE, )

=⇒ Review of Last Semester

1. The distribution function of {Xi}ni=1
is f (x; θ), where x = (x1, x2, · · · , xn) and

θ = (µ,Σ).

Note that X is a vector of random variables and x is a vector of their realiza-

tions (i.e., observed data).

Likelihood function L(·) is defined as L(θ; x) = f (x; θ).
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Note that f (x; θ) =
∏n

i=1 f (xi; θ) when X1, X2, · · ·, Xn are mutually indepen-

dently and identically distributed.

The maximum likelihood estimator (MLE) of θ is θ such that:

max
θ

L(θ; X). ⇐⇒ max
θ

log L(θ; X).

MLE satisfies the following two conditions:

(a)
∂ log L(θ; X)

∂θ
= 0.

(b)
∂2 log L(θ; X)

∂θ∂θ′
is a negative definite matrix.
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2. Fisher’s information matrix ( ) is defined as:

I(θ) = −E
(∂2 log L(θ; X)

∂θ∂θ′

)

,

where we have the following equality:

−E
(∂2 log L(θ; X)

∂θ∂θ′

)

= E
(∂ log L(θ; X)

∂θ

∂ log L(θ; X)

∂θ′

)

= V
(∂ log L(θ; X)

∂θ

)

Proof of the above equality:

∫

L(θ; x)dx = 1
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Take a derivative with respect to θ.
∫

∂L(θ; x)

∂θ
dx = 0

(We assume that (i) the domain of x does not depend on θ and (ii) the deriva-

tive
∂L(θ; x)

∂θ
exists.)

Rewriting the above equation, we obtain:
∫

∂ log L(θ; x)

∂θ
L(θ; x)dx = 0,

i.e.,

E

(

∂ log L(θ; X)

∂θ

)

= 0.
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Again, differentiating the above with respect to θ, we obtain:
∫

∂2 log L(θ; x)

∂θ∂θ′
L(θ; x)dx +

∫

∂ log L(θ; x)

∂θ

∂L(θ; x)

∂′θ
dx

=

∫

∂2 log L(θ; x)

∂θ∂θ′
L(θ; x)dx +

∫

∂ log L(θ; x)

∂θ

∂ log L(θ; x)

∂θ′
L(θ; x)dx

= E
(∂2 log L(θ; X)

∂θ∂θ′

)

+ E
(∂ log L(θ; X)

∂θ

∂ log L(θ; X)

∂θ′

)

= 0.

Therefore, we can derive the following equality:

−E

(

∂2 log L(θ; X)

∂θ∂θ′

)

= E

(

∂ log L(θ; X)

∂θ

∂ log L(θ; X)

∂θ′

)

= V

(

∂ log L(θ; X)

∂θ

)

,

where the second equality utilizes E

(

∂ log L(θ; X)

∂θ

)

= 0.
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3. Cramer-Rao Lower Bound ( ): I(θ)

Suppose that an estimator of θ is given by s(X).

The expectation of s(X) is:

E(s(X)) =

∫

s(x)L(θ; x)dx.

Differentiating the above with respect to θ,

∂E(s(X))

∂θ
=

∫

s(x)
∂L(θ; x)

∂θ
dx =

∫

s(x)
∂ log L(θ; x)

∂θ
L(θ; x)dx

= Cov

(

s(X),
∂ log L(θ; X)

∂θ

)
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For simplicity, let s(X) and θ be scalars.

Then,

(

∂E(s(X))

∂θ

)2

=

(

Cov

(

s(X),
∂ log L(θ; X)

∂θ

))2

= ρ2V (s(X)) V

(

∂ log L(θ; X)

∂θ

)

≤ V (s(X)) V

(

∂ log L(θ; X)

∂θ

)

,

where ρ denotes the correlation coefficient between s(X) and
∂ log L(θ; X)

∂θ
,
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i.e.,

ρ =

Cov

(

s(X),
∂ log L(θ; X)

∂θ

)

√
V (s(X))

√

V

(

∂ log L(θ; X)

∂θ

)

.

Note that |ρ| ≤ 1.

Therefore, we have the following inequality:

(

∂E(s(X))

∂θ

)2

≤ V(s(X)) V

(

∂ log L(θ; X)

∂θ

)

,
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i.e.,

V(s(X)) ≥

(

∂E(s(X))

∂θ

)2

V

(

∂ log L(θ; X)

∂θ

)

Especially, when E(s(X)) = θ,

V(s(X)) ≥ 1

−E

(

∂2 log L(θ; X)

∂θ2

) = (I(θ))−1.
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Even in the case where s(X) is a vector, the following inequality holds.

V(s(X)) ≥ (I(θ))−1,

where I(θ) is defined as:

I(θ) = −E

(

∂2 log L(θ; X)

∂θ∂θ′

)

= E

(

∂ log L(θ; X)

∂θ

∂ log L(θ; X)

∂θ′

)

= V

(

∂ log L(θ; X)

∂θ

)

.
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4. Asymptotic Normality of MLE:

Let θ̃ be MLE of θ.

As n goes to infinity, we have the following result:

√
n(θ̃ − θ) −→ N













0, lim
n→∞

(

I(θ)

n

)−1










,

where it is assumed that lim
n→∞

(

I(θ)

n

)

converges.

That is, when n is large, θ̃ is approximately distributed as follows:

θ̃ ∼ N
(

θ, (I(θ))−1
)

.
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Suppose that s(X) = θ̃.

When n is large, V(s(X)) is approximately equal to (I(θ))−1.

5. Optimization ( ):

0 =
∂ log L(θ; x)

∂θ
=
∂ log L(θ∗; x)

∂θ
+
∂2 log L(θ∗; x)

∂θ∂θ′
(θ − θ∗).

Solving the above equation with respect to θ, we obtain the following:

θ = θ∗ −
(

∂2 log L(θ∗; x)

∂θ∂θ′

)−1
∂ log L(θ∗; x)

∂θ
.
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Replace the variables as follows:

θ −→ θ(i+1)

θ∗ −→ θ(i)

Then, we have:

θ(i+1)
= θ(i) −

(

∂2 log L(θ(i); x)

∂θ∂θ′

)−1
∂ log L(θ(i); x)

∂θ
.

=⇒ Newton-Raphson method ( )
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Replacing
∂2 log L(θ(i); x)

∂θ∂θ′
by E

(

∂2 log L(θ(i); x)

∂θ∂θ′

)

, we obtain the following op-

timization algorithm:

θ(i+1)
= θ(i) −

(

E

(

∂2 log L(θ(i); x)

∂θ∂θ′

))−1
∂ log L(θ(i); x)

∂θ

= θ(i) +
(

I(θ(i))
)−1 ∂ log L(θ(i); x)

∂θ

=⇒Method of Scoring ( )
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9.1 MLE: The Case of Single Regression Model

The regression model:

yi = β1 + β2xi + ui,

1. ui ∼ N(0, σ2) is assumed.

2. The density function of ui is:

f (ui) =
1

√
2πσ2

exp

(

− 1

2σ2
u2

i

)

.

Because u1, u2, · · · , un are mutually independently distributed, the joint den-
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sity function of u1, u2, · · · , un is written as:

f (u1, u2, · · · , un) = f (u1) f (u2) · · · f (un)

=
1

(2πσ2)n/2
exp















− 1

2σ2

n
∑

i=1

u2
i















3. Using the transformation of variable (ui = yi − β1 − β2xi), the joint density

function of y1, y2, · · · , yn is given by:

f (y1, y2, · · · , yn) =
1

(2πσ2)n/2
exp















− 1

2σ2

n
∑

i=1

(yi − β1 − β2xi)
2















≡ L(β1, β2, σ
2|y1, y2, · · · , yn).
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L(β1, β2, σ
2|y1, y2, · · · , yn) is called the likelihood function.

log L(β1, β2, σ
2|y1, y2, · · · , yn) is called the log-likelihood function.

log L(β1, β2, σ
2|y1, y2, · · · , yn)

= −n

2
log(2π) − n

2
log(σ2) − 1

2σ2

n
∑

i=1

(yt − β1 − β2xi)
2
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4. Transformation of Variable ( ):

Suppose that the density function of a random variable X is fx(x).

