
(b) Ordinary Least Squares (OLS) Method

S(φ1) =
T∑

t=2

(yt − φ1yt−1)
2

is minimized with respect toφ1.

φ̂1 =

∑T
t=2 yt−1yt∑T
t=2 y2

t−1

= φ1 +

∑T
t=2 yt−1εt∑T
t=2 y2

t−1

= φ1 +
(1/T)

∑T
t=2 yt−1εt

(1/T)
∑T

t=2 y2
t−1

−→ φ1 +
E(yt−1εt)

E(y2
t−1)

= φ1

OLSE ofφ1 is a consistent estimator.
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The following equations are utilized.

E(yt−1εt) = 0

E(y2
t−1) = Var(yt−1) = γ(0)

8. Asymptotic distribution of OLSÊφ1:

√
T(φ̂1 − φ1) −→ N(0,1− φ2

1)

Proof:

yt−1εt, t = 1,2, · · · ,T, are distributed with mean zero and variance
σ4
ε

1− φ2
1

.
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From the central limit theorem,

(1/T)
∑T

t=1 yt−1εt√
σ4
ε/(1− φ2

1)/
√

T
−→ N(0,1)

Rewriting,
1
√

T

T∑
t=1

yt−1εt −→ N(0,
σ4
ε

1− φ2
1

).

Next,
1
T

T∑
t=1

y2
t−1 −→ E(y2

t−1) = γ(0) =
σ2
ε

1− φ2
1
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yields:

√
T(φ̂1 − φ1) =

(1/
√

T)
∑T

t=1 yt−1εt

(1/T)
∑T

t=1 y2
t−1

−→ N(0, 1− φ2
1)

9. Some formulas:

(a) Central Limit Theorem

Random variablesx1, x2, · · ·, xT are mutually independently distributed

with meanµ and varianceσ2.

Definex = (1/T)
∑T

t=1 xt.
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Then,
x− E(x)√

V(x)
=

x− µ
σ/
√

T
−→ N(0,1)

(b) Central Limit Theorem II

Random variablesx1, x2, · · ·, xT are distributed with meanµ and vari-

anceσ2.

Definex = (1/T)
∑T

t=1 xt.

Then,
x− E(x)√

V(x)
−→ N(0,1)
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(c) Let x andy be random variables.

y converges in distribution to a distribution, andx converges in proba-

bility to a fixed value.

Then,xyconverges in distribution.

For example, consider:

y −→ N(µ, σ2), x −→ c.

Then, we obtain:

xy −→ N(cµ, c2σ2)
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10. AR(1) +drift: yt = µ + φ1yt−1 + εt

Mean:

Using the lag operator,

φ(L)yt = µ + εt

whereφ(L) = 1− φ1L.

Multiply φ(L)−1 on both sides. Then, when|φ1| < 1, we have:

yt = φ(L)−1µ + φ(L)−1εt.
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Taking the expectation on both sides,

E(yt) = φ(L)−1µ + φ(L)−1E(εt)

= φ(1)−1µ =
µ

1− φ1
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15 Unit Root (単位根) and Cointegration (共和分)

15.1 Unit Root (単位根) Test (Dickey-Fuller (DF) Test)

1. Why is a unit root problem important?

(a) Economic variables increase over time in general.

One of the assumptions of OLS is stationarity onyt andxt.

This assumption implies that
1
T

X′X converges to a fixed matrix asT is

large.
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That is, asymptotic normality of OLS estimator does not hold.

(b) In nonstationary time series, the unit root is the most important.

In the case of unit root, OLSE of the first-order autoregressive coeffi-

cient is consistent.

OLSE is
√

T-consistent in the case of stationary AR(1) process, but

OLSE isT-consistent in the case of nonstationay AR(1) process.

(c) A lot of economic variables increase over time.

It is important to check an economic variable is trend stationary (i.e.,

yt = a0 + a1t + εt) or difference stationary (i.e.,yt = b0 + yt−1 + εt).
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Considerk-step ahead prediction for both cases.

(Trend Stationarity) yt+k|t = a0 + a1(t + k)

(Difference Stationarity) yt+k|t = b0k+ yt

2. The Case of|φ1| < 1:

yt = φ1yt−1 + εt, εt ∼ i.i.d. N(0, σ2
ε ), y0 = 0, t = 1, · · · ,T
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Then, OLSE ofφ1 is:

φ̂1 =

T∑
t=1

yt−1yt

T∑
t=1

y2
t−1

.

In the case of|φ1| < 1,

φ̂1 = φ1 +

1
T

T∑
t=1

yt−1εt

1
T

T∑
t=1

y2
t−1

−→ φ1 +
E(yt−1εt)

E(y2
t−1)

= φ1.
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Note as follows:
1
T

T∑
t=1

yt−1εt −→ E(yt−1εt) = 0.

By the central limit theorem,

yε − E(yε)√
V(yε)

−→ N(0,1)

where

yε =
1
T

T∑
t=1

yt−1εt.
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E(yε) = 0,

V(yε) = V(
1
T

T∑
t=1

yt−1εt) = E
(
(
1
T

T∑
t=1

yt−1εt)
2
)

=
1
T2

E
( T∑

t=1

T∑
s=1

yt−1ys−1εtεs
)
=

1
T2

E
( T∑

t=1

y2
t−1ε

2
t

)
=

1
T
σ2
εγ(0).

Therefore,

yε√
σ2
εγ(0)/T

=
1

σε
√
γ(0)

1
√

T

T∑
t=1

yt−1εt −→ N(0,1),
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which is rewritten as:

1
√

T

T∑
t=1

yt−1εt −→ N(0, σ2
εγ(0)).

