3 Multiple Regression Model（重回帰モデル）

Up to now，only one independent variable，i．e．，x_{i} ，is taken into the regression model．

In this section，we extend it to more independent variables，which is called the multiple regression model（重回帰モデル）．

We consider the following regression model:

$$
\begin{aligned}
y_{i} & =\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\cdots+\beta_{k} x_{i, k}+u_{i} \\
& =\left(x_{i, 1}, x_{i, 2}, \cdots, x_{i, k}\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right)+u_{i}\right. \\
& =x_{i} \beta+u_{i}
\end{aligned}
$$

for $i=1,2, \cdots, n$,
where x_{i} and β denote a $1 \times k$ vector of the independent variables and a $k \times 1$ vector
of the unknown parameters to be estimated, which are represented as:

$$
x_{i}=\left(x_{i, 1}, x_{i, 2}, \cdots, x_{i, k}\right), \quad \beta=\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right)
$$

$x_{i, j}$ denotes the i th observation of the j th independent variable.

The case of $k=2$ and $x_{i, 1}=1$ for all i is exactly equivalent to (1).

Therefore, the matrix form above is a generalization of (1).

Writing all the equations for $i=1,2, \cdots, n$, we have:

$$
\begin{gathered}
y_{1}=\beta_{1} x_{1,1}+\beta_{2} x_{1,2}+\cdots+\beta_{k} x_{1, k}+u_{1}=x_{1} \beta+u_{1}, \\
y_{2}=\beta_{1} x_{2,1}+\beta_{2} x_{2,2}+\cdots+\beta_{k} x_{2, k}+u_{2}=x_{2} \beta+u_{2}, \\
\vdots \\
y_{n}=\beta_{1} x_{n, 1}+\beta_{2} x_{n, 2}+\cdots+\beta_{k} x_{n, k}+u_{n}=x_{n} \beta+u_{n}
\end{gathered}
$$

which is rewritten as:

$$
\begin{aligned}
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) & =\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, k} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, k}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right)+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \beta+\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right) .
\end{aligned}
$$

Again, the above equation is compactly rewritten as:

$$
\begin{equation*}
y=X \beta+u \tag{18}
\end{equation*}
$$

where y, X and u are denoted by:

$$
y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right), \quad X=\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, k} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, k}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad u=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right) .
$$

Utilizing the matrix form (18), we derive the ordinary least squares estimator of β, denoted by $\hat{\beta}$.

In (18), replacing β by $\hat{\beta}$, we have the following equation:

$$
y=X \hat{\beta}+e,
$$

where e denotes a $n \times 1$ vector of the residuals.
The i th element of e is given by e_{i}.
The sum of squared residuals is written as follows:

$$
\begin{aligned}
S(\hat{\beta}) & =\sum_{i=1}^{n} e_{i}^{2}=e^{\prime} e=(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})=\left(y^{\prime}-\hat{\beta}^{\prime} X^{\prime}\right)(y-X \hat{\beta}) \\
& =y^{\prime} y-y^{\prime} X \hat{\beta}-\hat{\beta}^{\prime} X^{\prime} y+\hat{\beta}^{\prime} X^{\prime} X \hat{\beta}=y^{\prime} y-2 y^{\prime} X \hat{\beta}+\hat{\beta}^{\prime} X^{\prime} X \hat{\beta}
\end{aligned}
$$

In the last equality, note that $\hat{\beta}^{\prime} X^{\prime} y=y^{\prime} X \hat{\beta}$ because both are scalars.

To minimize $S(\hat{\beta})$ with respect to $\hat{\beta}$ ，we set the first derivative of $S(\hat{\beta})$ equal to zero， i．e．，

$$
\frac{\partial S(\hat{\beta})}{\partial \hat{\beta}}=-2 X^{\prime} y+2 X^{\prime} X \hat{\beta}=0 .
$$

Solving the equation above with respect to $\hat{\beta}$ ，the ordinary least squares estimator （OLS，最小自乗推定量）of β is given by：

$$
\begin{equation*}
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y . \tag{19}
\end{equation*}
$$

Thus，the ordinary least squares estimator is derived in the matrix form．
(*) Remark

The second order condition for minimization:

$$
\frac{\partial^{2} S(\hat{\beta})}{\partial \hat{\beta} \partial \hat{\beta}^{\prime}}=2 X^{\prime} X
$$

is a positive definite matrix.

