
4. In general, whenΩ is symmetric,Ω is decomposed as follows.

Ω = A′ΛA

Λ is a diagonal matrix, where the diagonal elements ofΛ are given by the

eigen values.

A is a matrix consisting of eigen vectors.

WhenΩ is a positive definite matrix, all the diagonal elements ofΛ are posi-

tive.

5. There existsP such thatΩ = PP′ (i.e., takeP = A′Λ1/2). =⇒ P−1ΩP′−1 = In
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Multiply P−1 on both sides ofy = Xβ + u.

We have:

y? = X?β + u?,

where y? = P−1y, X? = P−1X, and u? = P−1u.

The variance ofu? is:

V(u?) = V(P−1u) = P−1V(u)P′−1 = σ2P−1ΩP′−1 = σ2In.

becauseΩ = PP′, i.e.,P−1ΩP′−1 = In.
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Accordingly, the regression model is rewritten as:

y? = X?β + u?, u? ∼ (0, σ2In)

Apply OLS to the above model.

Let b be as estimator ofβ from the above model.

That is, the minimization problem is given by:

min
b

(y? − X?b)′(y? − X?b),
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which is equivalent to:

min
b

(y− Xb)′Ω−1(y− Xb).

Solving the minimization problem above, we have the following estimator:

b= (X?′X?)−1X?′y?

= (X′Ω−1X)−1X′Ω−1y,

which is called GLS (Generalized Least Squares) estimator.
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b is rewritten as follows:

b= β + (X?′X?)−1X?′u? = β + (X′Ω−1X)−1X′Ω−1u

The mean and variance ofb are given by:

E(b) = β,

V(b) = σ2(X?′X?)−1 = σ2(X′Ω−1X)−1.
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6. Suppose that the regression model is given by:

y = Xβ + u, u ∼ N(0, σ2Ω).

In this case, when we use OLS, what happens?

β̂ = (X′X)−1X′y = β + (X′X)−1X′u

V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

Compare GLS and OLS.
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(a) Expectation:

E(β̂) = β, and E(b) = β

Thus, bothβ̂ andb are unbiased estimator.

(b) Variance:

V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

V(b) = σ2(X′Ω−1X)−1

Which is more efficient, OLS or GLS?.
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V(β̂) − V(b) = σ2(X′X)−1X′ΩX(X′X)−1 − σ2(X′Ω−1X)−1

= σ2
(
(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1

)
Ω

×
(
(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1

)′
= σ2AΩA′

Ω is the variance-covariance matrix ofu, which is a positive definite

matrix.

Therefore, except forΩ = In, AΩA′ is also a positive definite matrix.
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This implies that V(̂βi) − V(bi) > 0 for theith element ofβ.

Accordingly,b is more efficient thanβ̂.

7. If u ∼ N(0, σ2Ω), thenb ∼ N(β, σ2(X′Ω−1X)−1).

Consider testing the hypothesisH0 : Rβ = r.

R : G × k, rank(R) =G ≤ k.

Rb∼ N(Rβ, σ2R(X′Ω−1X)−1R′).

Therefore, the following quadratic form is distributed as:

(Rb− r)′(R(X′Ω−1X)−1R′)−1(Rb− r)
σ2

∼ χ2(G)
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8. Because (y? − X?b)′(y? − X?b)/σ2 ∼ χ2(n− k), we obtain:

(y− Xb)′Ω−1(y− Xb)
σ2

∼ χ2(n− k)

9. Furthermore, from the fact thatb is independent ofy − Xb, the followingF

distribution can be derived:

(Rb− r)′(R(X′Ω−1X)−1R′)−1(Rb− r)/G

(y− Xb)′Ω−1(y− Xb)/(n− k)
∼ F(G,n− k)
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10. Let b be the unrestricted GLSE andb̃ be the restricted GLSE.

Their residuals are given byeandũ, respectively.

e= y− Xb, ũ = y− Xb̃

Then, theF test statistic is written as follows:

(ũ′Ω−1ũ− e′Ω−1e)/G
e′Ω−1e/(n− k)

∼ F(G,n− k)
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8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS=⇒ Stochastic linear restriction:

r = Rβ + v, E(v) = 0 and V(v) = σ2Ψ

y = Xβ + u, E(u) = 0 and V(u) = σ2In

Using a matrix form,( y

r

)
=

( X

R

)
β +

( u

v

)
, E

( u

v

)
=

( 0

0

)
and V

( u

v

)
= σ2

( In 0

0 Ψ

)
For estimation, we do not need normality assumption.
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Applying GLS, we obtain:

b =

( X′ R′ )

( In 0

0 Ψ

)−1 ( X

R

)−1 ( X′ R′ )

( In 0

0 Ψ

)−1 ( y

r

)
=

(
X′X + R′Ψ−1R

)−1(
X′y+ R′Ψ−1r

)
.

Mean and Variance ofb: b is rewritten as follows:

b =

( X′ R′ )

( In 0

0 Ψ

)−1 ( X

R

)−1 ( X′ R′ )

( In 0

0 Ψ

)−1 ( y

r

)
= β +

( X′ R′ )

( In 0

0 Ψ

)−1 ( X

R

)−1 ( u

v

)
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Therefore, the mean and variance are given by:

E(b) = β =⇒ b is unbiased.