Defining X = g(Y), the density function of Y , fy(y), is given by:

fy(y) = fx(g(y))

∣

∣

∣

∣

∣

dg(y)

dy

∣

∣

∣

∣

∣

.

In the case where X and g(Y) are n × 1 vectors,

∣

∣

∣

∣

∣

dg(y)

dy

∣

∣

∣

∣

∣

should be replaced by
∣

∣

∣

∣

∣

∂g(y)

∂y′

∣

∣

∣

∣

∣

, which is an absolute value of a determinant of the matrix
∂g(y)

∂y′
.
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Example: When X ∼ U(0, 1), derive the density function of Y = − log(X).

fx(x) = 1

X = exp(−Y) is obtained.

Therefore, the density function of Y , fy(y), is given by:

fy(y) =

∣

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

∣

fx(g(y)) = | − exp(−y)| = exp(−y)
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5. Given the observed data y1, y2, · · · , yn, the likelihood function L(β1, β2, σ2|y1,

y2, · · ·, yn), or the log-likelihood function log L(β1, β2, σ2|y1, y2, · · ·, yn) is

maximized with respect to (α, β, σ2).

Solve the following three simultaneous equations:

∂ log L(α, β, σ2|y1, y2, · · · , yn)

∂α
=

1

σ2

n
∑

i=1

(yi − β1 − β2xi) = 0,

∂ log L(β1, β2, σ
2|y1, y2, · · · , yn)

∂β
=

1

σ2

n
∑

i=1

(yi − β1 − β2xi)xi = 0,
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∂ log L(β1, β2, σ
2|y1, y2, · · · , yn)

∂σ2
= −n

2

1

σ2
+

1

2σ4

n
∑

i=1

(yi − β1 − β2xi)
2
= 0.

The solutions of (β1, β2, σ2) are called the maximum likelihood estimates,

denoted by (β̃1, β̃2, σ̃2).

The maximum likelihood estimates are:

β̃2 =

∑n
i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2
, β̃1 = y − β̃2x, σ̃2

=
1

n

n
∑

i=1

(yi − α̃ − β̃xi)
2.

The MLE of σ2 is divided by n, not n − 2.
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9.2 MLE: The Case of Multiple Regression Model I

1. Multivariate Normal Distribution: X : n × 1 and X ∼ N(µ,Σ)

The density function of X is:

f (x) = (2π)n/2|Σ|−1/2 exp
(

−1

2
(x − µ)′Σ−1(x − µ)

)

.
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2. Regression model: y = Xβ + u, u ∼ N(0, σ2In)

Transformation of Variables from u to y:

fu(u) = (2πσ2)−n/2 exp
(

− 1

2σ2
u′u

)

fy(y) = fu(y − Xβ)

∣

∣

∣

∣

∣

∂u

∂y′

∣

∣

∣

∣

∣

= (2πσ2)−n/2 exp
(

− 1

2σ2
(y − Xβ)′(y − Xβ)

)

= L(θ; y, X),

where θ = (β, σ2), because of
∂u

∂y′
= In.

169

Therefore, the log-likelihood function is:

log L(θ; y, X) = −n

2
log(2πσ2) − 1

2σ2
(y − Xβ)′(y − Xβ),

Note that |Σ|−1/2
= |σ2In|−1/2

= σ−n/2.

3. max
θ

log L(θ; y, X)

(FOC)
∂ log L(θ; y, X)

∂θ
= 0

(SOC)
∂2 log L(θ; y, X)

∂θ∂θ′
is a negative definite matrix.
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We obtain MLE of β and σ2:

β̃ = (X′X)−1X′y, σ̃2
=

(y − Xβ̃)′(y − Xβ̃)

n
,

where σ̃2 is divided by n, not n − k.

4. Fisher’s information matrix is:

I(θ) = −E
(∂2 log L(θ; y, X)

∂θ∂θ′

)

The inverse of the information matrix, I(θ)−1, provides a lower bound of the
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variance - covariance matrix for unbiased estimators of θ .

I(θ)−1
=

(

σ2(X′X)−1 0

0
2σ4

n

)

For large n, we approximately obtain:

(

β̃

σ̃2

)

∼ N

((

β

σ2

)

,

(

σ2(X′X)−1 0

0
2σ4

n

))

.

172

9.3 MLE: The Case of Multiple Regression Model II

1. Regression model: y = Xβ + u, u ∼ N(0, σ2
Ω)

Transformation of Variables from u to y:

fu(u) = (2πσ2)−n/2|Ω|−1/2 exp
(

− 1

2σ2
u′Ω−1u

)

fy(y) = fu(y − Xβ)

∣

∣

∣

∣

∣

∂u

∂y′

∣

∣

∣

∣

∣

= (2πσ2)−n/2|Ω|−1/2 exp
(

− 1

2σ2
(y − Xβ)′Ω−1(y − Xβ)

)

= L(θ; y, X),
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where θ = (β, σ2), because of
∂u

∂y′
= In.

The log-likelihood function is:

log L(θ; y, X) = −n

2
log(2πσ2) − 1

2
log |Ω| − 1

2σ2
(y − Xβ)′Ω−1(y − Xβ),

where θ = (β, σ2).

2. max
θ

log L(θ; y, X)

(FOC)
∂ log L(θ; y, X)

∂θ
= 0

(SOC)
∂2 log L(θ; y, X)

∂θ∂θ′
is a negative definite matrix.
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Then, we obtain MLE of β and σ2:

β̃ = (X′Ω−1X)−1X′Ω−1y, σ̃2
=

(y − Xβ̃)′Ω−1(y − Xβ̃)

n

3. Fisher’s information matrix is defined as:

I(θ) = −E
(∂2 log L(θ; y, X)

∂θ∂θ′

)

The inverse of the information matrix, I(θ)−1, provides a lower bound of the

variance - covariance matrix for unbiased estimators of θ, which is given by:

I(θ)−1
=

(

σ2(X′Ω−1X)−1 0

0
2σ4

n

)
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9.4 MLE: AR(1) Model

The pth-order Autoregressive Model, i.e., AR(p) Model (p ):

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + ut

AR(1) Model: t = 2, 3, · · · , n,

yt = φ1yt−1 + ut, ut ∼ N(0, σ2)

where |φ1| < 1 is assumed for now.
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To obtain the joint density function of y1, y2, · · · , yn, f (yn, yn−1, · · · , y1) is decom-

posed as follows:

f (yn, yn−1, · · · , y1) = f (y1)

n
∏

t=2

f (yt|yt−1, · · · , y1).

From yt = φ1yt−1 + ut, we can obtain:

E(yt|yt−1, · · · , y1) = φ1yt−1, and V(yt|yt−1, · · · , y1) = σ2.

Therefore, the conditional distribution f (yt|yt−1, · · · , y1) is:

f (yt|yt−1, · · · , y1) =
1

√
2πσ2

exp

(

− 1

2σ2
(yt − φ1yt−1)2

)

.
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To obtain the unconditional distribution f (yt), yt is rewritten as follows:

yt = φ1yt−1 + ut

= φ2
1yt−2 + ut + φ1ut−1

...

= φ
j

1
yt− j + ut + φ1ut−1 + · · · + φ j

1
ut− j

...

= ut + φ1ut−1 + φ
2
1ut−2 + · · · , when j goes to infinity.
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The unconditional expectation and variance of yt is:

E(yt) = 0, and V(yt) = σ
2(1 + φ2

1
+ φ4

1
+ · · ·) = σ2

1 − φ2
1

.

