4. In general, whef is symmetricQ is decomposed as follows.
Q=AAA

A is a diagonal matrix, where the diagonal elementd aire given by the
eigen values.

Ais a matrix consisting of eigen vectors.

WhenQ is a positive definite matrix, all the diagonal elementadadre posi-
tive.

5. There exist$ such tha2 = PP (i.e., takeP = AAY?). = P1QP 1 =1,
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Multiply P~* on both sides of = X3 + u.

We have:
y* — X*B + U*,

where y*=Ply, X*=P1X, and u*=Plu
The variance ofr* is:
V(u*) = V(Pu) = PV(U)P ™ = 0?PIQP T = o,

becaus®) = PP, i.e.,,P QP! =I,.
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Accordingly, the regression model is rewritten as:
y* = X*B +U*, u* ~ (0,°l,)
Apply OLS to the above model.

Let b be as estimator ¢f from the above model.

That is, the minimization problem is given by:

min (y* — X*b)' (y* — X*b),
b
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which is equivalent to:

min (y — Xb)'Q(y — Xb).
b

Solving the minimization problem above, we have the following estimator:

b — (X*IX*)—lx*ly*

— (X/Q—lx)—lxl Q_ly,

which is called GLS (Generalized Least Squares) estimator.
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b is rewritten as follows:
b=pg+(X"X*) XU = g+ (X'Q X)X Q'
The mean and variance bfare given by:

E() =5,
V(b) = c2(X*' X))t = (X QX)L
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6. Suppose that the regression model is given by:
y = X8+ U, u ~ N(0, 0%Q).
In this case, when we use OLS, what happens?

B=(X'X)IXy =B+ (X'X)X'u

V(B) = ?(X' X)X QX(X’X) 1

Compare GLS and OLS.
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(a) Expectation:
E@) =4 and Eb) =4
Thus, both3 andb are unbiased estimator.

(b) Variance:

V(B) = o2(X' X)X QX(X'X) ™
V(b) = F2(X'Q1X)

Which is more €icient, OLS or GLS?.
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V(B) = V(b) = c2(X'X) X' QX(X'X) ™t = 2(X'Q1X) 2
= (X X)X - (X QX)X QT
(X)X = (X))
= o’ AQA
Q is the variance-covariance matrix of which is a positive definite

matrix.

Therefore, except faR = 1,,, AQA’ is also a positive definite matrix.

150



This implies that V) — V(b;) > O for theith element of3.

Accordingly,b is more dficient than3.

7. If u~ N(O, o?Q), thenb ~ N(B, c2(X'Q1X)™1).
Consider testing the hypotheskd, : R =r.
R: Gxk, rankR =G <k
Rb~ N(RB, r2R(X'Q"1X)"IR).

Therefore, the following quadratic form is distributed as:

(Rb—r)(RX'QX)'R)(Rb-r)

— ~ X*(G)
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8. Becausey* — X*b)'(y* — X*b)/a? ~ y?(n — k), we obtain:

(y ~ XByQ Yy - Xb)

= K=K

9. Furthermore, from the fact thatis independent oy — Xb, the following F

distribution can be derived:

(Rb=r) (RX'QX)R) X (Rb-r)/G
(y = Xby'Q Yy - Xb)/(n - k)

~ F(G,n-kK)
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10. Let b be the unrestricted GLSE aifxcbe the restricted GLSE.

Their residuals are given landu, respectively.

e=y— Xb, =y-Xb

Then, theF test statistic is written as follows:

Q- eQle)/G
eQ-te/(n-K)

~F(G,n-k)
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8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS= Stochastic linear restriction:

r=RB+v, E(v) =0 and V§) = o?¥
y=XB+u, E(u) =0 and V() = &I,

Using a matrix form,
y X u u 0 u I, O
Ll =)o) =)=l )
r R Y v 0 v 0O v
For estimation, we do not need normality assumption.
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Applying GLS, we obtain:

b:[(X' R’)(

1 -1

o v (&) [ s

= (XX + R¥R) " (X'y + Rw™r).