V(b) = σ2

( X′ R′ )

( In 0

0 Ψ

)−1 ( X

R

)−1

= σ2
(
X′X + R′Ψ−1R

)−1
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9 Maximum Likelihood Estimation (MLE, 最尤法)

=⇒ Review of Last Semester

1. The distribution function of{Xi}ni=1 is f (x; θ), wherex = (x1, x2, · · · , xn) and

θ = (µ,Σ).

Note thatX is a vector of random variables andx is a vector of their realiza-

tions (i.e., observed data).

Likelihood functionL(·) is defined asL(θ; x) = f (x; θ).
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Note that f (x; θ) =
∏n

i=1 f (xi; θ) whenX1, X2, · · ·, Xn are mutually indepen-

dently and identically distributed.

The maximum likelihood estimator (MLE) ofθ is θ such that:

max
θ

L(θ; X). ⇐⇒ max
θ

logL(θ; X).

MLE satisfies the following two conditions:

(a)
∂ logL(θ; X)
∂θ

= 0.

(b)
∂2 logL(θ; X)
∂θ∂θ′

is a negative definite matrix.
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2. Fisher’s information matrix (フィッシャーの情報行列) is defined as:

I (θ) = −E
(∂2 logL(θ; X)

∂θ∂θ′

)
,

where we have the following equality:

−E
(∂2 logL(θ; X)

∂θ∂θ′

)
= E

(∂ logL(θ; X)
∂θ

∂ logL(θ; X)
∂θ′

)
= V

(∂ logL(θ; X)
∂θ

)
Proof of the above equality:∫

L(θ; x)dx = 1
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Take a derivative with respect toθ.∫
∂L(θ; x)
∂θ

dx = 0

(We assume that (i) the domain ofx does not depend onθ and (ii) the deriva-

tive
∂L(θ; x)
∂θ

exists.)

Rewriting the above equation, we obtain:∫
∂ logL(θ; x)
∂θ

L(θ; x)dx = 0,

i.e.,

E

(
∂ logL(θ; X)
∂θ

)
= 0.
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Again, differentiating the above with respect toθ, we obtain:∫
∂2 logL(θ; x)
∂θ∂θ′

L(θ; x)dx+
∫
∂ logL(θ; x)
∂θ

∂L(θ; x)
∂′θ

dx

=

∫
∂2 logL(θ; x)
∂θ∂θ′

L(θ; x)dx+
∫
∂ logL(θ; x)
∂θ

∂ logL(θ; x)
∂θ′

L(θ; x)dx

= E
(∂2 logL(θ; X)

∂θ∂θ′

)
+ E

(∂ logL(θ; X)
∂θ

∂ logL(θ; X)
∂θ′

)
= 0.

Therefore, we can derive the following equality:

−E

(
∂2 logL(θ; X)
∂θ∂θ′

)
= E

(
∂ logL(θ; X)
∂θ

∂ logL(θ; X)
∂θ′

)
= V

(
∂ logL(θ; X)
∂θ

)
,

where the second equality utilizes E

(
∂ logL(θ; X)
∂θ

)
= 0.
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3. Cramer-Rao Lower Bound (クラメール・ラオの下限): (I (θ))−1

Suppose that an estimator ofθ is given bys(X).

The expectation ofs(X) is:

E(s(X)) =
∫

s(x)L(θ; x)dx.

Differentiating the above with respect toθ,

∂E(s(X))
∂θ

=

∫
s(x)
∂L(θ; x)
∂θ

dx =
∫

s(x)
∂ logL(θ; x)
∂θ

L(θ; x)dx

= Cov

(
s(X),

∂ logL(θ; X)
∂θ

)
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For simplicity, lets(X) andθ be scalars.

Then,(
∂E(s(X))
∂θ

)2

=

(
Cov

(
s(X),

∂ logL(θ; X)
∂θ

))2

= ρ2V (s(X)) V

(
∂ logL(θ; X)
∂θ

)
≤ V (s(X)) V

(
∂ logL(θ; X)
∂θ

)
,

whereρ denotes the correlation coefficient betweens(X) and
∂ logL(θ; X)
∂θ

,
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i.e.,

ρ =

Cov

(
s(X),

∂ logL(θ; X)
∂θ

)
√

V (s(X))

√
V

(
∂ logL(θ; X)
∂θ

) .
Note that|ρ| ≤ 1.

Therefore, we have the following inequality:(
∂E(s(X))
∂θ

)2

≤ V(s(X)) V

(
∂ logL(θ; X)
∂θ

)
,
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i.e.,

V(s(X)) ≥

(
∂E(s(X))
∂θ

)2

V

(
∂ logL(θ; X)
∂θ

)
Especially, when E(s(X)) = θ,

V(s(X)) ≥ 1

−E

(
∂2 logL(θ; X)
∂θ2

) = (I (θ))−1.
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Even in the case wheres(X) is a vector, the following inequality holds.

V(s(X)) ≥ (I (θ))−1,

whereI (θ) is defined as:

I (θ) = −E

(
∂2 logL(θ; X)
∂θ∂θ′

)
= E

(
∂ logL(θ; X)
∂θ

∂ logL(θ; X)
∂θ′

)
= V

(
∂ logL(θ; X)
∂θ

)
.

The variance of any unbiased estimator ofθ is larger than or equal to (I (θ))−1.
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