Therefore, the unconditional distribution of yt is given by:

f (yt) =
1

√

2πσ2/(1 − φ2
1
)

exp

(

− 1

2σ2/(1 − φ2
1
)
y2

t

)

.
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Finally, the joint distribution of y1, y2, · · · , yn is given by:

f (yn, yn−1, · · · , y1) = f (y1)

n
∏

t=2

f (yt|yt−1, · · · , y1)

=
1

√

2πσ2/(1 − φ2
1
)

exp

(

− 1

2σ2/(1 − φ2
1
)
y2

1

)

×
n

∏

t=2

1
√

2πσ2
exp

(

− 1

2σ2
(yt − φ1yt−1)2

)
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The log-likelihood function is:

log L(φ1, σ
2; yn, yn−1, · · · , y1) = −1

2
log(2πσ2/(1 − φ2

1)) − 1

2σ2/(1 − φ2
1
)
y2

1

−n − 1

2
log(2πσ2) − 1

2σ2

n
∑

t=2

(yt − φ1yt−1)2.

Maximize log L with respect to φ1 and σ2.

Maximization Procedure:

• Newton-Raphson Method, or Method of Scoring

• Simple Grid Search (search maximization within the range −1 < ρ < 1,

changing the value of φ1 by 0.01)
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9.5 MLE: Regression Model with AR(1) Error

When the error term is autocorrelated, the regression model is written as:

yt = xtβ + ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε ).

The joint distribution of un, un−1, · · · , u1 is:

fu(un, un−1, · · · , u1; ρ, σ2
ε ) = fu(u1; ρ, σ2

ε )

n
∏

t=2

fu(ut|ut−1, · · · , u1; ρ, σ2
ε )
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= (2πσ2
ε/(1 − ρ2))−1/2 exp

(

− 1

2σ2
ε/(1 − ρ2)

u2
1

)

×(2πσ2
ε )
−(n−1)/2 exp















− 1

2σ2
ε

n
∑

t=2

(ut − ρut−1)2















.

By transformation of variables from un, un−1, · · · , u1 to yn, yn−1, · · · , y1, the joint dis-

tribution of yn, yn−1, · · · , y1 is:

fy(yn, yn−1, · · · , y1; ρ, σ2
ε , β)

= fu(yn − xnβ, yn−1 − xn−1β, · · · , y1 − x1β; ρ, σ
2
ε )

∣

∣

∣

∣

∣

∂u

∂y′

∣

∣

∣

∣

∣
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= (2πσ2
ε/(1 − ρ2))−1/2 exp

(

− 1

2σ2
ε/(1 − ρ2)

(y1 − x1β)
2

)

×(2πσ2
ε )
−(n−1)/2 exp















− 1

2σ2
ε

n
∑

t=2

(

(yt − ρyt−1) − (xt − ρxt−1)β
)2















= (2πσ2
ε )
−1/2(1 − ρ2)1/2 exp

(

− 1

2σ2
ε

(
√

1 − ρ2y1 −
√

1 − ρ2x1β)
2

)

×(2πσ2
ε )
−(n−1)/2 exp















− 1

2σ2
ε

n
∑

t=2

(

(yt − ρyt−1) − (xt − ρxt−1)β
)2















= (2πσ2
ε )
−n/2(1 − ρ2)1/2 exp

(

− 1

2σ2
ε

(y∗1 − x∗1β)
2

)

× exp















− 1

2σ2
ε

n
∑

t=2

(y∗t − x∗t β)
2
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= (2π)−n/2(σ2
ε )
−n/2(1 − ρ2)1/2 exp















− 1

2σ2
ε

n
∑

t=1

(y∗t − x∗t β)
2















= L(ρ, σ2
ε , β; yn, yn−1, · · · , y1),

where y∗t and x∗t are given by:

y∗t =



















√

1 − ρ2yt, for t = 1,

yt − ρyt−1, for t = 2, 3, · · · , n,

x∗t =



















√

1 − ρ2xt, for t = 1,

xt − ρxt−1, for t = 2, 3, · · · , n,
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For maximization, the first derivative of L(ρ, σ2
ε , β; yn, yn−1, · · · , y1) with respect

to β should be zero.

β̃ = (

T
∑

t=1

x∗t
′x∗t )−1(

T
∑

t=1

x∗t
′y∗t )

= (X∗′X∗)−1X∗′y∗

=⇒ This is equivalent to OLS from the regression model: y∗ = X∗β + ε and ε ∼

N(0, σ2In), where σ2
= σ2

ε/(1 − ρ2).
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For maximization, the first derivative of L(ρ, σ2
ε , β; yn, yn−1, · · · , y1) with respect

to σ2
ε should be zero.

σ̃2
ε =

1

n

n
∑

t=1

(y∗t − x∗t β)
2
=

1

n
(y∗ − X∗β)′(y∗ − X∗β),

where

y∗ =











































y∗
1

y∗
2

...

y∗n











































=











































√

1 − ρ2y1

y2 − ρy1

...

yn − ρyn−1











































, X∗ =











































x∗
1

x∗
2

...

x∗n











































=











































√

1 − ρ2x1

x2 − ρx1

...

xn − ρxn−1











































.
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For maximization, the first derivative of L(ρ, σ2
ε , β; yn, yn−1, · · · , y1) with respect

to ρ should be zero.

max
β,σ2
ε ,ρ

L(ρ, σ2
ε , β; y) is equivalent to max

ρ
L(ρ, σ̃2

ε , β̃; y).

L(ρ, σ̃2
ε , β̃; y) is called the concentrated log-likelihood function (

), which is a function of ρ, i.e., both σ̃2
ε and β̃ depend only on ρ.
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The log-likelihood function is written as:

log L(ρ, σ̃2
ε , β̃; y) = −n

2
log(2π) − n

2
log(σ̃2

ε ) +
1

2
log(1 − ρ2) − n

2

= −n

2
log(2π) − n

2
− n

2
log

(

σ̃2
ε (ρ)

)

+
1

2
log(1 − ρ2)

For maximization of log L, use Newton-Raphson method, method of scoring or

simple grid search

Note that σ̃2
ε = σ̃

2
ε (ρ) =

1

n
(y∗ − X∗β̃)′(y∗ − X∗β̃) for β̃ = (X∗′X∗)−1X∗′y∗.
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Remark: The regression model with AR(1) error is:

yt = xtβ + ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε ).

V(u) = σ2











































































1 ρ ρ2 · · · ρn−1

ρ 1 ρ ρ2 · · · ρn−2

ρ2 ρ 1 ρ · · · ρn−3

ρ3 ρ2 . . .
. . .

. . .
...

...
...

. . .
. . .

. . . ρ

ρn−1 ρn−2 · · · ρ2 ρ 1











































































= σ2
Ω, where σ2

=
σ2
ε

1 − ρ2
.

where Cov(ui, u j) = E(uiu j) = σ
2ρ|i− j|, i.e., the ith row and jth column of Ω is ρ|i− j|.
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The regression model with AR(1) error is: y = Xβ + u, u ∼ N(0, σ2
Ω).

There exists P which satisfies that Ω = PP′, because ω is a positive definite matrix.

Multiply P−1 on both sides from the left.

P−1y = P−1Xβ + P−1u =⇒ y∗ = X∗β + u∗ and u∗ ∼ N(0, σ2In)

=⇒ Apply OLS.
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y∗ =











































y∗
1

y∗
2

...

y∗n











































=











































√

1 − ρ2y1

y2 − ρy1

...

yn − ρyn−1











































=



























































√

1 − ρ2 0 · · · · · · 0

−ρ 1 0 · · · 0

0 −ρ 1
. . .

...

...
. . .