Mean and Variance df:

b:((X’ R)(

b is rewritten as follows:

1

o o) () o (s

ws<foc ol 3) () ()
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Therefore, the mean and variance are given by:

Eb) =48 = bis unbiased.

ool w3 2 )

= (XX +R¥R)

-1

156



9 Maximum Likelihood Estimation (MLE, &%)
— Review of Last Semester

1. The distribution function ofX;}?; is f(x; 8), wherex = (X1, Xz, - - -, X») and
0= (u,X).

Note thatX is a vector of random variables ards a vector of their realiza-

tions (i.e., observed data).

Likelihood functionL(:) is defined ad.(8; x) = f(x; 6).
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Note thatf(x;6) = [T, f(x;6) whenXy, X,, - -+, X, are mutually indepen-
dently and identically distributed.

The maximum likelihood estimator (MLE) @fis 6 such that:

max L(6; X). = max logL(g; X).
9 9

MLE satisfies the following two conditions:

dlogL(6;X) _
(@) ——— =0,

d%logL(6; X) . _ N |
®) ERFTETEE negative definite matrix.
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2. Fisher's information matrix ( 7 1 v & ¥+ —D1E#H175!) is defined as:

2 :
1(6) = —E(M),

06006’

where we have the following equality:

#logL(0; X)\ _,dlogL(6; X) dlogL(F; X)\ ., dlogL(s;X)
- 9000’ )=&( 90 a0 )=v( 90 )

Proof of the above equality:

fL(H; X)dx = 1
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Take a derivative with respect &

fc’)L(e; X)dx 0
00

(We assume that (i) the domain wtloes not depend ahand (ii) the deriva-
. 0L(6; %)
tive

06

Rewriting the above equation, we obtain:

dlogL(6;x), , B
f 9 L(6; x)dx = 0,

exists.)

c(Zeote)
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Again, differentiating the above with respectiowe obtain:

logL(®;x), , dlog L(6; xX) OL(6; X)
f ST L(6; X)dx + f % 54 dx

_ [ *logL(®;x), . dlogL(g; x) dlogL(; %), ,
_ f Eo L6 9dx+ f = =216 ¥ax

_ (9logL(6; X) dlogL(#; X) dlogL(6; X)
- E( 3000’ )+ E( a0 00

Therefore, we can derive the following equality:
_E(az log L(6; X)) ~ E(a log L(6; X) dlog L(6; X)) _v (a log L(6; X))

)=0.

0006’ a0 o0’ a0
. . logL(#; X
where the second equality utlllzez{%) =0.
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3. Cramer-Rao Lower Bound (7 Z X —JL - S ZDTFR): (1(6)*
Suppose that an estimator®is given bys(X).

The expectation of(X) is:

E(s00) = [ s09L(E: 9
Differentiating the above with respect#o

GE(S(X)) fs( )GL(Q X)d — fs( )ML(Q x)dx

dlogL(#; X)
)

_ Cov(s(X),
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For simplicity, lets(X) and6 be scalars.
Then,

(GE(S(X))
00

. 2
W)) =V (s(X))V(

dlogL(g; X)
a0 ’

2 .
) :(Cov(s(X), dlogL(o; X))

09
<V (X)) V (

dlogL(d; X)

wherep denotes the correlation cheient betweers(X) and %
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Cov(s(X),

W\/ 6IogL(¢9 X))

dlogL(g; X)
=)

p:

Note thatp| < 1.
Therefore, we have the following inequality:

IE(S(X))\?
( o )SV(s<X))V(

dlogL(6; X)
06 ’
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(aE(s(X»)Z

V(s(X)) 2

dlogL(0; X)
ey

Especially, when E{(X)) = 6,

V(s(X)) = = ()™

0% logL(6; X)
=5
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Even in the case wher#X) is a vector, the following inequality holds.

V(s(X)) = (1(6) ™,

wherel (0) is defined as:

10 - £ 20X
_E dlogL(@; X) dlog L(6; X) _v dlogL(0; X)
_( 06 00’ )_( 90 )

The variance of any unbiased estimatoé & larger than or equal td (¢)) 1.
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