Econometrics I
(Wed., 8:50-10:20)

Room # 509 (LR Kkl S Z2/R)

e The prerequisite of this class is knowledge aldecbnometrics I (last semester)

andEconometrics(undergraduate level).
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TA Session (by Mr. Kinoshita):

From Oct. 9, 2013
Wed., 13:00 - 14:30
Room # 505 ER K F Ik A iR)

Content: Matrix Algebra



Econometrics (Undergraduate Course)

Mon., 8:50-10:20 E##T B401)
Fri., 8:50-10:20 @&## T B401)

e If you have not taken Econometrics in undergraduate level, attend the above clas
o Textbook: TEFEMREFFI (LA #h &, Fritt)



1 Regression Analysis[@l&4%3 #)

1.1 Setup of the Model

When 1, y1), (X2, ¥2), - -+, (X, Yn) are available, suppose that there is a linear rela-

tionship betweery andx, i.e.,
Yi = B+ B2X + Ui, (1)

fori=1,2,---,n. x; andy; denote theth observations.
— Single (or simple) regression model¥E)FE T )L)
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y; is called thedependent variable (£ /EZ %)) or theexplained variable #ztEAZ
#0), while x; is known as théndependent variable §#371Z %) or theexplanatory

(or explaining) variable (iBAZE ).

1 = Intercept (Y1 5), B> = Slope (B %)

1 andgB, are unknowrparameters (> X —4%, &#) to be estimated.

1 andp, are called theegression cofficients (T]/F%%X).
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u; is the unobservedrror term ( 3R Z1H) assumed to be a random variable with
mean zero and varianee.

o is also a parameter to be estimated.

X is assumed to beonstochastic §EFEZERY), buty; is stochastic f#=£H7) because
yi depends on the errar.

The error termsly, U, - -+, Uy are assumed to be mutually independently and iden-

tically distributed, which is calledd.
It is assumed that has a distribution with mean zero, i.e.Ug(= 0 is assumed.
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Taking the expectation on both sides of (1), the expectatighisfrepresented as:

E(i) = E(B1 + B2Xi + U) = 1+ 2% + E(U)
= B1 + B2X, (2

fori=1,2---,n.

Using Ef;) we can rewrite (1) ag = E(y;) + u;.

(2) represents the true regression line.



Let3; andj, be estimates ¢#; andg..

Replacings; ands, by 3, andj,, (1) turns out to be:
Vi = B1+Box + &,

fori=1,2,---,n, whereg is called theresidual (%Z).

The residuas; is taken as the experimental value (or realization);of
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We definey; as follows:

Yi 2,[31 +B2Xi,

fori = 1,2 ---,n, which is interpreted as thredicted value (% 8{&) of y.

(4) indicates the estimated regression line, whichfiiedent from (2).

Moreover, using; we can rewrite (3) ag = y; + €.

(2) and (4) are displayed in Figure 1.
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Figure 1. True and Estimated Regression Lines[@l & E#R)

Distributions
of the Errors

(X, ¥i)

Vi = ,[31 +ﬁ2Xi
(Estimated
Regression Line)

10



Consider the case of= 6 for simplicity.
x indicates the observed data series.

The true regression line (2) is represented by the solid line, while the estimate

regression line (4) is drawn with the dotted line.
Based on the observed data,andg, are estimated ag; and,.

In the next section, we consider how to obtain the estimatgs ahdg,, i.e., 51

andp,.
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1.2 Ordinary Least Squares Estimation

Suppose thatq, y1), (X2, ¥2), - - -, (Xn, Yn) are available.
For the regression model (1), we consider estimagingnds,.
ReplacingB; andg, by their estimateg, andj,, remember that the residualis
given by:

& =VYi— % =Vi—B1—fBax.
The sum of squared residuals is defined as follows:

n n
S(ﬁl,,éz) = 21: e.2 = Zl:(yi _Bl —,ézxi)z-
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It might be plausible to choose tie and;3, which minimize the sum of squared
residuals, i.e.S(81, 52).
This method is called therdinary least squares estimation f&x/N = %%, OLS).

