3. Note that

$$\frac{1}{n}X'X \longrightarrow M_{xx}$$

results in

$$(\frac{1}{n}X'X)^{-1} \longrightarrow M_{xx}^{-1}$$

⇒ Slutsky's Theorem

(*) **Slutsky's Theorem**
$$g(\hat{\theta}) \longrightarrow g(\theta)$$
, when $\hat{\theta} \longrightarrow \theta$.

4. OLS is given by:

$$\hat{\beta}_n = \beta + (X'X)^{-1}X'u$$

$$=\beta + (\frac{1}{n}X'X)^{-1}(\frac{1}{n}X'u).$$

Therefore,

$$\hat{\beta}_n \longrightarrow \beta + M_{rr}^{-1} \times 0 = \beta$$

Thus, OLSE is a consitent estimator.

Asymptotic Normality:

1. Asymptotic Normality of OLSE

$$\sqrt{n}(\hat{\beta}_n - \beta) \longrightarrow N(0.\sigma^2 M_{rr}^{-1}), \text{ when } n \longrightarrow \infty.$$

2. **Central Limit Theorem:** Greenberg and Webster (1983)

 Z_1, Z_2, \dots, Z_n are mutually indelendently distributed with mean μ and variance Σ_i .

Then, we have the following result:

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n(Z_i-\mu) \longrightarrow N(0,\Sigma),$$

where

$$\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \Sigma_{i} \right).$$

The distribution of Z_i is not assumed.

3. Define
$$Z_i = x_i' u_i$$
. Then, $\Sigma_i = \text{Var}(Z_i) = \sigma^2 x_i' x_i$.

4. Σ is defined as:

$$\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \sigma^2 x_i' x_i \right) = \sigma^2 \lim_{n \to \infty} \left(\frac{1}{n} X' X \right) = \sigma^2 M_{xx},$$

where

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x \end{pmatrix}$$

5. Applying Central Limit Theorem (Greenberg and Webster (1983), we obtain the following:

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}x'_{i}u_{i}=\frac{1}{\sqrt{n}}X'u\longrightarrow N(0,\sigma^{2}M_{xx}).$$

On the other hand, from $\hat{\beta}_n = \beta + (X'X)^{-1}X'u$, we can rewrite as:

$$\sqrt{n}(\hat{\beta} - \beta) = \left(\frac{1}{n}X'X\right)^{-1}\frac{1}{\sqrt{n}}X'u.$$

$$\operatorname{Var}\left(\left(\frac{1}{n}X'X\right)^{-1}\frac{1}{\sqrt{n}}X'u\right) = \operatorname{E}\left(\left(\frac{1}{n}X'X\right)^{-1}\frac{1}{\sqrt{n}}X'u\left(\left(\frac{1}{n}X'X\right)^{-1}\frac{1}{\sqrt{n}}X'u\right)'\right)$$

$$= \left(\frac{1}{n}X'X\right)^{-1} \left(\frac{1}{n}X'E(uu')X\right) \left(\frac{1}{n}X'X\right)^{-1}$$
$$= \sigma^2 \left(\frac{1}{n}X'X\right)^{-1} \longrightarrow \sigma^2 M_{xx}^{-1}.$$

Therefore,

$$\sqrt{n}(\hat{\beta} - \beta) \longrightarrow N(0, \sigma^2 M_{xx}^{-1})$$

⇒ Asymptotic normality (漸近的正規性) of OLSE

The distribution of u_i is not assumed.

12 Instrumental Variable (操作変数法)

12.1 Measurement Error (測定誤差)

Errors in Variables

1. True regression model:

$$y = \tilde{X}\beta + u$$

2. Observed variable:

$$X = \tilde{X} + V$$

V: is called the measurement error (測定誤差 or 観測誤差).

- 3. For the elements which do not include measurement errors in *X*, the corresponding elements in *V* are zeros.
- 4. Regression using observed variable:

$$y = X\beta + (u - V\beta)$$

OLS of β is:

$$\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'(u - V\beta)$$

5. Assumptions:

(a) The measurement error in X is uncorrelated with \tilde{X} in the limit. i.e.,

$$\operatorname{plim}\left(\frac{1}{n}\tilde{X}'V\right) = 0.$$

Therefore, we obtain the following:

$$\operatorname{plim}\left(\frac{1}{n}X'X\right) = \operatorname{plim}\left(\frac{1}{n}\tilde{X}'\tilde{X}\right) + \operatorname{plim}\left(\frac{1}{n}V'V\right) = \Sigma + \Omega$$

(b) u is not correlated with V.

u is not correlated with \tilde{X} .