Set $c=X d$.

For any $d \neq 0$, we have $c^{\prime} c=d^{\prime} X^{\prime} X d>0$.

Now, in order to obtain the properties of $\hat{\beta}$ such as mean, variance, distribution and so on, (19) is rewritten as follows:

$$
\begin{align*}
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u)=\left(X^{\prime} X\right)^{-1} X^{\prime} X \beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u . \tag{20}
\end{align*}
$$

Taking the expectation on both sides of (20), we have the following:

$$
\mathrm{E}(\hat{\beta})=\mathrm{E}\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}(u)=\beta,
$$

because of $\mathrm{E}(u)=0$ by the assumption of the error term u_{i}.
Thus, unbiasedness of $\hat{\beta}$ is shown.

The variance of $\hat{\beta}$ is obtained as:

$$
\begin{aligned}
\mathrm{V}(\hat{\beta}) & =\mathrm{E}\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right)=\mathrm{E}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime}\right) \\
& =\mathrm{E}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1}\right)=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}\left(u u^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

The first equality is the definition of variance in the case of vector.
In the fifth equality, $\mathrm{E}\left(u u^{\prime}\right)=\sigma^{2} I_{n}$ is used, which implies that $\mathrm{E}\left(u_{i}^{2}\right)=\sigma^{2}$ for all i and $\mathrm{E}\left(u_{i} u_{j}\right)=0$ for $i \neq j$.

Remember that $u_{1}, u_{2}, \cdots, u_{n}$ are assumed to be mutually independently and identically distributed with mean zero and variance σ^{2}.

Under normality assumption on the error term u, it is known that the distribution of $\hat{\beta}$ is given by:

$$
\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right) .
$$

Proof:

First, when $X \sim N(\mu, \Sigma)$, the moment-generating function, i.e., $\phi(\theta)$, is given by:

$$
\phi(\theta) \equiv \mathrm{E}\left(\exp \left(\theta^{\prime} X\right)\right)=\exp \left(\theta^{\prime} \mu+\frac{1}{2} \theta^{\prime} \Sigma \theta\right)
$$

$$
\theta_{u}: n \times 1, \quad u: n \times 1, \quad \theta_{\beta}: k \times 1, \quad \hat{\beta}: k \times 1
$$

The moment-generating function of u, i.e., $\phi_{u}\left(\theta_{u}\right)$, is:

$$
\phi_{u}\left(\theta_{u}\right) \equiv \mathrm{E}\left(\exp \left(\theta_{u}^{\prime} u\right)\right)=\exp \left(\frac{\sigma^{2}}{2} \theta_{u}^{\prime} \theta_{u}\right),
$$

which is $N\left(0, \sigma^{2} I_{n}\right)$.

The moment-generating function of $\hat{\beta}$, i.e., $\phi_{\beta}\left(\theta_{\beta}\right)$, is:

$$
\begin{aligned}
\phi_{\beta}\left(\theta_{\beta}\right) & \equiv \mathrm{E}\left(\exp \left(\theta_{\beta}^{\prime} \hat{\beta}\right)\right)=\mathrm{E}\left(\exp \left(\theta_{\beta}^{\prime} \beta+\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)\right) \\
& =\exp \left(\theta_{\beta}^{\prime} \beta\right) \mathrm{E}\left(\exp \left(\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)\right)=\exp \left(\theta_{\beta}^{\prime} \beta\right) \phi_{u}\left(\theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
& =\exp \left(\theta_{\beta}^{\prime} \beta\right) \exp \left(\frac{\sigma^{2}}{2} \theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} \theta_{\beta}\right)=\exp \left(\theta_{\beta}^{\prime} \beta+\frac{\sigma^{2}}{2} \theta_{\beta}^{\prime}\left(X^{\prime} X\right)^{-1} \theta_{\beta}\right),
\end{aligned}
$$

which is equivalent to the normal distribution with mean β and variance $\sigma^{2}\left(X^{\prime} X\right)^{-1}$.
Note that $\quad \theta_{u}=X\left(X^{\prime} X\right)^{-1} \theta_{\beta}$.

