4. In general, when Ω is symmetric, Ω is decomposed as follows.

$$
\Omega=A^{\prime} \Lambda A
$$

Λ is a diagonal matrix, where the diagonal elements of Λ are given by the eigen values.
A is a matrix consisting of eigen vectors.
When Ω is a positive definite matrix, all the diagonal elements of Λ are positive.
5. There exists P such that $\Omega=P P^{\prime}$ (i.e., take $P=A^{\prime} \Lambda^{1 / 2}$). $\Longrightarrow P^{-1} \Omega P^{\prime-1}=I_{n}$

Multiply P^{-1} on both sides of $y=X \beta+u$.
We have:

$$
y^{\star}=X^{\star} \beta+u^{\star}
$$

where $\quad y^{\star}=P^{-1} y, \quad X^{\star}=P^{-1} X, \quad$ and $\quad u^{\star}=P^{-1} u$.
The variance of u^{\star} is:

$$
\mathrm{V}\left(u^{\star}\right)=\mathrm{V}\left(P^{-1} u\right)=P^{-1} \mathrm{~V}(u) P^{\prime-1}=\sigma^{2} P^{-1} \Omega P^{\prime-1}=\sigma^{2} I_{n}
$$

because $\Omega=P P^{\prime}$, i.e., $P^{-1} \Omega P^{\prime-1}=I_{n}$.

Accordingly, the regression model is rewritten as:

$$
y^{\star}=X^{\star} \beta+u^{\star}, \quad u^{\star} \sim\left(0, \sigma^{2} I_{n}\right)
$$

Apply OLS to the above model.

Let b be as estimator of β from the above model.

That is, the minimization problem is given by:

$$
\min _{b}\left(y^{\star}-X^{\star} b\right)^{\prime}\left(y^{\star}-X^{\star} b\right)
$$

which is equivalent to:

$$
\min _{b}(y-X b)^{\prime} \Omega^{-1}(y-X b)
$$

Solving the minimization problem above, we have the following estimator:

$$
\begin{aligned}
b & =\left(X^{\star \prime} X^{\star}\right)^{-1} X^{\star \prime} y^{\star} \\
& =\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y
\end{aligned}
$$

which is called GLS (Generalized Least Squares) estimator.
b is rewritten as follows:

$$
b=\beta+\left(X^{\star \prime} X^{\star}\right)^{-1} X^{\star \prime} u^{\star}=\beta+\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} u
$$

The mean and variance of b are given by:

$$
\begin{aligned}
& \mathrm{E}(b)=\beta \\
& \mathrm{V}(b)=\sigma^{2}\left(X^{\star \prime} X^{\star}\right)^{-1}=\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1}
\end{aligned}
$$

6. Suppose that the regression model is given by:

$$
y=X \beta+u, \quad u \sim N\left(0, \sigma^{2} \Omega\right) .
$$

In this case, when we use OLS, what happens?

$$
\begin{gathered}
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
\mathrm{~V}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}
\end{gathered}
$$

Compare GLS and OLS.
(a) Expectation:

$$
\mathrm{E}(\hat{\beta})=\beta, \quad \text { and } \quad \mathrm{E}(b)=\beta
$$

Thus, both $\hat{\beta}$ and b are unbiased estimator.
(b) Variance:

$$
\begin{aligned}
& \mathrm{V}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1} \\
& \mathrm{~V}(b)=\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1}
\end{aligned}
$$

Which is more efficient, OLS or GLS?.

$$
\begin{aligned}
\mathrm{V}(\hat{\beta})-\mathrm{V}(b)= & \sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}-\sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1} \\
= & \sigma^{2}\left(\left(X^{\prime} X\right)^{-1} X^{\prime}-\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right) \Omega \\
& \times\left(\left(X^{\prime} X\right)^{-1} X^{\prime}-\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1}\right)^{\prime} \\
= & \sigma^{2} A \Omega A^{\prime}
\end{aligned}
$$

Ω is the variance-covariance matrix of u, which is a positive definite matrix.

Therefore, except for $\Omega=I_{n}, A \Omega A^{\prime}$ is also a positive definite matrix.

This implies that $\mathrm{V}\left(\hat{\beta}_{i}\right)-\mathrm{V}\left(b_{i}\right)>0$ for the i th element of β. Accordingly, b is more efficient than $\hat{\beta}$.
7. If $u \sim N\left(0, \sigma^{2} \Omega\right)$, then $b \sim N\left(\beta, \sigma^{2}\left(X^{\prime} \Omega^{-1} X\right)^{-1}\right)$.