. . .
. . . 0

0 · · · 0 −ρ 1





































































































y1

y2

...

yn











































= P−1y

X∗ =











































x∗
1

x∗
2

...

x∗n











































=











































√

1 − ρ2x1

x2 − ρx1

...

xn − ρxn−1











































= P−1X =⇒ Check P−1
ΩP−1′

= aIn,

where a is constant.
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9.6 MLE: Regression Model with Heteroscedastic Errors

In the case where the error term depends on the other exogenous variables, the

regression model is written as follows:

yi = xiβ + ui, ui ∼ iid N(0, σ2
i ), σ2

i = (ziα)2.

The joint distribution of un, un−1, · · · , u1, denoted by fu(·; ·), is given by:

log fu(un, un−1, · · · , u1;σ2
1, · · · , σ2

n) =

n
∑

i=1

log fu(ut;σ
2
i )

= −n

2
log(2π) − 1

2

n
∑

i=1

log(σ2
i ) − 1

2

n
∑

i=1

(

ui

σi

)2
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= −n

2
log(2π) − 1

2

n
∑

i=1

log(ziα)2 − 1

2

n
∑

i=1

(

ui

ziα

)2

By the transformation of variables from un, un−1, · · · , u1 to yn, yn−1, · · · , y1, the log-

likelihood function is:

L(α, β; yn, yn−1, · · · , y1) = log fy(yn, yn−1, · · · , y1;α, β)

= log fu(yn − xnβ, yn−1 − xn−1β, · · · , y1 − x1β;σ
2
i )

∣

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

∣

= −n

2
log(2π) − 1

2

n
∑

i=1

log(ziα)2 − 1

2

n
∑

i=1

(

yi − xiβ

ziα

)2

=⇒Maximize the above log-likelihood function with respect to β and α.

194

10 Asymptotic Theory

1. Definition: Convergence in Distribution ( )

A series of random variables X1, X2, · · · have distribution functions F1, F2,

· · ·, respectively.

If

lim
i→∞

Fi = F,

then we say that a series of random variables X1, X2, · · · converges to F in

distribution.
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2. Consistency ( ):

(a) Definition: Convergence in Probability ( )

Let {Zi : i = 1, 2, · · ·} be a series of random variables.

If the following holds,

lim
i→∞

P(|Zi − θ| < ε) = 1,

for any positive ε, then we say that Zi converges to θ in probability.

θ is called a probability limit ( ) of Zi.

plim Zi = θ.
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(b) Let θ̂i be an estimator of parameter θ.

If θ̂i converges to θ in probability, we say that θ̂T is a consistent estimator

of θ.

3. Chebyshev’s inequality:

For g(X) ≥ 0,

P(g(X) ≥ k) ≤ E(g(X))

k
,

where k is a positive constant.

4. Example: For a random variable X, set g(X) = (X − µ)′(X − µ), E(X) = µ
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and Var(X) = Σ.

Then, we have the following inequality:

P((X − µ)′(X − µ) ≥ k) ≤ tr(Σ)

k
.

Note as follows:

E((X − µ)′(X − µ)) = E
(

tr((X − µ)′(X − µ))
)

= E
(

tr((x − µ)(x − µ)′)
)

= tr
(

E((x − µ)(x − µ)′)
)

= tr(Σ).

198



5. Example 1:

Suppose that Xi ∼ (µ, σ2), i = 1, 2, · · · , n.

Then, the sample average X is a consistent estimator of µ.

Proof:

Note that g(X) = (X − µ)2, ε2 = k, E(g(X)) = V(X) =
σ2

n
.

Use Chebyshev’s inequality.

If n −→ ∞,

P(|X − µ| ≥ ε) ≤ σ
2

nε2
−→ 0, for any ε.
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That is. for any ε,

lim
n→∞

P(|X − µ| < ε) = 1

6. Example 2 (Multivariate Case):

Suppose that Xi ∼ (µ,Σ), i = 1, 2, · · · , n.

Then, the sample average X is a consistent estimator of µ.

Proof:

Note that g(X) = (X − µ)′(X − µ), ε2 = k, E(g(X)) = V(X) =
1

n
Σ.

Use Chebyshev’s inequality.
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If n −→ ∞,

P((X − µ)′(X − µ) ≥ k) ≤ tr(Σ)

nk
−→ 0, for any positive k.

That is. for any positive k,

lim
n→∞

P((X − µ)′(X − µ) < k) = 1

7. Some Formulas:

Let Xn and Yn be the random variables which satisfy plim Xn = c and plim Yn =

d.
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Then,

(a) plim (Xn + Yn) = c + d

(b) plim XnYn = cd

(c) plim Xn/Yn = c/d for d , 0

(d) plim g(Xn) = g(c) for a function g(·)

=⇒ Slutsky’s Theorem ( )
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8. Central Limit Theorem ( )

X1, X2, · · ·, Xn are mutually independently and identically distributed as Xi ∼

(µ, Σ).

Then,

1
√

n

n
∑

i=1

(Xi − µ) −→ N(0,Σ)

9. Central Limit Theorem (Generalization)

X1, X2, · · ·, Xn are mutually independently and identically distributed as Xi ∼

(µ, Σi).
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Then,

1
√

n

n
∑

i=1

(Xi − µ) −→ N(0,Σ),

where

Σ = lim
n→∞















1

n

n
∑

i=1

Σt















.

10. Definition: Let θ̂n be a consistent estimator of θ.

Suppose that
√

n(θ̂n − θ) converges to N(0,Σ) in distribution.

Then, we say that θ̂n has an asymptotic distribution ( ): N(θ,Σ/n).
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11. Definition: We say that θ̂n is consistent uniformly asymptotically normal,

when the following three conditions are satisfied:

(a) θ̂n is consistent,

(b)
√

n(θ̂n − θ) converges to N(0,Σ) in distribution,

(c) Uniform convergence.

12. Definition: Suppose that θ̂n and θ̃n are consistent, uniformly, asymptotically

normal, and that the asymptotic variances are given by Σ/n and Ω/n.

If Ω−Σ is positive semidefinite, θ̂n is asymptotically more efficient (
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) than θ̃n.

13. Definition: If a consistent, uniformly, asymptotically normal estimator is

asymptotically more efficient than any other consistent, uniformly, asymptoti-

cally normal estimators, we say that the consistent, uniformly, asymptotically

normal estimator is asymptotically efficient ( ).

14. The sufficient condition for an asymptotically efficient and consistent, uni-

formly, asymptotically normal estimator is that the asymptotic variance is

equivalent to Cramer-Rao lower bound.
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15. X1, X2, · · · , Xn are random variables with density function f (x; θ).

Let θ̂n be a maximum likelihood estimator of θ.

Then, under some regularity conditions. θ̂n is a consistent estimator of θ and

the asymptotic distribution of
√

n(θ̂ − θ) is given by: N













0, lim

(

I(θ)

n

)−1










.

16. Regularity Conditions:

(a) The domain of Xi does not depend on θ.

(b) There exists at least third-order derivative of f (x; θ) with respect to θ,

and their derivatives are finite.
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17. Thus, MLE is

(i) consistent

(ii) asymptotically normal and

(iii) asymptotically efficient.

18. Slutsky’s Theorem

Let θ̂ be a consistent estimator of θ.

Then, g(θ̂) is also a consistent estimator of g(θ), where g(·) is a well-defined

continuous function.
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19. Invariance of Maximum Likelihood Estimation ( )

Let θ̂1, θ̂2, · · ·, θ̂k be maximum likelihood estimators of θ1, θ2, · · ·, θk.