That is,

$$\operatorname{plim}\left(\frac{1}{n}V'u\right) = 0, \quad \operatorname{plim}\left(\frac{1}{n}\tilde{X}'u\right) = 0.$$

6. OLSE of β is:

$$\hat{\beta} = \beta + (X'X)^{-1}X'(u - V\beta) = \beta + (X'X)^{-1}(\tilde{X} + V)'(u - V\beta).$$

Therefore, we obtain the following:

$$\operatorname{plim} \hat{\beta} = \beta - (\Sigma + \Omega)^{-1} \Omega \beta$$

Example: The Case of Two Variables:

The regression model is given by:

$$y_t = \alpha + \beta \tilde{x}_t + u_t, \qquad x_t = \tilde{x}_t + v_t.$$

Under the above model,

$$\Sigma = \operatorname{plim}\left(\frac{1}{n}\tilde{X}'\tilde{X}\right) = \operatorname{plim}\left(\frac{1}{n}\sum_{i}\frac{1}{n}\sum_{i}\tilde{x}_{i}\right) = \begin{pmatrix} 1 & \mu \\ \mu & \mu^{2} + \sigma^{2} \end{pmatrix},$$

where μ and σ^2 represent the mean and variance of \tilde{x}_i .

$$\Omega = \operatorname{plim}\left(\frac{1}{n}V'V\right) = \operatorname{plim}\left(\begin{matrix} 0 & 0 \\ 0 & \frac{1}{n}\sum_{i}v_{i}^{2} \end{matrix}\right) = \begin{pmatrix} 0 & 0 \\ 0 & \sigma_{v}^{2} \end{matrix}.$$

Therefore.

$$\begin{aligned} \text{plim} \begin{pmatrix} \hat{\alpha} \\ \hat{\beta} \end{pmatrix} &= \begin{pmatrix} \alpha \\ \beta \end{pmatrix} - \begin{pmatrix} \begin{pmatrix} 1 & \mu \\ \mu & \mu^2 + \sigma^2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & \sigma_v^2 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 0 & 0 \\ 0 & \sigma_v^2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \\ &= \begin{pmatrix} \alpha \\ \beta \end{pmatrix} - \frac{1}{\sigma^2 + \sigma_v^2} \begin{pmatrix} -\mu \sigma_v^2 \beta \\ \sigma^2 \beta \end{pmatrix} \end{aligned}$$

Now we focus on β .

 $\hat{\beta}$ is not consistent. because of:

$$p\lim(\hat{\beta}) = \beta - \frac{\sigma_{\nu}^2 \beta}{\sigma^2 + \sigma_{\pi}^2} = \frac{\beta}{1 + \sigma_{\pi}^2 / \sigma^2} < \beta$$

12.2 Instrumental Variable (IV) Method (操作変数法 or IV 法)

Instrumental Variable (IV)

- 1. Consider the regression model: $y = X\beta + u$ and $u \sim N(0, \sigma^2 I_n)$. In the case of $E(X'u) \neq 0$, OLSE of β is inconsistent.
- 2. **Proof:**

$$\hat{\beta} = \beta + (\frac{1}{n}X'X)^{-1}\frac{1}{n}X'u \longrightarrow \beta + M_{xx}^{-1}M_{xu},$$

where

$$\frac{1}{n}X'X \longrightarrow M_{xx}, \qquad \frac{1}{n}X'u \longrightarrow M_{xu} \neq 0$$

3. Find the Z which satisfies $\frac{1}{n}Z'u \longrightarrow M_{zu} = 0$.

Multiplying Z' on both sides of the regression model: $y = X\beta + u$,

$$Z'y = Z'X\beta + Z'u$$

Dividing n on both sides of the above equation, we take plim on both sides.

Then, we obtain the following:

$$\operatorname{plim}\left(\frac{1}{n}Z'y\right) = \operatorname{plim}\left(\frac{1}{n}Z'X\right)\beta + \operatorname{plim}\left(\frac{1}{n}Z'u\right) = \operatorname{plim}\left(\frac{1}{n}Z'X\right)\beta.$$

Accordingly, we obtain:

$$\beta = \left(\text{plim} \left(\frac{1}{n} Z' X \right) \right)^{-1} \text{plim} \left(\frac{1}{n} Z' y \right).$$

Therefore, we consider the following estimator:

$$\beta_{IV} = (Z'X)^{-1}Z'y,$$

which is taken as an estimator of β .