Using
1
T

T∑
t=1

y2
t−1 −→ E(y2

t−1) = γ(0), we have the following asymptotic

distribution:

√
T(φ̂1 − φ1) =

1
√

T

T∑
t=1

yt−1εt

1
T

T∑
t=1

y2
t−1

−→ N

(
0,
σ2
ε

γ(0)

)
= N

(
0,1− φ2

1

)
.
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Note thatγ(0) =
σ2
ε

1− φ2
1

.

3. In the case ofφ1 = 1, as expected, we have:

√
T(φ̂1 − 1) −→ 0.

That is,φ̂1 has the distribution which converges in probability toφ1 = 1 (i.e.,

degenerated distribution).

Is this true?

4. 　 The Case ofφ1 = 1: =⇒ Random Walk Process
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yt = yt−1 + εt with y0 = 0 is written as:

yt = εt + εt−1 + εt−2 + · · · + ε1.

Therefore, we can obtain:

yt ∼ N(0, σ2
ε t).

The variance ofyt depends on timet. =⇒ yt is nonstationary.

5. Remember that̂φ1 = φ1 +

∑
yt−1εt∑
y2

t−1

.

(a) First, consider the numerator
∑

yt−1εt.
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We havey2
t = (yt−1 + εt)2 = y2

t−1 + 2yt−1εt + ε
2
t .

Therefore, we obtain:

yt−1εt =
1
2

(y2
t − y2

t−1 − ε2t ).

Taking into accounty0 = 0, we have:

T∑
t=1

yt−1εt =
1
2

y2
T −

1
2

T∑
t=1

ε2t .

Divided byσ2
εT on both sides, we have the following:

1
σ2
εT

T∑
t=1

yt−1εt =
1
2

(
yT

σε
√

T

)2

− 1
2σ2
ε

1
T

T∑
t=1

ε2t .
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Fromyt ∼ N(0, σ2
ε t), we obtain the following result:(

yT

σε
√

T

)2

∼ χ2(1).

Moreover, the second term is derived from:

1
T

T∑
t=1

ε2t −→ E(ε2t ) = σ2
ε .

Therefore,

1
σ2
εT

T∑
t=1

yt−1εt =
1
2

(
yT

σε
√

T

)2

− 1
2σ2
ε

1
T

T∑
t=1

ε2t −→
1
2

(χ2(1)− 1).
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(b) Next, consider
∑

y2
t−1.

E

 T∑
t=1

y2
t−1

 = T∑
t=1

E(y2
t−1) =

T∑
t=1

σ2
ε (t − 1) = σ2

ε

T(T − 1)
2

.

Thus, we obtain the following result:

1
T2

E

 T∑
t=1

y2
t−1

 −→ a fixed value.

Therefore,
1
T2

T∑
t=1

y2
t−1 −→ a distribution.
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6. Summarizing the results up to now,T(φ̂1−φ1), not
√

T(φ̂1−φ1), has limiting

distribution in the case ofφ1 = 1.

T(φ̂1 − φ1) =
(1/T)

∑
yt−1εt

(1/T2)
∑

y2
t−1

−→ a distribution.

7. Basic Concepts of Random Walk Process:

(a) Model: yt = yt−1 + εt, y0 = 0, εt ∼ N(0,1).

Then,

yt = εt + εt−1 + · · · + ε1.
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Therefore,

yt ∼ N(0, t).

=⇒ Nonstationary Process (i.e., variance depends on timet.)

Difference betweenys andyt (s> t) is:

ys− yt = εs+ εs−1 + · · · + εt+2 + εt+1.

The distribution ofys− yt is:

ys− yt ∼ N(0, s− t).
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(b) Rewrite as follows:

yt = yt−1 + εt

= yt−1 + e1,t + e2,t + · · · + eN,t,

whereεt = e1,t + e2,t + · · · + eN,t.

e1,t,e2,t, · · · ,eN,t are iid withei,t ∼ N(0,1/N).

That is, suppose that there areN subperiods between timet and time

t + 1.
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The limit whenN→ ∞ is acontinuous time (連続時間) process known

asstandard Brownian motion or Wiener process.

The value of this process at timer is denoted byW(r) for 0 ≤ r ≤ 1.

Definition:

Standard Brownian motionW(r) denotes a continuous-time variable at

time r and a stochastic function.

W(r) for r ∈ [0,1] satisfies the following:

i. W(0) = 0
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ii. For any time periods 0≤ r1 < r2 < · · · < rk ≤ 1, W(r2) −W(r1),

W(r3) −W(r2), · · ·, W(rk) −W(rk−1) are independently multivariate

normal withW(s) −W(t) ∼ N(0, s− t) for s> t.

iii. W(r) is continuous inr with probability 1.

An example:

σW(r) ∼ N(0, σ2r),

which denotes the Brownian motion with varianceσ2.

Another example;

W(r)2 ∼ r × χ2(1).
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