Consider the following one-to-one transformation:

α1 = α1(θ1, θ2, · · · , θk), α2 = α2(θ1, θ2, · · · , θk), · · ·, αk = αk(θ1, θ2, · · · , θk)

Then, MLEs of α1, α2, · · ·, αk are given by:

α̂1 = α1(θ̂1, θ̂2, · · · , θ̂k), α̂2 = α2(θ̂1, θ̂2, · · · , θ̂k), · · ·, α̂k = αk(θ̂1, θ̂2, · · · , θ̂k).
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11 Consistency and Asymptotic Normality of OLSE

Regression model:

y = Xβ + u, u ∼ (0, σ2In)

Consistency:

1. Let β̂n = (X′X)−1X′y be the OLS with sample size n.

Consistency: As n is large, β̂n converges to β.
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2. Assume the stationarity assumption for X, i.e.,

1

n
X′X −→ Mxx.

Then, we have the following result:

1

n
X′u −→ 0.

Proof:

According to Chebyshev’s inequality, for g(x) ≥ 0,

P(g(X) ≥ k) ≤ E(g(X))

k
,
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where k is a positive constant.

Set g(X) = X′X, and X is replaced by
1

n
X′u.

Apply Chebyshev’s inequality.

E
(

(
1

n
X′u)′

1

T
X′u

)

=
1

n2
E
(

u′XX′u
)

=
1

n2
E
(

tr(u′XX′u)
)

=
1

n2
E
(

tr(XX′uu′)
)

=
1

n2
tr
(

XX′E(uu′)
)

=
σ2

n2
tr(XX′) =

σ2

n2
tr(X′X) =

σ2

n
tr(

1

n
X′X).

Therefore,

P
(

(
1

n
X′u)′

1

n
X′u ≥ k

)

≤ σ
2

nk
tr(

1

n
X′X) −→ 0 × tr(Mxx) = 0
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Note that from the assumption,

1

n
X′X −→ Mxx.

Therefore, we have:

(
1

n
X′u)′

1

n
X′u −→ 0,

which implies:

1

n
X′u −→ 0,

because (
1

n
X′u)′

1

n
X′u indicates a quadratic form.
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3. Note that

1

n
X′X −→ Mxx

results in

(
1

n
X′X)−1 −→ M−1

xx

=⇒ Slutsky’s Theorem

(*) Slutsky’s Theorem g(θ̂) −→ g(θ), when θ̂ −→ θ.

4. OLS is given by:

β̂n = β + (X′X)−1X′u
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= β + (
1

n
X′X)−1(

1

n
X′u).

Therefore,

β̂n −→ β + M−1
xx × 0 = β

Thus, OLSE is a consitent estimator.
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Asymptotic Normality:

1. Asymptotic Normality of OLSE

√
n(β̂n − β) −→ N(0.σ2M−1

xx ) when n −→ ∞.

2. Central Limit Theorem: Greenberg and Webster (1983)

Z1, Z2, · · ·, Zn are mutually indelendently distributed with mean µ and vari-

ance Σi.
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Then, we have the following result:

1
√

n

n
∑

i=1

(Zi − µ) −→ N(0,Σ),

where

Σ = lim
n→∞















1

n

n
∑

i=1

Σi















.

The distribution of Zi is not assumed.

3. Define Zi = xiui. Then, Σi = Var(Zi) = σ
2x′

i
xi.
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4. Σ is defined as:

Σ = lim
n→∞















1

n

n
∑

i=1

σ2x′i xi















= σ2 lim
n→∞

(

1

n
X′X

)

= σ2Mxx,

where

X =











































x1

x2

...

xn











































218

5. Applying Central Limit Theorem (Greenberg and Webster (1983), we obtain

the following:

1
√

n

n
∑

i=1

x′iui =
1
√

n
X′u −→ N(0, σ2Mxx).

On the other hand, from β̂n = β + (X′X)−1X′u, we can rewrite as:

√
n(β̂ − β) =

(1

n
X′X

)−1 1
√

n
X′u.

Var

(

(1

n
X′X

)−1 1
√

n
X′u

)

= E

(

(1

n
X′X

)−1 1
√

n
X′u

((1

n
X′X

)−1 1
√

n
X′u

)′
)
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=

(1

n
X′X

)−1(1

n
X′E(uu′)X

)(1

n
X′X

)−1

= σ2
(1

n
X′X

)−1
−→ σ2M−1

xx .

Therefore,
√

n(β̂ − β) −→ N(0, σ2M−1
xx )

=⇒ Asymptotic normality ( ) of OLSE

The distribution of ui is not assumed.
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12 Instrumental Variable ( )

12.1 Measurement Error ( )

Errors in Variables

1. True regression model:

y = X̃β + u

2. Observed variable:

X = X̃ + V
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V: is called the measurement error ( or ).

3. For the elements which do not include measurement errors in X, the corre-

sponding elements in V are zeros.

4. Regression using observed variable:

y = Xβ + (u − Vβ)

OLS of β is:

β̂ = (X′X)−1X′y = β + (X′X)−1X′(u − Vβ)
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5. Assumptions:

(a) The measurement error in X is uncorrelated with X̃ in the limit. i.e.,

plim
(1

n
X̃′V

)

= 0.

Therefore, we obtain the following:

plim
(1

n
X′X

)

= plim
(1

n
X̃′X̃

)

+ plim
(1

n
V ′V

)

= Σ + Ω

(b) u is not correlated with V .

u is not correlated with X̃.
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That is,

plim
(1

n
V ′u

)

= 0, plim
(1

n
X̃′u

)

= 0.

6. OLSE of β is:

β̂ = β + (X′X)−1X′(u − Vβ) = β + (X′X)−1(X̃ + V)′(u − Vβ).

Therefore, we obtain the following:

plim β̂ = β − (Σ + Ω)−1
Ωβ

224

7. Example: The Case of Two Variables:

The regression model is given by:

yt = α + βx̃t + ut, xt = x̃t + vt.

Under the above model,

Σ = plim
(1

n
X̃′X̃

)

= plim















1
1

n

∑

x̃i

1

n

∑

x̃i

1

n

∑

x̃2
i















=

(

1 µ

µ µ2
+ σ2

)

,

where µ and σ2 represent the mean and variance of x̃i.

Ω = plim
(1

n
V ′V

)

= plim

(

0 0

0
1

n

∑

v2
i

)

=

(

0 0

0 σ2
v

)

.
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Therefore,

plim

(

α̂

β̂

)

=

(

α

β

)

−
((

1 µ

µ µ2
+ σ2

)

+

(

0 0

0 σ2
v

))−1 (

0 0

0 σ2
v

) (

α

β

)

=

(

α

β

)

− 1

σ2 + σ2
v

(−µσ2
vβ

σ2
vβ

)

Now we focus on β.

β̂ is not consistent. because of:

plim(β̂) = β −
σ2

vβ

σ2 + σ2
v

=
β

1 + σ2
v/σ

2
< β
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12.2 Instrumental Variable (IV) Method ( or IV )

Instrumental Variable (IV)

1. Consider the regression model: y = Xβ + u and u ∼ N(0, σ2In).

In the case of E(X′u) , 0, OLSE of β is inconsistent.

2. Proof:

β̂ = β + (
1

n
X′X)−1 1

n
X′u −→ β + M−1

xx Mxu,
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where

1

n
X′X −→ Mxx,

1

n
X′u −→ Mxu , 0

3. Find the Z which satisfies
1

n
Z′u −→ Mzu = 0.

Multiplying Z′ on both sides of the regression model: y = Xβ + u,

Z′y = Z′Xβ + Z′u

Dividing n on both sides of the above equation, we take plim on both sides.
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Then, we obtain the following:

plim

(

1

n
Z′y

)

= plim

(

1

n
Z′X

)

β + plim

(

1

n
Z′u

)

= plim

(

1

n
Z′X

)

β.

Accordingly, we obtain:

β =

(

plim

(

1

n
Z′X

))−1

plim

(

1

n
Z′y

)

.