To minimizeS(B1, 3,) with respect tg; andg,, we set the partial derivatives equal

to zero:
as(ﬁl,ﬁZ)
-2 : — =
7 ;(y — B~ o) =
53(51,,32)
2 By — Box) =
%, qu(y —B1 - Baxi) =
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The second order condition for minimization is:

PSBiBa)  9°S(Bupe) no
( 3 PBrop2 ) _ ( 2n 21 %
PSB1pa)  PSPBuB) | T n o )
0B20P1 o2 209X 2% X%
should be a positive definite matrix.

The diagonal elementsand 23, x? are positive.
The determinant:

2n 2% %

‘ 23 % 2%, %

is positive. =  The second-order condition is satisfied.

= 4“Zn] X = 4(Zn] X)? = 4nZn:(>q - %)
i=1 i=1

i=1
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The first two equations yield the following two equations:

Y = B1 + B2%, (5
Xi

Vi =X+ B2 » %, (6)

1y _ 1y
wherey = - ;yi andX = - ; Xi.
Multiplying (5) by nX and subtracting (6), we can deriggas follows:

3, = Tl i -y EL(i X% -Y)
2 TN, xR — X Y =-%2

(7)
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From (5),5, is directly obtained as follows:
Br =Y - BoX. (8)

When the observed values are takenytaandx; fori = 1,2,---,n, we say thaf%l
andp, are called therdinary least squares estimats (or simply thdeast squares

estimates, &/N ZFHEE) of B, andp,.

Wheny; fori = 1,2, -- -, nare regarded as the random sample, we saystraidg,
are called th@rdinary least squares estimatos (or theleast squares estimatas,

R/NZFEHEEE) of B, andp..
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1.3 Properties of Least Squares Estimator

Equation (7) is rewritten as:

5, = Sl =0 =9) _ ZL0 =Xy Y=Y
T L% —X)? z.“ 6 —%2 (% - %)2

Zz._x&_ - Z“"y' ®)

In the third equalltyZ](x| —X) = 0 is utilized because 6t = — Z X.

i=1

X — X
Yty (X —X)2°

wj IS nonstochastic becauggis assumed to be nonstochastic.

In the fourth equalityyw; is defined asw; =
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wj has the following properties:
n n S I"I 5
Y=y % x_2 _ Zn.zl(m _X)2 _
i=1 i=1 Zi:l(xi - X) Zi:l(xi - X)

Zw.X' Zw.(x.—x) Z' 1(% %)

S -®2
o= 3 )2: SR 1
R RN FCE 5 E

The first equality of (11) comes from (10).
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From now on, we focus only g8y, because usuall§, is more important thaf in
the regression model (1).

In order to obtain the properties of the least squares estifgtare rewrite (9) as:

ﬁz—zw)ﬁ Zwl(ﬂl‘hgzxi"'u)

—:8120-)|+,3220)|X|+Zwlul ﬁ2+zw|ul (13)

In the fourth equality of (13), (10) and (11) are utilized.
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Mean and Variance of,f%z: Up, Uy, -+, U, are assumed to be mutually indepen-
dently and identically distributed with mean zero and variamgebut they are not
necessarily normal.

Remember that we do not need normality assumption to obtain mean and varian
but the normality assumption is required to test a hypothesis.

From (13), the expectation @§ is derived as follows:
E@2) = E@z + ), with) = B2 + E(Y | wih)
i=1 i=1
=p2+ Z wiE(U) = B2. (14)
i=1
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It is shown from (14) that the ordinary least squares estimatds an unbiased
estimator of3,.

From (13), the variance @ is computed as:

V(B2) = V(Bz + Zw.u.) - V(Z wily) = ZV(w.u) - Zaﬂvw)

=0 Zw = —Z. 5 %2 (15)

The third equality holds becauseg u,, - - -, U, are mutually independent.
The last equality comes from (12).
Thus, E,) and V(3,) are given by (14) and (15).
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Gauss-Markov Theorem (37 X - ¥JLO 7 EHE): It has been discussed above

thatf, is represented as (9), which implies tjgatis a linear estimator, i.e., linear

in Vi.
In addition, (14) indicates thab is an unbiased estimator.