⇒ Instrumental Variable Method (操作変数法 or IV 法)

4. Assume the followings:

$$\frac{1}{n}Z'X \longrightarrow M_{zx}, \qquad \frac{1}{n}Z'Z \longrightarrow M_{zz}, \qquad \frac{1}{n}Z'u \longrightarrow 0$$

5. Distribution of β_{IV} :

$$\beta_{IV} = (Z'X)^{-1}Z'y = (Z'X)^{-1}Z'(X\beta + u) = \beta + (Z'X)^{-1}Z'u,$$

which is rewritten as:

$$\sqrt{n}(\beta_{IV} - \beta) = \left(\frac{1}{n}Z'X\right)^{-1}\left(\frac{1}{\sqrt{n}}Z'u\right)$$

Applying the Central Limit Theorem to $\left(\frac{1}{\sqrt{n}}Z'u\right)$, we have the following result:

$$\frac{1}{\sqrt{n}}Z'u \longrightarrow N(0,\sigma^2M_{zz}).$$

Therefore.

$$\sqrt{n}(\beta_{IV} - \beta) = \left(\frac{1}{n}Z'X\right)^{-1}\left(\frac{1}{\sqrt{n}}Z'u\right) \longrightarrow N(0, \sigma^2 M_{zx}^{-1} M_{zz} M_{zx}'^{-1})$$

⇒ Consistency and Asymptotic Normality

6. The variance of β_{IV} is given by:

$$V(\beta_{IV}) = s^2 (Z'X)^{-1} Z' Z(X'Z)^{-1},$$

where

$$s^2 = \frac{(y - X\beta_{IV})'(y - X\beta_{IV})}{n - k}.$$

12.3 Two-Stage Least Squares Method (2 段階最小二乗法, 2SLS or TSLS)

1. Regression Model:

$$y = X\beta + u$$
, $u \sim N(0, \sigma^2 I)$,

In the case of $E(X'u) \neq 0$, OLSE is not consistent.

- 2. Find the variable Z which satisfies $\frac{1}{n}Z'u \longrightarrow M_{zu} = 0$.
- 3. Use $Z = \hat{X}$ for the instrumental variable.

 \hat{X} is the predicted value which regresses X on the other exogenous variables, say W.

That is, consider the following regression model:

$$X = WB + V$$
.

Estimate *B* by OLS.

Then, we obtain the prediction:

$$\hat{X} = W\hat{B},$$

where $\hat{B} = (W'W)^{-1}W'X$.

Or, equivalently,

$$\hat{X} = W(W'W)^{-1}W'X.$$

 \hat{X} is used for the instrumental variable of X.

4. The IV method is rewritten as:

$$\beta_{IV} = (\hat{X}'X)^{-1}\hat{X}'y = (X'W(W'W)^{-1}W'X)^{-1}X'W(W'W)^{-1}W'y.$$

Furthermore, β_{IV} is written as follows:

$$\beta_{IV} = \beta + (X'W(W'W)^{-1}W'X)^{-1}X'W(W'W)^{-1}W'u.$$

Therefore, we obtain the following expression:

$$\sqrt{n}(\beta_{IV} - \beta) = \left(\left(\frac{1}{n} X' W \right) \left(\frac{1}{n} W' W \right)^{-1} \left(\frac{1}{n} X W' \right)' \right)^{-1} \left(\frac{1}{n} X' W \right) \left(\frac{1}{n} W' W \right)^{-1} \left(\frac{1}{\sqrt{n}} W' u \right) \\
\longrightarrow N \left(0, (M_{xw} M_{ww}^{-1} M'_{xw})^{-1} \right).$$

5. Clearly, there is no correlation between W and u at least in the limit, i.e.,

$$p\lim\left(\frac{1}{n}W'u\right)=0.$$

6. Remark:

$$\hat{X}'X = X'W(W'W)^{-1}W'X = X'W(W'W)^{-1}W'W(W'W)^{-1}W'X = \hat{X}'\hat{X}.$$

Therefore,

$$\beta_{IV} = (\hat{X}'X)^{-1}\hat{X}'y = (\hat{X}'\hat{X})^{-1}\hat{X}'y,$$

which implies the OLS estimator of β in the regression model: $y = \hat{X}\beta + u$ and $u \sim N(0, \sigma^2 I_n)$.