Therefore, we consider the following estimator:

βIV = (Z′X)−1Z′y,

which is taken as an estimator of β.
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=⇒ Instrumental Variable Method ( or IV )

4. Assume the followings:

1

n
Z′X −→ Mzx,

1

n
Z′Z −→ Mzz,

1

n
Z′u −→ 0

5. Distribution of βIV:

βIV = (Z′X)−1Z′y = (Z′X)−1Z′(Xβ + u) = β + (Z′X)−1Z′u,

which is rewritten as:

√
n(βIV − β) =

(1

n
Z′X

)−1( 1
√

n
Z′u

)
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Applying the Central Limit Theorem to
( 1
√

n
Z′u

)

, we have the following re-

sult:

1
√

n
Z′u −→ N(0, σ2Mzz).

Therefore,

√
n(βIV − β) =

(1

n
Z′X

)−1( 1
√

n
Z′u

)

−→ N(0, σ2M−1
zx MzzM

′
zx
−1)

=⇒ Consistency and Asymptotic Normality
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6. The variance of βIV is given by:

V(βIV) = s2(Z′X)−1Z′Z(X′Z)−1,

where

s2
=

(y − XβIV)′(y − XβIV)

n − k
.
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12.3 Two-Stage Least Squares Method (2 , 2SLS

or TSLS)

1. Regression Model:

y = Xβ + u, u ∼ N(0, σ2I),

In the case of E(X′u) , 0, OLSE is not consistent.

2. Find the variable Z which satisfies
1

n
Z′u −→ Mzu = 0.

3. Use Z = X̂ for the instrumental variable.
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X̂ is the predicted value which regresses X on the other exogenous variables,

say W.

That is, consider the following regression model:

X = WB + V.

Estimate B by OLS.

Then, we obtain the prediction:

X̂ = WB̂,

where B̂ = (W ′W)−1W ′X.
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Or, equivalently,

X̂ = W(W ′W)−1W ′X.

X̂ is used for the instrumental variable of X.

4. The IV method is rewritten as:

βIV = (X̂′X)−1X̂′y = (X′W(W ′W)−1W ′X)−1
X′W(W ′W)−1W ′y.

Furthermore, βIV is written as follows:

βIV = β + (X′W(W ′W)−1W ′X)−1
X′W(W ′W)−1W ′u.
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Therefore, we obtain the following expression:

√
n(βIV − β) =

(

(1

n
X′W

)(1

n
W ′W

)−1(1

n
XW ′

)′
)−1

(1

n
X′W

)(1

n
W ′W

)−1( 1
√

n
W ′u

)

−→ N
(

0, (MxzM
−1
zz M′xz)

−1
)

.

5. Clearly, there is no correlation between W and u at least in the limit, i.e.,

plim
(1

n
W ′u

)

= 0.

6. Remark:

X̂′X = X′W(W ′W)−1W ′X = X′W(W ′W)−1W ′W(W ′W)−1W ′X = X̂′X̂.
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Therefore,

βIV = (X̂′X)−1X̂′y = (X̂′X̂)−1X̂′y,

which implies the OLS estimator of β in the regression model: y = X̂β + u

and u ∼ N(0, σ2In).
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13 Large Sample Tests

13.1 Wald, LM and LR Tests

θ : K × 1

h(θ) : G × 1 vector function, G ≤ K

θ : K × 1

The null hypothesis H0 : h(θ) = 0 =⇒ G restrictions

θ̃ : k × 1, restricted maximum likelihood estimate

θ̂ : k × 1, unrestricted maximum likelihood estimate
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I(θ) : k × k, information matrix, i.e.,

I(θ) = −E
(∂2 log L(θ)

∂θ∂θ′

)

.

log L(θ) : log-likelihood function

Rθ =
∂h(θ)

∂θ′
: G × k

Fθ =
∂ log L(θ)

∂θ
: k × 1

1. Wald Test ( ): W = h(θ̂)′
(

Rθ̂(I(θ̂))−1R′
θ̂

)−1
h(θ̂)

(a) h(θ) ≈ h(θ̂) +
∂h(θ̂)

∂θ′
(θ − θ̂) ⇐= h(θ) is linearized around θ = θ̂.
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Under the null hypothesis h(θ) = 0,

h(θ̂) ≈ ∂h(θ̂)

∂θ′
(θ̂ − θ) = Rθ̂(θ̂ − θ)

(b) θ̂ is MLE.

From the properties of MLE,

√
n(θ̂ − θ) −→ N

(

0, lim
n→∞

( I(θ)

n

)−1)

,

That is, approximately, we have the following result:

(θ̂ − θ) ∼ N
(

0, (I(θ))−1
)

.
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(c) The distribution of h(θ̂) is approximately given by:

h(θ̂) ∼ N
(

0,Rθ̂(I(θ))−1R′
θ̂

)

(d) Therefore, the χ2(G) distribution is derived as follows:

h(θ̂)
(

Rθ̂(I(θ))−1R′
θ̂

)−1
h(θ̂)′ −→ χ2(G).

Furthermore, from the fact that I(θ̂) −→ I(θ) as n −→ ∞ (i.e., conver-

gence in probability, ), we can replace θ by θ̂ as follows:

h(θ̂)
(

Rθ̂(I(θ̂))−1R′
θ̂

)−1
h(θ̂)′ −→ χ2(G).
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2. Lagrange Multiplier Test ( ): LM = F′
θ̃
(I(θ̃))−1Fθ̃

(a) MLE with the constraint h(θ) = 0:

max
θ

log L(θ), subject to h(θ) = 0

The Lagrangian function:

L = log L(θ) + λh(θ)
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(b) For maximization, we have the following two equations:

∂L

∂θ
=
∂ log L(θ)

∂θ
+ λ
∂h(θ)

∂θ
= 0

∂L

∂λ
= h(θ) = 0

(c) Mean and variance of
∂ log L(θ)

∂θ
are given by:

E
(∂ log L(θ)

∂θ

)

= 0, V
(∂ log L(θ)

∂θ

)

= −E
(∂2 log L(θ)

∂θ∂θ′

)

= I(θ).
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(d) Therefore, using the central limit theorem,

1
√

n

∂ log L(θ)

∂θ
=

1
√

n

n
∑

i=1

∂ log f (Xi; θ)

∂θ
−→ N

(

0, lim
n→∞

(1

n
I(θ)

))

(e) Therefore,

∂ log L(θ)

∂θ
(I(θ))−1∂ log L(θ)

∂θ′
−→ χ2(G)

Because MLE is consistent, i.e., θ̃ −→ θ, we have the result:

F′
θ̃
(I(θ̃))−1Fθ̃ −→ χ2(G).
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3. Likelihood Ratio Test ( ): LR = −2 log λ −→ χ2(G)

λ =
L(θ̃)

L(θ̂)

(a) By Taylor series expansion evaluated at θ = θ̂, log L(θ) is given by:

log L(θ) = log L(θ̂) +
∂ log L(θ̂)

∂θ
(θ − θ̂)

+
1

2
(θ − θ̂)′∂

2 log L(θ̂)

∂θ∂θ′
(θ − θ̂) + · · ·

= log L(θ̂) +
1

2
(θ − θ̂)′∂

2 log L(θ̂)

∂θ∂θ′
(θ − θ̂) + · · ·
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Note that
∂ log L(θ̂)

∂θ
= 0 because θ̂ is MLE.

−2(log L(θ) − log L(θ̂)) ≈ −(θ − θ̂)′
(∂2 log L(θ̂)

∂θ∂θ′

)

(θ − θ̂)

=
√

n(θ̂ − θ)′
(

−1

n

∂2 log L(θ̂)

∂θ∂θ′

)√
n(θ̂ − θ)

−→ χ2(G)
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Note:

(1) θ̂ −→ θ,

(2) −1

n

∂2 log L(θ̂)

∂θ∂θ′
−→ − lim

n→∞

(1

n
E
(∂2 log L(θ̂)

∂θ∂θ′

))

= lim
n→∞

(1

n
I(θ)

)

,

(3)
√

n(θ̂ − θ) −→ N
(

0, lim
n→∞

(1

n
I(θ)

))

.

