
Econometrics II
(Wed., 8:50-10:20)

Room # 509 (法経大学院総合研究棟)

• The prerequisite of this class is knowledge aboutEconometrics I (last semester)

andEconometrics(undergraduate level).
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TA Session (by Mr. Kinoshita):
From Oct. 9, 2013

Wed., 13:00 - 14:30

Room # 505 (法経大学院総合研究棟)

Content: Matrix Algebra
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Econometrics (Undergraduate Course)

Mon., 8:50-10:20 (基礎工B401)

Fri., 8:50-10:20 (基礎工B401)

• If you have not taken Econometrics in undergraduate level, attend the above class.

• Textbook:『計量経済学』(山本拓著，新世社)
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1 Regression Analysis (回帰分析)

1.1 Setup of the Model

When (x1, y1), (x2, y2), · · ·, (xn, yn) are available, suppose that there is a linear rela-

tionship betweeny andx, i.e.,

yi = β1 + β2xi + ui , (1)

for i = 1, 2, · · · ,n. xi andyi denote theith observations.

−→ Single (or simple) regression model (単回帰モデル)
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yi is called thedependent variable (従属変数) or theexplained variable (被説明変

数), while xi is known as theindependent variable (独立変数) or theexplanatory

(or explaining) variable (説明変数).

β1 = Intercept (切片), β2 = Slope (傾き)

β1 andβ2 are unknownparameters (パラメータ，母数) to be estimated.

β1 andβ2 are called theregression coefficients (回帰係数).
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ui is the unobservederror term (誤差項) assumed to be a random variable with

mean zero and varianceσ2.

σ2 is also a parameter to be estimated.

xi is assumed to benonstochastic (非確率的), butyi is stochastic (確率的) because

yi depends on the errorui.

The error termsu1, u2, · · ·, un are assumed to be mutually independently and iden-

tically distributed, which is callediid.

It is assumed thatui has a distribution with mean zero, i.e., E(ui) = 0 is assumed.
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Taking the expectation on both sides of (1), the expectation ofyi is represented as:

E(yi) = E(β1 + β2xi + ui) = β1 + β2xi + E(ui)

= β1 + β2xi , (2)

for i = 1, 2, · · · ,n.

Using E(yi) we can rewrite (1) asyi = E(yi) + ui.

(2) represents the true regression line.
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Let β̂1 andβ̂2 be estimates ofβ1 andβ2.

Replacingβ1 andβ2 by β̂1 andβ̂2, (1) turns out to be:

yi = β̂1 + β̂2xi + ei , (3)

for i = 1, 2, · · · ,n, whereei is called theresidual (残差).

The residualei is taken as the experimental value (or realization) ofui.
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We define ˆyi as follows:

ŷi = β̂1 + β̂2xi , (4)

for i = 1, 2, · · · ,n, which is interpreted as thepredicted value (予測値) of yi.

(4) indicates the estimated regression line, which is different from (2).

Moreover, using ˆyi we can rewrite (3) asyi = ŷi + ei.

(2) and (4) are displayed in Figure 1.
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Figure 1. True and Estimated Regression Lines (回帰直線)
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Consider the case ofn = 6 for simplicity.

× indicates the observed data series.

The true regression line (2) is represented by the solid line, while the estimated

regression line (4) is drawn with the dotted line.

Based on the observed data,β1 andβ2 are estimated as:̂β1 andβ̂2.

In the next section, we consider how to obtain the estimates ofβ1 andβ2, i.e., β̂1

andβ̂2.
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1.2 Ordinary Least Squares Estimation

Suppose that (x1, y1), (x2, y2), · · ·, (xn, yn) are available.

For the regression model (1), we consider estimatingβ1 andβ2.

Replacingβ1 andβ2 by their estimateŝβ1 and β̂2, remember that the residualei is

given by:

ei = yi − ŷi = yi − β̂1 − β̂2xi .

The sum of squared residuals is defined as follows:

S(β̂1, β̂2) =
n∑

i=1

e2
i =

n∑
i=1

(yi − β̂1 − β̂2xi)
2.
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It might be plausible to choose theβ̂1 and β̂2 which minimize the sum of squared

residuals, i.e.,S(β̂1, β̂2).

This method is called theordinary least squares estimation (最小二乗法，OLS).

To minimizeS(β̂1, β̂2) with respect tôβ1 andβ̂2, we set the partial derivatives equal

to zero:

∂S(β̂1, β̂2)

∂β̂1

= −2
n∑

i=1

(yi − β̂1 − β̂2xi) = 0,

∂S(β̂1, β̂2)

∂β̂2

= −2
n∑

i=1

xi(yi − β̂1 − β̂2xi) = 0.
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The second order condition for minimization is:( ∂2S(β̂1,β̂2)
∂β̂21

∂2S(β̂1,β̂2)
∂β̂1∂β̂2

∂2S(β̂1,β̂2)
∂β̂2∂β̂1

∂2S(β̂1,β̂2)
∂β̂22

)
=

( 2n 2
∑n

i=1 xi

2
∑n

i=1 xi 2
∑n

i=1 x2
i

)
should be a positive definite matrix.