Therefore, summarizing these two facts, it is shown fhas alinear unbiased
estimator (R R RIEEE).
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Furthermore, here we show thég has minimum variance within a class of the

linear unbiased estimators.

Consider the alternative linear unbiased estimasars follows:

Ba = Z CYi = Z(wi +d)yi,
=) -1

wherec; = w; + d; is defined andl, is nonstochastic.
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Then,,éz is transformed into:
. n n
B2 = Z Cyi = Z(wi + i) (B + BaXi + W)
= n = n n n n n
:ﬁlzwi +,8220)ixi + Zwiui +,812di +ﬂzz dix + Zdiui
= = = = i1 i1
n n n n
=2 +,312di +ﬁ22 dix; + Zwiui + Z chu;.
i1 i1 i1 i1

Equations (10) and (11) are used in the forth equality.
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Taking the expectation on both sides of the above equation, we obtain:
. n n n n
EB) =B+p1 ) di+B2 ) X+ ) wEW)+ ) dEW)
i=1 i=1 i=1 i=1

=2 +,31§n1di +ﬁzzn:dixi-
=) =)

Note that d; is not a random variable and thatug(= O.

Sincep, is assumed to be unbiased, we need the following conditions:

andizo, andixi:O.
i=1 i=1
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When these conditions hold, we can rewﬁtgeas:
N n
B2 =2+ Z(wi +di)u;.
i=1

The variance of; is derived as:

n

V(B2) = V(B2 + Z(w. +d)u) = Z(w. +a)u) = > V((@i+d)u)
|1
= Z(wi +d)2V(u) = aZ(Z w? + 22 widi + Z d?)
i=1 i=1 i=1 i=1
= O'Z(i wiz + an d,z)
i=1 i=1
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From unbiasedness 8, usingY", d; = 0 and}., d;x, = 0, we obtain:

-0,

i g = im0 =X 3 xd - X3, d
LT (6 — X)2 ST (% — X)?

which is utilized to obtain the variance 6§ in the third line of the above equation.

From (15), the variance @ is given by: V@) = 2 Y11, w?.

Therefore, we have:
V(B2) = V(B2),

because o, d* > 0.
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Wheny ', d? = 0, i.e., whend; = d; = --- = d, = 0, we have the equality: \86)
= V(B2).

Thus, inthe case @, = d, = - -- = d,, = 0, 3, is equivalent tg,.

As shown above, the least squares estimajagives us theminimum variance

linear unbiased estimator &/ BUREZ NRHEE £), or equivalently thebest
linear unbiased estimator @& R#EF A mHEEZ, BLUE), which is called the
Gauss-Markov theorem (0 R - <)L O 7 EH).
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Asymptotic Properties (873E#IME) of B,:  We assume that asgoes to infinity

we have the following:
1 n
HZ(X‘ - X)? — m< oo,
i=1

wheremis a constant value. From (12), we obtain:

1
”Z“’ TS

Note that f(x,) — f(m) whenx, — m, calledSlutsky’s theorem (X JL*Y F—

EIE), wheremis a constant value anf-) is a function.
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We show bothconsistency 21%) of 3, andasymptotic normality (i IE 17
1) of V(B2 - Bo).
@ First, we prove thas, is a consistent estimator g5.

Chebyshev's inequality - = £ = 7 DAER) is given by:
2
P(X =l > €) < % whereu = E(X) anda? = V(X).
ReplaceX, E(X) and V(X) by:
- A A 2 n 2 a?
» E = . and V = e
Bo (32) = B2 ) =c Z} of =5 Tw

respectively.
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Then, whem — oo, we obtain the following result:

2 2 2 2
o’ YL W o Nyl w;

— 0
€2 Ne2 ’

P(B: — B2 > €) <
N o n o 1 :
where} L, ¢ — 0 because )., v — P~ from the assumption.
Thus, we obtain the result th,ég — 3, asn — co.

Therefore, we can conclude thatis aconsistent estimator (—EH#E ) of Bs.
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