(b) Under H0 : h(θ) = 0,

−2(log L(θ̃) − log L(θ̂)) −→ χ2(G).

Remember that h(θ̃) = 0 is always satisfied.

For proof, see Theil (1971, p.396).
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4. All of W, LM and LR are asymptotically distributed as χ2(G) random vari-

ables under the null hypothesis H0 : h(θ) = 0 .

5. Under some comditions, we have W ≥ LR ≥ LM. See Engle (1981) “Wald,

Likelihood and Lagrange Multiplier Tests in Econometrics,” Chap. 13 in

Handbook of Econometrics, Vol.2, Grilliches and Intriligator eds, North-

Holland.
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13.2 Example: W, LM and LR Tests

Date file =⇒ cons99.txt (same data as before)

Each column denotes year, nominal household expenditures ( 10 billion

yen), household disposable income ( 10 billion yen) and house-

hold expenditure deflator ( 1990=100) from the left.
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1955 5430.1 6135.0 18.1 1970 37784.1 45913.2 35.2 1985 185335.1 220655.6 93.9

1956 5974.2 6828.4 18.3 1971 42571.6 51944.3 37.5 1986 193069.6 229938.8 94.8

1957 6686.3 7619.5 19.0 1972 49124.1 60245.4 39.7 1987 202072.8 235924.0 95.3

1958 7169.7 8153.3 19.1 1973 59366.1 74924.8 44.1 1988 212939.9 247159.7 95.8

1959 8019.3 9274.3 19.7 1974 71782.1 93833.2 53.3 1989 227122.2 263940.5 97.7

1960 9234.9 10776.5 20.5 1975 83591.1 108712.8 59.4 1990 243035.7 280133.0 100.0

1961 10836.2 12869.4 21.8 1976 94443.7 123540.9 65.2 1991 255531.8 297512.9 102.5

1962 12430.8 14701.4 23.2 1977 105397.8 135318.4 70.1 1992 265701.6 309256.6 104.5

1963 14506.6 17042.7 24.9 1978 115960.3 147244.2 73.5 1993 272075.3 317021.6 105.9

1964 16674.9 19709.9 26.0 1979 127600.9 157071.1 76.0 1994 279538.7 325655.7 106.7

1965 18820.5 22337.4 27.8 1980 138585.0 169931.5 81.6 1995 283245.4 331967.5 106.2

1966 21680.6 25514.5 29.0 1981 147103.4 181349.2 85.4 1996 291458.5 340619.1 106.0

1967 24914.0 29012.6 30.1 1982 157994.0 190611.5 87.7 1997 298475.2 345522.7 107.3

1968 28452.7 34233.6 31.6 1983 166631.6 199587.8 89.5

1969 32705.2 39486.3 32.9 1984 175383.4 209451.9 91.8
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PROGRAM
LINE ***********************************************
| 1 freq a;
| 2 smpl 1955 1997;
| 3 read(file=’cons99.txt’) year cons yd price;
| 4 rcons=cons/(price/100);
| 5 ryd=yd/(price/100);
| 6 lyd=log(ryd);
| 7 olsq rcons c ryd;
| 8 olsq @res @res(-1);
| 9 ar1 rcons c ryd;
| 10 olsq rcons c lyd;
| 11 param a1 0 a2 0 a3 1;
| 12 frml eq rcons=a1+a2*((ryd**a3)-1.)/a3;
| 13 lsq(tol=0.00001,maxit=100) eq;
| 14 a3=1.15;
| 15 rryd=((ryd**a3)-1.)/a3;
| 16 ar1 rcons c rryd;
| 17 end;
*****************************************************
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Equation 1
============

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. LM het. test = .207443 [.649]
Std. dev. of dep. var. = 79317.2 Durbin-Watson = .115101 [.000,.000]

Sum of squared residuals = .129697E+10 Jarque-Bera test = 9.47539 [.009]
Variance of residuals = .316335E+08 Ramsey’s RESET2 = 53.6424 [.000]

Std. error of regression = 5624.36 F (zero slopes) = 8311.90 [.000]
R-squared = .995092 Schwarz B.I.C. = 435.051

Adjusted R-squared = .994972 Log likelihood = -431.289

Estimated Standard
Variable Coefficient Error t-statistic P-value
C -2919.54 1847.55 -1.58022 [.122]
RYD .852879 .935486E-02 91.1696 [.000]
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Equation 2
============

Method of estimation = Ordinary Least Squares

Dependent variable: @RES
Current sample: 1956 to 1997
Number of observations: 42

Mean of dep. var. = -95.5174
Std. dev. of dep. var. = 5588.52

Sum of squared residuals = .146231E+09
Variance of residuals = .356662E+07

Std. error of regression = 1888.55
R-squared = .885884

Adjusted R-squared = .885884
LM het. test = .760256 [.383]
Durbin-Watson = 1.40409 [.023,.023]
Durbin’s h = 1.97732 [.048]

Durbin’s h alt. = 1.91077 [.056]
Jarque-Bera test = 6.49360 [.039]
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Ramsey’s RESET2 = .186107 [.668]
Schwarz B.I.C. = 377.788
Log likelihood = -375.919

Estimated Standard
Variable Coefficient Error t-statistic P-value
@RES(-1) .950693 .053301 17.8362 [.000]
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Equation 3
============

FIRST-ORDER SERIAL CORRELATION OF THE ERROR
Objective function: Exact ML (keep first obs.)

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. R-squared = .999480
Std. dev. of dep. var. = 79317.2 Adjusted R-squared = .999454

Sum of squared residuals = .145826E+09 Durbin-Watson = 1.38714
Variance of residuals = .364564E+07 Schwarz B.I.C. = 391.061

Std. error of regression = 1909.36 Log likelihood = -385.419

Standard
Parameter Estimate Error t-statistic P-value
C 1672.42 6587.40 .253881 [.800]
RYD .840011 .027182 30.9032 [.000]
RHO .945025 .045843 20.6143 [.000]
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Equation 4
============

Method of estimation = Ordinary Least Squares

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. LM het. test = 2.21031 [.137]
Std. dev. of dep. var. = 79317.2 Durbin-Watson = .029725 [.000,.000]

Sum of squared residuals = .256040E+11 Jarque-Bera test = 3.72023 [.156]
Variance of residuals = .624487E+09 Ramsey’s RESET2 = 344.855 [.000]

Std. error of regression = 24989.7 F (zero slopes) = 382.117 [.000]
R-squared = .903100 Schwarz B.I.C. = 499.179

Adjusted R-squared = .900737 Log likelihood = -495.418

Estimated Standard
Variable Coefficient Error t-statistic P-value
C -.115228E+07 66538.5 -17.3175 [.000]
LYD 109305. 5591.69 19.5478 [.000]
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NONLINEAR LEAST SQUARES
=======================

CONVERGENCE ACHIEVED AFTER 84 ITERATIONS

Number of observations = 43 Log likelihood = -414.362
Schwarz B.I.C. = 420.004

Standard
Parameter Estimate Error t-statistic P-value
A1 16544.5 2615.60 6.32530 [.000]
A2 .063304 .024133 2.62307 [.009]
A3 1.21694 .031705 38.3839 [.000]

Standard Errors computed from quadratic form of analytic first derivatives
(Gauss)

Equation: EQ
Dependent variable: RCONS

Mean of dep. var. = 146270.
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Std. dev. of dep. var. = 79317.2
Sum of squared residuals = .590213E+09
Variance of residuals = .147553E+08

Std. error of regression = 3841.27
R-squared = .997766

Adjusted R-squared = .997655
LM het. test = .174943 [.676]
Durbin-Watson = .253234 [.000,.000]
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Equation 5
============

FIRST-ORDER SERIAL CORRELATION OF THE ERROR
Objective function: Exact ML (keep first obs.)

