
3 Multiple Regression Model (重回帰モデル)

Up to now, only one independent variable, i.e.,xi, is taken into the regression model.

In this section, we extend it to more independent variables, which is called the

multiple regression model (重回帰モデル).
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We consider the following regression model:

yi = β1xi,1 + β2xi,2 + · · · + βkxi,k + ui

= (xi,1, xi,2, · · · , xi,k)


β1

β2

...

βk


+ ui

= xiβ + ui ,

for i = 1, 2, · · · ,n,

wherexi andβ denote a 1× k vector of the independent variables and ak× 1 vector
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of the unknown parameters to be estimated, which are represented as:

xi = (xi,1, xi,2, · · · , xi,k), β =


β1

β2

...

βk


.

xi, j denotes theith observation of thejth independent variable.

The case ofk = 2 andxi,1 = 1 for all i is exactly equivalent to (1).

Therefore, the matrix form above is a generalization of (1).
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Writing all the equations fori = 1,2, · · · ,n, we have:

y1 = β1x1,1 + β2x1,2 + · · · + βkx1,k + u1 = x1β + u1,

y2 = β1x2,1 + β2x2,2 + · · · + βkx2,k + u2 = x2β + u2,

...

yn = β1xn,1 + β2xn,2 + · · · + βkxn,k + un = xnβ + un,
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which is rewritten as:
y1

y2

...

yn


=


x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k

...
...
. . .

...

xn,1 xn,2 · · · xn,k




β1

β2

...

βk


+


u1

u2

...

un



=


x1

x2

...

xn


β +


u1

u2

...

un


.
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Again, the above equation is compactly rewritten as:

y = Xβ + u, (18)

wherey, X andu are denoted by:

y =


y1

y2

...

yn


, X =


x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k

...
...
. . .

...

xn,1 xn,2 · · · xn,k


=


x1

x2

...

xn


, u =


u1

u2

...

un


.

Utilizing the matrix form (18), we derive the ordinary least squares estimator ofβ,

denoted bŷβ.
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In (18), replacingβ by β̂, we have the following equation:

y = Xβ̂ + e,

whereedenotes an× 1 vector of the residuals.

The ith element ofe is given byei.

The sum of squared residuals is written as follows:

S(β̂) =
n∑

i=1

e2
i = e′e= (y− Xβ̂)′(y− Xβ̂) = (y′ − β̂′X′)(y− Xβ̂)

= y′y− y′Xβ̂ − β̂′X′y+ β̂′X′Xβ̂ = y′y− 2y′Xβ̂ + β̂′X′Xβ̂.

In the last equality, note thatβ̂′X′y = y′Xβ̂ because both are scalars.
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To minimizeS(β̂) with respect tôβ, we set the first derivative ofS(β̂) equal to zero,

i.e.,

∂S(β̂)

∂β̂
= −2X′y+ 2X′Xβ̂ = 0.

Solving the equation above with respect toβ̂, theordinary least squares estimator

(OLS,最小自乗推定量) of β is given by:

β̂ = (X′X)−1X′y. (19)

Thus, the ordinary least squares estimator is derived in the matrix form.
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(*) Remark

The second order condition for minimization:

∂2S(β̂)

∂β̂∂β̂′
= 2X′X

is a positive definite matrix.

Setc = Xd.

For anyd , 0, we havec′c = d′X′Xd > 0.
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Now, in order to obtain the properties ofβ̂ such as mean, variance, distribution and

so on, (19) is rewritten as follows:

β̂ = (X′X)−1X′y = (X′X)−1X′(Xβ + u) = (X′X)−1X′Xβ + (X′X)−1X′u

= β + (X′X)−1X′u. (20)

Taking the expectation on both sides of (20), we have the following:

E(β̂) = E(β + (X′X)−1X′u) = β + (X′X)−1X′E(u) = β,

because of E(u) = 0 by the assumption of the error termui.

Thus, unbiasedness ofβ̂ is shown.
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The variance of̂β is obtained as:

V(β̂) = E((β̂ − β)(β̂ − β)′) = E
(
(X′X)−1X′u((X′X)−1X′u)′

)
= E((X′X)−1X′uu′X(X′X)−1) = (X′X)−1X′E(uu′)X(X′X)−1

= σ2(X′X)−1X′X(X′X)−1 = σ2(X′X)−1.

The first equality is the definition of variance in the case of vector.

In the fifth equality, E(uu′) = σ2In is used, which implies that E(u2
i ) = σ

2 for all i

and E(uiuj) = 0 for i , j.