The diagonal elements 2n and 2
∑n

i=1 x2
i are positive.

The determinant:∣∣∣∣∣∣ 2n 2
∑n

i=1 xi

2
∑n

i=1 xi 2
∑n

i=1 x2
i

∣∣∣∣∣∣ = 4n
n∑

i=1

x2
i − 4(

n∑
i=1

xi)
2 = 4n

n∑
i=1

(xi − x)2

is positive. =⇒ The second-order condition is satisfied.
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The first two equations yield the following two equations:

y = β̂1 + β̂2x, (5)
n∑

i=1

xiyi = nxβ̂1 + β̂2

n∑
i=1

x2
i , (6)

wherey =
1
n

n∑
i=1

yi andx =
1
n

n∑
i=1

xi.

Multiplying (5) by nx and subtracting (6), we can deriveβ̂2 as follows:

β̂2 =

∑n
i=1 xiyi − nxy∑n
i=1 x2

i − nx2
=

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
. (7)
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From (5),β̂1 is directly obtained as follows:

β̂1 = y− β̂2x. (8)

When the observed values are taken foryi andxi for i = 1,2, · · · ,n, we say that̂β1

andβ̂2 are called theordinary least squares estimates (or simply theleast squares

estimates,最小二乗推定値) of β1 andβ2.

Whenyi for i = 1,2, · · · ,n are regarded as the random sample, we say thatβ̂1 andβ̂2

are called theordinary least squares estimators (or theleast squares estimators,

最小二乗推定量) of β1 andβ2.
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1.3 Properties of Least Squares Estimator

Equation (7) is rewritten as:

β̂2 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
=

∑n
i=1(xi − x)yi∑n
i=1(xi − x)2

− y
∑n

i=1(xi − x)∑n
i=1(xi − x)2

=

n∑
i=1

xi − x∑n
i=1(xi − x)2

yi =

n∑
i=1

ωiyi . (9)

In the third equality,
n∑

i=1

(xi − x) = 0 is utilized because ofx =
1
n

n∑
i=1

xi.

In the fourth equality,ωi is defined as:ωi =
xi − x∑n

i=1(xi − x)2
.

ωi is nonstochastic becausexi is assumed to be nonstochastic.
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ωi has the following properties:

n∑
i=1

ωi =

n∑
i=1

xi − x∑n
i=1(xi − x)2

=

∑n
i=1(xi − x)∑n

i=1(xi − x)2
= 0, (10)

n∑
i=1

ωi xi =

n∑
i=1

ωi(xi − x) =
∑n

i=1(xi − x)2∑n
i=1(xi − x)2

= 1, (11)

n∑
i=1

ω2
i =

n∑
i=1

(
xi − x∑n

i=1(xi − x)2

)2

=

∑n
i=1(xi − x)2(∑n

i=1(xi − x)2
)2
=

1∑n
i=1(xi − x)2

. (12)

The first equality of (11) comes from (10).
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From now on, we focus only on̂β2, because usuallyβ2 is more important thanβ1 in

the regression model (1).

In order to obtain the properties of the least squares estimatorβ̂2, we rewrite (9) as:

β̂2 =

n∑
i=1

ωiyi =

n∑
i=1

ωi(β1 + β2xi + ui)

= β1

n∑
i=1

ωi + β2

n∑
i=1

ωi xi +

n∑
i=1

ωiui = β2 +

n∑
i=1

ωiui . (13)

In the fourth equality of (13), (10) and (11) are utilized.
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Mean and Variance of β̂2: u1, u2, · · ·, un are assumed to be mutually indepen-

dently and identically distributed with mean zero and varianceσ2, but they are not

necessarily normal.

Remember that we do not need normality assumption to obtain mean and variance

but the normality assumption is required to test a hypothesis.

From (13), the expectation ofβ̂2 is derived as follows:

E(β̂2) = E(β2 +

n∑
i=1

ωiui) = β2 + E(
n∑

i=1

ωiui)

= β2 +

n∑
i=1

ωiE(ui) = β2. (14)
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It is shown from (14) that the ordinary least squares estimatorβ̂2 is an unbiased

estimator ofβ2.

From (13), the variance of̂β2 is computed as:

V(β̂2) = V(β2 +

n∑
i=1

ωiui) = V(
n∑

i=1

ωiui) =
n∑

i=1

V(ωiui) =
n∑

i=1

ω2
i V(ui)

= σ2
n∑

i=1

ω2
i =

σ2∑n
i=1(xi − x)2

. (15)

The third equality holds becauseu1, u2, · · ·, un are mutually independent.

The last equality comes from (12).

Thus, E(̂β2) and V(̂β2) are given by (14) and (15).
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Gauss-Markov Theorem (ガウス・マルコフ定理): It has been discussed above

that β̂2 is represented as (9), which implies thatβ̂2 is a linear estimator, i.e., linear

in yi.

In addition, (14) indicates that̂β2 is an unbiased estimator.