Dependent variable: RCONS
Current sample: 1955 to 1997
Number of observations: 43

Mean of dep. var. = 146270. R-squared = .999470
Std. dev. of dep. var. = 79317.2 Adjusted R-squared = .999443

Sum of squared residuals = .140391E+09 Durbin-Watson = 1.43657
Variance of residuals = .350977E+07 Schwarz B.I.C. = 389.449

Std. error of regression = 1873.44 Log likelihood = -383.807

Standard
Parameter Estimate Error t-statistic P-value
C 12034.8 3346.47 3.59628 [.000]
RRYD .140723 .282614E-02 49.7933 [.000]
RHO .876924 .068199 12.8583 [.000]
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1. Equation 1 vs. Equation 3 (Test of Serial Correlation)

Equation 1 is:

RCONSt = β1 + β2RYDt + ut, εt ∼ iid N(0, σ2
ε )

Equation 3 is:

RCONSt = β1 + β2RYDt + ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε )

The null hypothesis is H0 : ρ = 0
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Restricted MLE =⇒ Equation 1

Unrestricted MLE =⇒ Equation 3

The log-likelihood function of Equation 3 is:

log L(β, σ2
ε , ρ) = −

n

2
log(2π) − n

2
log(σ2

ε ) +
1

2
log(1 − ρ2)

− 1

2σ2
ε

n
∑

t=1

(RCONS∗t − β1CONST
∗
t − β2RYD

∗
t )2,

where

RCONS∗t =



















√

1 − ρ2RCONSt, for t = 1,

RCONSt − ρRCONSt−1, for t = 2, 3, · · · , n,
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CONST∗t =



















√

1 − ρ2, for t = 1,

1 − ρ, for t = 2, 3, · · · , n,

RYD∗t =



















√

1 − ρ2RYDt, for t = 1,

RYDt − ρRYDt−1, for t = 2, 3, · · · , n.

• MLE with the restriction ρ = 0 (Equation 1) solves:

max
β,σ2
ε

log L(β, σ2
ε , 0)

Restricted MLE =⇒ β̃, σ̃2
ε

Log of likelihood function = -431.289
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• MLE without the restriction ρ = 0 (Equation 3) solves:

max
β,σ2
ε ,ρ

log L(β, σ2
ε , ρ)

Unrestricted MLE =⇒ β̂, σ̂2
ε , ρ̂

Log of likelihood function = -385.419

The likelihood ratio test statistic is:

−2 log(λ) = −2 log
(L(β̃, σ̃2

ε , 0)

L(β̂, σ̂2
ε , ρ̂)

)

= −2
(

log L(β̃, σ̃2
ε , 0) − log L(β̂, σ̂2

ε , ρ̂)
)

= −2
(

−431.289 − (−385.419)
)

= 91.74.
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The asymptotic distribution is given by:

−2 log(λ) ∼ χ2(G),

where G is the number of the restrictions, i.e., G = 1 in this case.

The 1% upper probability point of χ2(1) is 6.635.

91.74 > 6.635

Therefore, H0 : ρ = 0 is rejected.

There is serial correlation in the error term.
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2. Equation 1 (Test of Serial Correlation −→ Lagrange Multiplier Test)

Equation 2 is:

@RESt = ρ@RESt−1 + εt, εt ∼ N(0, σ2
ε ),

where @RESt = RCONSt − β̂1 − β̂2RYDt, and β̂1 and β̂2 are OLSEs.

The null hypothesis is H0 : ρ = 0

@RES(-1) .950693 .053301 17.8362 [.000]

Therefore, the Wald test statistic is 17.83622
= 318.13 > 6.635.
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H0 : ρ = 0 is rejected.

3. Equation 3 (Test of Serial Correlation −→ Wald Test)

Equation 3 is:

RCONSt = β1 + β2RYDt + ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2
ε )

The null hypothesis is H0 : ρ = 0

RHO .945025 .045843 20.6143 [.000]

The Wald teststatistics is 20.61432
= 424.95, which is compared with χ2(1).
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535.48 > 6.635 =⇒ H0 : ρ = 0 is rejected by Wald test.

4. Equation 1 vs. NONLINEAR LEAST SQUARES (Choice of Functional Form

– linear):

NONLINEAR LEAST SQUARES estimates:

RCONSt = a1 + a2
RYDa3

t − 1

a3
+ ut.

When a3 = 1, we have:

RCONSt = (a1 − a2) + a2RYDt + ut,
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which is equivalent to Equation 1.

The null hypothesis is H0 : a3 = 1, where G = 1.

• MLE with a3 = 1 MLE (Equation 1)

Log of likelihood function = -431.289

• MLE without a3 = 1 (NONLINEAR LEAST SQUARES)

Log of likelihood function = -414.362

The likelihood ratio test statistic is given by:

−2 log(λ) = −2
(

−431.289 − (−414.362)
)

= 33.854.
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The 1% upper probability point of χ2(1) is 6.635.

33.854 > 6.635

H0 : a3 = 1 is rejected.

Therefore, the functional form of the regression model is not linear.

5. Equation 4 vs. NONLINEAR LEAST SQUARES (Choice of Functional Form

– log-linear):

In NONLINEAR LEAST SQUARES, i.e.,

RCONSt = a1 + a2
RYDa3

t − 1

a3
+ ut,
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if a3 = 0, we have:

RCONSt = a1 + a2 log(RYDt) + ut,

which is equivalent to Equation 3.

The null hypothesis is H0 : a3 = 0, where G = 1.

• MLE with a3 = 0 (Equation 3)

Log of likelihood function = -495.418

• MLE without a3 = 0 (NONLINEAR LEAST SQUARES)

Log of likelihood function = -414.362
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The likelihood ratio test statistic is:

−2 log(λ) = −2
(

−495.418 − (−414.362)
)

= 162.112 > 6.635.

Therefore, H0 : a3 = 0 is rejected.

As a result, the functional form of the regression model is not log-linear,

either.

6. Equation 1 vs. Equation 5 (Simultaneous Test of Serial Correlation and

Linear Function):
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Equation 5 is:

RCONSt = a1 + a2
RYDa3

t − 1

a3
+ ut, ut = ρut−1 + εt, εt ∼ iid N(0, σ2

ε )

The null hypothesis is H0 : a3 = 1, ρ = 0

Restricted MLE =⇒ Equation 1

Unrestricted MLE =⇒ Equation 4

Remark: In Lines 14–16 of PROGRAM, we have estimated Equation 4,

given a3 = 0.00, 0.01, 0.02, · · ·.

As a result, a3 = 1.15 gives us the maximum log-likelihood.
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The likelihood ratio test statistic is:

−2 log(λ) = −2
(

−431.289 − (−383.807)
)

= 94.964.

−2 log(λ) ∼ χ2(2) in this case.

The 1% upper probability point of χ2(2) is 9.210.

94.964 > 9.210

H0 : a3 = 1, ρ = 0 is rejected.

Thus, even if serial correlation is taken into account, the regression model is

not linear.
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14

1. Time Series Analysis ( )

−→ Econometrics III (Spring Semester, 2013)

2. Bayesian Estimation ( )

−→ Econometrics III (Spring Semester, 2013)

3. Panel Data ( )

4. Discrete Dependent Variable ( ) and Truncated Regression Model

( )
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5. Nonparametric Estimation and Test ( )

6. Generalized Method of Moment (GMM, )

7. Etc.... ( )
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