Consider testing the hypothesis $H_{0}: R \beta=r$.

$$
\begin{aligned}
& R: G \times k, \quad \operatorname{rank}(R)=G \leq k \\
& R b \sim N\left(R \beta, \sigma^{2} R\left(X^{\prime} \Omega^{-1} X\right)^{-1} R^{\prime}\right)
\end{aligned}
$$

Therefore, the following quadratic form is distributed as:

$$
\frac{(R b-r)^{\prime}\left(R\left(X^{\prime} \Omega^{-1} X\right)^{-1} R^{\prime}\right)^{-1}(R b-r)}{\sigma^{2}} \sim \chi^{2}(G)
$$

8. Because $\left(y^{\star}-X^{\star} b\right)^{\prime}\left(y^{\star}-X^{\star} b\right) / \sigma^{2} \sim \chi^{2}(n-k)$, we obtain:

$$
\frac{(y-X b)^{\prime} \Omega^{-1}(y-X b)}{\sigma^{2}} \sim \chi^{2}(n-k)
$$

9. Furthermore, from the fact that b is independent of $y-X b$, the following F distribution can be derived:

$$
\frac{(R b-r)^{\prime}\left(R\left(X^{\prime} \Omega^{-1} X\right)^{-1} R^{\prime}\right)^{-1}(R b-r) / G}{(y-X b)^{\prime} \Omega^{-1}(y-X b) /(n-k)} \sim F(G, n-k)
$$

10. Let b be the unrestricted GLSE and \tilde{b} be the restricted GLSE.

Their residuals are given by e and \tilde{u}, respectively.

$$
e=y-X b, \quad \tilde{u}=y-X \tilde{b}
$$

Then, the F test statistic is written as follows:

$$
\frac{\left(\tilde{u}^{\prime} \Omega^{-1} \tilde{u}-e^{\prime} \Omega^{-1} e\right) / G}{e^{\prime} \Omega^{-1} e /(n-k)} \sim F(G, n-k)
$$

8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS \Longrightarrow Stochastic linear restriction:

$$
\begin{array}{ll}
r=R \beta+v, & \mathrm{E}(v)=0 \text { and } \mathrm{V}(v)=\sigma^{2} \Psi \\
y=X \beta+u, & \mathrm{E}(u)=0 \text { and } \mathrm{V}(u)=\sigma^{2} I_{n}
\end{array}
$$

Using a matrix form,

$$
\binom{y}{r}=\binom{X}{R} \beta+\binom{u}{v}, \quad \mathrm{E}\binom{u}{v}=\binom{0}{0} \text { and } \mathrm{V}\binom{u}{v}=\sigma^{2}\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)
$$

For estimation, we do not need normality assumption.

Applying GLS, we obtain:

$$
\begin{aligned}
& b=\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{y}{r}\right) \\
& =\left(X^{\prime} X+R^{\prime} \Psi^{-1} R\right)^{-1}\left(X^{\prime} y+R^{\prime} \Psi^{-1} r\right) \text {. }
\end{aligned}
$$

Mean and Variance of $b: \quad b$ is rewritten as follows:

$$
\begin{aligned}
b & \left.=\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{y}{r}\right) \\
& =\beta+\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1}\binom{u}{v}
\end{aligned}
$$

Therefore, the mean and variance are given by:

$$
\begin{aligned}
\mathrm{E}(b) & =\beta \quad \Longrightarrow \quad b \text { is unbiased. } \\
\mathrm{V}(b) & =\sigma^{2}\left(\left(\begin{array}{ll}
X^{\prime} & R^{\prime}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \Psi
\end{array}\right)^{-1}\binom{X}{R}\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X+R^{\prime} \Psi^{-1} R\right)^{-1}
\end{aligned}
$$

9 Maximum Likelihood Estimation（MLE，最尤法）

\Longrightarrow Review of Last Semester

1．The distribution function of $\left\{X_{i}\right\}_{i=1}^{n}$ is $f(x ; \theta)$ ，where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $\theta=(\mu, \Sigma)$.

Note that X is a vector of random variables and x is a vector of their realiza－ tions（i．e．，observed data）．

Likelihood function $L(\cdot)$ is defined as $L(\theta ; x)=f(x ; \theta)$ ．

Note that $f(x ; \theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$ when $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independently and identically distributed.