Remember thatu1, u2, · · ·, un are assumed to be mutually independently and identi-

cally distributed with mean zero and varianceσ2.
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Under normality assumption on the error termu, it is known that the distribution of

β̂ is given by:

β̂ ∼ N(β, σ2(X′X)−1).

Proof:

First, whenX ∼ N(µ,Σ), the moment-generating function, i.e.,φ(θ), is given by:

φ(θ) ≡ E
(
exp(θ′X)

)
= exp

(
θ′µ +

1
2
θ′Σθ
)
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θu: n× 1, u: n× 1, θβ: k× 1, β̂: k× 1

The moment-generating function ofu, i.e.,φu(θu), is:

φu(θu) ≡ E
(
exp(θ′uu)

)
= exp

(σ2

2
θ′uθu
)
,

which isN(0, σ2In).

64



The moment-generating function ofβ̂, i.e.,φβ(θβ), is:

φβ(θβ) ≡ E
(
exp(θ′ββ̂)

)
= E
(
exp(θ′ββ + θ

′
β(X

′X)−1X′u)
)

= exp(θ′ββ)E
(
exp(θ′β(X

′X)−1X′u)
)
= exp(θ′ββ)φu

(
θ′β(X

′X)−1X′
)

= exp(θ′ββ) exp
(σ2

2
θ′β(X

′X)−1θβ
)
= exp

(
θ′ββ +

σ2

2
θ′β(X

′X)−1θβ
)
,

which is equivalent to the normal distribution with meanβ and varianceσ2(X′X)−1.

Note that θu = X(X′X)−1θβ. QED
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Taking thejth element of̂β, its distribution is given by:

β̂ j ∼ N(β j , σ
2aj j ), i.e.,

β̂ j − β j

σ
√

aj j
∼ N(0,1),

whereaj j denotes thejth diagonal element of (X′X)−1.

Replacingσ2 by its estimators2, we have the followingt distribution:

β̂ j − β j

s
√

aj j
∼ t(n− k),

wheret(n− k) denotes thet distribution withn− k degrees of freedom.
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s2 is taken as follows:

s2 =
1

n− k

n∑
i=1

e2
i =

1
n− k

e′e=
1

n− k
(y− Xβ̂)′(y− Xβ̂),

which leads to an unbiased estimator ofσ2.

Proof:

Substitutey = Xβ + u andβ̂ = β + (X′X)−1X′u into e= y− Xβ̂.

e= y− Xβ̂ = Xβ + u− X(β + (X′X)−1X′u)

= u− X(X′X)−1X′u = (In − X(X′X)−1X′)u
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In − X(X′X)−1X′ is idempotent and symmetric, because we have:

(In − X(X′X)−1X′)(In − X(X′X)−1X′) = In − X(X′X)−1X,′

(In − X(X′X)−1X′)′ = In − X(X′X)−1X′.

s2 is rewritten as follows:

s2 =
1

n− k
e′e=

1
n− k

((In − X(X′X)−1X′)u)′(In − X(X′X)−1X′)u

=
1

n− k
u′(In − X(X′X)−1X′)′(In − X(X′X)−1X′)u

=
1

n− k
u′(In − X(X′X)−1X′)u
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Take the expectation ofu′(In − X(X′X)−1X′)u and note that tr(a) = a for a scalara.

E(s2) =
1

n− k
E
(
tr
(
u′(In − X(X′X)−1X′)u

))
=

1
n− k

E
(
tr
(
(In − X(X′X)−1X′)uu′

))
=

1
n− k

tr
(
(In − X(X′X)−1X′)E(uu′)

)
=

1
n− k

σ2tr
(
(In − X(X′X)−1X′)In

)
=

1
n− k

σ2tr(In − X(X′X)−1X′) =
1

n− k
σ2(tr(In) − tr(X(X′X)−1X′))

=
1

n− k
σ2(tr(In) − tr((X′X)−1X′X)) =

1
n− k

σ2(tr(In) − tr(Ik))

=
1

n− k
σ2(n− k) = σ2

−→ s2 is an unbiased estimator ofσ2.

Note that we do not need normality assumption for unbiasedness ofs2.
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Trace (トレース):

1. A: n× n, tr(A) =
∑n

i=1 aii , whereai j denotes an element in theith row and

the jth column of a matrixA.

2. a: scalar (1× 1), tr(a) = a

3. A: n× k, B: k× n, tr(AB) = tr(BA)

4. tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k

5. WhenX is a vector of random variables, E(tr(X)) = tr(E(X))
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