Taking the j th element of $\hat{\beta}$, its distribution is given by:

$$
\hat{\beta}_{j} \sim N\left(\beta_{j}, \sigma^{2} a_{j j}\right), \quad \text { i.e., } \quad \frac{\hat{\beta}_{j}-\beta_{j}}{\sigma \sqrt{a_{j j}}} \sim N(0,1),
$$

where $a_{j j}$ denotes the j th diagonal element of $\left(X^{\prime} X\right)^{-1}$.

Replacing σ^{2} by its estimator s^{2}, we have the following t distribution:

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{s \sqrt{a_{j j}}} \sim t(n-k),
$$

where $t(n-k)$ denotes the t distribution with $n-k$ degrees of freedom.
s^{2} is taken as follows:

$$
s^{2}=\frac{1}{n-k} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n-k} e^{\prime} e=\frac{1}{n-k}(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})
$$

which leads to an unbiased estimator of σ^{2}.

Proof:

Substitute $y=X \beta+u$ and $\hat{\beta}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u$ into $e=y-X \hat{\beta}$.

$$
\begin{aligned}
e & =y-X \hat{\beta}=X \beta+u-X\left(\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u\right) \\
& =u-X\left(X^{\prime} X\right)^{-1} X^{\prime} u=\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
\end{aligned}
$$

$I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$ is idempotent and symmetric, because we have:

$$
\begin{aligned}
& \left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=I_{n}-X\left(X^{\prime} X\right)^{-1} X,,^{\prime} \\
& \left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}=I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime} .
\end{aligned}
$$

s^{2} is rewritten as follows:

$$
\begin{aligned}
s^{2} & =\frac{1}{n-k} e^{\prime} e=\frac{1}{n-k}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u\right)^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u \\
& =\frac{1}{n-k} u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u \\
& =\frac{1}{n-k} u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u
\end{aligned}
$$

Take the expectation of $u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u$ and note that $\operatorname{tr}(a)=a$ for a scalar a.

$$
\begin{aligned}
\mathrm{E}\left(s^{2}\right) & =\frac{1}{n-k} \mathrm{E}\left(\operatorname{tr}\left(u^{\prime}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u\right)\right)=\frac{1}{n-k} \mathrm{E}\left(\operatorname{tr}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) u u^{\prime}\right)\right) \\
& =\frac{1}{n-k} \operatorname{tr}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \mathrm{E}\left(u u^{\prime}\right)\right)=\frac{1}{n-k} \sigma^{2} \operatorname{tr}\left(\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) I_{n}\right) \\
& =\frac{1}{n-k} \sigma^{2} \operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\right) \\
& =\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)\right)=\frac{1}{n-k} \sigma^{2}\left(\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(I_{k}\right)\right) \\
& =\frac{1}{n-k} \sigma^{2}(n-k)=\sigma^{2}
\end{aligned}
$$

$\longrightarrow s^{2}$ is an unbiased estimator of σ^{2}.
Note that we do not need normality assumption for unbiasedness of s^{2}.

Trace（トレース）：
1．$A: n \times n, \quad \operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$ ，where $a_{i j}$ denotes an element in the i th row and the j th column of a matrix A ．

2．a ：scalar $(1 \times 1), \quad \operatorname{tr}(a)=a$
3．$A: n \times k, B: k \times n, \quad \operatorname{tr}(A B)=\operatorname{tr}(B A)$
4． $\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)=\operatorname{tr}\left(I_{k}\right)=k$

5．When X is a vector of random variables， $\mathrm{E}(\operatorname{tr}(X))=\operatorname{tr}(\mathrm{E}(X))$