The maximum likelihood estimator (MLE) of θ is θ such that:

MLE satisfies the following two conditions:
(a) $\frac{\partial \log L(\theta ; X)}{\partial \theta}=0$.
(b) $\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}$ is a negative definite matrix.

2．Fisher＇s information matrix（フィッシャーの情報行列）is defined as：

$$
I(\theta)=-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)
$$

where we have the following equality：

$$
-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)=\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
$$

Proof of the above equality：

$$
\int L(\theta ; x) \mathrm{d} x=1
$$

Take a derivative with respect to θ.

$$
\int \frac{\partial L(\theta ; x)}{\partial \theta} \mathrm{d} x=0
$$

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative $\frac{\partial L(\theta ; x)}{\partial \theta}$ exists.)

Rewriting the above equation, we obtain:

$$
\int \frac{\partial \log L(\theta ; x)}{\partial \theta} L(\theta ; x) \mathrm{d} x=0,
$$

i.e.,

$$
\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0 .
$$

Again, differentiating the above with respect to θ, we obtain:

$$
\begin{aligned}
& \int \frac{\partial^{2} \log L(\theta ; x)}{\partial \theta \partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x+\int \frac{\partial \log L(\theta ; x)}{\partial \theta} \frac{\partial L(\theta ; x)}{\partial^{\prime} \theta} \mathrm{d} x \\
& \quad=\int \frac{\partial^{2} \log L(\theta ; x)}{\partial \theta \partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x+\int \frac{\partial \log L(\theta ; x)}{\partial \theta} \frac{\partial \log L(\theta ; x)}{\partial \theta^{\prime}} L(\theta ; x) \mathrm{d} x \\
& \quad=\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)+\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=0 .
\end{aligned}
$$

Therefore, we can derive the following equality:

$$
-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right)=\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right),
$$

where the second equality utilizes $\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)=0$.

3．Cramer－Rao Lower Bound（クラメール・ラオの下限）：$(I(\theta))^{-1}$
Suppose that an estimator of θ is given by $s(X)$ ．
The expectation of $s(X)$ is：

$$
\mathrm{E}(s(X))=\int s(x) L(\theta ; x) \mathrm{d} x .
$$

Differentiating the above with respect to θ ，

$$
\begin{aligned}
\frac{\partial \mathrm{E}(s(X))}{\partial \theta} & =\int s(x) \frac{\partial L(\theta ; x)}{\partial \theta} \mathrm{d} x=\int s(x) \frac{\partial \log L(\theta ; x)}{\partial \theta} L(\theta ; x) \mathrm{d} x \\
& =\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
\end{aligned}
$$

For simplicity, let $s(X)$ and θ be scalars.
Then,

$$
\begin{aligned}
\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} & =\left(\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)\right)^{2}=\rho^{2} \mathrm{~V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right) \\
& \leq \mathrm{V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right),
\end{aligned}
$$

where ρ denotes the correlation coefficient between $s(X)$ and $\frac{\partial \log L(\theta ; X)}{\partial \theta}$,
i.e.,

$$
\rho=\frac{\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}{\sqrt{\mathrm{V}(s(X))} \sqrt{\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}} .
$$

Note that $|\rho| \leq 1$.
Therefore, we have the following inequality:

$$
\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} \leq \mathrm{V}(s(X)) \mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
$$

i.e.,

$$
\mathrm{V}(s(X)) \geq \frac{\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2}}{\mathrm{~V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)}
$$

Especially, when $\mathrm{E}(s(X))=\theta$,

$$
\mathrm{V}(s(X)) \geq \frac{1}{-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta^{2}}\right)}=(I(\theta))^{-1} .
$$

Even in the case where $s(X)$ is a vector, the following inequality holds.

$$
\mathrm{V}(s(X)) \geq(I(\theta))^{-1}
$$

where $I(\theta)$ is defined as:

$$
\begin{aligned}
I(\theta) & =-\mathrm{E}\left(\frac{\partial^{2} \log L(\theta ; X)}{\partial \theta \partial \theta^{\prime}}\right) \\
& =\mathrm{E}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta} \frac{\partial \log L(\theta ; X)}{\partial \theta^{\prime}}\right)=\mathrm{V}\left(\frac{\partial \log L(\theta ; X)}{\partial \theta}\right)
\end{aligned}
$$

The variance of any unbiased estimator of θ is larger than or equal to $(I(\theta))^{-1}$.