Therefore, summarizing these two facts, it is shown thatβ̂2 is a linear unbiased

estimator (線形不偏推定量).
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Furthermore, here we show thatβ̂2 has minimum variance within a class of the

linear unbiased estimators.

Consider the alternative linear unbiased estimatorβ̃2 as follows:

β̃2 =

n∑
i=1

ciyi =

n∑
i=1

(ωi + di)yi ,

whereci = ωi + di is defined anddi is nonstochastic.
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Then,β̃2 is transformed into:

β̃2 =

n∑
i=1

ciyi =

n∑
i=1

(ωi + di)(β1 + β2xi + ui)

= β1

n∑
i=1

ωi + β2

n∑
i=1

ωi xi +

n∑
i=1

ωiui + β1

n∑
i=1

di + β2

n∑
i=1

di xi +

n∑
i=1

diui

= β2 + β1

n∑
i=1

di + β2

n∑
i=1

di xi +

n∑
i=1

ωiui +

n∑
i=1

diui .

Equations (10) and (11) are used in the forth equality.
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Taking the expectation on both sides of the above equation, we obtain:

E(β̃2) = β2 + β1

n∑
i=1

di + β2

n∑
i=1

di xi +

n∑
i=1

ωiE(ui) +
n∑

i=1

diE(ui)

= β2 + β1

n∑
i=1

di + β2

n∑
i=1

di xi .

Note that di is not a random variable and that E(ui) = 0.

Sinceβ̃2 is assumed to be unbiased, we need the following conditions:

n∑
i=1

di = 0,
n∑

i=1

di xi = 0.
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When these conditions hold, we can rewriteβ̃2 as:

β̃2 = β2 +

n∑
i=1

(ωi + di)ui .

The variance of̃β2 is derived as:

V(β̃2) = V
(
β2 +

n∑
i=1

(ωi + di)ui

)
= V

( n∑
i=1

(ωi + di)ui

)
=

n∑
i=1

V
(
(ωi + di)ui

)
=

n∑
i=1

(ωi + di)
2V(ui) = σ

2(
n∑

i=1

ω2
i + 2

n∑
i=1

ωidi +

n∑
i=1

d2
i )

= σ2(
n∑

i=1

ω2
i +

n∑
i=1

d2
i ).
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From unbiasedness ofβ̃2, using
∑n

i=1 di = 0 and
∑n

i=1 di xi = 0, we obtain:

n∑
i=1

ωidi =

∑n
i=1(xi − x)di∑n
i=1(xi − x)2

=

∑n
i=1 xidi − x

∑n
i=1 di∑n

i=1(xi − x)2
= 0,

which is utilized to obtain the variance ofβ̃2 in the third line of the above equation.

From (15), the variance of̂β2 is given by: V(̂β2) = σ2 ∑n
i=1ω

2
i .

Therefore, we have:

V(β̃2) ≥ V(β̂2),

because of
∑n

i=1 d2
i ≥ 0.
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When
∑n

i=1 d2
i = 0, i.e., whend1 = d2 = · · · = dn = 0, we have the equality: V(β̃2)

= V(β̂2).

Thus, in the case ofd1 = d2 = · · · = dn = 0, β̂2 is equivalent tõβ2.

As shown above, the least squares estimatorβ̂2 gives us theminimum variance

linear unbiased estimator (最小分散線形不偏推定量), or equivalently thebest

linear unbiased estimator (最良線形不偏推定量，BLUE) , which is called the

Gauss-Markov theorem (ガウス・マルコフ定理).
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Asymptotic Properties (漸近的性質) of β̂2: We assume that asn goes to infinity

we have the following:

1
n

n∑
i=1

(xi − x)2 −→ m< ∞,

wherem is a constant value. From (12), we obtain:

n
n∑

i=1

ω2
i =

1
(1/n)

∑n
i=1(xi − x)

−→ 1
m
.

Note that f (xn) −→ f (m) whenxn −→ m, calledSlutsky’s theorem (スルツキー

定理), wherem is a constant value andf (·) is a function.
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We show bothconsistency (一致性) of β̂2 andasymptotic normality (漸近正規

性) of
√

n(β̂2 − β2).

● First, we prove that̂β2 is a consistent estimator ofβ2.

Chebyshev’s inequality (チェビシェフの不等式) is given by:

P(|X − µ| > ε) ≤ σ
2

ε2
, whereµ = E(X) andσ2 = V(X).

ReplaceX, E(X) and V(X) by:

β̂2, E(β̂2) = β2, and V(̂β2) = σ
2

n∑
i=1

ω2
i =

σ2∑n
i=1(xi − x)

,

respectively.

30



Then, whenn −→ ∞, we obtain the following result:

P(|β̂2 − β2| > ε) ≤
σ2 ∑n

i=1ω
2
i

ε2
=
σ2n

∑n
i=1ω

2
i

nε2
−→ 0,

where
∑n

i=1ω
2
i −→ 0 becausen

∑n
i=1ω

2
i −→

1
m

from the assumption.

Thus, we obtain the result thatβ̂2 −→ β2 asn −→ ∞.

Therefore, we can conclude thatβ̂2 is aconsistent estimator (一致推定量) of β2.
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